
Artificial Intelligence 234 (2016) 78–119
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Games for query inseparability of description logic knowledge

bases ✩

Elena Botoeva a, Roman Kontchakov b,∗, Vladislav Ryzhikov a, Frank Wolter c,
Michael Zakharyaschev b

a KRDB Research Centre, Free University of Bozen–Bolzano, Italy
b Department of Computer Science and Information Systems, Birkbeck, University of London, UK
c Department of Computer Science, University of Liverpool, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 May 2015
Received in revised form 7 November 2015
Accepted 15 January 2016
Available online 22 January 2016

Keywords:
Description logic
Knowledge base
Conjunctive query
Query inseparability
Games on graphs
Computational complexity

We consider conjunctive query inseparability of description logic knowledge bases with
respect to a given signature—a fundamental problem in knowledge base versioning,
module extraction, forgetting and knowledge exchange. We give a uniform game-theoretic
characterisation of knowledge base conjunctive query inseparability and develop worst-
case optimal decision algorithms for fragments of Horn-ALCHI , including the description
logics underpinning OWL 2 QL and OWL 2 EL. We also determine the data and combined
complexity of deciding query inseparability. While query inseparability for all of these
logics is P-complete for data complexity, the combined complexity ranges from P- to
ExpTime- to 2ExpTime-completeness. We use these results to resolve two major open
problems for OWL 2 QL by showing that TBox query inseparability and the membership
problem for universal conjunctive query solutions in knowledge exchange are both
ExpTime-complete for combined complexity. Finally, we introduce a more flexible notion of
inseparability which compares answers to conjunctive queries in a given signature over a
given set of individuals. In this case, checking query inseparability becomes NP-complete
for data complexity, but the ExpTime- and 2ExpTime-completeness combined complexity
results are preserved.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A description logic (DL) knowledge base (KB) consists of a terminological box (TBox) and an assertion box (ABox). The
TBox represents conceptual knowledge by providing a vocabulary for a domain of interest together with axioms that describe
semantic relationships between the vocabulary items. To illustrate, consider the following toy TBox Ta , which defines a
vocabulary for the automotive industry:

Minivan � Automobile,

✩ This paper is an invited revision of a paper which first appeared at the 14th International Conference on Principles of Knowledge Representation and
Reasoning (KR 2014).

* Corresponding author.
E-mail addresses: botoeva@inf.unibz.it (E. Botoeva), roman@dcs.bbk.ac.uk (R. Kontchakov), ryzhikov@inf.unibz.it (V. Ryzhikov), wolter@liverpool.ac.uk

(F. Wolter), michael@dcs.bbk.ac.uk (M. Zakharyaschev).
http://dx.doi.org/10.1016/j.artint.2016.01.010
0004-3702/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.artint.2016.01.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:botoeva@inf.unibz.it
mailto:roman@dcs.bbk.ac.uk
mailto:ryzhikov@inf.unibz.it
mailto:wolter@liverpool.ac.uk
mailto:michael@dcs.bbk.ac.uk
http://dx.doi.org/10.1016/j.artint.2016.01.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2016.01.010&domain=pdf

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 79
Hybrid � Automobile,

Automobile � ∃poweredBy.Engine,

Hybrid � ∃poweredBy.ElectricEngine � ∃poweredBy.InternalCombustionEngine,

ElectricEngine � Engine,

InternalCombustionEngine � Engine.

The first two axioms say that minivans and hybrids are automobiles, the third one claims that every automobile is powered
by an engine, and the fourth axiom states that every hybrid is powered by an electric engine and also by an internal
combustion engine. Thus, the TBox introduces, among others, the concept names (sets) Minivan, Automobile and Engine,
states that the concept Minivan is subsumed by the concept Automobile and uses the role name (binary relation) poweredBy
to say that automobiles are powered by engines. TBoxes, often called ontologies, are represented in many applications using
the syntax of the Web Ontology Language OWL 2 (www.w3.org/TR/owl2-overview).

The ABox of a knowledge base is a set of facts storing data about the concept and role names introduced in the TBox. As
an example ABox in the automotive domain, we will use the following set of assertions:

Aa = {Hybrid(toyota_highlander), Minivan(toyota_highlander),

Minivan(nissan_note), poweredBy(nissan_note,hr15de), InternalCombustionEngine(hr15de) }.
Typical applications of KBs in modern information systems use the semantics of the concepts and roles in the TBox to enable
the user to query the data in the ABox. This is particularly useful if the data is incomplete or comes from heterogeneous
data sources, which is the case, for example, in linked data applications [1] and large-scale data integration projects [2,3],
or if the data comprises the web content gathered by search engines using semantic markup [4].

As the data may be incomplete, the open world assumption is adopted when querying a KB K: a tuple a of individuals
from K is a (certain) answer to a query q over K if q(a) is true in every model of K. Since general first-order queries
are undecidable under the open-world semantics, the basic and most important querying instrument is conjunctive queries
(CQs), which are ubiquitous in relational database systems and form the core of the Semantic Web query language SPARQL
(www.w3.org/TR/sparql11-query). In our context, a CQ q(x) is a first-order formula ∃y ϕ(x, y) such that ϕ(x, y) is a con-
junction of atoms of the form A(z1) or P (z1, z2), for a concept name A, a role name P , and variables z1, z2 from x, y.1 For
example, to find minivans powered by electric engines, one can use the CQ

q(x) = ∃y
(
Minivan(x) ∧ poweredBy(x, y) ∧ ElectricEngine(y)

)
,

with toyota_highlander being the only certain answer to q(x) over (Ta, Aa).
The problem of answering CQs over KBs has been the focus of significant research in the DL community: deep complexity

results have been obtained for a broad range of DLs (see below), new DLs have been introduced with tractable (in data
complexity) query answering [5,6], a variety of query answering techniques have been invented [6,7] and implemented in a
number of powerful software systems (see, e.g., [8] and references therein).

Apart from developing query answering techniques, a major research problem is KB engineering and maintenance. In
fact, with typically large data and often complex and tangled ontologies, tool support for transforming and comparing KBs
is becoming indispensable for applications. To begin with, KBs are never static entities. Like most software artefacts, they
are updated to incorporate new information, and distinct versions are introduced for different applications. Thus, developing
support for KB versioning has become an important research problem [9,10]. As dealing with a large and semantically
tangled KB can be costly, one may want to extract from it a smaller module that is indistinguishable from the whole KB
as far as the given application is concerned [11]. Another technique for extracting relevant information is forgetting, where
the task is to replace a given KB with a new one, which uses only those concept and role names that are needed by the
application but still provides the same information about those names as the original KB [12,13]. Finally, the vocabulary of
a given KB may not be convenient for a new application. In this case, similarly to data exchange in databases [14]—where
data structured under a source schema is converted to data under a target schema—one may want to transform a KB in a
source signature to a KB given in a more useful target signature and representing the original KB in an accurate way. This
task is known as knowledge exchange [15,16].

In this article, we investigate a relationship between KBs that is fundamental for all such tasks if querying the data via
CQs is the main application. Let � be a relational signature consisting of a finite set of concept and role names. We say
that KBs K1 and K2 are �-query inseparable and write K1 ≡� K2 if any CQ formulated in � has the same answers over K1
and K2. Note that even for � containing all concept and role names in the KBs, �-query inseparability does not necessarily
imply logical equivalence: for example, (∅, {A(a)}) is {A, B}-query inseparable from ({B � A}, {A(a)}) but the two KBs are
clearly not logically equivalent. Thus, if KBs are used for purposes other than querying data via CQs, then different notions

1 Since we consider Horn DLs, the results of this article actually apply to unions of CQs (known as UCQs), see Remark 2 below. For simplicity, however,
we consider CQs only.

http://www.w3.org/TR/owl2-overview
http://www.w3.org/TR/sparql11-query

80 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
of inseparability are required. We now discuss the applications of �-query inseparability for the tasks mentioned above in
more detail.
Versioning. Version control systems for KBs provide a range of operations including, for example, computing the relevant
differences between KBs, merging KBs and recovering KBs. All these operations rely on checking whether two versions, K1
and K2, of a KB are indistinguishable from the application point of view. If that application is querying the data via CQs
in a given relational signature �, then K1 and K2 should be regarded as indistinguishable just in case they give the same
answers to CQs formulated in �. Thus, the basic task for a query-centric approach to KB versioning is to check whether
K1 ≡� K2.
Modularisation. Modularisation and module extraction are major research topics in ontology engineering and maintenance.
In module extraction, the problem is to find a (small) subset of the axioms of a given large KB that is indistinguishable from
the KB with respect to the intended application. If that application is querying a KB K using CQs in a relational signature �,
then the problem is to find a small �-query module of K, that is, a KB K′ ⊆ K with K′ ≡� K. Note that one can extract a
minimal �-query module from a KB using a polynomial-time algorithm with the �-query inseparability check as an oracle
(see, e.g., [17]). To illustrate the notion of �-query module, consider the automotive knowledge base Ka = (Ta, Aa) defined
above and the relational signature �m = { Automobile, Engine, poweredBy }. Then Km = (Tm, Am) is a �m-query module of
Ka , where

Tm = { Minivan � Automobile, Automobile � ∃poweredBy.Engine, InternalCombustionEngine � Engine },
Am = { Minivan(toyota_highlander),

Minivan(nissan_note), poweredBy(nissan_note,hr15de), InternalCombustionEngine(hr15de) }.
Knowledge Exchange. In knowledge exchange, we want to transform a KB K1 in a relational signature �1 to a KB K2 in a
new signature �2 connected to �1 via a declarative mapping specification given by a TBox T12. Such mapping specifications
between KBs are also known as ontology alignments or ontology matchings and have been studied extensively [18]. If, as
above, we are interested in querying data via CQs, then the target KB K2 should be a sound and complete representation
of K1 with respect to answers to CQs, and so should satisfy the condition K1 ∪ T12 ≡�2 K2, in which case it is called
a universal CQ-solution. To illustrate, consider again the knowledge base Ka = (Ta, Aa) and let Tae connect the relational
signature �a of Ka to �e = { Car, HybridCar, ElectricMotor, Motor, hasMotor } by means of the following axioms:

Automobile � Car, Hybrid � HybridCar, poweredBy � hasMotor,

Engine � Motor, ElectricEngine � ElectricMotor.

Then Ke = (Te, Ae) is a universal CQ-solution, where

Te = {ElectricMotor � Motor, Car � ∃hasMotor.Motor, HybridCar � Car � ∃hasMotor.ElectricMotor },
Ae = {HybridCar(toyota_highlander), Car(nissan_note), hasMotor(nissan_note,hr15de), Motor(hr15de) }.

Forgetting. A KB K′ is said to result from forgetting a relational signature � in a KB K if K′ ≡sig(K)\� K and sig(K′) ⊆
sig(K) \ �, where sig(K) is the relational signature of K. Thus, the result of forgetting � does not use � and gives the
same answers to CQs without symbols in � as K. The result of forgetting is also called a uniform interpolant for K
with respect to sig(K) \ �. Forgetting is of interest in a number of scenarios. Typically, when reusing an existing KB in a
new application, only a small number of its symbols is relevant, and so instead of reusing the whole KB, one can take a
potentially smaller KB resulting from forgetting the extraneous symbols. Forgetting can also be used for predicate hiding: if
a KB is to be published, but some part of it has to be concealed from the public, then this part can be removed by forgetting
its symbols [19]. Finally, forgetting can be used for KB summary: the result of forgetting often provides a smaller and more
focused KB that summarises what the original KB says about the retained symbols, potentially facilitating comprehension.
To illustrate, the KB K f = (T f , A f) results from forgetting � f = { Minivan, Hybrid, ElectricEngine, InternalCombustionEngine }
in Ka , where

T f = {Automobile � ∃poweredBy.Engine },
A f = {Automobile(toyota_highlander),

Automobile(nissan_note), poweredBy(nissan_note,hr15de), Engine(hr15de) }.
In this article, we develop worst-case optimal algorithms deciding �-query inseparability of KBs given in various

fragments of the description logic Horn-ALCHI [20], which include DL-LiteHcore [6,21] and ELHdr⊥ [22] underlying the
OWL 2 profiles OWL 2 QL and OWL 2 EL (www.w3.org/TR/owl2-profiles). The algorithms are based on two characterisations
of �-query inseparability, one of which is model-theoretic and the other game-theoretic. The former characterises �-query
inseparability in terms of partial �-homomorphisms between materialisations, that is, interpretations M of KBs K such
that the certain answers to any CQ q over K coincide with the answers to CQ q over M. Any Horn-ALCHI KB has a ma-
terialisation. While materialisations can be infinite, we show that one can always compute a finite generating structure from
which a materialisation is obtained by unravelling. We then develop a game-theoretic machinery for checking the existence

http://www.w3.org/TR/owl2-profiles

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 81
Fig. 1. Summary of the combined complexity results.

of partial �-homomorphisms between materialisations by playing two-player games on the corresponding finite generating
structures. Thus, our algorithms consist of two components: computing finite generating structures for the given KBs and
deciding the existence of winning strategies for the games on these structures.

We use the constructed algorithms to obtain optimal upper bounds for the data and combined complexity of de-
ciding �-query inseparability for KBs given in all of the DLs mentioned above. �-query inseparability turns out to be
P-complete for data complexity, which matches the complexity of CQ evaluation for all of our DLs lying outside the DL-
Lite family. For combined complexity, the obtained tight complexity results are summarised in Fig. 1. Most interesting
are ExpTime-completeness of DL-LiteHcore and 2ExpTime-completeness of Horn-ALCI , which contrast with NP- and Exp-

Time-completeness of CQ evaluation for these logics. We note in passing that the 2ExpTime-hardness proof goes through for
the fragment ELI of Horn-ALCI . For DL-Lite without role inclusions, EL and ELHdr⊥ , �-query inseparability is P-complete,
while CQ evaluation is NP-complete. In general, it is the combined presence of inverse roles and qualified existential restric-
tions (or role inclusions) that makes �-query inseparability hard. The matching lower bounds are established by a (rather
involved) encoding of suitable alternating Turing machines.

We apply our complexity results for �-query inseparability to resolve two important open problems. First, we show
that, in knowledge exchange, the membership problem for universal CQ-solutions for DL-LiteHcore KBs is ExpTime-complete
for combined complexity, which settles an open question of [23], where only PSpace-hardness was established. Second, we
show that deciding �-query inseparability of DL-LiteHcore TBoxes (for arbitrary ABoxes) is ExpTime-complete, which closes the
PSpace–ExpTime gap that was left open by Konev et al. [24].

In the definition of �-query inseparability above, we took account of all tuples of individuals in the KBs that could
be certain answers to CQs. In some applications, however, we may be interested only in a specific set of individuals over
which the certain answers should be compared. Let � be an individual signature consisting of a finite set of individual
names. For KBs K1, K2 and a relational signature �, we say that K1 and K2 are (�, �)-query inseparable if any CQ
formulated in � has the same certain answers among the individuals in � over both K1 and K2, in which case we write
K1 ≡�,� K2. Clearly, if � contains all individuals in K1 ∪K2, then (�, �)-query inseparability implies �-query inseparability.
(�, �)-query inseparability can be used to refine �-query inseparability as a foundation for versioning, modularisation,
forgetting and knowledge exchange.

For instance, a KB K′ is a (�, �)-query module of a KB K if K′ ⊆ K and K′ ≡�,� K. Consider again the automotive
ontology Ka = (Ta, Aa) and the relational signature �m = { Automobile, Engine, poweredBy }. Unlike our example illustrating
�-query modules, we now restrict the individual signature to �m = { toyota_highlander, nissan_note } thereby leaving out
hr15de from the set of individuals considered. Then the KB K′

m = (T ′
m, A′

m) is a (�m, �m)-query module of Ka , where

T ′
m = {Minivan � Automobile, Automobile � ∃poweredBy.Engine },

A′
m = {Minivan(toyota_highlander), Minivan(nissan_note) }.

Thus, the restriction of the individual signature removes the two assertions with hr15de from Am and an axiom from Tm .
Similarly, a KB K′ results from forgetting (�, �) in a KB K if K′ ≡sig(K)\�, ind(K)\� K, sig(K′) ⊆ sig(K) \ � and ind(K′) ⊆

ind(K) \ �, where ind(K) is the set of individuals in the ABox of K. In this case, for � f = { hr15de }, the KB K′
f = (T ′

f , A′
f)

results from forgetting (� f , � f) in Ka , where

T ′
f = {Automobile � ∃poweredBy.Engine },

A′
f = {Automobile(toyota_highlander), Automobile(nissan_note) }.

In knowledge exchange, the refined notion of query inseparability can be used to represent a more flexible knowledge
exchange model, which allows additional individuals in the target KB. These ‘anonymous’ individuals are similar to nulls
in the standard approaches to incomplete databases [25]. Thus, we say that a KB K2 with a relational signature �2 is a

82 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
universal CQ-solution with nulls for a KB K1 and a mapping specification T12 if K1 ∪T12 ≡�2,ind(K1) K2 (here, the individuals
in ind(K2) \ ind(K1) play the role of nulls). To illustrate, we consider again the knowledge exchange example given above
with the same �e and Tae . Observe first that Ke is also a universal CQ-solution with nulls. On the other hand, there are
universal CQ-solutions with nulls that are not universal CQ-solutions. To illustrate, let m1 be a fresh individual name. Then
K′

e = (∅, A′
e) is a universal CQ-solution with nulls for Ka and Tae , where

A′
e = {HybridCar(toyota_highlander), Car(toyota_highlander),

hasMotor(toyota_highlander,m1), ElectricMotor(m1), Motor(m1),

Car(nissan_note), hasMotor(nissan_note,hr15de), Motor(hr15de) }.
Intuitively, A′

e is a materialisation of all consequences of Ka ∪ Tae in the relational signature �e and, among individuals
of Ka , it clearly gives rise to the same answers to all CQs formulated in �e (the additional individual, m1, is not counted
when comparing the CQ answers). The interested reader is referred to [23] for more explanations on the advantages of this
notion.

We extend our algorithms deciding �-inseparability to algorithms deciding (�, �)-inseparability and investigate the data
and combined complexity of the problem for KBs given in the same fragments of Horn-ALCHI as before. In contrast to
�-query inseparability, which is P-complete for data complexity for all of those fragments, deciding (�, �)-query insep-
arability turns out to be NP-complete for data complexity. (In fact, it is NP-hard already for KBs without TBoxes since
(�, �)-query inseparability is then equivalent to the problem of deciding the existence of a homomorphism from one rela-
tional structure to another, which is known to be NP-hard.) For combined complexity, (�, �)-query inseparability is exactly
as hard as �-query inseparability whenever it is already NP-hard.

The remainder of the article is structured as follows. In Section 2, we introduce the syntax and semantics of the DLs con-
sidered in this article. In Section 3, we provide a model-theoretic characterisation of conjunctive query inseparability based
on materialisations and introduce finite generating structures from which materialisations are obtained by unravelling. We
also analyse our algorithms computing generating structures and their relevant properties, depending on the DLs considered.
In Section 4, we develop games on generating structures and the corresponding algorithms for deciding inseparability, using
which we obtain complexity upper bounds. Section 5 is devoted to proving matching lower complexity bounds. In Section 6,
we refine �-inseparability by considering restricted sets of individuals in KBs and, in Section 7, we discuss related work
and how our results can be (or have been) applied to solve open problems in knowledge exchange, TBox inseparability and
for the comparison of OBDA (ontology-based data access) specifications. We conclude with a discussion of future work in
Section 8.

2. Horn-ALCHI and its fragments

In this article, we investigate �- and (�, �)-query inseparability of KBs given in DLs that are Horn fragments2 of
ALCHI . To define these DLs, we fix sequences of individual names ai , concept names Ai , and role names Pi , for i < ω.
A role is either a role name Pi or an inverse role P−

i ; we assume that (P−
i)− = Pi . ALCI-concepts are defined by the

grammar

C ::= Ai |
 | ⊥ | ¬C | C1 � C2 | C1 � C2 | ∃R.C | ∀R.C, (ALCI)

where R is a role. ALC-concepts are those ALCI-concepts that do not contain inverse roles. ALCI-TBoxes and ALC-TBoxes
are finite sets of concept inclusions of the form

C1 � C2,

where the Ci are ALCI- or, respectively, ALC-concepts. ALCHI-TBoxes are finite sets of concept inclusions in ALCI and
role inclusions of the form

R1 � R2,

where the Ri are roles. ALCH-TBoxes are ALCHI-TBoxes that do not contain occurrences of inverse roles.
The DLs in the EL and DL-Lite families are sub-Boolean fragments of ALCHI . EL-concepts are defined by the grammar

C ::= Ai |
 | C1 � C2 | ∃Pi .C . (EL)

In other words, they are ALC-concepts without ⊥, �, ¬ and ∀Pi .C . Note that EL does not have inverse roles. EL-TBoxes
are finite sets of concepts inclusions in EL. ELHdr⊥ is an extension of EL with ⊥, role inclusions and domain and range
restrictions. Thus, ELHdr⊥ -concepts are defined similarly to EL-concepts but can also use ⊥, and ELHdr⊥ -TBoxes consist of a
finite number of ELHdr⊥ -concept inclusions, role inclusions (without inverse roles), and range restrictions of the form

 � ∀Pi .C

2 Strictly speaking, DL-LiteHcore and DL-LiteHhorn are not fragments of ALCHI because it does not have role disjointness constraints. However, these
constraints play no essential part in our constructions, and the techniques we develop for ALCHI are also applicable to the logics in the DL-Lite family.

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 83
(domain restrictions are expressible by means of concept inclusions ∃Pi .
 � C). Clearly, EL and ELHdr⊥ are sub-languages
of ALC and ALCH, respectively.

Basic concepts in DL-Lite are defined by the following grammar:

B ::= Ai |
 | ⊥ | ∃R.
, (DL-Lite)

where R is a (possibly inverse) role. Existential quantifiers ∃R.
 are called unqualified, and we usually write ∃R instead of
∃R.
. DL-Litecore-TBoxes are finite sets of concept inclusions of the form

B1 � B2 and B1 � B2 � ⊥,

where the Bi are basic concepts. DL-Litehorn-TBoxes consist of a finite number of concept inclusions of the form

B1 � · · · � Bk � B.

DL-LiteHcore- and DL-LiteHhorn-TBoxes contain, in addition, a finite number of role inclusions and role disjointness axioms of the
form R1 � R2 � ⊥. Note that, unlike EL and ELHdr⊥ , the DL-Lite logics do have inverse roles.

To introduce the Horn fragments of the DLs with the Booleans operators, we require the following (standard) recursive
definition [5,26]. We say that a concept C occurs positively in C itself and, if C occurs positively (negatively) in C ′ , then

– C occurs positively (respectively, negatively) in C ′ � D , C ′ � D , ∃R.C ′ , ∀R.C ′ , D � C ′ , and
– C occurs negatively (respectively, positively) in ¬C ′ and C ′ � D .

Now, we call a TBox T Horn if no concept of the form C � D occurs positively in T , and no concept of the form ¬C or ∀R.C
occurs negatively in T . Clearly, the EL- and DL-Lite-TBoxes are Horn by definition. For any other DL L (e.g., ALCHI), only
Horn L-TBoxes are allowed in the DL Horn-L.

An ABox, A, is a finite set of assertions of the form Ak(ai) or Pk(ai, a j). An L-TBox T and an ABox A together form an
L knowledge base (KB) K = (T , A).

A relational signature is any non-empty finite set of concept and role names. An individual signature is a (possibly empty)
finite set of individual names. We usually denote a relational signature by �, an individual signature by �, and sometimes
call the pair (�, �) simply a signature. The relational signature of a KB K = (T , A), which consists of the concept and
role names occurring in K, is denoted by sig(K). The individual signature of K, comprising the individual names in A, is
denoted by ind(K). In this article, we are not interested in KBs with empty ABoxes, and so both sig(K) and ind(K) are
non-empty by definition. By a �-concept, �-role, �-ABox, etc. we understand any concept, role, ABox, etc. all of whose
concept and role names are taken from �.

Let (�, �) be a signature. In our interpretations, we adopt the standard name assumption in the sense that every individual
name a ∈ � is interpreted by itself. A (�, �)-interpretation is a pair I = (�I , ·I), where �I ⊇ � is a non-empty set, the
domain of I , and ·I is an interpretation function that assigns a subset AI ⊆ �I to every concept name A and a binary
relation PI ⊆ �I × �I to every role name P in such a way that AI = ∅ and PI = ∅, for any A /∈ � and P /∈ �. (Note that
only the individual names from � are interpreted in I and although the list of individual names is countably infinite, �I

may be finite. Note also that the concept and role names outside � are always interpreted as ∅.) When we use the terms
‘interpretation’, ‘�-interpretation’ or ‘�-interpretation’ without specifying a full signature, we mean a (�, �)-interpretation
for some suitable (�, �); the same applies to other notions with the prefix (�, �) to be introduced below.

Roles and complex concepts are interpreted in I as follows:

(P−
i)I = {

(v, u) | (u, v) ∈ PI
i

}
,
I = �I ,

⊥I = ∅, (¬C)I = �I \ CI ,

(C1 � C2)
I = CI

1 ∩ CI
2 (C1 � C2)

I = CI
1 ∪ CI

2 ,

(∃R.C)I = {
u | (u, v) ∈ RI and v ∈ CI }

, (∀R.C)I = {
u | v ∈ CI for all (u, v) ∈ RI }

.

For an inclusion or assertion α (whose individual names belong to �), we define the truth-relation I |= α by taking:

I |= C1 � C2 iff CI
1 ⊆ CI

2 , I |= R1 � R2 iff RI
1 ⊆ RI

2 , I |= R1 � R2 � ⊥ iff RI
1 ∩ RI

2 = ∅,

I |= Ak(ai) iff ai ∈ AI
k , I |= Pk(ai,a j) iff (ai,a j) ∈ PI

k .

Given a KB K = (T , A), a �-interpretation I is called a model of K if ind(K) ⊆ � and I |= α, for all α ∈ T ∪A. In this case
we write I |=K. We write K |= α, for an inclusion or assertion α that only uses individual names from ind(K), if I |= α for
all models I of K. The notation K |= C(a), where C is any concept and a ∈ ind(K), should be understood in the same way.
Finally, K is consistent if it has a model.

A conjunctive query (CQ) q(x) is a formula ∃y ϕ(x, y), where ϕ is a conjunction of atoms of the form Ak(z1) or Pk(z1, z2)

with z1, z2 from x, y. Let K be a KB and q(x) a CQ. We call a tuple a of elements from ind(K) (of the same length as x) a
certain answer to q(x) over K if I |= q(a) for all models I of K (understood as first-order structures). In this case we write

84 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
K |= q(a). For q without free variables, the answer to q is ‘yes’ if K |= q and ‘no’ otherwise. We slightly abuse notation and
write a ⊆ � to say that all elements of the tuple a are in �.

We remind the reader that, for combined complexity, the problem ‘K |= q(a)?’ is NP-complete for the DL-Lite logics [6],
EL and ELHdr⊥ [27], and ExpTime-complete for the remaining Horn DLs introduced above [28]. For data complexity (with
fixed T and q), this problem is in AC

0 for the DL-Lite logics [6] and P-complete for the remaining DLs [27,28].

3. �-query entailment, materialisation and (�, �)-homomorphism

We now define the central concepts of the article, �-query entailment and �-query inseparability, provide them with a
semantic characterisation based on the notion of materialisation, and develop a theory of finitely generated materialisations.

Definition 1. Let K1 and K2 be KBs and � a relational signature. We say that K1 �-query entails K2 if

K2 |= q(a) implies a ⊆ ind(K1) and K1 |= q(a), for all �-CQs q(x) and all tuples a ⊆ ind(K2).

Knowledge bases K1 and K2 are �-query inseparable if they �-query entail each other; in this case we write K1 ≡� K2.

Remark 2. For KBs given in Horn DLs, �-query entailment for CQs implies �-query entailment for UCQs, that is, unions (or
disjunctions) of conjunctive queries. This follows from the fact that, for any KB K in a Horn DL and any UCQ q(x), a tuple
a is a certain answer to q(x) over K iff it is a certain answer to some CQ in q(x) over K. Thus, our results for �-query
entailment and inseparability apply to UCQs as well.

We first quickly consider �-query entailment for the degenerate case when one of the involved KBs is inconsistent so
that in the remainder of the article we can focus on consistent KBs only. Clearly, an inconsistent K1 �-query entails a KB
K2 just in case a ∈ ind(K1) for all a ∈ ind(K2) with either K2 |= A(a) or K2 |= (∃R)(a), for some A ∈ � or �-role R . Now,
suppose that K1 is consistent and K2 is inconsistent. Then K1 �-query entails K2 iff K1 |= A(a) and K1 |= P (a, b), for all
concept and role names A, P ∈ � and all a, b ∈ ind(K2). Thus, deciding �-query entailment in this case reduces to checking
certain answers for all atomic �-CQs. A simple example showing that a consistent KB K1 can �-query entail an inconsistent
KB K2 is given by K1 = (∅, {A(a)}) and K2 = ({A � ⊥}, {A(a)}) with � = {A}. From now on we assume that all our KBs are
consistent.

Definition 3. Let K be a KB. A (sig(K), ind(K))-interpretation I is called a materialisation of K if

K |= q(a) iff I |= q(a), for all CQs q(x) and all tuples a ⊆ ind(K).

We say that K is materialisable if it has a materialisation. (Note that a materialisation of K is not required to be its model.)

Materialisations can be used to characterise �-query entailment by means of homomorphisms. Let (�, �) be a signature.
For an interpretation I , the atomic �-types tI�(u) and rI�(u, v) of u, v ∈ �I are defined by taking:

tI�(u) = {
�-concept name A | u ∈ AI }

and rI�(u, v) = {
�-role R | (u, v) ∈ RI }

.

(It is to be emphasised that a �-role can be an inverse role even when we consider a language without role inverses.) We
say that an element u ∈ �I is �-participating in I if tI�(u) �= ∅ or rI�(u, v) �= ∅, for some v ∈ �I . The set of all individual
names that are �-participating in I is denoted by partI� . Let Ii be �i-interpretations, for i = 1, 2, such that � ∩ partI1

� ⊆ �2.
A (�, �)-homomorphism h from I1 to I2 is a function h : �I1 → �I2 such that

– h(a) = a, for every a ∈ � ∩ partI1
� ,

– tI1
� (u) ⊆ tI2

� (h(u)) and rI1
� (u, v) ⊆ rI2

� (h(u), h(v)), for all u, v ∈ �I1 .

Example 4. For �1 = {a, b, c}, let I1 be a �1-interpretation with �I1 = {a, b, c}, AI1 = {a}, BI1 = {b} and CI1 = {c}. If
� = {A} then partI1

� = {a} as neither b nor c is �-participating in I1. For �2 = {a, b, d}, let I2 be a �2-interpretation
with �I2 = {a, b, d}, AI2 = {a}, BI2 = {d} and CI2 = {b}. In this case, any map h : �I1 → �I2 with h(a) = a is a
({A}, {a, b})-homomorphism from I1 to I2. However, there is no ({A, B}, {a, b})-homomorphism from I1 to I2 because
partI1{A,B} = {a, b} but tI1{A,B}(b) � tI2{A,B}(b).

We remind the reader of the following well-known link between certain answers to CQs and homomorphisms. Consider
a CQ q(x) = ∃y ϕ(x, y), a �′-interpretation I , and a tuple a ⊆ �′ of the same length as x. Let � be the relational signature
of q, and let � be the set of individuals in a. We can regard ϕ(a, y) as a (�, �)-interpretation Iϕ(a,y) whose domain
consists of the individuals in a and variables in y, and Iϕ(a,y) |= S(z) iff S(z) is a conjunct of ϕ(a, y). In this case, we have
I |= q(a) iff there is a (�, �)-homomorphism from Iϕ(a,y) to I .

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 85
Fig. 2. Materialisations I2 and I1 from Example 5 (dotted lines indicate a partial homomorphism) and their generating structures, G2 and G1.

Suppose Ii is a materialisation of Ki , for i = 1, 2. Since a composition of homomorphisms is again a homomorphism,
if there is a (�, ind(K2))-homomorphism from I2 to I1, then K1 �-query entails K2. The converse, however, does not
necessarily hold, as shown by the following example.

Example 5. Consider the KBs Ki = (Ti, {A(a)}), for i = 1, 2, where

T1 = { A � ∃S, ∃S− � ∃T , ∃T − � ∃S, S � Q , T � Q , ∃Q − � ∃R },
T2 = { A � ∃P , ∃P− � ∃R−, ∃R � ∃S− � ∃Q −, ∃Q � ∃Q −, ∃S � ∃T −, ∃T � ∃S− }.

It is not hard to see (and it will be formally established below) that the interpretations I1 and I2 shown in Fig. 2 are mate-
rialisations of K1 and K2, respectively. Now, for � = {Q , R, S, T }, there is no (�, {a})-homomorphism from I2 to I1. Indeed,
if we map u to, say, w then only the shaded part of I2 can be mapped (�, {a})-homomorphically to I1. On the other hand,
I2 |= q(a) implies I1 |= q(a), for any �-CQ q(x), because any finite subinterpretation of I2 can be (�, {a})-homomorphically
mapped to I1. This example motivates the following definitions.

A subinterpretation of a (�, �)-interpretation I = (�I , ·I) is a (�, �)-interpretation I ′ = (�I ′
, ·I ′

) with �I ′ ⊆ �I ,
AI ′ = AI ∩ �I ′

and PI ′ = PI ∩ (�I ′ × �I ′
), for all concept and role names A and P . Now, given a signature (�, �),

we say that an interpretation I2 is finitely (�, �)-homomorphically embeddable into an interpretation I1 if, for every finite
subinterpretation I ′

2 of I2, there exists a (�, �)-homomorphism from I ′
2 to I1.

In the proof of the following criterion of �-query entailment, we regard any finite subinterpretation of I2 as a CQ whose
variables are the elements of �I2 , with ind(K2) being the answer variables.

Theorem 6. Suppose Ki is a KB with a materialisation Ii , for i = 1, 2. Then K1 �-query entails K2 iff I2 is finitely (�, ind(K2))-
homomorphically embeddable into I1 .

Proof. (⇒) Suppose K1 �-query entails K2. Let a = (a1, . . . , an) be an enumeration of the individual names in ind(K2)

that are �-participating in I2. Take any finite subinterpretation I ′
2 of I2 and let u1, . . . , un+m be an enumeration of those

elements of �I ′
2 that are �-participating in I2 and such that ui = ai , for i ≤ n. Consider a �-CQ

q(x1, . . . , xn) = ∃xn+1 . . .∃xn+m ϕ(x1, . . . , xn+m), where ϕ(x1, . . . , xn+m) =
∧

i≤n+m

A∈t
I2
� (ui)

A(xi) ∧
∧

i, j≤n+m

R∈r
I2
� (ui ,u j)

R(xi, x j).

Since I2 |= ϕ(u1, . . . , un+m), we have I2 |= q(a) and, since I2 is a materialisation, K2 |= q(a). As K1 �-query entails K2,
we have a ⊆ ind(K1) and K1 |= q(a). Since I1 is a materialisation, I1 |= q(a), and so I1 |= ϕ(a, vn+1, . . . , vn+m), for some
vn+1, . . . , vn+m ∈ �I1 . Define a map h : �I ′

2 → �I1 by taking h(ai) = ai , for i ≤ n, and h(un+i) = vn+i , for i ≤ m (the rest
of the domain of I ′

2 can be mapped arbitrarily as they are not �-participating in it). It can be readily seen that h is a
(�, �)-homomorphism from I ′

2 to I1.

(⇐) Suppose I2 is finitely (�, ind(K2))-homomorphically embeddable into I1. Consider a �-CQ q(x) = ∃y ϕ(x, y) and
let K2 |= q(a), for some a ⊆ ind(K2). Since I2 is a materialisation of K2, there is a tuple u = (u1, . . . , um) of elements

86 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
in �I2 such that I2 |= ϕ(a, u). Let I ′
2 be the subinterpretation of I2 with �I ′

2 = ind(K2) ∪ {u1, . . . , um} and let h be a
(�, ind(K2))-homomorphism from I ′

2 to I1. Observe that each individual in a is �-participating in I ′
2, and so h(ai) = ai ,

for each ai in a. We also have I1 |= ϕ(a, h(u1), . . . , h(um)), whence a ⊆ ind(K1) and K1 |= q(a). �
One problem with applying Theorem 6 is that materialisations are in general infinite for any of the DLs considered in this

article. We address this problem by introducing finite representations of materialisations and showing that Horn-ALCHI
and all of its fragments defined above do have such finite representations.

Definition 7. Let K be a KB and let G = (�G , ·G, �) be a finite structure such that

– �G = ind(K) ∪ �, for some set � disjoint from ind(K),
– (�G , ·G) is an interpretation with PG

i ⊆ ind(K) × ind(K), for all role names Pi ,
– (�G , �) is a directed graph (possibly containing loops) with nodes �G and arrows �⊆ �G × �, in which

– every w � w ′ is labelled with a set (w, w ′)G �= ∅ of roles such that (w1, w ′)G = (w2, w ′)G whenever wi � w ′ , for
i = 1, 2,

– every w ∈ � is reachable by a path from ind(K),

where by a path, σ , we mean any sequence w0 · · · wn with w0 ∈ ind(K) and wi � wi+1 for i < n.

Intuitively, w � w ′ means that w generates w ′ to witness an existential restriction ∃R.C , and the label of w � w ′ consists
of the super-roles of R . Hence, the labels on all incoming �-arrows of w ′ are required to coincide.

The unravelling M of G is a (sig(K), ind(K))-interpretation (�M, ·M) such that

�M is the set of paths in G,

AM = {
σ | tail(σ) ∈ AG }

, for each concept name A,

PM = PG ∪ {
(σ ,σ w) | tail(σ) � w, P ∈ (tail(σ), w)G

}
∪ {

(σ w,σ) | tail(σ) � w, P− ∈ (tail(σ), w)G
}
, for each role name P ,

where tail(σ) is the last element of a path σ . We call G a generating structure for K if its unravelling is a materialisation
of K. We say that a DL L has finitely generated materialisations if every L-KB has a generating structure.

For instance, the materialisations I2 and I1 from Example 5 are isomorphic to the unravellings of the structures G2 and
G1 in Fig. 2, respectively, and so Gi is a generating structure for the KB Ki from that example, for i = 1, 2.

To construct generating structures for KBs, we first transform their TBoxes into normal form [20]. Let L be any of our
DLs. An L-TBox is said to be in normal form if its inclusions are of the following form:

A1 � A2,
 � A, A1 � ∀R.A2,
 � ∀R.A,

A1 � A2 � A, R1 � R2, ∃R.C � A, A � ∃R.C,

where A, A1, A2 are concept names, C is a concept name or
, and R, R1, R2 are roles. To describe the relationship between
a TBox and its transformation into normal form, we introduce the notion of model inseparability. Let (�, �) be a signature.
We say that �-interpretations I1 and I2 coincide on � if �I1 = �I2 and SI1 = SI2 , for all S ∈ �; in this case we write
I1 =� I2. KBs K1 and K2 with ind(K1) = ind(K2) are called �-model inseparable if, for every model I1 of K1, there exists
a model I2 of K2 such that I2 =� I1, and vice versa. The following was shown in [20,28,22]:

Theorem 8. Let L be any of our DLs. Given a consistent L-KB K = (T , A), one can construct in polynomial time an L-KB K= (T ′, A)

in normal form such that K and K′ are sig(T)-model inseparable.

(Note that the ‘negative’ axioms of the form A � ⊥, A1 � A2 � ⊥ and R1 � R2 � ⊥ can be removed from a TBox if the
knowledge base is known to be consistent.)

We show now how to define the generating structures. Suppose we are given a (consistent) KB K = (T , A) with a
Horn-ALCHI TBox T in normal form. For a role R , the equivalence class [R] of R with respect to T is defined by taking

[R] = {
S | T |= R � S and T |= S � R

}
.

Denote by con(T) the set of

– concepts of the form
, A and ∃R.A that occur in T , as well as
– concepts of the form ∃R−.C such that T contains C � ∀R.A.

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 87
The T -type of u ∈ �I in I is the set τI
T (u) = {

C ∈ con(T) | u ∈ CI }
. We say that τ ⊆ con(T) is a T -type if there exists a

model I of T such that τ = τI
T (u), for some u ∈ �I . Denote by type(T) the set of all T -types. It is well-known [29] that

type(T) can be computed in exponential time in |T |. We can order T -types by the set-theoretic inclusion ⊆. Sometimes
we use τ in concepts (say, ∃R.τ), in which case it should be understood as an abbreviation for �C∈τ C .

Now, we define the generating relation � on the set comprising ind(K) and �T , which is the set of all pairs of the form
([R], τ), for a role R in T and τ ∈ type(T). For a ∈ ind(K) and ([R1], τ 1), ([R2], τ 2) ∈ �T , we set

a � ([R2],τ 2) iff τ 2 is a ⊆-maximal T -type such that K |= (∃R2.τ 2)(a) and

K �|= R2(a,b), for any b ∈ ind(K) with τ 2 ⊆ { C ∈ con(T) | K |= C(b) };
([R1],τ 1) � ([R2],τ 2) iff τ 2 is a ⊆-maximal T -type such that T |= τ 1 � ∃R2.τ 2.

The generating structure G = (�G , ·G , �) is defined as follows. Let � ⊆ �T be the set of all w such that there are a ∈ ind(K)

and w1, . . . , wn ∈ �T with a � w1 � · · · � wn = w; in other words, � is the subset of �T that is reachable from ind(K)

via �-arrows. Thus, �G = ind(K) ∪ �. (The restriction of � to �G will also be denoted by �.) Second, the interpretation
function ·G and the labelling of the graph (�G , �) are defined by setting

AG = {
a ∈ ind(K) | K |= A(a)

} ∪ {
([R],τ) ∈ � | A ∈ τ

}
,

PG = {
(a,b) | R(a,b) ∈ A and T |= R � P

}
,

(w, w ′)G = {
S | T |= R � S

}
, for every w � w ′ with w = ([R],τ)

(here we assume that P−(b, a) ∈ A if P (a, b) ∈ A). In order to show that the constructed G = (�G , ·G , �) is indeed a
generating structure for K, we need to establish that its unravelling is a materialisation.

Theorem 9. Let K = (T , A) be a (consistent) KB with a Horn-ALCHI TBox in normal form. Let G be the structure defined above.
Then the unravelling M of G is a materialisation of K, and G is a generating structure for K.

Proof. We require two lemmas. The proof of the first one is routine and can be found in Appendix A:

Lemma 10. M is a model of K. Moreover,

– τM
T (a) = { C ∈ con(T) |K |= C(a) }, for all a ∈ ind(K);

– τM
T (σ) = τ , for all σ ∈ �M with tail(σ) = ([R], τ).

The second lemma says that M is a universal model of K in the following sense:

Lemma 11. For every model I of K, there exists a (sig(K), ind(K))-homomorphism from M to I .

Proof. Let � = sig(K) and � = ind(K). By induction on the length of σ ∈ �M , we define a function h : �M → �I which
satisfies the following properties implying that h is a (�, �)-homomorphism:

h(a) = a, for a ∈ �, (1)

τM
T (σ) ⊆ τI

T (h(σ)), for σ ∈ �M, (2)

rM� (σ ,σ ′) ⊆ rI�(h(σ),h(σ ′)), for σ ,σ ′ ∈ �M. (3)

(Note that (2) refers to the full T -types comprising concepts of the form
, A and ∃R.B rather than the atomic �-types t
containing only concept names.)

First, for each a ∈ �, we set h(a) = a in accordance with (1). Conditions (2) and (3) for σ , σ ′ ∈ � follow from Lemma 10,
the fact that I is a model of K, and the construction of M.

Suppose now that h(σ) has already been defined for σ · ([S], τ) ∈ �M . By the construction of M, it follows
that K |= (∃S.τ)(a) if σ = a, or T |= τ ′ � ∃S.τ if tail(σ) = ([S ′], τ ′). Since I |= K, by Lemma 10 and the induction
hypothesis—τM

T (σ) ⊆ τI
T (h(σ))—it follows that there exists z ∈ �I such that S ∈ rI�(h(σ), z) and τ ⊆ τI

T (z). We set
h(σ · ([S], τ)) = z and show that (2) and (3) hold. By Lemma 10, we have τM

T (σ · ([S], τ)) = τ , whence (2). Next, ob-
serve that R ∈ rM� (σ , σ · ([S], τ)) follows from T |= S � R , and since I is a model of T , we obtain R ∈ rI�(h(σ), z), thus
proving (3). �

We are now in a position to complete the proof of Theorem 9. We show that K |= q(a) if and only if M |= q(a), for any
CQ q(x) = ∃y ϕ(x, y) and a ⊆ ind(K). If K |= q(a) then, by Lemma 10, M |= q(a). Conversely, suppose M |= q(a). Then there

88 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
exist a tuple σ = (σ1, . . . , σm) of elements in �M such that M |= ϕ(a, σ). Let I be any model of K. By Lemma 11, there
exists a (sig(K), ind(K))-homomorphism h from M to I . But then we have I |= ϕ(a, h(σ1), . . . , h(σm)), and so I |= q(a). �

Note that the generating structures G = (�G , ·G , �) of KBs K with Horn-ALCHI , Horn-ALCI , Horn-ALCH and
Horn-ALC TBoxes can contain exponentially many (in |T |) elements in � (remember that �G = ind(K) ∪ �); cf. Section 5.
Note also that if the TBox in K is in Horn-ALCH (or one of its fragments Horn-ALC , ELHdr⊥ or EL) then it contains no
inverse roles, and so the labels (w, w ′)G on arrows w � w ′ of the generating structure do not contain inverse roles either.
We call such generating structures forward.

The generating structures of KBs with ELHdr⊥ and EL TBoxes T contain polynomially many elements in �. Indeed, for
every element ([R], τ) ∈ �, we can find a single concept ∃R.A in T such that

τ = {
C ∈ con(T) | T |= A � �

T |=R�S

�∀S.B in T

B � C
}
.

(This is not the case for Horn-ALC because of axioms of the form A1 � ∀R.A2 with A1 �=
.) We remark that the generating
structures for EL defined above were initially represented as pairs of functions by Brandt [30] and later called the canonical
models; see, e.g., [31]. We prefer the term ‘generating structure’ to avoid confusion with the possibly infinite canonical
model (materialisation).

Finally, the generating structures for KBs with DL-Lite TBoxes T also contain polynomially many elements in � because
every ([R], τ) ∈ � is determined by the role R:

τ = {
C ∈ con(T) | T |= ∃R− � C

}
.

Observe that if T does not contain role inclusions (which is the case for DL-Litecore and DL-Litehorn TBoxes) then, for any w
and R , there is at most one w ′ such that w � w ′ and R ∈ (w, w ′)G . Generating structures with this property will be called
functional. We summarise these observations in the following theorem:

Theorem 12. Horn-ALCHI and all of its fragments defined above have finitely generated materialisations. Furthermore, there is a
polynomial p such that

(i) a generating structure G for any Horn-ALCHI KB (T , A) can be constructed in time |A| · 2p(|T |);
(ii) a forward generating structure G for any Horn-ALCH KB (T , A) can be constructed in time |A| · 2p(|T |);

(iii) a forward generating structure G for any ELHdr⊥ KB (T , A) can be constructed in time |A| · p(|T |);
(iv) a generating structure G for any DL-LiteHhorn KB (T , A) can be constructed in time |A| · p(|T |);
(v) a functional generating structure G for any DL-Litehorn KB (T , A) can be constructed in time |A| · p(|T |).

As a final remark, we note that the generating structures G = (�G , ·G , �) defined above can often be simplified. For
example, in the case of DL-Lite KBs, we can impose the following additional restrictions on the generating relation �:

(lite1) if u � ([R], τ) then [R] is ≤T -minimal, where [S] ≤T [T] iff T |= S � T ;
(lite2) if ([R1], τ 1) � ([R2], τ 2) then [R−

2] �= [R1].

It is easily seen that these simplifications do not affect the proof of Theorem 9 (the branches of the unravelling that are
pruned as a result of these restrictions can be homomorphically mapped to other branches; for a more detailed argument,
see the proof of Theorem 5 in the full version of [24]). The generating structure G1 in Fig. 2 as well as the generating
structures in all our examples from Section 4 are constructed with these extra restrictions in mind.

So far we have only considered �-query entailment because �-query inseparability can be reduced to two �-query
entailment checks. The following result shows that, conversely, one can reduce �-query entailment in LogSpace to �-query
inseparability, for all DLs considered in this article except DL-Litecore and DL-Litehorn .3

Theorem 13. Let L be any of our DLs that contains EL or has role inclusions. Then �-query entailment of consistent L-KBs is
LogSpace-reducible to �-query inseparability of L-KBs.

The proof of Theorem 13 is given in Appendix A and is based on the notions and results introduced in this section: the
materialisations of KBs constructed to prove Theorem 12, the normal form of Theorem 8, and the semantic characterisation
of �-query entailment given in Theorem 6. The underlying idea is to construct modifications K′

1 and K′
2 of the given KBs

3 Note that, by Theorems 33 and 32, �-query entailment and inseparability are P-complete for DL-Litecore and DL-Litehorn in both combined and data
complexity. DL-Litecore and DL-Litehorn are omitted from Theorem 13 since we have not found a direct LogSpace-reduction of �-query entailment to �-query
inseparability.

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 89
K1 and K2 such that K1 �-query entails K2 iff K1 and K′
1 ∪ K′

2 are �-query inseparable. Note that modifications of K1
and K2 are, in general, necessary: let K1 = (∅, {A(a)}), K2 = ({A � B}, {C(a)}) and � = {A, B}; then K1 �-query entails K2
but K1 does not �-query entail K1 ∪K2 since K1 ∪K2 |= B(a).

4. Finite �-homomorphic embeddability by games

In this section, we show that, for a DL L having finitely generated materialisations, the problem of checking finite
�-homomorphic embeddability between materialisations of KBs can be reduced to the problem of finding a winning strat-
egy in a game played on the generating structures for these KBs.

We begin by giving a brief abstract description of the games we need. Every game G is played by two players, player 1
and player 2, and defined by a set S of states, a set C of challenges, and two functions χ : S → 2C and ρ : S × C → 2S ,
where χ(s) is the set of challenges player 2 can choose from in any state s and ρ(s, c) is the set of responses available
to player 1 in order to reply to any challenge c made by player 2 in the state s. The game starts in an initial state s0 ∈ S

and is played in rounds. In each round i, i > 0, the current state is si−1 ∈ S. If χ(si−1) = ∅, then player 2 loses. Otherwise,
player 2 challenges player 1 by choosing ci ∈ χ(si−1). If ρ(si−1, ci) = ∅, then player 1 loses. Otherwise, player 1 responds
with si ∈ ρ(si−1, ci), which becomes the current state for the next round i + 1. A play of length n starting from s0 ∈ S is
any sequence s0, . . . , sn of states obtained as described above. For any ordinal λ ≤ ω, we say that player 1 has a λ-winning
strategy in the game G starting from s0 if, for any play s0, . . . , sn with n < λ that is played according to this strategy,
player 1 has a response to any challenge of player 2 in the final state sn . The following proposition can be proved by a
straightforward translation of the games introduced above into reachability games and using the known results [32,33]:

Proposition 14. Given a finite game G = (S, C, χ, ρ) defined above and a state s0 ∈ S, it can be checked in time polynomial in the
size of S and C whether player 1 has an ω-winning strategy from s0.

We now reformulate the definition of finite �-homomorphic embedding in game-theoretic terms. Let M1 and M2 be
the materialisations for (consistent) KBs K1 and K2, respectively. The states of the game G�(M2, M1) are of the form
(π �→ σ), where π ∈ �M2 and σ ∈ �M1 . Intuitively, (π �→ σ) means that ‘π is to be �-homomorphically mapped to
σ ’. The game is played by player 1 and player 2 starting from some initial state (π0 �→ σ0). The aim of player 1 is to
demonstrate that there exists a �-homomorphism from (a finite subinterpretation of) M2 into M1 with π0 mapped to σ0,
while player 2 wants to show that there is no such homomorphism. In each round i > 0 of the game, player 2 challenges
player 1 with some πi ∈ �M2 such that rM2

� (πi−1, πi) �= ∅. Player 1, in turn, has to respond with some σi ∈ �M1 such
that the already constructed partial �-homomorphism can be extended with πi �→ σi :

– σi = πi , if πi ∈ partM2
� ,

– tM2
� (πi) ⊆ tM1

� (σi) and rM2
� (πi−1, πi) ⊆ rM1

� (σi−1, σi);

remember that partM2
� ⊆ ind(K2). It is easy to see that if,

– for any π0 ∈ �M2 , there exists σ0 ∈ �M1 such that player 1 has an ω-winning strategy in the game G�(M2, M1)

starting from (π0 → σ0),

then there exists a �-homomorphism from M2 into M1, and the other way round. That M2 is finitely �-homomorphically
embeddable into M1 is equivalent to the following condition:

– for any π0 ∈ �M2 and any n < ω, there exists σ0 ∈ �M1 such that player 1 has an n-winning strategy in the game
G�(M2, M1) starting from (π0 → σ0).

This criterion, however, does not immediately yield any algorithm to decide finite �-homomorphic embeddability because
both M2 and M1 can be infinite. Our aim now is to show that the existence of n-winning strategies for player 1 in this
simple infinite game G�(M2, M1) is equivalent to the existence of winning strategies in a more involved game played on
the finite generating structures for M2 and M1. First, in Section 4.1, we replace M2 with its finite generating structure
G2, in which player 2 can only make challenges indicated by the generating relation ��

2 . Replacing M1 with G1 is not
so easy because player 1 can respond not only in the ‘forward’ direction (according to ��

1), but also in the ‘backward’
direction (because the label of ��

2 can be included in the inverse of the label of ��
1). In the latter case, we have to ensure

that all the responses of player 1 stay on the same branch of M1, which obviously complicates the game. In Section 4.2,
we consider the forward strategies that are suitable for DLs without inverse roles. The general strategies are formulated in
Section 4.5. To make the exposition more transparent, we decompose these strategies into backward strategies defined in
Section 4.3, and start-bounded ones analysed in Section 4.4.

90 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
We require the following notation throughout this section. Suppose a DL L has finitely generated materialisations. Let K
be an L-KB and G its generating structure. For a relational signature �, the �-types tG�(w) and rG�(w, w ′) of w, w ′ ∈ �G

are defined by:

tG�(w) = {
�-concept name A | w ∈ AG }

, rG�(w, w ′) =

⎧⎪⎨
⎪⎩

{�-role R | (w, w ′) ∈ RG }, if w, w ′ ∈ ind(K),

{�-role R | R ∈ (w, w ′)G }, if w � w ′,
∅, otherwise,

where (P−)G is the inverse of PG . We also define r̄G�(w, w ′) to contain the inverses of the roles in rG�(w, w ′). Note that
r̄G(a, b) = rG(b, a), for a, b ∈ ind(K) but, in general, r̄G�(w, w ′) is not the same as rG�(w ′, w) as shown by the T −, S−-cycle
in Fig. 2. We also write

w �� w ′ if w � w ′ and rG�(w, w ′) �= ∅,

that is, if w generates w ′ with a non-empty �-label of w � w ′ in G (�-arrows with empty �-labels are irrelevant for
�-homomorphisms).

For the rest of the section, we fix consistent L-KBs K1 and K2, and a relational signature �. Let Gi = (�Gi , ·Gi , �i) be
a generating structure for Ki and let Mi be its unravelling; G�

i and M�
i denote the restrictions of Gi and Mi to �. We

first define the game played on the finite generating structure G�
2 and the possibly infinite materialisation M�

1 .

4.1. Infinite game G�(G2, M1)

The states of this game are of the form si = (ui �→ σi), for i ≥ 0, ui ∈ �G2 and σi ∈ �M1 , such that

(s1) tG2
� (ui) ⊆ tM1

� (σi).

The game starts in a state s0 = (u0 �→ σ0) with

(s0) σ0 = u0 in case u0 ∈ partM2
� .

In each round i > 0, player 2 challenges player 1 with some ui ∈ �G2 such that ui−1 ��
2 ui . Player 1 has to respond with a

σi ∈ �M1 satisfying (s1) and

(s2) rG2
� (ui−1, ui) ⊆ rM1

� (σi−1, σi).

This gives the next state si = (ui �→ σi). Note that of all the ui only u0 may be an ABox individual from ind(K2); however,
there is no such a restriction on the σi . As the game G�(G2, M1) is not played on the individuals of K2, we need to make
sure that the ABox part of M2 is (�, ind(K2))-homomorphically embeddable into the ABox part of M1. Thus, we require
an additional condition:

(abox) partM2
� ⊆ ind(K1) and tM2

� (a) ⊆ tM1
� (a) and rM2

� (a, b) ⊆ rM1
� (a, b), for any a, b ∈ partM2

� .

The following theorem gives a game-theoretic flavour to the criterion of Theorem 6.

Theorem 15. (i) M2 is finitely �-homomorphically embeddable into M1 if and only if (abox) and the following condition hold:

(win) for any u0 ∈ �G2 and n < ω, there exists σ0 ∈ �M1 such that player 1 has an n-winning strategy in the game G�(G2, M1)

starting from (u0 �→ σ0).

(ii) There exists a �-homomorphism from M2 to M1 if and only if (abox) and the following condition hold:

(ω-win) for any u0 ∈ �G2 , there is σ0 ∈ �M1 such that player 1 has an ω-winning strategy in the game G�(G2, M1) starting from
(u0 �→ σ0).

Proof. We only prove (i) and leave (ii) to the reader.

(⇒) Suppose M2 is finitely �-homomorphically embeddable into M1. Then (abox) holds by the definition of �-homo-
morphism. To show that (win) holds, suppose u0 ∈ �G2 and n < ω are given. Take a finite subinterpretation M02 of M2
that contains σ u0, for some (say, the shortest) word σ , and all those elements of M2 whose distance from σ u0 does
not exceed n (M02 also contains all individual names of M2). Let h : M02 → M1 be a (�, ind(K2))-homomorphism.
Take σ0 = h(σ u0). Clearly, u0 and σ0 satisfy (s0) and (s1). We show that player 1 has an n-winning strategy in the game

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 91
Fig. 3. (a) Example 16: n-winning strategy in G�(G2,M1) from (a �→ a). (b) Example 17: 4-winning strategy in G�(G2,M1) from (u0 �→ σ4).

G�(G2, M1) starting from (u0 �→ σ0). Suppose player 2 picks u0 ��
2 u1. Then σ u0u1 is an element of M02, and player 1

responds with σ1 = h(σ u0u1). Conditions (s1) and (s2) hold because h is a �-homomorphism. In the same way player 1
uses h to respond to all challenges of player 2 in any round k < n of the game G�(G2, M1).

(⇐) Let M02 be a finite subinterpretation of M2. We enumerate elements of the domain of M02 in such a way that
σ appears in the list before σ ′ whenever σ ′ = σ u, for some u. We define, by induction, a (�, ind(K2))-homomorphism
h : M02 → M1 as follows. Let n be the number of elements in the domain of M02. Pick the first (in the order described
above) element σ that has not been mapped to M1 yet. There are two possible options.

– Suppose first that there is no σ0 ∈ �M02 such that σ = σ0u and tail(σ0) ��
2 u, for some u. Then, by (win), there is

σ ′ ∈ �M1 such that player 1 has an n-winning strategy in the game G�(G2, M1) starting from (tail(σ) �→ σ ′). We set
h(σ) = σ ′ . Note that if σ = a, for some a ∈ partM2

� , then, by (s0), h(a) = a.
– Otherwise, we consider the longest sequence u1, . . . , uk , k ≥ 1, such that tail(σ0) ��

2 u1 ��
2 · · · ��

2 uk and σm =
σ0u1 · · · um ∈ �M02 , for all m < k, with σ = σk . By the definition of the order, σ0, . . . , σk−1 have already been mapped
by h. By construction and (win), player 1 has an n-winning strategy from (tail(σ0) �→ h(σ0)). Therefore, player 1 has a
response σ ′ to the challenge tail(σk−1) ��

2 tail(σk). So, we set h(σ) = σ ′ .

It is readily seen that, by (abox), (s1) and (s2), the constructed h is a (�, ind(K2))-homomorphism from M02 to M1. �
Example 16. Consider G�

2 and M�
1 shown in Fig. 3a, where � = {Q , R}. An n-winning strategy for player 1 in G�(G2, M1)

starting from (a �→ a) is shown by dotted lines with the rounds of the game indicated by the numbers on the dotted lines.
In the state (a �→ a), player 2 has two possible challenges: a ��

2 u and a ��
2 u′ . In response to the former, player 1 maps

u to a and the successive challenges to the elements of the chain that begins with R Q (indicated by indices 1, 2, . . .). In
response to the latter challenge, player 1 maps u′ and all the successive challenges to the same element a (indices 1′, 2′, . . .).
Note that in all but the starting state, player 2 has only one possible challenge.

Example 17. Consider now G�
2 and M�

1 in Fig. 3b, where � = {Q , R, S, T } (see also Example 5). A 4-winning strategy
for player 1 in G�(G2, M1) starting from (u0 �→ σ4) is shown in Fig. 3b by dotted lines (again, rounds of the game are
indicated by the numbers). In contrast to Example 16, where player 1 either stays in the ABox or always moves away from
it, the winning strategy for player 1 now is to move in the opposite direction, towards the ABox. (Note that in round 2,
player 2 has two possible challenges, u1 ��

2 u2 and u1 ��
2 v .) In fact, for any n > 0, player 1 has an n-winning strategy

starting from any (u0 �→ σm) provided that m is even and m ≥ n.

The criterion of Theorem 15 does not seem to be a big improvement on Theorem 6 as we still have to deal with an
infinite materialisation. Note that, for some DLs such as EL, Horn-ALC and DL-Litehorn , it is enough to play the same game
as defined above but on the finite generating structures G2 and G1. We denote this naïve reformulation of G�(G2, M1)—in
which σi and M1 are replaced with wi and G1, respectively—by Gn

�(G2, G1) and invite the reader to prove that, in the
case of, say DL-Litehorn , Theorem 15 will continue to hold if we replace (win) with the following condition, which can be
checked in polynomial time in O (|G2| ×|G1|): for any u0 ∈ �G2 , there exists w0 ∈ �G1 such that player 1 has an ω-winning

92 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
strategy in the game Gn
�(G2, G1) starting from (u0 �→ w0). (We shall obtain this result later as a consequence of a more

general theorem.) Unfortunately, the existence of an ω-winning strategy in this naïve game does not imply �-homomorphic
embeddability of M2 into M1 for DLs such as DL-LiteHcore or Horn-ALCI .

In the remainder of this section, we show that condition (win) in the infinite game G�(G2, M1) can be checked by
analysing a much more complex game on the finite generating structures G2 and G1. We consider four types of strategies in
G�(G2, M1): forward, backward, start-bounded and general. For each strategy type, θ , we define a game Gθ

�(G2, G1) such
that the following conditions are equivalent:

(win-θ) for any u0 ∈ �G2 and n < ω, there is σ0 ∈ �M1 such that player 1 has an n-winning θ -strategy in the infinite
game G�(G2, M1) starting from (u0 �→ σ0);

(ω-winθ) for any u0 ∈ �G2 , player 1 has an ω-winning strategy in the finite game Gθ
�(G2, G1) starting from some state

depending on u0 and θ .

We begin by considering ‘forward’ winning strategies (such as in Example 16) that are sufficient for the DLs without
inverse roles.

4.2. Forward strategy and game G f
�(G2, G1)

We say that a λ-strategy (λ ≤ ω) for player 1 in the game G�(G2, M1) is forward if, for any play of length i − 1 < λ,
which conforms with this strategy, and any challenge ui−1 ��

2 ui by player 2, the response σi of player 1 is such that either
σi−1, σi ∈ ind(K1) or σi = σi−1 w , for some w ∈ �G1 . For instance, if the generating structures Gi , i = 1, 2, are forward then
every strategy in G�(G2, M1) is forward, and so (win) coincides with (win- f). By Theorem 12 (ii) and (iii), this is the case
for Horn-ALCH, Horn-ALC , ELHdr⊥ and EL.

The existence of a forward λ-winning strategy for player 1 in G�(G2, M1) is equivalent to the existence of a λ-winning
strategy in the game G f

�(G2,G1) whose states, initial states, challenges of player 2 and responses of player 1 are defined in
the table below:

forward game G f
�(G2,G1)

states, i ≥ 0 (ui �→ wi) with ui ∈ �G2 ,
wi ∈ �G1 and
tG2
� (ui) ⊆ tG1

� (wi)

initial state (u0 �→ w0) such that w0 = u0 in case u0 ∈ partM2
�

challenges, i > 0 ui−1 ��
2 ui

responses, i > 0 wi such that either wi−1 �1 wi or
wi−1, wi ∈ ind(K1)

and rG2
� (ui−1, ui) ⊆ rG1

� (wi−1, wi)

Note again that of all ui only u0 may belong to ind(K2).

Example 18. Consider G�
2 and G�

1 shown in Fig. 4a, where G�
1 is a generating structure that can be unravelled into M�

1
from Example 16. It is not hard to see that, for any u0 ∈ �G2 , there is w0 ∈ �G1 such that player 1 has an ω-winning
strategy in G f

�(G2,G1) starting from (u0 �→ w0). Such a strategy starting from (a �→ a) is depicted by dotted lines.

The reader may find more elegant proofs of the following lemma. However, the constructions we use will be required
for the proofs of other lemmas, in particular, a more general Lemma 30.

Lemma 19. Conditions (win- f) and (ω-win f) are equivalent. More precisely, for any u0 ∈ �G2 and σ0 ∈ �M1 , the following are
equivalent:

(a) player 1 has an ω-winning forward strategy in the game G�(G2, M1) starting from (u0 �→ σ0);
(b) for every n < ω, player 1 has an n-winning forward strategy in the game G�(G2, M1) starting from (u0 �→ σ0);
(c) player 1 has an ω-winning strategy in the game G f

�(G2, G1) starting from (u0 �→ tail(σ0)).

Proof. (a) ⇒ (b) is trivial.

(b) ⇒ (c) We construct a (possibly infinite) directed graph T whose nodes are of the form (u �→ δ), where u ∈ �G2 and δ is
a suffix of some element in �M1 , and whose arrows are labelled with u �� u′ so that the following conditions hold:
2

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 93
Fig. 4. The forward game G f
�(G2, G1) from (a �→ a) in Example 18: (a) an ω-winning strategy for player 1; (b) the infinite graph T for extracting ω-winning

strategies.

(1) T contains an initial node (u0 �→ tail(σ0));
(2) tG2

� (u) ⊆ tG1
� (tail(δ)), for every node (u �→ δ) in T;

(3) for any u ��
2 u′ , every node (u �→ δ) in T has exactly one (u ��

2 u′)-successor, which can be of the following forms:

(3.1) (u′ �→ δw ′) if tail(δ) = w , w �1 w ′ and rG2
� (u, u′) ⊆ rG1

� (w, w ′);

(3.2) (u′ �→ b) if δ = a ∈ ind(K1), b ∈ ind(K1) and rG2
� (u, u′) ⊆ rG1

� (a, b).

(The infinite graph T for the winning strategy in Example 18 is depicted in Fig. 4b.)
Such a graph T (if it exists) gives rise to the required ω-winning strategy for player 1 in G f

�(G2,G1). Indeed, consider
the function s mapping the nodes of T to states in the game G f

�(G2,G1) and defined by taking

s(u �→ δ) = (u �→ tail(δ));
in particular, the initial node n0 of T is mapped to the starting state: s(n0) = (u0 �→ tail(σ0)). Now, when challenged by
player 2 with u ��

2 u′ in a state s(n), player 1 picks a unique u ��
2 u′-successor n′ of any r in T such that s(r) = s(n), and

responds to the challenge with s(n′). Note that although nodes are not uniquely determined by the states, any choice of r
as above results in an ω-winning strategy for player 1.

We now show that T exists. Let S0 be the given set of n-winning forward strategies for player 1 in G�(G2, M1) starting
from (u0 �→ σ0). Let w0 = tail(σ0). Define T0 to be the graph with the single initial node (u0 �→ w0). Clearly it satisfies (1)
and (2) above. If it also satisfies (3), then we are done. Otherwise, we take all the challenges u0 ��

2 u1
1, . . . , u0 ��

2 uk
1 by

player 2 and use the pigeonhole principle and the fact that the number of roles in K1 is finite to find w1
1, . . . , w

k
1 ∈ �G1 and

a subset S1 ⊆ S0 such that, for any challenge u0 ��
2 ui

1, every strategy S ∈ S1 gives a response (ui
1 �→ σ i

1) with tail(σ i
1) = wi

1.
If wi

1 ∈ ind(K1) then we add to T0 the node (ui
1 �→ wi

1); and if wi
1 /∈ ind(K1) then we add to T0 the node (ui

1 �→ w0 wi
1); we

also add a u0 ��
2 ui

1 arc connecting (u0 �→ w0) with the newly introduced node. This gives us the graph T1. We proceed in
the same way and construct a sequence of directed graphs T0 ⊆ T1 ⊆ . . . until we either reach some Tk satisfying (1)–(3)
or obtain an infinite sequence and take T = ⋃

k<ω Tk , which obviously satisfies (1)–(3).

(c) ⇒ (a) The given ω-winning strategy in G f
�(G2,G1) starting from (u0 �→ tail(σ0)) is mirrored by an obvious ω-winning

forward strategy in G�(G2,M1) starting from (u0 �→ σ0). �
Example 20. Consider again G�

2 and G�
1 in Fig. 4a. Fig. 5 depicts the full graph of the game G f

�(G2,G1), in which rectangles
represent the states and circles the challenges of player 2. Note that it contains two dead-ends reachable from (a �→ a)—the
challenges u′ ��

2 u′ in the state (u′ �→ w) and u ��
2 v in (u �→ w) of player 2 to which player 1 has no response (the

dead-ends are indicated by double circles). The ω-winning strategy for player 1 in this graph is, therefore, to avoid these
dead-ends; it is indicated by the shaded states.

In view of Theorem 12 (ii) and (iii) and Proposition 14, we then obtain:

Theorem 21. For combined complexity, checking �-query entailment is in P for EL and ELHdr⊥ KBs, and in ExpTime for Horn-ALC
and Horn-ALCH KBs. For data complexity, it is in P for all these DLs.

In comparison to forward strategies, the winning strategies used in Example 17 can be described as ‘backward’.

94 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
Fig. 5. The full graph of the game G f
�(G2,G1) in Example 16.

4.3. Backward strategy and game Gb
�(G2, G1)

A λ-strategy for player 1 in G�(G2, M1) is backward if, for any play of length i − 1 < λ, which conforms with this
strategy, and any challenge ui−1 ��

2 ui by player 2, the response σi of player 1 is the immediate predecessor of σi−1 in M1

in the sense that σi−1 = σi w , for some w ∈ �G1 (player 1 loses in case σi−1 ∈ ind(K1)). Note that, since M1 is tree-shaped,
the response of player 1 to any different challenge ui−1 ��

2 u′
i must be the same σi ; cf. Example 17. That is why the states

of the game Gb
�(G2, G1) are of the form si = (�i �→ wi), where �i is a non-empty subset of �G2 and wi ∈ �G1 . For each

i > 0, player 2 always challenges player 1 with the set �i = ��
i−1, where

�� = {
v ∈ �G2 | u ��

2 v, for some u ∈ �
}
,

provided that it is not empty (otherwise, player 2 loses). Player 1 responds with wi ∈ �G1 such that wi �1 wi−1. More
formally, the states, challenges of player 2 and responses by player 1 are defined as follows:

backward game Gb
�(G2,G1)

states, i ≥ 0 (�i �→ wi) with �i ⊆ �G2 , �i �= ∅,
wi ∈ �G1 and tG2

� (u) ⊆ tG1
� (wi), for

all u ∈ �i

initial state ({u0} �→ w0) such that w0 = u0 in case
u0 ∈ partM2

�

challenges, i > 0 �i = ��
i−1 provided that �i �= ∅

responses, i > 0 wi such that wi �1 wi−1

and rG2
� (u, v) ⊆ r̄G1

� (wi, wi−1), for all u ∈ �i−1
and v ∈ �i

Note that, by definition, �0 is a singleton and the sets �i , for i > 0, contain no individuals from ind(K2).

Example 22. Fig. 6a shows an ω-winning strategy for player 1 in Gb
�(G2, G1) starting from ({u0} �→ w0), where G1 is a

generating structure that can be unravelled into M1 in Example 17. Fig. 6b presents the corresponding fragment of the
full game graph (shaded nodes form an ω-winning strategy and the non-shaded node leads to a dead-end, where player 1
loses).

Lemma 23. Conditions (win-b) and (ω-winb) are equivalent. More precisely, for any u0 ∈ �G2 and w0 ∈ �G1 , the following are
equivalent:

(a) for every n < ω, there is σ0 ∈ �M1 with tail(σ0) = w0 such that player 1 has an n-winning backward strategy in the game
G�(G2, M1) starting from (u0 �→ σ0);

(b) player 1 has an ω-winning strategy in the game Gb
�(G2, G1) starting from ({u0} �→ w0).

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 95
Fig. 6. The backward game Gb
�(G2, G1) from ({u0} �→ w0) in Example 22: (a) an ω-winning strategy for player 1; (b) a fragment of the full game graph;

(c) the infinite tree T for extracting ω-winning strategies.

Proof. (a) ⇒ (b) We begin by constructing a possibly infinite directed tree T with nodes of the form (u �→ w, i), where
u ∈ �G2 , w ∈ �G1 and 0 ≤ i < ω, whose arrows are labelled with u ��

2 u′ so that the following conditions hold:

(1) the root of T is of the form (u0 �→ w0, 0);
(2) tG2

� (u) ⊆ tG1
� (w), for every node (u �→ w, i) in T;

(3) for any u ��
2 u′ , every node (u �→ w, i) in T has exactly one (u ��

2 u′)-successor in T, which is of the form
(u′ �→ w ′, i + 1) and satisfies w ′ �1 w and rG2

� (u, u′) ⊆ r̄G1
� (w ′, w);

(4) for any nodes (u �→ w, i) and (u′ �→ w ′, i) in T, we have w = w ′ .

(The infinite tree T for the winning strategy in Example 22 is depicted in Fig. 6c.)
Such a tree T defines an ω-winning strategy for player 1 in Gb

�(G2, G1) starting from ({u0} �→ w0). In detail, let
w0, w1, . . . be the longest (and so possibly infinite) sequence of elements of �G1 such that, for each wi , there exists u
with (u �→ wi, i) a node in T. Note that, by (4), every wi (if it exists) is uniquely determined. We set

�i = {
u | (u �→ wi, i) ∈ T

}
and observe that �0 = {u0} and �i = ��

i−1 and �i �= ∅, for all i > 0. Take the maximal m < ω such that wm exists and
wi �= wm for all i < m (in other words, wm is the first repeating element in the sequence). Now the strategy of player 1 is
as follows: when challenged by player 2 with some u ��

2 u′ in state (�i �→ wi) with i ≤ m, player 1 responds with wi+1 if
i < m and with the uniquely determined wk , for k ≤ m and wk = wm+1, if i = m.

We now show that T exists. Let S0 be the given set of n-winning backward strategies for player 1 in G�(G2, M1)

starting from (u0 �→ σ0), for σ0 ∈ �M1 with tail(σ0) = w0. Define T0 to be the tree with the single node (u0 �→ w0, 0).
Clearly, it satisfies (1), (2) and (4). If it also satisfies (3), then we are done. Otherwise, we take a challenge u0 ��

2 u1 by
player 2 and use the pigeonhole principle to find w1 ∈ �G1 and a subset S1 ⊆ S0 such that, for any challenge u0 ��

2 u′ ,
every strategy S ∈ S1 gives a response (u′ �→ σ ′) with tail(σ ′) = w1. We add to T0 the nodes (u′ �→ w1, 1), for any challenge
u0 ��

2 u′ . We also add a u0 ��
2 u′ arc connecting (u0 �→ w0, 0) with the newly introduced nodes. This gives us the tree T1

satisfying (1), (2) and (4). We proceed in this way and construct a sequence of trees T0 ⊆ T1 ⊆ . . . until we either reach
some Tk satisfying (1)–(4) or obtain an infinite sequence and take T = ⋃

k<ω Tk , which obviously satisfies (1)–(4).

(b) ⇒ (a) Suppose player 1 has an ω-winning strategy S starting from ({u0} �→ w0) in the game Gb
�(G2, G1) and let n < ω.

Recall that, for each state (� �→ w), there is (at most) one challenge �′ = �� . Thus, the first n rounds of a play according
to S starting from ({u0} �→ w0) are given by a sequence (�0 �→ w0), (�1 �→ w1), . . . , (�k �→ wk), where �0 = {u0} and
either k = n or k < n and ��

k = ∅. Take any σ ∈ �M1 with tail(σ) = wk and let σ0 = σ wk−1 · · · w0. Clearly, player 1 has an
n-winning backward strategy in G�(G2, M1) starting from (u0 �→ σ0). �

Although Lemmas 19 and 23 look similar, the game Gb
�(G2, G1) turns out to be more complex than G f

�(G2,G1) because
the full game graph is exponential in the size of �G2 \ ind(K2). The following lemma explains this fact using very simple
DL-LiteHcore KBs:

96 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
Fig. 7. M�
2 and M�

1 for ϕ = c1 ∧ c2 ∧ c3, where c1 = p1 ∨ p2, c2 = ¬p1 ∨ p2 and c3 = ¬p2. The
/⊥ symbols on the arrows of M�
2 indicate the truth

value of the respective variable. Only one branch of M�
1 is shown in full detail, with the index of the missing role Ci in the black circle next to the arrow.

Lemma 24. Checking whether player 1 has an ω-winning strategy in Gb
�(G2, G1) is coNP-hard.

Proof. The proof is by reduction of the unsatisfiability problem for 3CNFs ϕ = ∧m
i=1 ci , where ci = li1 ∨ li2 ∨ li3 and each li j

is either one of the propositional variables p1, . . . pk or a negation of such a variable.
Let N1, . . . , Nk be the first k prime numbers (observe that 1 < Nk ≤ k2). We take a role name R , a role name Ci , for each

clause ci in ϕ , and a role name S j� , for each 1 ≤ j ≤ k and 1 ≤ � ≤ N j . Now we define a KB K2 = (T2, {A(a)}), where T2
contains A � ∃R , the following inclusions, for 1 ≤ j ≤ k and 1 ≤ � < N j ,

∃R− � ∃S j1, ∃S−
j� � ∃S j�+1, ∃S−

jN j
� ∃S j1,

and the following inclusions, for 1 ≤ j ≤ k and 1 ≤ i ≤ m:

S j1 � Ci, if p j is a literal of ci,

S j2 � Ci, if ¬p j is a literal of ci .

Intuitively, M2 is a tree with k branches having a common root arrow R . The jth branch is obtained by unravelling a loop
of N j arrows S j1, . . . , S jN j : the first arrow, S j1, corresponds to p j being true (under an assignment) and the second arrow,
S j2, to p j being false (other arrows do not encode truth values). Therefore, N1 × N2 × · · · × Nk layers (the layer i consists
of all arrows from points at distance i from the root) contain representations of all possible assignments to p1, . . . , pk (for
k = 2, see Fig. 7 on the left). The last two types of role inclusions make sure that the roles C1, . . . , Cm , which constitute the
signature �, mark those assignments under which ϕ is true.

We now take K1 = (T1, {A(a)}), where T1 contains the following inclusions:

A � ∃Ti and ∃T −
i � A, for 1 ≤ i ≤ m

Ti � C−
i′ , for 1 ≤ i �= i′ ≤ m.

In M1, the path from each point to the root contains arrows that are labelled by all of C1, . . . , Cm but one (for m = 3, see
Fig. 7 on the right). Note that the Ci arrows point towards the root, in the opposite direction to the Ci arrows of M2. Thus,
there is a finite (�, {a})-homomorphism from M2 into M1 if and only if one of the clauses is false under each of the
assignments (that is, iff ϕ is unsatisfiable).

The generating structure G1 is essentially a set of loops each of which is missing precisely one of the Ci . Thus, the
responses of player 1 correspond to the choices of the missing Ci . The challenges by player 2, on the other hand, correspond
to the subsets of C1, . . . , Cm in the layers of M2, the number of which may be exponential in k. So player 2 can go through
a sequence of exponentially many distinct challenges (assignments), to each of which player 1 will have to find a clause
that is false under the assignment. The sequence repeats itself after N1 × · · · × Nk steps. �

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 97
Fig. 8. Example 25: (a) an ω-winning start-bounded strategy in G�(G2, M1) from (u2 �→ σ0); (b) an ω-winning strategy in Gs
�(G2, G1) from (∅, {u2, u9} �→

w0); (c) the respective fragment of the game graph of Gs
�(G2, G1); (d) the graph T for extracting ω-winning strategies in Gs

�(G2, G1).

A general strategy for player 1 in G�(G2, M1) is a combination of a backward strategy and a number of start-bounded
strategies to be defined next.

4.4. Start-bounded strategy and game Gs
�(G2, G1)

A strategy for player 1 in the game G�(G2, M1) starting from (u0 �→ σ0) is called start-bounded if it never leads
to a state (ui �→ σi) such that σ0 = σi w , for some w ∈ �G1 and i > 0. In other words, player 1 cannot use those el-
ements of M1 that are located closer to the ABox than σ0; the ABox individuals in M1 can only be used if σ0 ∈
ind(K1).

Example 25. The strategy starting from (u2 �→ σ0) and shown in Fig. 8a by dotted lines is start-bounded, with the numbers
indicating the rounds of the game: the responses σ0, σ1, σ2 of player 1 move away from the ABox, after which player 1
retraces his steps back to σ0 (in order to avoid clutter, we omitted the ABox part from the generating structure G2 in the
picture).

The states of Gs
�(G2, G1) are of the form (�i, �i �→ wi), i ≥ 0, where �i, �i ⊆ �G2 , �i �= ∅ and wi ∈ �G1 . (Intuitively,

�i is the set of elements of �G2 that are mapped to wi , while �i identifies illegitimate challenges for player 2, that is, the ��
2 -successors that have already been mapped to wi−1.) The initial state is of the form (∅, �0 �→ w0). In each round i > 0,

player 2 challenges player 1 with some u ��
2 v such that u ∈ �i−1 and

if v ∈ �i−1 then rG2
� (u, v)� r̄G1

� (wi−2, wi−1). (no-backward)

(Player 2 loses if there is no challenge satisfying this condition.) Player 1 ‘guesses’ some �i and wi such that �i contains v ,
rG2
� (u, v) ⊆ rG1

� (wi−1, wi) and responds with a state (�i, �i �→ wi), where �i is determined by �i−1 and wi : �i = �i−1 if
wi /∈ ind(K1) and �i = ∅, otherwise. We make challenges u ��

2 v , for which

u ∈ �i−1, v ∈ �i−1 and rG2
� (u, v) ⊆ r̄G1

� (wi−2, wi−1),

‘illegitimate’ because, by the choice of �i−2, the element wi−2 was supposed to be used as a response; note that the last
two conditions above are the complement of (no-backward). Because of this, player 1 always moves ‘forward’ in G1, but
has to guess appropriate sets �i in advance. The states, initial states, challenges by player 2 and responses of player 1 are
summarised in the table below:

98 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
start-bounded game Gs
�(G2,G1)

states, i ≥ 0 (�i, �i �→ wi) with �i, �i ⊆ �G2 , �i �= ∅, wi ∈ �G1

and tG2
� (u) ⊆ tG1

� (wi), for all u ∈ �i

initial state (∅, �0 �→ w0) such that w0 = u in case u ∈ �0 ∩ partM2
�

and �0 ∩ ind(K2) contains at most one element

challenges, i > 0 u ��
2 v such that u ∈ �i−1 and if v ∈ �i−1, for

i > 1, then rG2
� (u, v) � r̄G1

� (wi−2, wi−1)

responses, i > 0 (�i, �i �→ wi) such that v ∈ �i and �i ∩ ind(K2) = ∅,
either wi−1 �1 wi and �i = �i−1 or
wi−1, wi ∈ ind(K1) and �i = ∅, and
rG2
� (u, v) ⊆ rG1

� (wi−1, wi)

Note that of all �i only �0 may contain (at most one) individual from ind(K2); �0 = ∅ and of all �i only �1 may contain
an individual.

Example 26. Consider G�
2 and G�

1 in Fig. 8b. In the game Gs
�(G2, G1), player 1 will have to guess all the points of G2

that are mapped to the same point of M1. We show that player 1 has an ω-winning strategy in Gs
�(G2, G1) starting from

(∅, {u2, u9} �→ w0). Player 2 challenges with u2 ��
2 u6, and player 1 responds with ({u2, u9}, {u6, u8} �→ w1). Then player 2

picks u6 ��
2 u7 and player 1 responds with ({u6, u8}, {u7} �→ w2), where the game ends because player 2 has no challenge

available. Observe that this strategy involves only 3 rounds in contrast to the 5 rounds of the corresponding strategy in
G(G2, M1) shown in Fig. 8a. The strategy in Gs

�(G2, G1) is indicated by the shaded states of the fragment of the game
graph in Fig. 8c. Note the crucial guesses {u2, u9} �→ w0 and {u6, u8} �→ w1 made by player 1. For example, if player 1
responded with ({u2, u9}, {u6} �→ w1) (and failed to guess that u8 must also be mapped to w1), then after the challenge
u6 ��

2 u7 and the only possible response ({u6}, {u7} �→ w2), player 2 would pick u7 ��
2 u8 to which player 1 would not

have a response; see the non-shaded states in Fig. 8c.

Lemma 27. Conditions (win-s) and (ω-wins) are equivalent. More precisely, for any u0 ∈ �G2 and σ0 ∈ �M1 , the following are
equivalent:

(a) player 1 has an ω-winning start-bounded strategy in the game G�(G2, M1) starting from (u0 �→ σ0);
(b) for every n < ω, player 1 has an n-winning start-bounded strategy in G�(G2, M1) starting from (u0 �→ σ0);
(c) player 1 has an ω-winning strategy in the game Gs

�(G2, G1) starting from (∅, �0 �→ tail(σ0)), for some �0 � u0 .

Proof. (a) ⇒ (b) is trivial.

(b) ⇒ (c) We define a (possibly infinite) directed graph T whose nodes are of the form (u �→ δ), where u ∈ �G2 and δ is a
suffix of some element in �M1 , and whose arrows are labelled with u ��

2 u′ so that the following conditions hold:

(1) T contains an initial node (u0 �→ tail(σ0));
(2) tG2

� (u) ⊆ tG1
� (tail(δ)), for every node (u �→ δ) in T;

(3) for any u ��
2 u′ , every node (u �→ δ) in T has exactly one (u ��

2 u′)-successor in T, which can be of the following
forms:
(3.1) (u′ �→ δw ′), if tail(δ) = w, w �1 w ′ and rG2

� (u, u′) ⊆ rG1
� (w, w ′);

(3.2) (u′ �→ b), if δ = a ∈ ind(K1), b ∈ ind(K1) and rG2
� (u, u′) ⊆ rG1

� (a, b);

(3.3) (u′ �→ δ′), if δ = δ′w, tail(δ′) = w ′, w ′ �1 w and rG2
� (u, u′) ⊆ r̄G1

� (w ′, w).

Observe that these conditions coincide with the conditions given in the proof of Lemma 19 except that now (3.3) provides
a possibility of going backward. The graph T for the winning strategy in Example 25 is depicted in Fig. 8d.

We show that the graph T (if it exists) gives rise to the required ω-winning strategy for player 1 in Gs
�(G2, G1). Consider

the function s mapping the nodes in T to states in the game Gs
�(G2, G1) and defined by taking

s(u �→ δ) =
{

(�δ′ ,�δ �→ tail(δ)), if δ = δ′w,

(∅,�δ �→ δ), otherwise (that is, if δ = tail(σ0) or δ ∈ ind(K1)),

where �δ = {
u | (u �→ δ) a node in T

}
. In particular, the initial node n0 in T is mapped to the initial state: s(n0) =

(∅, �tail(σ0) �→ tail(σ0)). (Note that only n0 may refer to an individual from ind(K2), and so s(n0) is a properly defined
initial state.) In order to define the ω-winning strategy of player 1 in Gs (G2, G1) from s(n0), we show that, for all n in T,
�

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 99
if player 2 has a challenge u ��
2 u′ in s(n), then there is ru and a (u ��

2 u′)-successor n′ of ru in T

such that s(ru) = s(n) and s(n′) is a valid response by player 1 to u ��
2 u′ in s(n).

Indeed, if u ��
2 u′ is a challenge in s(n) then s(n) is of the form (�, �δ �→ tail(δ)), for some δ and u ∈ �δ . By definition,

T contains a node ru = (u �→ δ) and s(ru) = s(n); moreover, ru has a (u ��
2 u′)-successor n′ in T. (Observe that, by the

definition of s, for two distinct nodes n = (v �→ δ) and ru = (u �→ δ), we may have s(n) = s(ru) = (�, �δ �→ tail(δ)) and
{u, v} ⊆ �δ , and so T may contain a node n that has no u ��

2 u′ successor for a valid challenge u ��
2 u′ in Gs

�(G2, G1)

from s(n). Similarly to the proof of Lemma 19, the choice of a particular ru is not essential.) It remains to show that s(n′)
is a valid response by player 1 to u ��

2 u′ from s(n). Consider all possible cases:

– If ru = (u �→ w) and n′ = (u′ �→ w w ′) then s(n) = (∅, �w �→ w) and s(n′) = (�w , �w w ′ �→ w ′). By item (3.1) of the
definition of T, s(n′) is as required.

– If ru = (u �→ δw) and n′ = (u′ �→ δw w ′) then s(n) = (�δ, �δw �→ w) and s(n′) = (�δw , �δw w ′ �→ w ′). By (3.1), s(n′) is
as required.

– If ru = (u �→ w) and n′ = (u′ �→ w ′) then w, w ′ ∈ ind(K1), s(n) = (∅, �w �→ w) and s(n′) = (∅, �w ′ �→ w ′). By (3.2),
s(n′) is as required.

– If ru = (u �→ δw ′w) and n′ = (u′ �→ δw ′) then s(n) = (�δw ′ , �δw ′ w �→ w) and u′ ∈ �δw ′ , which is impossible be-
cause, in view of (3.3), we have rG2

� (u, u′) ⊆ r̄G1
� (w ′, w) contrary to the fact that u ��

2 u′ is a challenge in s(n);
see (no-backward).

The ω-winning strategy of player 1 in Gs
�(G2, G1) from s(n0) is then defined naturally.

Now we show that T exists. The construction is similar to the proof of Lemma 19. Let S0 be the given set of n-winning
start-bounded strategies in G�(G2, G1) starting from (u0 �→ σ0) and let w0 = tail(σ0). Define T0 to be the graph with the
single initial node (u0 �→ w0). Clearly, it satisfies (1) and (2) above. If it also satisfies (3), then we are done. Otherwise, as in
the proof of Lemma 19, we take all the challenges u0 ��

2 u1
1, . . . , u0 ��

2 uk
1 by player 2 and using the pigeonhole principle

find w1
1, . . . , w

k
1 ∈ �G1 and a set S1 ⊆ S0 such that, for any challenge u0 ��

2 ui
1, every strategy S ∈ S1 gives a response

(ui
1 �→ σ i

1) with tail(σ i
1) = wi

1. If wi
1 ∈ ind(K1) then we add the node (ui

1 �→ wi
1) to T0, and if wi

1 /∈ ind(K1) then we add
the node (ui

1 �→ w0 wi
1) to T0; we also add an u0 ��

2 ui
1 arrow connecting (u0 �→ w0) with the newly introduced node.

This gives us the graph T1. To illustrate the construction of T in the case of a backward step (which is impossible in round
1), consider now a challenge u1 ��

2 u2 by player 2 for some u1 ∈ {u1
1, . . . , u

k
1} such that the response according to S was

(u1 �→ σ0 w1) and (u1 �→ w0 w1) is a node in T1. Then, using the pigeonhole principle, we find either

– w2 ∈ �G1 and a subset S2 ⊆ S1 such that every strategy S ∈ S2 gives a response of the form (u2 �→ σ0 w1 w2),
– or a subset S2 ⊆ S1 such that every strategy S ∈ S2 gives a response of the form (u2 �→ σ0).

In the former case we add the node (u2 �→ w0 w1 w2) to T1 and in the latter case we add (u2 �→ w0) to T1. We also add
an u1 ��

2 u2 arrow connecting (u1 �→ w0 w1) and the new node to T1. This defines T2. We proceed in the same way and
construct a sequence of graphs T0 ⊆ T1 ⊆ . . . until we either reach some Tk satisfying (1)–(3) or obtain an infinite sequence
and take T = ⋃

k<ω Tk , which obviously satisfies (1)–(3).

(c) ⇒ (a) Suppose that player 1 has an ω-winning strategy S in Gs
�(G2, G1) starting from (∅, �0 �→ tail(σ0)) with u0 ∈ �0.

We transform the strategy S into an ω-winning start-bounded strategy S ′ in G�(G2, M1) starting from s0 = (u0 �→ σ0). We
associate with any (possibly infinite) sequence u0 ��

2 u1 ��
2 · · · ��

2 ui ��
2 · · · of challenges by player 2 in G�(G2, M1)

starting from the state s0 a sequence s1 = (u1 �→ σ1), . . . , si = (ui �→ σi), . . . of responses by player 1 which are start-
bounded (that is, σ0 �= σi w , for any w ∈ �G1). To this end, we also define a sequence of states sb0 = (�0, �0 �→
w0), . . . , sbi = (�i, �i �→ wi), . . . in Gs

�(G2, G1) such that ui ∈ �i and tail(σi) = wi for all i. To keep track of ‘backward
moves’ we also define a sequence π0, . . . , πi, . . . of sequences of states in Gs

�(G2, G1) such that each πi has length
|σi| + 1 − |σ0| and its first state is of the form (∅, � �→ w). Finally, we require that

if πi = π j · (�1,�1 �→ w1) · · · (�m,�m �→ wm) then σi = σ j w1 · · · wm. (4)

For i = 0, we set sb0 = (∅, �0 �→ w0) and π0 = sb0, which clearly has the required properties. Now assume that s0, . . . , si−1,
sb0, . . . , sbi−1 and π0, . . . , πi−1, for i > 0, are defined as above. Consider a challenge ui−1 ��

2 ui in state si−1. We distinguish
the following two cases.

– If ui−1 ��
2 ui is a valid challenge in sbi−1 then we define sbi = (�i, �i �→ wi) as the response of player 1 in sbi−1

according to S . If wi /∈ ind(K1) then we set πi = πi−1 · sbi and si = (ui �→ σi−1 wi). Otherwise, �i = ∅ and we set
πi = sbi and si = (ui �→ wi). Obviously, the conditions above hold for the resulting sequences.

– If ui−1 ��
2 ui is not a valid challenge from sbi−1 then �i−1 �= ∅, ui ∈ �i−1 and rG2

� (ui−1, ui) ⊆ r̄G1
� (w, wi−1) for the

predecessor w of wi−1 in σi−1. Let πi be the result of removing the final state from πi−1; let sbi be the final element

100 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
of πi ; and let si = (ui �→ σi), where σi is obtained from σi−1 by removing its final element. Clearly, (4) is satisfied.
We show that si is a valid response. First, observe that there exists j ≤ i − 2 such that π j = πi and π j+1 = πi−1
for which sb j+1 is the response to the challenge u j ��

2 u j+1 from sb j . By (4), σ j+1 = σi−1 and σ j+1 = σ j w j . By
the construction of σi , σi = σ j . Second, it remains to observe that � j+1 = �i−1 and � j+1 = � j , i.e., ui ∈ � j and
tG2
� (ui) ⊆ tG1

� (w j) = tM1
� (σi) (recall that, by (no-backward), rG2

� (ui−1, ui) ⊆ rM1
� (σi−1, σi)).

By repeating these steps, we obtain an ω-winning start-bounded strategy in G�(G2, M1) starting from (u0 �→ σ0). �
Similarly to G f

�(G2,G1), player 1 has an ω-winning strategy in Gs
�(G2,G1) starting from a state s if and only if player 2

does not have a winning strategy in the reachability game on the full graph of Gs
�(G2,G1) starting from s. However, now

the size of the game graph is exponential in the size of G2. More precisely, each �i and �i is a subset of �G2 with at most
one individual name, which results in O ((|ind(K2)| × 2|�G2 \ind(K2)|)2 × |�G1 |) states in Gs

�(G2,G1). The number of vertices
in the graph for the reachability game is then cubic in the number of states in Gs

�(G2,G1) because (no-backward) involves
three states. So the existence of the required ω-winning strategy for player 1 can be checked in time polynomial in G1 but
exponential in G2. Moreover, as we shall see in Section 5, this problem is ExpTime-hard.

4.5. General strategies and game G g
�(G2, G1)

A general winning strategy in the game G�(G2, M1) can be composed of one backward and a number of start-bounded
strategies.

Example 28. Consider G�
2 and M�

1 shown in Fig. 9a. Starting from (u1 �→ σ3), player 1 can respond to the challenges
u1 ��

2 u2 ��
2 u3 according to the backward strategy; the challenges u2 ��

2 u6 ��
2 u7 ��

2 u8 ��
2 u9 according to the

start-bounded strategy as in Example 25; the challenges u3 ��
2 u4 ��

2 u5 also according to the obvious start-bounded
strategy; finally, the challenge u9 ��

2 u10 needs a response according to the backward strategy. We will combine the two
backward strategies into a single one, but keep the start-bounded ones separate.

The states, initial states, challenges and responses in the general game G g
�(G2, G1) are defined in the table below:

general game G g
�(G2,G1)

states, i ≥ 0 (�i �→ wi, �i) such that �i ⊆ �G2 , �i �= ∅, wi ∈ �G1 , �i ⊆ ��
i ,

tG2
� (u) ⊆ tG1

� (wi), for all u ∈ �i ,
�i = ∅ if wi ∈ ind(K1),
and player 1 has an ω-winning strategy in the start-bounded game
Gs

�(G2, G1)

from (∅, �i �→ wi) with the first challenge u ��
2 v by player 2

satisfying v ∈ ��
i \ �i

initial state (�0 �→ w0, �0) such that w0 = u in case
u ∈ �0 ∩ partM2

� ,
�0 ∩ ind(K2) contains at most one element

challenges, i > 0 �i−1 provided that �i−1 �= ∅
responses, i > 0 (�i �→ wi, �i) such that wi �1 wi−1, �i ⊇ �i−1 with

�i ∩ ind(K2) = ∅,
rG2
� (u, v) ⊆ r̄G1

� (wi, wi−1), for all u ∈ �i−1 and v ∈ �i .

Thus, in every round i > 0 of the game, player 1 chooses a set �i ⊇ �i−1 and partitions the elements of ��
i into those that

will be mapped according to the backward strategy in round i + 1 (the set �i) and those that will be mapped according to
the start-bounded strategy (the set ��

i \ �i). Note the additional condition that player 1 must have an ω-winning strategy
in the start-bounded game Gs

�(G2, G1) from (∅, �i �→ wi) where the first challenge by player 2 is restricted to ��
i \ �i .

Example 29. Fig. 9b shows an ω-winning strategy for player 1 in G g
�(G2, G1) starting from ({u1} �→ w3, {u2}), where G�

1
looks like M�

1 but with wi in place of σi . The dashed transitions represent two launches of start-bounded games: one from
the state (∅, {u2, u9} �→ w0) with the initial challenge u2 ��

2 u6, and the other from the state (∅, {u3, u10} �→ a) with the
initial challenge u3 ��

2 u4.

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 101
Fig. 9. Example 28: (a) an ω-winning general strategy in the infinite game G�(G2, M1) from (u1 �→ σ3); (b) the respective fragment of the game graph of
G g

�(G2, G1) with graphs of the start-bounded games.

Lemma 30. Conditions (win), (win-g) and (ω-wing) are equivalent. More precisely, for any u0 ∈ �G2 and w0 ∈ �G1 , the following
are equivalent:

(a) for every n < ω, there is σ0 ∈ �M1 such that tail(σ0) = w0 and player 1 has an n-winning strategy in the game G�(G2, M1)

starting from (u0 �→ σ0);
(b) player 1 has an ω-winning strategy in G g

�(G2, G1) starting from (�0 �→ w0, �0), for some �0 � u0 and �0 .

Proof. (a) ⇒ (b) As before, we construct a (possibly infinite) directed graph T whose nodes are of the form (u �→ δ, i),
where u ∈ �G2 , δ is a suffix of some element in �M1 and 0 ≤ i < ω or i = ∗, and whose arrows are labelled with u ��

2 u′
and such that the following conditions hold:

(1) the initial node of T is of the form (u0 �→ w0, 0);
(2) tG2

� (u) ⊆ tG1
� (tail(δ)), for any node (u �→ δ, k) in T;

(3) for any u ��
2 u′ , every node (u �→ δ, i) in T has exactly one (u ��

2 u′)-successor in T, which can be of the following
forms:
(3.1) (u′ �→ δw ′, i), if tail(δ) = w, w �1 w ′ and rG2

� (u, u′) ⊆ rG1
� (w, w ′);

(3.2) (u′ �→ b, ∗), if δ = a ∈ ind(K1), b ∈ ind(K1) and rG2
� (u, u′) ⊆ rG1

� (a, b);

(3.3) (u′ �→ δ′, i), if δ = δ′w, tail(δ′) = w ′, w ′ �1 w and rG2
� (u, u′) ⊆ r̄G1

� (w ′, w);

(3.4) (u′ �→ w ′, i + 1), if δ = w ∈ �G1 , w ′ �1 w and rG2
� (u, u′) ⊆ r̄G1

� (w ′, w).
(4) for any nodes (u �→ w, i) and (u′ �→ w ′, i) in T with w, w ′ ∈ �G1 and i �= ∗, we have w = w ′ .

Note that the conditions on T combine the conditions given in the proofs of Lemma 23 (backward strategies, cf. (3.4)
and (4)) and Lemma 27 (start-bounded strategies, cf. (3.1)–(3.3)). The graph T for the ω-winning strategy in Example 28 is
depicted in Fig. 10.

We show first that such a graph T exists. Let S0 be the given set of n-winning strategies of player 1 in G�(G2, M1)

starting from (u0 �→ σ0). Define T0 to be the graph with the single initial node (u0 �→ w0, 0). In the sequel, we slightly
abuse notation and use ε for the empty word so that εa is regarded to be the same as a, an element of ind(K1). We say
that a strategy S ∈ S0 respects T if there exists a sequence σS

0 , σS
1 , . . . of elements of �M1 ∪ {ε} such that

– each σS
i satisfies σS

i−1 = σS
i w , for some w ∈ �G1 , with σS−1 = σ0, and

– if (u′ �→ δ′, i′) is a (u ��
2 u′)-successor of (u �→ δ, i) in T then, according to S , player 1 responds to the challenge

u �� u′ of player 2 in the state (u �→ σSδ) with (u′ �→ σS′ δ′),
2 i i

102 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
Fig. 10. The graph T for extracting ω-winning strategies in G g
�(G2,G1) from Example 28.

where σS∗ = ε. (Intuitively, σS
i is the σS

i−1 without the last element, and so the sequence σS
0 w0, σS

1 w1, σS
2 w2, . . . , with

wi = tail(σS
i−1), are the responses to the challenges of the strategy.) Clearly, all strategies in S0 respect T0. Suppose we

have already constructed Tk and Sk such that every S ∈ Sk respects Tk . If Tk satisfies (3), then we are done. Otherwise,
Tk contains a node (u �→ δ, i) without a (u ��

2 u′)-successor, for some u ��
2 u′ . (We take such a node to be closest to the

initial node.) Using the pigeonhole principle, we can find δ′ , i′ and a subset Sk+1 ⊆ Sk such that one of the following four
options holds for all strategies S ∈ Sk+1 simultaneously: the response of player 1 according to S to the challenge (u ��

2 u′)
in state (u �→ σS

i δ) is of the form

(u′ �→ σS
i δ′) with δ′ = δw ′ and i′ = i, (r.1)

(u′ �→ δ′) with σS
i = ε, δ, δ′ ∈ ind(K1) and i′ = ∗, (r.2)

(u′ �→ σS
i δ′) with δ = δ′w and i′ = i, (r.3)

(u′ �→ σS
i) with δ ∈ �G1 , δ′ = tail(σS

i) and i′ = i + 1; (r.4)

see also items (3.1)–(3.4) above. In each of the four cases, we define Tk+1 by extending Tk with (u′ �→ δ′, i′) as a
(u ��

2 u′)-successor of (u �→ δ, i). Observe also that all S ∈ Sk+1 clearly respect Tk+1. We proceed in the same way and
construct sequences T0 ⊆ T1 ⊆ . . . and S0 ⊇ S1 ⊇ S2, . . . until we either reach some Tn satisfying (1)–(4) or obtain infinite
sequences and take T = ⋃

n<ω Tn , which obviously satisfies (1)–(4).
Now we show that T defines an ω-winning strategy for player 1 in G g

�(G2, G1) starting from some (�0 �→ w0, �0). Let
w0, w1, . . . be the longest (and possibly infinite) sequence of elements of �G1 such that, for each wi , there exists u with
(u �→ wi, i) a node in T. Note that, by (4), every wi (if it exists) is uniquely determined. For each i ≥ 0 with wi defined,
set

�i = {
u | (u �→ wi, i) in T

}
and �i = {

u′ | u ��
2 u′, (u �→ wi, i) and (u′ �→ wi+1, i + 1) are in T

}
and observe that u0 ∈ �0, �i �= ∅ and �i ⊆ ��

i , �i ⊆ �i+1, for all i ≥ 0 such that the sets are defined. Note also that if the
sequence w0, w1, . . . is finite then the last �k is empty. Similarly to the proof of Lemma 23, take the maximal m < ω such
that wm exists and wi �= wm for all i < m.

To show that each (�i �→ wi, �i), for 0 ≤ i ≤ m, is a valid state in the game G g
�(G2, G1), we have to define an ω-winning

strategy for the start-bounded game Gs
�(G2, G1) from (∅, �i �→ wi) with the first-round challenges u ��

2 v such that v /∈ �i .
Fix i and define a graph Ti containing the nodes (u �→ δ), for (u �→ δ, i) in T, and all the nodes (u �→ δ) such that (u �→ δ, ∗)

is reachable from some (u′ �→ δ′, i) in T by a path not containing any (u′′ �→ δ′′, i + 1). The arrows and their labels in Ti are
induced in the obvious way by the arrows of T. Observe that Ti satisfies (1) and (2) of Lemma 27 and satisfies (3) except,
perhaps, in nodes (u �→ wi) with u ��

2 v and v ∈ �i . It can now be shown in the same way as in Lemma 27 that player 1
has an ω-winning strategy in the start-bounded game Gs

�(G2, G1) from (∅, �i �→ wi) provided that the challenge u ��
2 v

in the first round satisfies v /∈ �i .
Now, by (3.4), the states (�i �→ wi, �i), i ≤ m, clearly define an ω-winning strategy for player 1 in the game G g

�(G2, G1)

starting from (�0 �→ w0, �0): if player 2 challenges (with �i) in some state (�i �→ wi, �i), then player 1 responds with
(�i+1 �→ wi+1, �i+1) if i < m, and by the uniquely determined (�k �→ wk, �k) with wk = wm+1 if i = m.

(b) ⇒ (a) Suppose player 1 has an ω-winning strategy S starting from a0 = (�0 �→ w0, �0) in G g
�(G2, G1) with u0 ∈ �0

and let n < ω. Consider any play in G g
�(G2, G1) starting from a0 and conforming with S . One can represent the play as a

sequence

(a0, u0
0 ��

2 v0
0, . . . , u0

k0
��

2 v0
k0

), (a1, u1
0 ��

2 v1
0, . . . , u1

k1
��

2 v1
k1

), . . . ,

where each ai is a response of player 1 (a state of the game G g
�(G2, G1)) to the (uniquely determined) challenge in ai−1,

and ui
0 ��

2 vi
0, . . . , u

i
ki

��
2 vi

ki
are the challenges of player 2 in the start-bounded game Gs

�(G2, G1) from ai (in which
case player 1 has an ω-winning strategy). Similarly to the backward game, the sequence a0, a1, . . . does not depend on
the challenges of player 2 but only on a0 and S . So we fix the sequence a0, a1, . . . , ak , where either k = n or k < n is
the maximal number of states reached in any play starting from a0 according to S . This sequence induces a sequence
w0, w1, . . . , wk of elements of �G1 given by the states ai = (�i �→ wi, �i). We take any element σ ∈ �M1 with tail(σ) = wk

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 103
and let σ0 = σ wk−1 . . . w0. In addition to the ω-winning strategy S , we also fix the ω-winning strategies for player 1 in
the start-bounded games for G g

�(G2, G1) from ai with the appropriate challenge in the first round.
Now, for any sequence u0 ��

2 u1 ��
2 · · · ��

2 um−1 ��
2 um , m ≤ n, of challenges by player 2 in the game G�(G2, M1)

starting from s0 = (u0 �→ σ0), we construct a sequence of responses s1 = (u1 �→ σ1), . . . , sm = (um �→ σm) of player 1. In
order to do this, we define inductively a sequence π0, . . . , πm (of non-empty sequences) such that the following hold for
each i ≤ m:

– πi begins with one of the states a0, . . . , ak , and all other elements in πi are states (�, � �→ w) of the respective
start-bounded game;

– if πi = π j · (�1, �1 �→ w1) · · · (��, �� �→ w�) then σi = σ j w1 · · · w� .

For i = 0, we set π0 = a0 = (�0 �→ w0, �0), which clearly has the required properties. Now suppose that s0, . . . , si−1 and
π0, . . . , πi−1 have already been defined, for 1 ≤ i ≤ m. Consider a challenge ui−1 ��

2 ui in the state si−1. Two cases are
possible.

– If πi−1 consists of a single state (� �→ w, �) then it coincides with some a j−1, for j ≤ k. Recall that ui−1 ∈ � and
tail(σi−1) = w . We have the following two options.
– If ui ∈ � then we set πi = a j and obtain σi from σi−1 by removing its final element, w .
– Otherwise, ui ∈ �� \ � and we launch the start-bounded game Gs

�(G2, G1) from (∅, � �→ w) and set πi = πi−1 ·
(�′, �′ �→ w ′) and σi = σi−1 w ′ , where (�′, �′ �→ w ′) is the response of player 1 to ui−1 ��

2 ui according to the
ω-winning strategy in the start-bounded game.

– Otherwise, the final element of πi−1 is a state of the start-bounded game, and we follow the construction from the
proof of (c) ⇒ (a) in Lemma 27.

This completes the proof of the lemma. �
Similarly to the start-bounded game, the size of the game graph for G g

�(G2, G1) is exponential in the size of G2 as it
contains O ((|ind(K2)| × 2|�G2 \ind(K2)|)2 × |�G1 |) states. Note, however, that when constructing the graph, we have to check
that for each of its states player 1 has an ω-winning strategy in the corresponding start-bounded game. As observed in
Section 4.4, this can also be done in time exponential in �G2 \ ind(K2) and polynomial in both ind(K2) and �G1 . In view of
Theorem 12 (i) and (iv) and Proposition 14, we then obtain:

Theorem 31. For combined complexity, �-query entailment is in 2ExpTime for Horn-ALCHI and Horn-ALCI KBs, and in ExpTime
for DL-LiteHhorn and DL-LiteHcore KBs. For data complexity, these problems are all in P.

For DL-Litecore and DL-Litehorn KBs, the general game G g
�(G2, G1) can be significantly simplified. Note first that the start-

bounded game Gs
�(G2, G1) in this case can be reduced to the forward game G f

�(G2, G1). Indeed, by (lite2) and the fact
that (u, v)G is always a singleton set in the generating structures for DL-Litehorn , player 2 cannot challenge player 1 in any
round i > 0 of Gs

�(G2, G1) with u ��
2 v such that rG2

� (u, v) ⊆ r̄G1
� (wi−2, wi−1). Thus, (no-backward) holds for any set �i ,

and so we obtain: for any u0 ∈ �G2 and w0 ∈ �G1 , player 1 has an ω-winning strategy in Gs
�(G2, G1) with an initial state

(∅, �0 �→ w0) and u0 ∈ �0 if and only if player 1 has an ω-winning strategy in G f
�(G2, G1) with the initial state (u0 �→ w0).

Second, since having a start-bounded ω-winning strategy with an initial state (∅, � �→ w) is equivalent to having forward
ω-winning strategies for all initial states (u �→ w) with u ∈ �, for any general ω-winning strategy player 1 can choose �i
as small as possible: �i = {u0} in the initial state and �i = �i−1, for i > 0. Also observe that in the general game, if �i−1
contains at most one element, then player 1 has to choose for �i a set containing at most one element (if player 1 chooses
a set with at least two elements, then he will not have a response to the challenge �i since the generating structures for
DL-Litehorn KBs are functional). It follows by induction that if player 1 has an ω-winning strategy in the general game then
player 1 has an ω-winning strategy in which all states are of the form (�i �→ wi, �i), where �i is a singleton set, �i has at
most one element, and �i = �i−1. The number of states in this game is polynomial, and so the existence of an ω-winning
strategy can be checked in P. Note also that this strategy corresponds to the winning strategy in the naïve game Gn

�(G2, G1)

sketched in Section 4.1.

Theorem 32. �-query entailment for DL-Litecore and DL-Litehorn KBs is in P for both combined and data complexity.

5. Lower bounds

In this section, we show that the upper complexity bounds obtained in Section 4 are optimal. Throughout the section
we assume that the materialisations of the KBs we deal with are the unravellings of the generating structures for those KBs
constructed as described in Section 3.

104 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
Fig. 11. Encoding the initial configuration by a block.

As we have seen in the previous section, the problems of �-query entailment and inseparability for all of our DLs are in
P for data complexity. The next theorem establishes a matching lower bound:

Theorem 33. For data complexity, �-query entailment and inseparability are P-hard for DL-Litecore and EL KBs.

Proof. The proof is by reduction of the P-complete entailment problem for acyclic Horn ternary clauses: given a conjunction
ϕ of clauses of the form pi and pi ∧ pi′ → p j , with i, i′ < j, decide whether pn is true in every model of ϕ . Consider a
DL-Litecore TBox T containing the following concept inclusions:

V � ∃S, ∃S− � ∃Rk and ∃R−
k � V , for k = 1,2,

and let an ABox A consist of F (pn) and

S(pi, pi), R1(pi, pi), R2(pi, pi), for each clause pi in ϕ,

S(p j, c), R1(c, pi), R2(c, pi′), for each clause c = pi ∧ pi′ → p j in ϕ.

Set � = {F , S, R1, R2}, K1 = (∅, A) and K2 = (T , A ∪ {V (pn)}). Obviously, K2 �-query entails K1. On the other hand, the
materialisation of K2 is (finitely) �-homomorphically embeddable in the materialisation of K1 iff ϕ derives pn . Indeed, the
materialisation M2 of K2 is infinite, while the materialisation M1 of K1 is finite. So, the only way to embed finite prefixes
of M2 of arbitrary depth into M1 is by mapping subtrees of unbounded depth into the loops in M1 for unary clauses pi
in ϕ , which is only possible if there is a tree of clauses of the form pi ∧ pi′ → p j with root pn and leaves among the clauses
pi of ϕ (that is, if there is a derivation of pn from ϕ).

For EL, we take T = { V � ∃S.(∃R1.V � ∃R2.V) }. The remainder of the proof is the same as above. �
For combined complexity, ExpTime-hardness of �-query inseparability for Horn-ALC can be proved by reduction of the

subsumption problem: we have T |= A � B if and only if (T , {A(a)}) and (T ∪ {A � B}, {A(a)}) are {B}-query inseparable.
We now establish the remaining lower bounds for the combined complexity.

Theorem 34. For combined complexity, the problems of �-query entailment and inseparability are ExpTime-hard for DL-LiteHcore KBs.

Proof. The proof is by encoding alternating Turing machines (ATMs) with polynomial tape and using the fact that APSpace =
ExpTime; see, e.g. [34].

Let M = (�, Q , q0, q1, δ) be an ATM with a tape alphabet �, a set of states Q partitioned into existential Q ∃ and
universal Q ∀ states, an initial state q0 ∈ Q ∃ , an accepting state q1 ∈ Q , and a transition function

δ : (Q \ {q1}) × � × {1,2} → Q × � × {−1,0,+1},
which, for a state q and symbol a, gives two instructions, δ(q, a, 1) and δ(q, a, 2). We assume that existential and universal
states strictly alternate: any transition from an existential state leads to a universal state, and vice versa. We extend δ with
the instructions δ(q1, a, j) = (q1, a, 0), for a ∈ � and j = 1, 2, which go into an infinite loop if M reaches the accepting state
q1. Thus, assuming that M terminates on every input, it accepts an input w if and only if the modified ATM M ′ has a run
on w all branches of which are infinite.

Given M ′ and an input w , our aim is to construct TBoxes T1 and T2 and a signature � such that M ′ has a run with
only infinite branches if and only if the materialisation M2 of (T2, A) is finitely �-homomorphically embeddable into the
materialisation M1 of (T1, A), where A is an ABox with a single assertion A(c). Let f be a polynomial such that, on any
input of length m, M ′ uses at most n = f (m) cells, which are numbered from 1 to n, and throughout any computation the
head remains to the right of cell 0, which contains a special marker � ∈ �.

The construction proceeds in four steps. In the definition of the TBoxes T1 and T2, we use concept inclusions of the form
B � ∃R.(C1 � · · · � Ck) as an abbreviation for

B � ∃R0, R0 � R and ∃R−
0 � Ci, for 1 ≤ i ≤ k,

where R0 is a fresh role name. If Ci is a complex concept then ∃R−
0 � Ci is also treated as an abbreviation for the respective

concept and role inclusions.

Step 1. First we encode configurations and transitions of M ′ using T1. We represent a configuration (that is, the content
of every cell on the tape, the state and the position of the head) by a sequence of n + 2 domain elements in M1, which

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 105
Fig. 12. The structure of �-homomorphisms from M2 to M1: note that A, X1, X2 ∈ � but X3 /∈ � .

will be called a block. The first element in each block is used to distinguish the type of the block, whereas the remaining
elements are assigned indexes from 0 to n: if the element with index i belongs to Ca , for some a ∈ �, then the ith cell of
the tape is assumed to contain a in the configuration defined by the block as shown in Fig. 11 (the first element of the
block has index −1). The first block represents the initial configuration, that is, symbols a1, . . . , an written in the n cells of
the tape (the input w padded with [) and the initial state q0, which is achieved by the following inclusion in T1:

A � ∃P .(C� � ∃P .(Ca1 � ∃P .(Ca2 � ∃P .(. . .∃P .(Can � Z 0,n
q0,a1,1) . . .)))). (T1-1)

Step 2. The current state q ∈ Q , the position k of the head and the content a ∈ � of the active cell scanned by the head are
recorded in the concept Z 0,n

q,a,k that contains the last element of the block. At the end of the block we branch out one block
for each of the two instructions and propagate via the Z 1,i

q,a,k and the Z 2,i
q,a,k the current state, head position and symbol in

the active cell: for q ∈ Q , a ∈ � and 1 ≤ k ≤ n, we add to T1 the inclusions

Z 0,n
q,a,k � �

j=1,2

∃P .
(

X j � Z j, −1
q,a,k

)
, (T1-2)

where X1 and X2 are two fresh concept names (which specify the type of the block).
The acceptance condition for M ′ is enforced by means of T2. For the initial block representing the initial configuration

we take

A � ∃P .∃P . · · · ∃P .︸ ︷︷ ︸
n times

�
j=1,2

∃P .X j. (T2-1)

The two concept names, X1 and X2, are used to distinguish between the two blocks for universal successor states and
one more concept name, X3, marks both blocks for existential state successors. These blocks are arranged into an infinite
tree-like structure: the initial block is the root from which an X1- and an X2-blocks branch out (recall that successors of
the initial state q0 are universal). Each of them is followed by an X3-block, which branches out an X1- and an X2-block,
and so on. This is achieved by adding to T2 the following inclusions:

X3 � ∃P .∃P .(G � ∃P .(· · · ∃P .(G �︸ ︷︷ ︸
n times

�
j=1,2

∃P .X j))), (T2-2)

X j � ∃P .∃P .(G � ∃P .(· · · ∃P .(G �︸ ︷︷ ︸
n times

∃P .X3))), for j = 1,2, (T2-3)

where G is a fresh concept name (which marks every cell of the tape). If � = {A, X1, X2, P } then there is a unique
�-homomorphism from the initial block in M2 to the block of the initial configuration in M1. Next, signature concepts X1
and X2 ensure that the X1- and X2-blocks are �-homomorphically mapped (in a unique way) into the respective blocks
in M1, which reflects the acceptance condition of universal states. The following X3-block, however, contains no signature
marker (X1 or X2) and can be mapped to either of the blocks in M1, which reflects the choice in existential states; see
Fig. 12, where possible �-homomorphisms are shown by thick dashed arrows.

Step 3. Recall that the Z j,i
q,a,k , for −1 ≤ i ≤ n, specify the position k of the head on the tape. Let the active cell in the previous

configuration be k. Then, until the cell k −2 is reached in the current configuration, the following inclusions in T1 propagate

106 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
Fig. 13. Executing the instructions of M ′ .

its current state (q ∈ Q), the symbol in the active cell (a ∈ �), the head position (1 ≤ k ≤ n) and the block type (j = 1, 2)
along the domain elements constituting the block: for −1 < i ≤ n with i �= k − 1,

Z j,i−1
q,a,k � �

b∈�

∃P .(Cb � Z j,i
q,a,k) (T1-3)

(for each b ∈ �, these concept inclusions also generate a branch in M1 to represent the same cell but with a different
symbol, b, tentatively assigned to the cell—Step 4 will ensure that the correct branch and symbol are selected to match the
cell contents in the preceding configuration). We point out that, since the size of the tape is polynomial in the length of the
input, we can use the subscripts of the Z j,i

q,a,k to specify the head position, k, and the cell number, i. When the cell k − 2 is
reached, the contents of the active cell, the information from the subscripts of the Z j,i

q,a,k is used to perform the instruction
according to δ:

Z j,k−2
q,a,k �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�
b∈�

∃P .
(
Cb � ∃P .(Fa′ � Z 0,k

q′,b,k−1)
)
, if δ(q,a, j) = (q′,a′,−1),

�
b∈�

∃P .
(
Cb � ∃P .(Fa′ � Z 0,k

q′,a′,k)
)
, if δ(q,a, j) = (q′,a′,0),

�
b∈�

∃P .(Cb � ∃P .
(

Fa′ ��
b′∈�

∃P .(Cb′ � Z 0,k+1
q′,b′,k+1))

)
, if δ(q,a, j) = (q′,a′,+1).

(T1-4)

Specifically, the symbol in the active cell, k, is changed according to the instruction and the cell is marked by concept Fa′ .
Then the current state, symbol in the active cell of the successive configuration and the new head position are recorded in
the subscripts of the concepts Z 0,i

q,a,k; note that the block type marker, j = 1, 2, is replaced by 0. These three situations are
depicted in Fig. 13, where the hatched nodes denote domain elements two cells before the active cell of the configuration
(where inclusion (T1-4) becomes ‘active) and the filled black and grey nodes denote domain elements for the active cell.
(Note that the element corresponding to the cell k − 1 has only one P -successor, which encodes the new symbol, a′ , in
that cell; see explanations below.) Then the new state and the symbol in the active cell of the successive configurations are
propagated further along the tape using (T1-3) with j = 0 and i > k − 1.

Step 4. The inclusions (T1-3)–(T1-4) generate a separate P -successor for each b ∈ �, thus not preserving the contents of the
tape between transitions. We now add a number of inclusions to both TBoxes so that wrong branches would be ignored by
any finite �-homomorphism, h, from M2 to M1, where

� = { A, P , X1, X2 } ∪ { Da | a ∈ � }. (5)

Suppose h(d2) = d1 and d2 belongs to G in M2 (and therefore, it represents a cell in a non-initial configuration). We add
the following two inclusions to T2:

G � �
b∈�

Gb, (T2-4)

Gb � ∃P−.∃P−. · · · ∃P−.︸ ︷︷ ︸
n times

∃P−.Db, for b ∈ �. (T -1)

Then, for each symbol b ∈ �, the element d2 generates a block of n + 2-many P−-connected elements that ends in the
concept Db; we call it a Db-block of d2. Recall from Step 3 that, for a ∈ �, if d1 ∈ FM1

a then it represents a cell whose
content is changed to a (in which case d1 has no ‘siblings’, that is, the P -predecessor of d1 has a single P -successor, d1).

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 107
Fig. 14. Ensuring succession of M ′ configurations.

However, if d1 ∈ CM1
a then the content of the cell represented by d1 must be copied from the previous configuration). This

is achieved by adding (T -1) and the following inclusions to T1:

Fa � Da ��
b∈�

Gb, (T1-5)

Ca � Da � �
b∈�\{a}

Gb. (T1-6)

So, if d1 ∈ FM1
a then d1 has a Db-block for any b ∈ � and, by the choice of �, each of the Db-blocks of d2 in M2 can

be mapped by h to the respective Db-block of d1 in M1. On the other hand, if d1 ∈ CM1
a then d1 has a Db-block only for

b ∈ � with b �= a. So, all Db-blocks of d2 with b �= a can still be mapped by h to the respective Db-blocks of d1 in M1. The
remaining Da-block of d2 could be mapped in the reverse order along the ‘main’ branch in M1 but only if the cell contains a
in the preceding configuration (that is, the element that is n + 2 steps closer to the root of M1 belongs to Da); see Fig. 14.

One can show now that T1 and T2 are as required: M ′ has a run with only infinite branches if and only if the materi-
alisation M2 of (T2, A) is finitely �-homomorphically embeddable into the materialisation M1 of (T1, A). It remains to
use Theorem 6 and the fact that APSpace = ExpTime. It follows, by Theorem 13, that deciding �-query inseparability is also
ExpTime-hard. �
Theorem 35. For combined complexity, the problems of �-query entailment and inseparability are 2ExpTime-hard for Horn-ALCI
KBs.

Proof. The proof is by encoding alternating Turing machines (ATMs) with exponential tape and using the fact that
AExpSpace = 2ExpTime.

As in the proof of Theorem 34, let M = (�, Q , q0, q1, δ) be an ATM and let M ′ be the ATM obtained from M by extending
it with two instructions that go into an infinite loop if M reaches the accepting state. Given M ′ and an input w , our aim is
to construct two TBoxes, T ′

1 and T ′
2 , and a signature � such that M ′ has a run with only infinite branches if and only if the

materialisation M2 of (T ′
2 , A) is finitely �-homomorphically embeddable into the materialisation M1 of (T ′

1 , A), where
A = {A(c)}. Let f be a polynomial such that, on any input of length m, M uses at most 2n − 2 tape cells, with n = f (m),
which are numbered from 1 to 2n − 2, and throughout any computation the head remains to the right of cell 0, which
contains a special marker � ∈ �. The construction proceeds in five steps (steps 1–4 are similar to steps 1–4 in the proof
of Theorem 34).

Step 0. We use tuples of 2n concept names to represent distances of up to 2n between the cells on the tape in consecutive
configurations. We refer to a tuple Yn−1, Y n−1, . . . , Y0, Y 0 of concept names as Y and assume that the TBox contains the
following concept inclusions to encode an n-bit R-counter on Y :

Y k � Yk−1 � · · · � Y0 � ∀R.(Yk � Y k−1 � · · · � Y 0), for n > k ≥ 0,

Y i � Y k � ∀R.Y i, for n > i > k,

Yi � Y k � ∀R.Yi, for n > i > k.

(Note that we will need P -counters as well as P−-counters.) We use the expression endY on the left-hand side of concept
inclusions to say that the Y -value is 2n − 1 (which is a shortcut for Yn−1 � · · · � Y0); we also use not-endY on the left-hand
side of concept inclusions for the complementary statement (which is a shortcut for n concept inclusions with not-endY

replaced by each of Y n−1, . . . , Y 0). Finally, we use resetY on the right-hand side of concept inclusions for the reset command
(which is equivalent to Y n−1 � · · · � Y 0). Note that the counter stops at 2n − 1: the R-successors of a domain element in
endY do not have to encode any value.

108 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
Fig. 15. Encoding the initial configuration by a block.

Step 1. First we encode configurations and transitions of M ′ using T ′
1 . We represent a configuration by a block, which is a

sequence of 2n + 1 domain elements connected by a role P . As in Theorem 34, the first element distinguishes the blocks for
the two alternative instructions; using a P -counter on a tuple T , we assign indices from 0 to 2n − 1 to all other elements
in each block. The element with index 0 is needed for padding. Each of the remaining 2n − 1 elements belongs to a concept
Ca , for some a ∈ �: if the element with index i + 1 is in Ca , then the cell i is assumed to contain a in the configuration
represented by the block (in particular, the element with index 1 contains � for cell 0) as shown in Fig. 15.

The first block represents the initial configuration: the input w = a1 . . .am is followed by 2n − m − 2 blank symbols [

and the head is positioned over cell 1, which is indicated by the 0 value of the P -counter on a tuple H . This is achieved by
the following concept inclusions in the TBox T ′

1 :

A � ∃P .(resetT � ∃P .(C� � ∃P .(Ca1 � resetH � ∃P .(Ca2 � ∃P .(. . .∃P .(Cam � I) . . .))))), (T ′
1 -1)

not-endT � I � ∃P .(I � C [), (T ′
1 -2)

endT � I � Z 0
q0a1

, (T ′
1 -3)

where I is a fresh concept name that is used only for padding of the input with [; cf. (T1-1).

Step 2. Similarly to the proof of Theorem 34, the current state q ∈ Q and the content a ∈ � of the active cell scanned by
the head is recorded in the subscripts of concepts Z 0

qa that contain the last element of the block; note, however, that the
position of the head must now be specified using the P -counter on H . At the end of the block, when the T -value reaches
2n − 1, we branch out one block for each of the two transitions, reset the P -counter on T , and propagate, via Z 1

qa and Z 2
qa ,

the current state and symbol in the active cell: for q ∈ Q and a ∈ �, we add to T ′
1 the concept inclusion

endT � Z 0
qa � �

j=1,2

∃P .(X j � ∃P .(resetT � Z j
qa)), (T ′

1 -4)

where X1 and X2 are two fresh concept names that distinguish the type of the block; cf. (T1-2).
As in the proof of Theorem 34, the acceptance condition for M ′ is enforced by means of T ′

2 , which uses four types of
blocks. In this proof, however, we need to use P -counters to reach the end of the block. The P -counter on a tuple T creates
the initial block for the initial configuration:

A � ∃P .(resetT � B0), (T ′
2 -1)

not-endT � B0 � ∃P .B0, (T ′
2 -2)

where B0 is a fresh concept, an indicator of the initial block. We use X1- and X2-blocks for universal states (these blocks are
indicated by concepts B1 and B2, respectively) and X3-blocks for existential states (indicated by concept B3). The tree-like
structure of the blocks is achieved by adding to T ′

2 the following inclusions:

endT � Bk � �
j=1,2

∃P .(X j � ∃P .(resetT � B j)), for k = 0,3, (T ′
2 -3)

endT � B j � ∃P .(X3 � ∃P .(resetT � B3)), for j = 1,2, (T ′
2 -4)

not-endT � B j � ∃P .(G � B j), for j = 1,2 and 3, (T ′
2 -5)

where G is a fresh concept name; cf. (T2-2) and (T2-3); see also Fig. 12. (Note that (T ′
2 -3) with k = 0 is required as a

replacement of part of (T2-1).)

Step 3. Recall that the P -counter on H measures the distance from the head: if the active cell in the current configuration
has index k, then its H-value is 0 and the H-value of the cell with index k − 2 in a successor configuration is 2n − 1 (note
that since the head never visits cells with indexes 0 and 1, the P -counter on T is ahead of the P -counter on H at least by
2, whence k − 2 ≥ 0). So, until the H-counter reaches 2n − 1, the following concept inclusions in T ′

1 propagate the state and
symbol in the active cell along the elements constituting the blocks: for q ∈ Q , a ∈ � and j = 0, 1, 2,

not-endT � not-endH � Z j
qa � �

b∈�

∃P .(Cb � Z j
qa); (T ′

1 -5)

cf. (T1-3); note that not-endT means that this concept inclusion is not ‘applicable’ to the last and the first elements of each
block (with indexes 2n − 1 and −1, respectively). When the distance from the last head position is 2n − 2, the contents of
the cell and the current state are changed according to δ: for q ∈ Q , a ∈ � and j = 1, 2,

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 109
Fig. 16. Encoding the transitions of M ′ in M1.

Fig. 17. A Db -block is generated using a P−-counter on a tuple E .

endH � Z j
qa �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�
b∈�

∃P .(Cb � resetH � Z 0
q′b � ∃P .Fa′), if δ(q,a, j) = (q′,a′,−1),

�
b∈�

∃P .(Cb � ∃P .(Fa′ � resetH � Z 0
q′a′)), if δ(q,a, j) = (q′,a′,0),

�
b∈�

∃P .
(

Cb � ∃P .
(

Fa′ ��
b′∈�

∃P .(Cb′ � resetH � Z 0
q′b′)

))
, if δ(q,a, j) = (q′,a′,+1)

(T ′
1 -6)

(the symbol in the active cell is changed according to the instruction, and the current state and symbol in the active cell
of a successive configuration are then recorded in the subscripts of the Z 0

qa). These three situations are depicted in Fig. 16,
where hatched nodes denote domain elements with H-values of 2n −1 and grey and black nodes with H-values of 0. (Again,
the element corresponding to the cell k − 1 has only one P -successor, which encodes the updated symbol, a′ , in that cell.)
Then, the current state and the symbol in the active cell are propagated along the tape using (T ′

1 -5) with j = 0.

Step 4. The concept inclusions (T ′
1 -5)–(T ′

1 -6) generate a separate P -successor for each b ∈ �. As in the proof of Theorem 34,
the correct one is chosen by a finite �-homomorphism, h, from M2 to M1 for � defined by (5). We add (T2-4) from the
proof of Theorem 34 along with the following replacement of (T -1) to T ′

2 :

Gb � ∃P−.(Sb � resetE), (T ′-1)

not-endE � Sb � ∃P−.Sb, (T ′-2)

endE � Sb � ∃P−.Db, (T ′-3)

where we use a P−-counter on a tuple E (unlike P -counters in all other cases) and a concept Sb to propagate b along the
whole block, which will be called a Db-block; see Fig. 17. Like in the proof of Theorem 34, the length of any Db-block,
2n + 1, matches the length of blocks representing configurations and the last element of a Db-block belongs to concept Db .
We also add (T1-5)–(T1-6) from the proof of Theorem 34 and (T ′-1)–(T ′-3) to T ′

1 , which generate Db-blocks for all b �= a
from every domain element in Ca and Db-blocks for all b ∈ � from domain elements in Fa . The rest of the argument is as
in the proof of Theorem 34; see Fig. 14.

One can show that M ′ has a run with only infinite branches if and only if (T ′
1 , A) �-query entails (T ′

2 , A). By Theo-
rem 13, �-query inseparability is also 2ExpTime-hard. �
6. Query inseparability for restricted sets of individuals

In the definition of �-query entailment and inseparability discussed so far we considered all tuples of individuals in
the KBs that are certain answers to CQs. In this section, we refine this notion by allowing the user to define the set of
individuals he is interested in. This leads to the following generalisation of Definition 1.

110 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
Definition 36. Let K1 and K2 be KBs, � a relational signature and � an individual signature. We say that K1 (�, �)-query
entails K2 if

K2 |= q(a) implies a ⊆ ind(K1) and K1 |= q(a), for all �-CQs q(x) and all tuples a in ind(K2) ∩ �.

KBs K1 and K2 are (�, �)-query inseparable if they (�, �)-query entail each other, in which case we write K1 ≡�,� K2.

By definition, K1 �-query entails K2 if and only if K1 (�, �)-query entails K2 for all individual signatures �. Also,
if � ⊇ ind(K2) then K1 �-query entails K2 in case K1 (�, �)-query entails K2. As only the intersection ind(K2) ∩ � is
relevant for (�, �)-query entailment, in what follows without loss of generality we assume that � ⊆ ind(K2).

One can analyse (�, �)-query entailment between KBs, one of which is inconsistent, in a way similar to �-query entail-
ment. So, in the sequel we only focus on consistent KBs without mentioning this explicitly. The main difference between
�-query entailment and (�, �)-query entailment can already be seen on KBs with empty TBoxes and empty individual sig-
nature �. Note that for KBs with empty TBoxes, �-query entailment is trivial as K1 = (∅, A1) �-query entails K2 = (∅, A2)

if and only if, for all a, b ∈ ind(K2) with A(a) ∈A2, A ∈ �, or P (a, b) ∈A2, P ∈ �, it follows that A(a) ∈ A1 or P (a, b) ∈A1,
respectively. Note also that (�, ∅)-query entailment between any KBs K1 and K2 means that all Boolean �-CQs entailed by
K2 are entailed by K1 as well.

Theorem 37. Checking (�, ∅)-query entailment and (�, ∅)-inseparability of KBs with empty TBoxes are both NP-hard for data com-
plexity.

Proof. Let Ki = (∅, Ai), for i = 1, 2. Clearly, K1 (�, ∅)-query entails K2 if and only if there exists a (�, ∅)-homomorphism
from (the interpretation corresponding to) A2 to A1. The latter problem is the standard homomorphism problem for rela-
tional structures which is known to be NP-hard [35]. To show NP-hardness of (�, ∅)-query inseparability, observe that there
is a (�, ∅)-homomorphism from A2 to A1 if and only if (∅, A1 � A2) and (∅, A1) are (�, ∅)-query inseparable, where
A1 �A2 is the disjoint union of A1 and A2. �

We now show that checking the existence of a homomorphism between ABoxes is the only additional source of complex-
ity for (�, �)-query entailment compared to �-query entailment. In particular, for data complexity, checking (�, �)-query
entailment is in NP for all of our DLs; for combined complexity, it is either NP-complete or harder than NP, in which case
it is of the same complexity as �-query entailment. We begin by generalising the semantic characterisation of �-query
entailment via finite �-homomorphic embeddability of materialisations:

Theorem 38. Suppose Ki is a KB with a materialisation Ii , for i = 1, 2, � is a relational signature, and � ⊆ ind(K2). Then K1
(�, �)-query entails K2 if and only if I2 is finitely (�, �)-homomorphically embeddable into I1.

Proof. A straightforward extension of the proof of Theorem 6. �
Now we generalise the game-theoretic characterisation provided by Theorem 15. Let M1 and M2 be materialisations

obtained by unravelling finite generating structures G1 and G2 for KBs K1 and K2, respectively, and let Mind
2 be the subin-

terpretation of M2 with domain ind(K2).

Theorem 39. Let � ⊆ ind(K2). Then M2 is finitely (�, �)-homomorphically embeddable into M1 if and only if the following condi-
tions are satisfied:

(winwit) for any u ∈ �G2 \ ind(K2) and n < ω, there exists σ ∈ �M1 such that player 1 has an n-winning strategy in the game
G�(G2, M1) starting from (u �→ σ);

(h+winind) for any n < ω, there is a (�, �)-homomorphism hn : Mind
2 → M1 such that, for every a ∈ ind(K2), player 1 has an

n-winning strategy in the game G�(G2, M1) starting from (a �→ hn(a)).

Proof. A straightforward modification of the proof of Theorem 15. �
Condition (winwit) is the restriction of (win) in Theorem 15 to u ∈ �G2 \ ind(K2), and so can be reduced, by Lemma 30,

to conditions for games on the finite generating structures G1 and G2. We now show that (h+winind) can also be reduced to
certain conditions on G1 and G2. In contrast to the case where one could not restrict the set of individuals and individuals
were mapped to themselves (cf. (abox)), we now require a (�, �)-homomorphism h from Mind

2 to an extension of G1,
which is obtained by a partial unravelling of G1 defined as follows.

Consider G = (�G , ·G , �) and let X ⊆ �G , where either X ⊆ ind(K) or X = {w} for some w ∈ �G \ ind(K). We asso-
ciate with X a finite prefix-closed set �X of paths π of the form w0 · · · wn such that w0 ∈ X and wi � wi+1, for i < n

(cf. Definition 7). The structure G X = (�G X
, ·G X

, �X) is defined by first taking �G X = �G ∪ �X ,

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 111
Fig. 18. (a) Generating structure G , (b) its unravelling M, (c) the unravelling M{a} of the extended generating structure G{a} , and (d) the extended
generating structure G{a} (�{a} is shaded).

π �X w if π ∈ �G ∪ �X , tail(π) � w but π w /∈ �X ,

π �X π w if π,π w ∈ �X ,

AG X = AG ∪ {
π ∈ �X | tail(π) ∈ AG }

, for each concept name A, PG X = PG , for each role name P , and (π, π ′)G X =
(tail(π), tail(π ′))G , for each arrow π �X π ′ . Then we remove all ‘disconnected’ elements from G X to make sure that each
�G X \ ind(K) is reachable from ind(K) via a path of � arrows. (Note that G X depends on �X , which will always be clear
from the context.)

Observe that the unravelling MX of G X is isomorphic to the unravelling M of G . We denote the natural isomorphism
from MX onto M by g . Note that if X ⊆ ind(K) then, on g−1(�X), the function g coincides with tail; otherwise, if X = {w0}
then g(δ · w0) = g(δ)w0, for δ · w0 ∈ �MX

, and g(δ · π · π w) = g(δ · π)w , for δ · π ∈ �MX
and π, π w ∈ �X .

Example 40. Consider the generating structure G depicted in Fig. 18a. The extended generating structure G{a} , with �{a} =
{a, aw, aw w1}, is shown in Fig. 18d. Observe that the shaded part, �{a} , of G{a} coincides with the shaded part of the
unravelling M of G and that the unravelling M{a} of G{a} is isomorphic to M so that, on the shaded area, the natural
isomorphism g coincides with tail: for example, g(a · aw · aw w1) = aw w1 = tail(a · aw · aw w1), as shown by the dotted line
in Fig. 18.

Next, consider the generating structure G1 depicted in Fig. 19a. The extended generating structure G{w}
1 , with �{w} =

{w, w w ′}, is shown in Fig. 19d. Note that w ′ does not belong to G{w}
1 because it would not be connected to any other

domain element. Observe again that the unravelling M{w}
1 of G{w}

1 is isomorphic to the unravelling M1 of G1: the natural
isomorphism g is such that g(c · wi · w) = cwi w and g(c · wi · w · w w ′) = g(c · wi · w)w ′ , for i = 1, 2. Note also that both
unravellings contain two isomorphic copies of �{w} from G{w}

1 (shaded in Fig. 19d): for example, the elements cw1π and
cw2π in M1 are copies of π ∈ �{w} .

It will be convenient to consider h-images of maximal �-connected components of Mind
2 separately. A subset �0 of

the domain �M of an interpretation M is called �-connected if, for any u, u′ ∈ �0, there are u0, . . . , un such that u0 = u,
un = u′ and, for each i < n, there exists a �-role R with (ui, ui+1) ∈ RM .

Theorem 41. Condition (h+winind) holds if and only if, for every maximal �-connected component �0 of Mind
2 , there are X ⊆ �G1 ,

a structure G X
1 and a map h : �0 → �G X

1 such that either X ⊆ ind(K1) or X = {w0} for w0 ∈ �G1 \ ind(K1), and h(�0) = �X ,

(h�) h(a) = a, for any a ∈ �0 ∩ � ∩ partM2
� , and tM2

� (a) ⊆ t
G X

1
� (h(a)) and rM2

� (a, b) ⊆ r
G X

1
� (h(a), h(b)), for any a, b ∈ �0 ,

(h+winX) for each π ∈ �X , there exists a state aπ = (�π �→ π, �π) such that �π ⊇ h−1(π), player 1 has an ω-winning strategy
in G g

�(G2, G X
1) from aπ , and if X = {w0} then the aπ are co-ordinated in the following sense:

aπ is a valid response to the challenge �π w in the state aπ w in G g
�(G2,G X

1), for any π,π w ∈ �X . (6)

Proof. (⇒) Let �0 be a maximal �-connected component of Mind
2 . For any n < ω, take a (�, �)-homomorphism hn from

Mind
2 to M1 such that, for every a ∈ ind(K2), player 1 has an n-winning strategy in the game G�(G2, M1) starting from

(a �→ hn(a)). Two cases are possible now.

– If hn(�0) ∩ ind(K1) �= ∅ for infinitely many n < ω then, since hn(�0) is �-connected, the number of distinct sets
hn(�0) with hn(�0) ∩ ind(K1) �= ∅ is finite. Thus, by the pigeonhole principle, there is an infinite set H of natural

112 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
Fig. 19. (a) Generating structure G1, (b) its unravelling M1, (c) the unravelling M{w}
1 of the extended generating structure G{w}

1 , and (d) the extended
generating structure G{w}

1 (�{w} is shaded).

numbers n with hn(�0) ∩ ind(K1) �= ∅ such that the restrictions of all hn to �0 coincide. Let h be the restriction of
some hn , for n ∈ H, to �0. We set X = h(�0) ∩ ind(K1) and �X = h(�0). Using the map h, one can now construct the
required starting states and ω-winning strategies in G g

�(G2, G X
1) in exactly the same way as in the proof of (a) ⇒ (b)

in Lemma 30.
– Otherwise, hn(�0) ∩ ind(K1) = ∅ for infinitely many n < ω and, as �0 is �-connected, by the pigeonhole principle

there exists w0 ∈ �G1 \ ind(K1) such that, for infinitely many n < ω, hn(�0) is a tree with root σ n w0 ∈ �M1 . We set
X = {w0} and can define, again by the pigeonhole principle, �X in such a way that there is an infinite set H of natural
numbers n such that hn(�0) = { σ nπ | π ∈ �X }. Then, for every a ∈ �0, there is h(a) ∈ �X such that hn(a) = σ nh(a), for
all n ∈ H. Using the map h, one can now construct the required starting states satisfying (6), and ω-winning strategies
in G g

�(G2, G X
1) in exactly the same way as in the proof of (a) ⇒ (b) in Lemma 30.

(⇐) Let �0 be a maximal �-connected component of Mind
2 . Set �′ = � ∩ �0. It is sufficient to show that (h+winind)

holds for �0 in place of ind(K2), i.e., for any n < ω, there exists a (�, �′)-homomorphism hn from M�0 to M1 such that
player 1 has an n-winning strategy in the game G�(G2, M1) starting from (a �→ hn(a)) for all a ∈ �0, where M�0 is the
interpretation M2 relativised to the domain �0. Let X ⊆ �G1 , h : �0 → �G X

1 , and n < ω be given, where X and h satisfy
the conditions of the theorem.

– If X ⊆ ind(K1) then we set hn(a) = h(a) for all a ∈ �0. It is readily checked that hn is a (�, �′)-homomorphism from
M�0 to M1. For each a ∈ �0, by Lemma 30, player 1 has an n-winning strategy in the game G�(G2, MX

1) from
some (a �→ δ) with tail(δ) = h(a). Then the natural isomorphism g from MX

1 onto M1 translates this strategy into an
n-winning strategy in the game G�(G2, M1) from (a �→ h(a)).

– Otherwise, X = {w0} for w0 ∈ �G1 \ ind(K1). Since �w0 ⊇ h−1(w0), by Lemma 30, for each a ∈ h−1(w0), player 1 has
an n-winning strategy in G�(G1, MX

1) from some (a �→ δ) with tail(δ) = σ w0 ∈ �M1 . Then the natural isomorphism g
from MX

1 onto M1 translates each such strategy into an n-winning strategy in G�(G2, M1) from (a �→ σ w0).
We set hn(a) = σπ , for each a ∈ h−1(π) and π ∈ �X . Then hn is a (�, �′)-homomorphism from M�0 to M1. We show
by induction that, for all π ∈ �X ,

player 1 has an n-winning strategy in G�(G2,M1) from (a �→ hn(a)), for each a ∈ h−1(π). (7)

For π = w , this holds by the definition of σ . Now assume that (7) has been proved for π and let π w ∈ �X . By the
induction hypothesis and the proof of Lemma 30, it suffices to show that aπ is a response of player 1 to the challenge
�π w in the state aπ w of G g

�(G2, G X
1), which is guaranteed by (6).

This completes the proof of the theorem. �
Condition (6) is necessary for co-ordinating the starting states of the games when X = {w0}, for w0 ∈ �G1 \ ind(K1). On

the other hand, if � ⊇ ind(K2) then all �-participating individuals in ind(K2) must be mapped to themselves, and so condi-
tion (6) is not applicable in this case. The following example shows that without (6) we cannot guarantee that (h+winind)

holds, and so M2 may not be finitely (�, �)-homomorphically embeddable into M1.

Example 42. Consider KBs K2 and K1 and a relational signature � such that ind(K2) = {a, b}, ind(K1) = {c} and their
generating structures G�

2 and (G{w}
1)� are as in Fig. 20a, with �{w} = {w, w w ′} (see also Figs. 19a and d for G1 and G{w}

1 , re-
spectively). Let � = ∅ and suppose that h(a) = w and h(b) = w w ′ (see the dashed lines in Fig. 20a). Player 1 has ω-winning

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 113
Fig. 20. Co-ordination of starting states: (a) generating structure G�
2 and extended generating structure (G X

1)� with �X = {w, w w ′}; (b) the relevant
fragment of the game graph.

strategies in G g
�(G2, G X

1) from the states aa = ({a} �→ w, {v1}) and ab = ({b} �→ w w ′, {u1}): see the dotted lines in Fig. 20a
and the game graph in Fig. 20b. However, the two starting states, aa and ab , do not satisfy the co-ordination condition (6). In
fact, the map they induce is not a (�, �)-homomorphism from M2 to M1 because it sends a to cw2 w and b to cw1 w w ′ ,
which are not connected by the role T in M1. Moreover, it is not hard to see that there is no (�, �)-homomorphism
from M2 to M1. Indeed, our co-ordination condition means that we have to choose appropriate starting states for each
of the elements in �X . So, we can pick ab for w w ′ , from which, as we noted above, player 1 has an ω-winning strategy.
We cannot, however, choose aa for w because �w w ′ = {u1}, and so, by (6), �w must contain u1 (along with a) but the
‘uncoordinated’ starting state aa does not include u1. Thus, we have to take a′

a = ({u1, a} �→ w, {u2, v1}) for w , from which
player 1 has no ω-winning strategy: see the graph in Fig. 20b, where all the paths from a′

a lead to dead-ends.

Finally, we obtain the following tight complexity results for KB (�, �)-query entailment and inseparability.

Theorem 43. For combined complexity, both KB (�, �)-query entailment and inseparability are 2ExpTime-complete for Horn-ALCHI
and Horn-ALCI; ExpTime-complete for Horn-ALCH, Horn-ALC , DL-LiteHhorn and DL-LiteHcore; and NP-complete for ELHdr⊥ , EL,
DL-Litehorn and DL-Litecore. For data complexity, these problems are NP-complete.

Proof. Note first that the size of X and �X is bounded by the size of ind(K2), so the size of G X
1 is polynomial in the size

of G1 and ind(K2). Note also that if G1 is a forward generating structure then so is G X
1 ; if G1 is a functional generating

structure then so is G X
1 ; and if G1 satisfies (lite1) and (lite2) then so does G X

1 .
We start with an NP algorithm for data complexity. Let Gi be a generating structure for a KB Ki , i = 1, 2. For each

maximal �-connected component �0 of Mind
2 , the algorithm performs two NP steps: (i) it guesses sets X , �X and a map

h from �0 onto �X , computes G X
1 , and checks whether (h�) is satisfied; then (ii) it guesses sets �π and �π satisfying (6)

if X � ind(K1), for each π ∈ �X , and finally checks whether (h+winX) holds. It is not hard to see both (i) and (ii) can be
done in polynomial time in the size of ind(K1) and ind(K2).

It is easy to see that for ELHdr⊥ and DL-Litehorn KBs, the algorithm above provides an NP upper bound for the combined
complexity as well. For the more expressive DLs, the upper bounds for combined complexity stay the same as before because
there is at most an exponential number of distinct sets �X , maps h and states aπ . The ExpTime- and 2ExpTime-hardness
results also carry over from �-query inseparability and �-query entailment, and NP-hardness follows from Theorem 37. �
7. Related work and applications

In this section, we discuss the relationship between (�, �)-query inseparability and knowledge exchange, TBox insep-
arability, and query-based comparison of OBDA specifications. �-query inseparability of KBs has not been investigated
systematically before. Note, however, that the polynomial upper bound for EL was established as a preliminary step to
study �-query inseparability of TBoxes [31], and that this notion was also used to study forgetting in DL-LiteNbool [36].

7.1. Knowledge exchange

For the motivation of studying knowledge exchange between KBs and illustrating examples, we refer the reader to
Section 1. Here we establish a tight link between deciding �-query inseparability and deciding the membership problem for

114 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
universal CQ-solutions. We also consider the connection between (�, �)-query inseparability and the membership problem
for universal CQ-solutions with nulls.

Assume (without loss of generality) that K1 and K2 are KBs given in disjoint relational signatures �1 and �2. Suppose
also that T12 consists of inclusions of the form S1 � S2 such that the Si are concept or role names in �i . Then the problem
of deciding whether K1 ∪ T12 ≡�2 K2 is called the membership problem for universal CQ-solutions. For any of our DLs L
with role inclusions, the problem whether K1 ∪ T12 ≡�2 K2 is a �2-query inseparability problem in L, and so the upper
complexity bounds for �-query inseparability can be applied directly to obtain upper bounds for the membership problem
for universal CQ-solutions. The following result establishes the converse:

Theorem 44. �-query entailment for any of our DLs L is LogSpace-reducible to the membership problem for universal CQ-solutions
in L.

The proof uses the construction from the proof of Theorem 13 and is given in Appendix A. As a consequence of Theo-
rems 44, 31 and 35 we obtain the following:

Theorem 45. For combined complexity, the membership problem for universal CQ-solutions is 2ExpTime-complete for Horn-ALCHI
and Horn-ALCI; ExpTime-complete for Horn-ALCH, Horn-ALC , DL-LiteHhorn and DL-LiteHcore; and P-complete for ELHdr⊥ and EL.
For data complexity, all these problems are P-complete.

Note that the combined complexity of the membership problem for universal CQ-solutions remains open for DL-Litecore

and DL-Litehorn .
In the case of DL-LiteHcore , we also obtain an ExpTime algorithm for checking the existence and computing universal

CQ-solutions. Indeed, given a KB K1, a target signature �2 and a mapping T12, we first compute the �2-ABox over ind(K1)

that is implied by K1 and T12, and then check whether at least one KB K2 in �2 with this ABox is a universal CQ-solution
(there are at most O (2|�2|) such KBs). This gives an ExpTime upper bound for the non-emptiness problem for universal
CQ-solutions in DL-LiteHcore [23].

A more flexible knowledge exchange model allows the target KB to use additional individuals (i.e., not only the individ-
uals in K1), which however cannot be returned as certain answers [23]. These ‘anonymous’ individuals are similar to nulls
in the standard approaches to incomplete databases, and intuitively represent objects the existence of which is implied by
K1 ∪T12. The reader can find an illustrating example in Section 1. Formally, we say that a KB K2 with a relational signature
�2 is a universal CQ-solution with nulls for a KB K1 and a mapping specification T12 if K1 ∪ T12 ≡�2,ind(K1) K2 (which is
equivalent to the definition given in [23]). Thus we obtain the following result:

Theorem 46. For combined complexity, the membership problem for universal CQ-solutions with nulls is 2ExpTime-complete for
Horn-ALCHI and Horn-ALCI; ExpTime-complete for Horn-ALCH, Horn-ALC , DL-LiteHhorn and DL-LiteHcore; and NP-complete for
ELHdr⊥ and EL. For data complexity, all these problems are NP-complete.

Proof. The upper bounds follow from Theorem 43. The ExpTime and 2ExpTime lower bounds follow from Theorem 45, and
the NP lower bound can be obtained from the proof of Theorem 37 by a straightforward modification. �

Again, the combined complexity of the membership problem for universal CQ-solutions with nulls remains open for
DL-Litecore and DL-Litehorn .

7.2. TBox inseparability and OBDA specifications

We remind the reader that, for a relational signature �, TBoxes T1 and T2 are called �-query inseparable if, for all
�-ABoxes A, the KBs (T1, A) and (T2, A) are �-query inseparable. TBox �-query inseparability has been extensively
studied; see, e.g., [17,31,24,10]. TBox and KB inseparabilities have different applications. The former supports ontology en-
gineering when data is not known or changes frequently: one can equivalently replace one TBox with another only if they
return the same answers to queries for every �-ABox. In contrast, KB inseparability is useful in applications where data is
stable—such as knowledge exchange or variants of module extraction and forgetting with fixed data—in order to use the KB
in a new application or as a compilation step to make CQ answering more efficient.

For many DLs, TBox �-query inseparability is harder than KB query inseparability. For DL-Litehorn , the space of relevant
�-ABox counterexamples is of exponential size and, in fact, �-query inseparability of TBoxes is NP-hard [17], while �-query
inseparability of KBs is in P. Similarly, we have seen that �-query inseparability of EL KBs is in P, while �-query insep-
arability of EL TBoxes is ExpTime-complete [31]. The complexity of TBox �-query inseparability for Horn-DLs extending
Horn-ALC is not known.

The complexity of �-query inseparability of DL-LiteHcore TBoxes was known to sit between PSpace and ExpTime [24]. Using
the fact that witness �-ABoxes for �-query inseparability of DL-LiteHcore TBoxes can always be chosen among the singleton
�-ABoxes [24, Theorem 8], one can easily modify the proof of Theorem 34 to improve the PSpace lower bound:

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 115
Theorem 47. TBox �-query inseparability of DL-LiteHcore TBoxes is ExpTime-complete.

For work on other notions of TBox inseparability and the corresponding notions of modules and forgetting, we refer the
reader to [37,12,38–43].

In ontology-based data access (OBDA), a TBox T provides a vocabulary for user queries, which is connected by a
declarative mapping M to a data source schema S (see, e.g., [2,44]). The pair S = (T , M) is called an OBDA specifi-
cation (sometimes, it also includes integrity constraints of the data source). For example, M can consist of implications
∀x y

(
ϕ(x, y) → ψ(x)

)
, where ϕ(x, y) is a conjunction of atoms over S and ψ(x) is a conjunction of atoms over the signa-

ture of T (in which case M is called a GAV mapping). For a data instance D over S and a CQ q(x), the certain answers to
q(x) over D under the OBDA specification S are defined in the obvious way. In [45], the following generalisation of TBox
�-query entailment is introduced to support the static analysis of OBDA specifications. Say that an OBDA specification S1

query entails an OBDA specification S2 if, for every CQ q(x) and every data instance D over S , the certain answers to q(x)

over D under S2 are contained in the certain answers to q(x) over D under S1. It was shown [45] that the complexity of
query entailment between OBDA specifications is closely linked to the complexity of �-query entailment. In fact, for GLAV,
GAV, and linear mappings M, and DL-LiteHcore TBoxes T , the tight complexity results obtained in this article for �-query
entailment are used to obtain the same complexity for deciding query entailment between OBDA specifications.

8. Future work

In this article, we have been concerned with algorithms deciding whether two KBs are (�, �)-query inseparable. Depend-
ing on the applications of (�, �)-query inseparability, other reasoning problems may also become important. We discuss
them below for the four applications described in Section 1.

For KB versioning, it is often not sufficient to learn that two KBs give different answers to some CQs in the signature
(�, �). In addition, a description of the relevant differences between the KBs should be given. Our algorithms compute
a CQ witnessing (�, �)-query separability, if one exists, which can be presented to the user. However, this CQ can be
unnecessarily large, and it might not be a comprehensive representation of the differences between the two KBs. It would
thus be of interest to develop additional algorithms that search for small witness CQs of (�, �)-query separability, provide
a comprehensive list of such witnesses, and link them to assertions in the KBs that explain them. Similar problems have
been addressed in TBox versioning [10].

In knowledge exchange, we often do not have a candidate KB for the role of universal CQ-solution, but are rather interested
in deciding whether a universal CQ-solution exists and computing it. We have seen above that our decision algorithms give
a solution to this problem in the case of DL-LiteHcore , but seem to require significant extensions for more expressive DLs; see
also [23].

In forgetting, the situation is similar to knowledge exchange: we are usually interested in deciding whether a uniform
interpolant exists and computing it. For TBoxes, these problems have been investigated within one approach to uniform
interpolants with respect to subsumptions [41,46]. However, little is known about uniform interpolants for KBs with respect
to answering CQs. Again, for DL-LiteHcore one can adapt our algorithm to compute uniform interpolants, but in general the
ideas presented in this article will have to be significantly extended and/or modified.

Our algorithms can be directly used to decide whether a subset of a KB is its (�, �)-query module. One of the most
important problems in modularisation is the extraction of a minimal (with respect to set inclusion) module from a given
KB. It is straightforward to design a polynomial-time algorithm extracting a (�, �)-query module that calls an inseparability
checker as an oracle: exhaustively remove assertions α from a given KB K such that K \ {α} and K are (�, �)-query insep-
arable. Without any additional optimisations, however, only the algorithms based on forward strategies for �-inseparability
in DLs without inverse roles can have acceptable performance. Interestingly, one can apply the same algorithms to com-
pute approximations of minimal �-query modules for DLs with inverse roles: one can extract a �-query module of a given
KB K by exhaustively removing from K those inclusions and assertions α for which player 1 has a winning strategy in
the game G f

�(G2,G1) on generating structures G2 and G1 for K and K \ {α}, respectively. The resulting KB is a module
that approximates a minimal one. Efficiency of a similar approach to module extraction from TBoxes was shown in experi-
ments [24].

As far as (�, �)-query inseparability itself is concerned, it would be of interest to consider more expressive Horn-DLs
than Horn-ALCHI , for example, those with (qualified) number restrictions, transitive roles, or nominals. We conjecture
that extensions of our game-theoretic approach can be applied to most (if not all) of those Horn-DLs. Finally, nothing
is known about the complexity (and algorithms) for query inseparability for non-Horn DLs. Observe that in this case
inseparability for CQs does not coincide anymore with inseparability for UCQs. For example, for � = {A, B, E}, the KBs
K1 = ({
 � A � B}, {E(a)}) and K2 = (∅, {E(a)}) are �-inseparable for CQs but not �-inseparable for UCQs. It seems appro-
priate to start an investigation of inseparability (for CQs and UCQs) with weak non-Horn DLs such as the DL underpinning
Schema.org [47,48] or other fragments of DL-Litebool and then move to more expressive DLs such as ALC . We conjecture
that the game-theoretic approach can be applied to those DLs as well.

116 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
Acknowledgements

The article was supported by the UK EPSRC grants EP/M012646, EP/M012670, EP/H043594, EP/H05099X and the EU IP
Optique, n. FP7-318338 (funded by the European Commission).

Appendix A. Proofs

Lemma 10. Let K = (T , A) be a consistent KB with a Horn-ALCHI TBox in normal form and M the unravelling of G . Then M is a
model of K. Moreover,

– τM
T (a) = {

C ∈ con(T) |K |= C(a)
}

, for all a ∈ ind(K),

– τM
T (σ) = τ , for all σ ∈ �M with tail(σ) = ([S], τ).

Proof. First, we show that a ∈ CM iff K |= C(a), for all a ∈ ind(K), and σ ∈ CM iff C ∈ τ , for all σ ∈ �M with tail(σ) =
([S], τ). We consider the following two cases for C :

1: C = A. For a ∈ ind(K), we clearly have a ∈ AM iff a ∈ AG iff K |= A(a). Similarly, for any σ ∈ �M with tail(σ) = ([S], τ),
we have σ ∈ AM iff ([S], τ) ∈ AG iff A ∈ τ .

2: C = ∃R.B. Let a ∈ (∃R.B)M . If there is b ∈ ind(K) with (a, b) ∈ RM and b ∈ BM then, by the construction of M and G ,
there is some P with P (a, b) ∈ A and T |= P � R , whence K |= R(a, b). On the other hand, by item 1, K |= B(b),
whence K |= (∃R.B)(a). If there is no b ∈ ind(K) with (a, b) ∈ RM and K |= B(b), then a � ([R], τ), for some
T -type τ such that K |= (∃R.τ)(a) and B ∈ τ , whence K |= (∃R.B)(a).

Conversely, let K |= (∃R.B)(a). If there is b ∈ ind(K) with P (a, b) ∈ A, T |= P � R and K |= B(b) then, by
construction, (a, b) ∈ RM and, by item 1, b ∈ BM , whence a ∈ (∃R.B)M . Otherwise, let τ be a maximal T -type
such that K |= (∃R.τ)(a) and B ∈ τ . Then a � ([R], τ) and, by the construction of G and M, (a, a · ([R], τ)) ∈ RM

and, by item 1, a · ([R], τ) ∈ BM , whence a ∈ (∃R.B)M .
Now, suppose σ ∈ (∃R.B)M . Then there is σ ′ such that (σ , σ ′) ∈ RM and σ ′ ∈ BM . By construction, the

following three options are possible.
– If σ ′ = σ · ([S ′], τ ′) then T |= τ � ∃S ′.τ ′ , T |= S ′ � R and B ∈ τ ′ , whence T |= τ � ∃R.B , and so, as τ is a
T -type, ∃R.B ∈ τ .

– If σ = σ ′ · ([S], τ) with tail(σ ′) = ([S ′], τ ′) then T |= τ ′ � ∃S.τ , T |= S � R− and B ∈ τ ′ . It follows that we have
T |= τ ′ � ∃R−.τ and B ∈ τ ′ . Since τ is maximal, it must contain ∃R.B (for otherwise τ ′ � ∃R−.(τ � ∀R.¬B)

would be consistent).
– If σ = σ ′ · ([S], τ) with σ ′ = a ∈ ind(K) then K |= (∃S.τ)(a), T |= S � R− and, by item 1, K |= B(a). Thus, we

have K |= (∃R−.t)(a) and K |= B(a). Again, since τ is maximal it must contain ∃R.B .
Conversely, let ∃R.B ∈ τ . Then, by construction, ([S], τ) � ([R], τ ′), for some T -type τ ′ with B ∈ τ ′ . It follows

then that (σ , σ · ([R], τ ′)) ∈ RM and, by item 1, (σ · ([R], τ ′)) ∈ BM , whence σ ∈ (∃R.B)M .

Next, we show that M is a model of (T , A). Clearly, M is a model of A. That M |= (C1 � C2), for each C1 � C2 ∈ T ,
follows immediately from the two properties of τM

T , the fact that T -types are closed under the concept inclusions in T ,
and that C � ∀R.A is equivalent to ∃R−.C � A.

Consider now R1 � R2 ∈ T . Let (σ , σ ′) ∈ RM
1 . If σ = a ∈ ind(K) and σ = b ∈ ind(K) then K |= R1(a, b). Since R1 � R2

is in T , we obtain K |= R2(a, b), whence (σ , σ ′) ∈ RM
2 . If σ ′ = σ · ([R], τ), for some R and τ , then, by the construction

of RM
1 , T |= R � R1. Thus T |= R � R2, and so (σ , σ ′) ∈ RM

2 . The case of σ = σ ′ · ([R], τ) is the mirror image. �
Theorem 13. Let L be any of our DLs that contains EL or has role inclusions. Then �-query entailment for consistent L-KBs is
LogSpace-reducible to �-query inseparability for L-KBs.

Proof. Let Ki = (Ti, Ai), i = 1, 2, be consistent L-KBs and � a relational signature. We want to decide whether K1 �-query
entails K2 assuming that we know how to decide �-query inseparability. Without loss of generality, we may assume
that � = sig(K1) = sig(K1) ∩ sig(K2). To show this, we note first that we can add trivial concept inclusions A � A and
∃P .
 � ∃P .
 to KBs to ensure that � ⊆ sig(K1) = sig(K1) ∩ sig(K2). For symbols S ∈ sig(K1) ∩ sig(K2) that are not in �
we introduce a fresh S∗ and replace S by S∗ in K2. Denote the resulting KB by K∗

2. Then K1 �-query entails K2 iff K1
�∗-query entails K∗

2 for �∗ = sig(K1), as required.

Case 1: L has role inclusions.

Case 1.1: Assume that the trivial interpretation I∅ with |�I∅ | = 1 and SI∅ = ∅, for any symbol S , is a model of the Ti for
i = 1, 2 (we show how the KBs K1 and K2 can be modified to ensure that this assumption holds in Case 1.2). Let Ki

i be a
copy of Ki in which all symbols S are replaced by fresh symbols Si , and let K′ be the extension of Ki with Si � S , for all
i i

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 117
S ∈ �. The purpose of this construction is to avoid the interaction between the symbols used in K1 and the symbols used
in K2 (as shown in Section 3 after the formulation of the theorem). We show that

K1 �-query entails K2 iff K1 and K′
1 ∪K′

2 are �-query inseparable.

The interesting direction is to show that if K1 �-query entails K2 then K1 �-query entails K′
1 ∪ K′

2. Suppose that K1
�-query entails K2. Then K1 �-query entails both K′

1 and K′
2. We use the following construction to ‘merge’ materialisations

of the K′
i . Let M1 be a materialisation of K1 and, for i = 1, 2, let Ui be a materialisation of K′

i obtained by unravelling a
generating structure for K′

i . By Lemma 10, Ui is a model of K′
i . It should be clear that we can also assume that

�U1 ∩ �U2 = ind(K1) ∩ ind(K2). (A.1)

Denote by U the union of U1 and U2 defined by setting �U = �U1 ∪ �U2 and SU = SU1 ∪ SU2 for all concept and role
names S . We show that

(i) U is a model of K′
1 ∪K′

2, and
(ii) U is finitely (�, ind(K1) ∪ ind(K2))-homomorphically embeddable into M1.

It will then follow, by Theorem 6, that K1 �-query entails K′
1 ∪K′

2. Indeed, let M′ be a materialisation of K′
1 ∪K′

2. Since,
by (i), U is a model of K′

1 ∪ K′
2, by Lemma 11, there is a homomorphism from (any finite subinterpretation of) M′ to U ,

and so, by (ii), from any finite subinterpretation of M′ to M1.
Now, for item (i), recall that, for both i = 1, 2, the trivial interpretation is a model of the TBox of K′

3−i , which does not
contain any negative occurrences of the symbols of K′

i , and Ui is a model of K′
i ; therefore, U is a model of K′

i . For (ii),
consider a finite subinterpretation U0 of U and, for i = 1, 2, let U0i be the respective finite subinterpretation of Ui . Since
K1 �-query entails both K′

1 and K′
2, by Theorem 6, we have (�, ind(K′

i))-homomorphisms hi from U0i to M1, for i = 1, 2.
Define h by taking h(u) = h1(u), for all u ∈ �U01 , and h(u) = h2(u), for all u ∈ �U02 \ �U01 . Since (A.1) and h1(a) = h2(a),
for all a ∈ partU1

� ∩ partU2
� , the function h is a (�, ind(K1) ∪ ind(K2))-homomorphism from U0 to M1, as required.

Case 1.2: Suppose that the trivial interpretation is not a model of Ti , for some i ∈ {1, 2}. We construct K′′
i = (T ′′

i , A′′
i),

i = 1, 2, such that the trivial interpretation is a model of T ′′
i , for i = 1, 2, and K1 �-query entails K2 iff K′′

1 �-query entails
K′′

2 (this will reduce Case 1.2 to Case 1.1). The construction is by careful relativisation. We assume that the TBoxes Ti are
in normal form (see Theorem 8). If the Ti do not contain inclusions of the form
 � A then the trivial interpretation is
a model of the TBoxes and we are done. Otherwise, for i = 1, 2, let Di be fresh concept names: Di will replace
 in the
inclusion
 � A in Ti , which will ensure that the trivial interpretation is a model of the resulting TBox. In addition, we have
to ensure that Di contains all domain elements of the materialisation. To deal with the individual names in the ABox Ai ,
we take A′′

i =Ai ∪ADi
i , where

ADi
i = {

Di(a) | a ∈ ind(Ki)
}
. (A.2)

The TBoxes T ′′
i are obtained from Ti by replacing any inclusion
 � A with Di � A and any inclusion A � ∃R.C with

– A � ∃R and ∃R− � Di , if the Ti are members of the DL-Lite family (C =
 in this case), and
– A � ∃R.(Di � C), otherwise.

The remaining inclusions are not modified and the modification of inclusions of the form A � ∃R.C ensures that Di holds
in all generated domain elements of the materialisations constructed to prove Theorem 12. Note that if Ti is an L-TBox,
then T ′′

i is an L-TBox as well, for any of our DLs. We show that the K′′
i = (T ′′

i , A′′
i), for i = 1, 2, are as required. First, by

construction, the trivial interpretation I∅ is a model of T ′′
i . Second, let Mi be the unravelling of a generating structure for

Ki . By Theorem 9, Mi is a materialisation of Ki . Observe that the interpretation Ui obtained from Mi by interpreting Di

as the domain of Mi is a materialisation of K′′
i . Thus, by Theorem 6, K1 �-query entails K2 iff K′′

1 �-query entails K′′
2 , as

required.

Case 2: L contains EL and has no role inclusions (that is, L ∈ {EL, ALC, ALCI}). We construct K′
1 = (T ′

1 , A′
1) and K′

2 =
(T ′

2 , A′
2) such that

K1 �-query entails K2 iff K1 and K′
1 ∪K′

2 are �-query inseparable. (A.3)

First, we make sure that K1 is role-compatible with K2, that is, for all a, b ∈ ind(K2), if R(a, b) /∈ A2, then R(a, b) /∈ A1.
Remove from A1 all assertions R(a, b), for a, b ∈ ind(K2), that are not in A2, and denote the resulting ABox by A−

1 . Define
A�

1 by adding a disjoint copy of A1 to A−
1 (in which the copy of an individual a is denoted by a�) and also adding the

assertions R(a, b�) and R(a�, b) for every R(a, b) ∈A1.
Then K�

1 = (T1, A�
1) �-query entails K2 iff K1 �-query entails K2. This follows directly from the fact that Horn-ALCI

is unravelling-tolerant [49], which implies that in the unravellings M1 and M� of the generating structures for K1 and K� ,
1 1

118 E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119
we have that the subtrees Ia , I�
a , and I�

a� of M1, M�
1 and M�

1 rooted at a, a and a� , respectively, are isomorphic for any
a ∈ ind(K1).

Second, assume that K1 is role-compatible with K2. We employ relativisation again. Let Di be fresh concept names, for
i = 1, 2. In this case, apart from ensuring that Di contains all domain elements of the materialisation of Ki we have to
ensure that merging the materialisations of K1 and K2 does not lead to additional domain elements. Let A′

i =Ai ∪ADi
i , for

i = 1, 2, where ADi
i is defined by (A.2). Assume the TBoxes Ti are in normal form and define T ′

i by replacing

– any inclusion
 � A with Di � A;
– any inclusion A1 � A2 with A1 � Di � A2;
– any inclusion A1 � A2 � A with A1 � A2 � Di � A;
– any inclusion ∃R.C � A with ∃R.(C � Di) � Di � A;
– any inclusion A � ∃R.C with A � Di � ∃R.(Di � C);
– any inclusion A1 � ∀R.A2 with A1 � Di � ∀R.(¬Di � A2).

Note that T ′
i is not necessarily in normal form, but it is an L-TBox, which can then be transformed to normal form by

Theorem 8.
We show (A.3). The interesting direction is ‘if K1 �-query entails K2 then K1 �-query entails K′

1 ∪ K′
2’. Suppose K1

�-query entails K2. Then K1 �-query entails both K′
1 and K′

2 (as K1 �-query entails both K1 and K2). Let M1 be a
materialisation of K1 and, for i = 1, 2, let Ui be a materialisation of K′

i obtained by unravelling a generating structure for
K′

i . We proceed as in Case 1.1: we construct U by merging U1 and U2 and show that conditions (i) and (ii) hold. It will then
follow that K1 �-query entails K′

1 ∪K′
2.

For item (i), observe that (a) since K1 is role-compatible with K2, if an assertion A(a), for a ∈ ind(K2), can be derived
in K′

1 ∪ K′
2 by the T ′

2 axioms of the form ∃R.(D2 � C) � D2 � A or A1 � D2 � ∀R.(¬D2 � A), then the same assertion
can be already derived in K2 by the axioms ∃R.C � A and A1 � ∀R.A; (b) for i = 1, 2, the trivial interpretation I∅ is a
model of T ′

i ; and (c) every inclusion of T ′
i is relativised to Di : it is ‘applicable’ only to elements in Di and ‘generates’ only

elements in Di again. In particular, the T ′
2 axioms of the form ∃R.(D2 � C) � D2 � A or A1 � D2 � ∀R.(¬D2 � A) are not

‘applicable’ to a ∈ ind(K1) \ ind(K2). Thus, U is a model of K′
1 ∪ K′

2. The argument for item (ii) is analogous to Case 1.1,
which completes the proof. �
Theorem 44. �-query entailment for any of our DLs L is LogSpace-reducible to the membership problem for universal CQ-solutions
in L.

Proof. We use the proof of Theorem 13. Suppose L KBs K1, K2, and a signature � are given. We want to reduce the
problem to decide whether K1 �-query entails K2 to the membership problem for universal CQ-solutions in L. As argued
in the proof of Theorem 13, we may assume that � = sig(K1) = sig(K1) ∩ sig(K2).

For the reduction to the membership problem for universal CQ-solutions in L, we do not have to consider the case that
L does not have role inclusions since they can always be used in the mapping T12. Thus, we follow the proof of Case 1 in
the in the proof of Theorem 13 and first assume that the trivial interpretation I∅ is a model of Ti , for i = 1, 2. Recall the
definition of Ki

i : Ki
i is obtained from Ki by replacing every symbol S in Ki with a fresh symbol Si . Then it is shown in

the proof of Theorem 13 (Case 1.1) that K1 �-query entails K2 iff K′
1 ∪ K′

2 ∪ T12 and K1 are �-query inseparable, where
T12 = {Si � S | S ∈ �}. But the latter problem is a membership problem for universal CQ-solutions since we assume that
� = sig(K1).

We complete the proof by considering the case when I∅ is not a model of Ti for some i ∈ {1, 2}. We reduce this case
to the previous one by constructing KBs K′′

i = (T ′′
i , A′′

i) such that I∅ is a model of T ′′
i and K1 �-query entails K2 iff K′′

1
�-query entails K′′

2 . But KBs K′′
i with these properties have been constructed in the proof of Theorem 13 (Case 1.2) already

(observe that no role inclusions are introduced in the construction of K′′
i , and so K′′

i is an L-KB if Ki is an L-KB for any of
our DLs L). �
References

[1] A. Polleres, A. Hogan, R. Delbru, J. Umbrich, RDFS and OWL reasoning for Linked Data, in: The 9th Int. Summer School on Reasoning Web (RW 2013),
in: Lecture Notes in Computer Science, vol. 8067, Springer, 2013, pp. 91–149.

[2] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, Linking data to ontologies, J. Data Semant. 10 (2008) 133–173.
[3] M. Giese, D. Calvanese, P. Haase, I. Horrocks, Y. Ioannidis, H. Kllapi, M. Koubarakis, M. Lenzerini, R. Möller, M. Rodriguez-Muro, O. Özcep, R. Rosati, R.

Schlatte, M. Schmidt, A. Soylu, A. Waaler, Scalable end-user access to big data, in: Big Data Computing, CRC Press, 2013.
[4] P. Hitzler, M. Krötzsch, S. Rudolph, Foundations of Semantic Web Technologies, Chapman & Hall/CRC, 2009.
[5] U. Hustadt, B. Motik, U. Sattler, Data complexity of reasoning in very expressive description logics, in: Proc. of the 19th Int. Joint Conf. on Artificial

Intelligence (IJCAI), 2005, pp. 466–471.
[6] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient query answering in description logics: the DL-Lite

family, J. Autom. Reason. 39 (2007) 385–429.
[7] C. Lutz, D. Toman, F. Wolter, Conjunctive query answering in the description logic EL using a relational database system, in: Proc. of the 21st Int. Joint

Conf. on Artificial Intelligence (IJCAI), 2009, pp. 2070–2075.

http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F727765622F506F6C6C657265734844553133s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F727765622F506F6C6C657265734844553133s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A6A6F75726E616C732F6A6F64732F506F6767694C43474C523038s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib4F707469717565s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib4F707469717565s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib464F5354s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F696A6361692F487573746164744D533035s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F696A6361692F487573746164744D533035s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib43444C4C523037s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib43444C4C523037s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F696A6361692F4C75747A54573039s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F696A6361692F4C75747A54573039s1

E. Botoeva et al. / Artificial Intelligence 234 (2016) 78–119 119
[8] R. Kontchakov, M. Zakharyaschev, An introduction to description logics and query rewriting, in: The 10th Int. Summer School on Reasoning Web (RW
2014), in: Lecture Notes in Computer Science, vol. 8714, Springer, 2014, pp. 195–244.

[9] E. Jiménez Ruiz, B. Cuenca Grau, I. Horrocks, R. Berlanga, Supporting concurrent ontology development: framework, algorithms and tool, Data Knowl.
Eng. 70 (2011) 146–164.

[10] B. Konev, M. Ludwig, D. Walther, F. Wolter, The logical difference for the lightweight description logic EL, J. Artif. Intell. Res. 44 (2012) 633–708.
[11] H. Stuckenschmidt, C. Parent, S. Spaccapietra (Eds.), Modular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization, Lecture

Notes in Computer Science, vol. 5445, Springer, 2009.
[12] B. Konev, D. Walther, F. Wolter, Forgetting and uniform interpolation in large-scale description logic terminologies, in: Proc. of the 21st Int. Joint Conf.

on Artificial Intelligence (IJCAI), AAAI Press, 2009, pp. 830–835.
[13] P. Koopmann, R.A. Schmidt, Uniform interpolation and forgetting for ALC ontologies with ABoxes, in: Proc. of the 29th AAAI Conf. on Artificial Intelli-

gence (AAAI 2015), AAAI Press, 2015, pp. 175–181.
[14] M. Arenas, P. Barceló, L. Libkin, F. Murlak, Foundations of Data Exchange, Cambridge University Press, 2014.
[15] M. Arenas, E. Botoeva, D. Calvanese, V. Ryzhikov, E. Sherkhonov, Exchanging description logic knowledge bases, in: Proc. of the 13th Int. Conf. on

Principles of Knowledge Representation and Reasoning (KR 2012), AAAI Press, 2012, pp. 563–567.
[16] M. Arenas, J. Pérez, J.L. Reutter, Data exchange beyond complete data, J. ACM 60 (2013) 28.
[17] R. Kontchakov, F. Wolter, M. Zakharyaschev, Logic-based ontology comparison and module extraction, with an application to DL-Lite, Artif. Intell. 174

(2010) 1093–1141.
[18] P. Shvaiko, J. Euzenat, Ontology matching: state of the art and future challenges, IEEE Trans. Knowl. Data Eng. 25 (2013) 158–176.
[19] B. Cuenca Grau, B. Motik, Reasoning over ontologies with hidden content: the import-by-query approach, J. Artif. Intell. Res. 45 (2012) 197–255.
[20] M. Krötzsch, S. Rudolph, P. Hitzler, Complexities of Horn description logics, ACM Trans. Comput. Log. 14 (2013) 2.
[21] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite family and relations, J. Artif. Intell. Res. 36 (2009) 1–69.
[22] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope, in: Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI), 2005, pp. 364–369.
[23] M. Arenas, E. Botoeva, D. Calvanese, V. Ryzhikov, Exchanging OWL 2 QL knowledge bases, in: Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence

(IJCAI 2013), IJCAI/AAAI, 2013.
[24] B. Konev, R. Kontchakov, M. Ludwig, T. Schneider, F. Wolter, M. Zakharyaschev, Conjunctive query inseparability of OWL 2 QL TBoxes, in: Proc. of the

25th AAAI Conf. on Artificial Intelligence (AAAI 2011), AAAI Press, 2011, pp. 221–226.
[25] T. Imieliński, W. Lipski, Incomplete information in relational databases, J. ACM 31 (1984) 761–791.
[26] Y. Kazakov, Consequence-driven reasoning for Horn SHIQ ontologies, in: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI), 2009,

pp. 2040–2045.
[27] R. Rosati, On conjunctive query answering in EL, in: Proc. of the 2007 Int. Workshop on Description Logics (DL 2007), vol. 250, CEUR-WS, 2007.
[28] T. Eiter, G. Gottlob, M. Ortiz, M. Simkus, Query answering in the description logic Horn-SHIQ, in: Proc. of the 11th European Conf. on Logics in

Artificial Intelligence (JELIA 2008), in: Lecture Notes in Computer Science, vol. 5293, Springer, 2008, pp. 166–179.
[29] S. Tobies, Complexity results and practical algorithms for logics in knowledge representation, Ph.D. thesis, LuFG Theoretical Computer Science, RWTH-

Aachen, Germany, 2001.
[30] S. Brandt, Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and—what else?, in: Proc. of the 16th European

Conf. on Artificial Intelligence (ECAI 2004), IOS Press, 2004, pp. 298–302.
[31] C. Lutz, F. Wolter, Deciding inseparability and conservative extensions in the description logic EL, J. Symb. Comput. 45 (2010) 194–228.
[32] R. Mazala, Infinite games, in: Automata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], in:

Lecture Notes in Computer Science, vol. 2500, Springer, 2002, pp. 23–42.
[33] K. Chatterjee, M. Henzinger, An O(n2) time algorithm for alternating Büchi games, in: Proc. of the 23rd Annual ACM–SIAM Symposium on Discrete

Algorithms (SODA 2012), SIAM, 2012, pp. 1386–1399.
[34] D. Kozen, Theory of Computation, Springer, 2006.
[35] C. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
[36] Z. Wang, K. Wang, R.W. Topor, J.Z. Pan, Forgetting for knowledge bases in DL-Lite, Ann. Math. Artif. Intell. 58 (2010) 117–151.
[37] B. Cuenca Grau, I. Horrocks, Y. Kazakov, U. Sattler, Modular reuse of ontologies: theory and practice, J. Artif. Intell. Res. 31 (2008) 273–318.
[38] C. Del Vescovo, B. Parsia, U. Sattler, T. Schneider, The modular structure of an ontology: atomic decomposition, in: Proc. of the 22nd Int. Joint Conf. on

Artificial Intelligence (IJCAI 2011), AAAI Press, 2011, pp. 2232–2237.
[39] N. Nikitina, S. Rudolph, (Non-)succinctness of uniform interpolants of general terminologies in the description logic EL, Artif. Intell. 215 (2014) 120–140.
[40] N. Nikitina, B. Glimm, Hitting the sweetspot: economic rewriting of knowledge bases, in: Proc. of the 11th Int. Semantic Web Conf. (ISWC 2012), Part I,

in: Lecture Notes in Computer Science, vol. 7649, Springer, 2012, pp. 394–409.
[41] C. Lutz, I. Seylan, F. Wolter, An automata-theoretic approach to uniform interpolation and approximation in the description logic EL, in: Proc. of the

13th Int. Conf. on Principles of Knowledge Representation (KR 2012), AAAI Press, 2012, pp. 286–296.
[42] P. Koopmann, R.A. Schmidt, Count and forget: uniform interpolation of SHQ-ontologies, in: Proc. of the 7th Int. Joint Conf. on Automated Reasoning

(IJCAR 2014), in: Lecture Notes in Computer Science, vol. 8562, Springer, 2014, pp. 434–448.
[43] R. Nortje, K. Britz, T. Meyer, Reachability modules for the description logic SRIQ, in: Proc. of 19th Int. Conf. on Logic for Programming, Artificial

Intelligence, and Reasoning (LPAR-19), in: Lecture Notes in Computer Science, vol. 8312, Springer, 2013, pp. 636–652.
[44] M. Rodriguez-Muro, R. Kontchakov, M. Zakharyaschev, Ontology-based data access: ontop of databases, in: Proc. of the 12th Int. Semantic Web Conf.

(ISWC 2013), Part I, in: Lecture Notes in Computer Science, vol. 8218, Springer, 2013, pp. 558–573.
[45] M. Bienvenu, R. Rosati, Query-based comparison of OBDA specifications, in: Proc. of the 28th Int. Workshop on Description Logics (DL 2015), vol. 1350,

CEUR-WS, 2015.
[46] C. Lutz, F. Wolter, Foundations for uniform interpolation and forgetting in expressive description logics, in: Proc. of the 22nd Int. Joint Conf. on Artificial

Intelligence (IJCAI 2011), IJCAI/AAAI, 2011, pp. 989–995.
[47] P.F. Patel-Schneider, Analyzing Schema.org, in: Proc. of the 13th Int. Semantic Web Conf. (ISWC 2014), Part I, in: Lecture Notes in Computer Science,

vol. 8796, Springer, 2014, pp. 261–276.
[48] A. Hernich, C. Lutz, A. Ozaki, F. Wolter, Schema.org as a description logic, in: Proc. of the 24th Int. Joint Conf. on Artificial Intelligence (IJCAI 2015),

AAAI Press, 2015, pp. 3048–3054.
[49] C. Lutz, F. Wolter, Non-uniform data complexity of query answering in description logics, in: Proc. of the 13th Int. Conf. on Principles of Knowledge

Representation (KR 2012), AAAI Press, 2012, pp. 297–307.

http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F727765622F4B6F6E746368616B6F765A3134s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F727765622F4B6F6E746368616B6F765A3134s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A6A6F75726E616C732F646B652F4A696D656E657A2D5275697A47484C3131s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A6A6F75726E616C732F646B652F4A696D656E657A2D5275697A47484C3131s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A6A6F75726E616C732F6A6169722F4B6F6E65764C30573132s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A7365726965732F6C6E63732F35343435s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A7365726965732F6C6E63732F35343435s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F696A6361692F4B6F6E657657573039s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F696A6361692F4B6F6E657657573039s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F616161692F4B6F6F706D616E6E533135s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F616161692F4B6F6F706D616E6E533135s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A626F6F6B732F63752F4172656E6173424C4D32303134s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F6B722F4172656E6173424352533132s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F6B722F4172656E6173424352533132s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A6A6F75726E616C732F6A61636D2F4172656E617330523133s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib4B575A3130s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib4B575A3130s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A6A6F75726E616C732F746B64652F53687661696B6F453133s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A6A6F75726E616C732F6A6169722F477261754D3132s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A6A6F75726E616C732F746F636C2F4B726F747A73636852483133s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib41434B5A3039s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib4261424C3035s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F696A6361692F4172656E61734243523133s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F696A6361692F4172656E61734243523133s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F616161692F4B6F6E65764B4C53575A3131s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F616161692F4B6F6E65764B4C53575A3131s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib496D69656C696E736B694C6970736B693834s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib4B617A613039s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib4B617A613039s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F646C6F672F526F736174693037s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F6A656C69612F4569746572474F533038s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F6A656C69612F4569746572474F533038s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib546F626965733031s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib546F626965733031s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib4272616E64743034s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib4272616E64743034s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A6A6F75726E616C732F6A73632F4C75747A573130s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib4D617A613031s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib4D617A613031s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib436848653132s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib436848653132s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib4B6F7A656E3036s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib5061706164696D697472696F753934s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A6A6F75726E616C732F616D61692F57616E675754503130s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib4A61697247726175s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F696A6361692F566573636F766F5053533131s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F696A6361692F566573636F766F5053533131s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A6A6F75726E616C732F61692F4E696B6974696E61523134s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F73656D7765622F4E696B6974696E61473132s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F73656D7765622F4E696B6974696E61473132s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F6B722F4C75747A53573132s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F6B722F4C75747A53573132s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F636164652F4B6F6F706D616E6E533134s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F636164652F4B6F6F706D616E6E533134s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F6C7061722F4E6F72746A65424D3133s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F6C7061722F4E6F72746A65424D3133s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F73656D7765622F526F6472696775657A2D4D75726F4B5A3133s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F73656D7765622F526F6472696775657A2D4D75726F4B5A3133s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F646C6F672F4269656E76656E75523135s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F646C6F672F4269656E76656E75523135s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F696A6361692F4C75747A573131s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F696A6361692F4C75747A573131s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F73656D7765622F506174656C2D5363686E65696465723134s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F73656D7765622F506174656C2D5363686E65696465723134s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F696A6361692F4865726E6963684C4F573135s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib44424C503A636F6E662F696A6361692F4865726E6963684C4F573135s1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib6C75747A323031326E6F6Es1
http://refhub.elsevier.com/S0004-3702(16)30001-7/bib6C75747A323031326E6F6Es1

	Games for query inseparability of description logic knowledge bases
	1 Introduction
	2 Horn-ALCHI and its fragments
	3 Σ-query entailment, materialisation and (Σ,Γ)-homomorphism
	4 Finite Σ-homomorphic embeddability by games
	4.1 Inﬁnite game GΣ(G2,M1)
	4.2 Forward strategy and game GΣf(G2,G1)
	4.3 Backward strategy and game GbΣ(G2,G1)
	4.4 Start-bounded strategy and game GΣs(G2,G1)
	4.5 General strategies and game GgΣ(G2,G1)

	5 Lower bounds
	6 Query inseparability for restricted sets of individuals
	7 Related work and applications
	7.1 Knowledge exchange
	7.2 TBox inseparability and OBDA speciﬁcations

	8 Future work
	Acknowledgements
	Appendix A Proofs
	References

