
When Are Description Logic Knowledge Bases Indistinguishable?∗

E. Botoeva,1 R. Kontchakov,3 V. Ryzhikov,1 F. Wolter2 and M. Zakharyaschev3

1Faculty of Computer Science 2Dept. of Computer Science 3Dept. of Computer Science
Free University of Bozen-Bolzano, Italy University of Liverpool, UK Birkbeck, London, UK
{botoeva,ryzhikov}@inf.unibz.it wolter@liverpool.ac.uk {roman,michael}@dcs.bbk.ac.uk

Abstract
Deciding inseparability of description logic knowl-
edge bases (KBs) with respect to conjunctive
queries is fundamental for many KB engineering
and maintenance tasks including versioning, mod-
ule extraction, knowledge exchange and forget-
ting. We study the combined and data complex-
ity of this inseparability problem for fragments of
Horn-ALCHI, including the description logics un-
derpinning OWL 2 QL and OWL 2 EL.

1 Introduction
A description logic (DL) knowledge base (KB) consists of a
terminological box (TBox) and an assertion box (ABox). The
TBox represents conceptual knowledge by providing a vocab-
ulary for a domain of interest together with axioms that de-
scribe semantic relationships between the vocabulary items.
To illustrate, the following toy TBox, Ta, defines a vocabu-
lary for the automotive industry:

Minivan v Automobile, Hybrid v Automobile,
Automobile v ∃poweredBy.Engine,
Hybrid v ∃poweredBy.EEngine u ∃poweredBy.ICEngine,
EEngine v Engine, ICEngine v Engine.

For example, the first two axioms say that minivans and hy-
brids are automobiles; the third axiom claims that every auto-
mobile is powered by an engine. Thus, the TBox introduces,
among others, concept names (sets) Minivan, Automobile and
Engine, states that the concept Minivan is subsumed by the
concept Automobile and uses the role name (binary relation)
poweredBy to say that automobiles are powered by engines.
The last two axioms state that electric and internal combus-
tion engines are engines. TBoxes are often called ontologies
and presented in applications in terms of the Web Ontology
Language OWL 2, which is underpinned by DLs.

The ABox of a KB is a set of facts storing data about the
concept and role names introduced in the TBox. An example
∗This paper was invited for submission to the Best Papers From

Sister Conferences Track, based on a paper that appeared in the
Proc. of the 14th Int. Conf. on Principles of Knowledge Representa-
tion and Reasoning (KR 2014).

ABox, Aa, in the automotive domain is given by

Hybrid(toyota highlander),

Minivan(toyota highlander), Minivan(nissan note).

Typical applications of KBs in modern information systems
use the semantics of concepts and roles in the TBox to enable
the user to query the data in the ABox. This is particularly
useful if the data is incomplete or comes from heterogenous
data sources which is the case, for example, in linked data
applications [Polleres et al., 2013] and large scale data inte-
gration projects [Poggi et al., 2008; Giese et al., 2013], or if
the data comprises web content gathered by search engines
using semantic markup [Hitzler et al., 2009].

As the data may be incomplete, the open world assumption
is made when querying a KBK: a tuple a of individuals from
K is a (certain) answer to a query q over K iff q(a) is true in
every model I of K. As general first-order queries are unde-
cidable under the open-world semantics, the basic and most
important querying instrument is conjunctive queries (CQs),
which are ubiquitous in relational database systems and form
the core of the Semantic Web query language SPARQL. A
CQ q(x) is a first-order formula ∃y ϕ(x,y), where ϕ(x,y)
is a conjunction of atoms of the form A(z1) or P (z1, z2) for
a concept name A, a role name P , and variables z1, z2 from
x,y.1 For instance, to find minivans powered by electric en-
gines, one can use the following CQ:

q(x) = ∃y (Minivan(x) ∧ poweredBy(x, y) ∧ EEngine(y)).

Then toyota highlander is its only certain answer in (Ta,Aa).
The problem of answering CQs over KBs has been the

focus of significant research in the DL community with
deep complexity results for a large variety of DLs (see be-
low), the introduction of new DLs for which query answer-
ing is tractable for data complexity [Hustadt et al., 2005;
Calvanese et al., 2007], the invention of various query an-
swering techniques [Calvanese et al., 2007; Lutz et al., 2009]
and the development of powerful implemented systems; see,
e.g., [Kontchakov and Zakharyaschev, 2014] and references
therein.

Apart from developing query answering techniques, a ma-
jor research problem is KB engineering and maintenance. In

1Since we consider Horn DLs, the results of this paper actually
apply to disjunctions (or unions) of CQs (UCQs). For simplicity,
however, we concentrate on CQs only.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

4240

fact, with typically large data and often complex and tangled
ontologies, tool support for transforming and comparing KBs
is becoming indispensable for applications. To begin with,
KBs are never static entities. Like most software artefacts,
they are updated to incorporate new information, and dis-
tinct versions are introduced for different applications. Thus,
developing support for KB versioning has become a major
research problem [Jiménez-Ruiz et al., 2011; Konev et al.,
2012]. As dealing with a large and semantically tangled KB
can be costly, one may want to extract from it a smaller mod-
ule that is indistinguishable from the whole KB as far as the
given application is concerned [Stuckenschmidt et al., 2009].
Another technique for extracting relevant information is for-
getting, where the task is to replace a given KB by a new
KB using only those concept and role names that are needed
by the application but still providing the same information
about those names as the original KB [Konev et al., 2009;
Koopmann and Schmidt, 2014b]. Finally, the vocabulary of a
given KB may not be convenient for a new application. In
this case, similarly to data exchange in databases [Arenas
et al., 2014]—where data structured under a source schema
is converted to data under a target schema—one may want
to transform a KB in a source signature to a KB given in
a more useful target signature and representing the original
KB in an accurate way. This task is known as knowledge ex-
change [Arenas et al., 2012; 2013].

In this paper, we investigate a relationship between KBs
that is fundamental for all such tasks if querying the data via
CQs is the main application. Let Σ be a signature consist-
ing of a set of concept and role names. We say that KBs K1

and K2 are Σ-query inseparable and write K1 ≡Σ K2 if any
CQ formulated in Σ has the same answers over K1 and K2.
Note that even for Σ containing all concept and role names in
the KBs, Σ-query inseparability does not necessarily imply
logical equivalence: e.g., (∅, {A(a)}) is {A,B}-query insep-
arable from ({B v A}, {A(a)}) but the two KBs are clearly
not logically equivalent. Thus, if KBs are used for purposes
other than querying data via CQs, then different notions of
inseparability are required. We now discuss the applications
of Σ-query inseparability for the tasks above in more detail.

Versioning. Version control systems for KBs provide a range
of operations including, for example, computing the relevant
differences between KBs, merging KBs and recovering KBs.
All these operations rely on checking whether two versions,
K1 andK2, of a KB are indistinguishable from the application
point of view. If that application is querying the data using
CQs over a given signature Σ, then K1 and K2 should be
regarded as indistinguishable just in case they give the same
answers to CQs in Σ. Thus, the basic task for a query-centric
approach to KB versioning is to check whether K1 ≡Σ K2.

Modularisation. Modularisation and module extraction are
major research topics in ontology engineering and mainte-
nance. In module extraction, the problem is to find a (small)
subset of the axioms of a given large KB that is indistinguish-
able from it with respect to the intended application. If that
application is querying a KBK using CQs over a signature Σ,
then the problem is to find a small Σ-query module of K, that
is, a KB K′ ⊆ K with K′ ≡Σ K. Note that one can extract a

minimal Σ-query module from a KB using a polynomial-time
algorithm with the Σ-query inseparability check as an oracle.
To illustrate the notion of Σ-query module, consider the au-
tomotive ontology Ka = (Ta,Aa) described above and the
signature Σm = {Automobile, Engine, poweredBy}. Then
Km = (Tm,Aa) is a Σm-query module of Ka, where Tm is
Minivan v Automobile, Automobile v ∃poweredBy.Engine.

Knowledge Exchange. In knowledge exchange, we want
to transform a KB K1 in a signature Σ1 to a KB K2

in a new signature Σ2 connected to Σ1 via a declarative
mapping specification given by a TBox T12. Such map-
ping specifications between KBs are also known as ontol-
ogy alignments or ontology matchings and have been stud-
ied extensively [Shvaiko and Euzenat, 2013]. If, as above,
we are interested in querying data via CQs, then the tar-
get KB K2 should be a sound and complete representa-
tion of K1 w.r.t. querying data, and so satisfy the condi-
tion K1 ∪ T12 ≡Σ2 K2, in which case it is called a univer-
sal CQ-solution. To illustrate, consider again the ontology
Ka = (Ta,Aa), and let Tae relate the signature Σa of Ka to
Σe = {Car,HybridCar,ElectricMotor,Motor, hasMotor}:

Automobile v Car, Hybrid v HybridCar,
Engine v Motor, EEngine v ElectricMotor,

poweredBy v hasMotor.

Then Ke = (Te,Ae) is a universal CQ-solution, where
Te = { ElectricMotor v Motor, Car v ∃hasMotor.Motor,

HybridCar v Car u ∃hasMotor.ElectricMotor },
Ae = { HybridCar(toyota highlander),Car(nissan note) }.
Forgetting. A KB K′ results from forgetting a signature Σ
in a KB K if K′ ≡sig(K)\Σ K and sig(K′) ⊆ sig(K) \ Σ,
where sig(K) is the signature of K. Thus, the result of for-
getting Σ does not use Σ and gives the same answers to CQs
without symbols in Σ as K. The result of forgetting is also
called a uniform interpolant for K w.r.t. sig(K) \ Σ. Forget-
ting is of interest for a number of applications. Typically,
when reusing an existing KB in a new application, only a
small number of its symbols is relevant, and so instead of
reusing the whole KB, one can take the potentially smaller
KB resulting from forgetting the extraneous symbols. For-
getting can also be used for predicate hiding: if a KB is to be
published, but some part of it has to be concealed from the
public, then this part can be removed by forgetting its sym-
bols [Cuenca Grau and Motik, 2012]. Finally, forgetting can
be used for KB summary: the result of forgetting often pro-
vides a smaller and more focused ontology that summarises
what the original ontology says about the retained symbols,
potentially facilitating KB comprehension. To illustrate, for
Σf = {Automobile, Engine, poweredBy}, the KB (Tf ,Af),
Tf = { Automobile v ∃poweredBy.Engine },
Af = { Automobile(toyota highlander),

Automobile(nissan note) },
is a result of forgetting sig(Ka) \ Σf in Ka.

We investigate the data and combined complexity of decid-
ing Σ-query inseparability of KBs given in various fragments
of the DL Horn-ALCHI [Krötzsch et al., 2013], which in-

4241

clude DL-LiteHcore [Calvanese et al., 2007; Artale et al., 2009],
EL and ELH [Baader et al., 2005] underlying the OWL 2
profiles OWL 2 QL and OWL 2 EL. For all of these DLs,
Σ-query inseparability turns out to be P-complete for data
complexity, which matches the data complexity of CQ evalu-
ation in all of our DLs lying outside the DL-Lite family. The
obtained tight combined complexity results are summarised
in the diagram below:

Horn-ALCHI

Horn-ALCIHorn-ALCH

Horn-ALCELH

EL

DL-LiteHhorn

DL-Litehorn

DL-LiteHcore

DL-Litecore
P

EXPTIME

EXPTIME

P

2EXPTIME

forward strategy

general strategy

backward+forward strategy

Most interesting are EXPTIME- and 2EXPTIME-complete-
ness of DL-LiteHcore and Horn-ALCI, respectively, which
contrast with NP- and EXPTIME-completeness of CQ eval-
uation in these logics. For DL-Lite without role inclusions
and ELH, Σ-query inseparability is P-complete, while CQ
evaluation is NP-complete. In general, it is the combined
presence of inverse roles and qualified existential restric-
tions (or role inclusions) that makes Σ-query inseparability
hard. To establish the upper complexity bounds, we develop
a uniform game-theoretic framework for checking finite Σ-
homomorphic embeddability between (possibly infinite) ma-
terialisations of KBs. All omitted proofs can be found in the
full version at http://tinyurl.com/poa49vf.

2 Horn-ALCHI and its Fragments
All the DLs considered in this paper are Horn fragments of
ALCHI. To define them, we fix lists of individual names ai,
concept names Ai, and role names Pi, for i < ω. A role is a
role name Pi or an inverse role P−i ; we assume (P−i)− = Pi.
ALCI-concepts, C, are defined by the grammar

C ::= Ai | > | ¬C | C1 u C2 | ∃R.C,
where R is a role. We use ⊥, C1 t C2 and ∀R.C as abbrevi-
ations for ¬>, ¬(¬C1 u ¬C2) and ¬∃R.¬C, respectively.
ALC-concepts are ALCI-concepts without inverse roles;
EL-concepts are ALC-concepts without ¬. DL-Litehorn-
concepts are ALCI-concepts without ¬, in which C = >
in every occurrence of ∃R.C. Finally, DL-Litecore-concepts
are DL-Litehorn-concepts without u; in other words, they are
basic concepts of the form>,Ai or ∃R (a shortcut for ∃R.>).

For a DL L, an L-concept inclusion (CI) takes the form
C v D, where C and D are L-concepts. An L-TBox, T ,
contains a finite set of L-CIs. An ALCHI, DL-LiteHhorn and
DL-LiteHcore TBox can also contain a finite set of role inclu-
sions (RIs) R1 v R2, where the Ri are roles. In ALCH and
ELH, TBoxes have RIs but without inverse roles. DL-Lite
TBoxes also contain disjointness constraints B1 u B2 v ⊥
and R1 uR2 v ⊥, for basic concepts Bi and roles Ri.2

To introduce the Horn fragments of these DLs, we require
the following (standard) recursive definition [Hustadt et al.,

2Although role disjointness constraints are not in the syntax of
ALCHI, they play no essential part in our constructions, and the
techniques we develop for ALCHI are also applicable to DL-Lite .

2005; Kazakov, 2009]: a concept C occurs positively in C;
if C occurs positively (respectively, negatively) in C ′ then C
occurs positively (negatively) inC ′uD, ∃R.C ′,D v C ′, and
it occurs negatively (positively) in ¬C ′ and C ′ v D. A TBox
T is Horn if no concept of the form ¬C occurs negatively in
T and no ∃R.¬C occurs positively in T . In the DL Horn-L,
where L is one of our DLs, only Horn-L-TBoxes are allowed.
Clearly, EL- and DL-Lite-TBoxes are Horn by definition.

An ABox,A, is a finite set of assertions of the formAk(ai)
or Pk(ai, aj). An L-TBox T and an ABox A form an L-KB
K = (T ,A); ind(K) is the set of individual names in K.

The semantics for the DLs is defined in the usual way based
on interpretations I = (∆I , ·I) that comply with the unique
name assumption: aIi 6= aIj for i 6= j [Baader et al., 2003].
We write I |= α in case an inclusion or assertion α is true in
I. If I |= α, for all α ∈ T ∪ A, then I is a model of a KB
K = (T ,A); in symbols: I |= K. K is consistent if it has a
model. K |= α means that I |= α for all I |= K.

A conjunctive query (CQ) q(x) is a formula ∃y ϕ(x,y),
where ϕ is a conjunction of atoms of the form Ak(z1) or
Pk(z1, z2) with zi in x,y. A tuple a in ind(K) (of the same
length as x) is a certain answer to q(x) over K = (T ,A) if
I |= q(a) for all I |= K; in this case we write K |= q(a). If
x = ∅, the answer to q is ‘yes’ if K |= q and ‘no’ otherwise.

For combined complexity, the problem ‘K |= q(a)?’ is
NP-complete for the DL-Lite logics [Calvanese et al., 2007],
EL and ELH [Rosati, 2007], and EXPTIME-complete for the
remaining Horn DLs above [Eiter et al., 2008]. For data com-
plexity (with fixed T and q), this problem is in AC0 for the
DL-Lite logics [Calvanese et al., 2007] and P-complete for
the remaining DLs [Rosati, 2007; Eiter et al., 2008].

A signature, Σ, is a set of concept and role names. By a
Σ-concept, Σ-role, Σ-CQ, etc. we understand any concept,
role, CQ, etc. constructed using the names from Σ. Given
an interpretation I and a signature Σ, we define the Σ-types
tIΣ(u) and rIΣ(u, v) of u, v ∈ ∆I by taking:

tIΣ(u) = {Σ-concept name A | u ∈ AI },
rIΣ(u, v) = {Σ-role R | (u, v) ∈ RI }.

3 Σ-Query Entailment and Inseparability
Now we define the central notions of the paper, Σ-query en-
tailment and inseparability, and establish their semantic char-
acterisation based on the notion of materialisation. We then
show how to construct materialisations by developing a the-
ory of finitely generated materialisations.
Definition 1. Let K1 and K2 be KBs and Σ a signature.
We say that K1 Σ-query entails K2 if K2 |= q(a) implies
K1 |= q(a), for all Σ-CQs q(x) and all tuples a in ind(K2).
Knowledge bases K1 and K2 are Σ-query inseparable if they
Σ-query entail each other; in this case we write K1 ≡Σ K2.

Checking Σ-query inseparability can be trivially reduced
to two Σ-query entailment checks. Conversely, for most lan-
guages we have a semantically transparent reduction of Σ-
query entailment to Σ-query inseparability:
Theorem 1. Let L be any of our DLs containing EL or hav-
ing role inclusions. Then Σ-query entailment of L-KBs is
LOGSPACE-reducible to Σ-query inseparability of L-KBs.

4242

a
A

u

P

R

S T S T

Q

Q Q Q

a
A

σ

T,Q

R

S,Q

R

T,Q

R

S,Q

M2

M1

a)

a
A

u

P

R−

S−

T−

S−

Q
−

Q−

aσ4
3σ4

2σ4
1

σ4
0

T,Q

R

S,Q

R

T,Q

R

S,Q

0 1 2 2 3

3

4

4

GΣ
2

MΣ
1

b)

Figure 1: a) materialisationsM1 andM2 of K1 and K2 and b) a 4-winning (backward) strategy in GΣ(G2,M1).

To prove the upper complexity bounds for both problems,
we give a semantic characterisation of Σ-query entailment in
terms of materialisations and finite Σ-homomorphisms. An
interpretationM is a materialisation of a KB K if K |= q(a)
iffM |= q(a), for all CQs q(x) and all tuples a in ind(K).
We say that K is materialisable if it has a materialisation.

Suppose Mi is a materialisation of Ki, for i = 1, 2.
A function h : ∆M2 → ∆M1 is a Σ-homomorphism if
tM2
Σ (u) ⊆ tM1

Σ (h(u)) and rM2
Σ (u, v) ⊆ rM1

Σ (h(u), h(v)),
for all u, v ∈ ∆M2 , and h(aM2) = aM1 for all a ∈ ind(K2)
that belong to a Σ-concept or a Σ-role. As answers to Σ-CQs
are preserved under Σ-homomorphisms, K1 Σ-query entails
K2 if there is a Σ-homomorphism from M2 to M1. How-
ever, the converse does not necessarily hold:

Example 1. ConsiderKi = (Ti, {A(a)}), for i = 1, 2, where

T1 = {A v ∃S, ∃S− v ∃T, ∃T− v ∃S,
S v Q, T v Q, ∃Q− v ∃R },

T2 = { A v ∃P, ∃P− v ∃R−, ∃R v ∃S− u ∃Q−,
∃Q v ∃Q−, ∃S v ∃T−, ∃T v ∃S− }.

MaterialisationsMi of Ki, for i = 1, 2, are shown in Fig. 1a.
Let Σ = {Q,R, S, T}. Then there is no Σ-homomorphism
fromM2 toM1 (as rM2

Σ (a, u) = ∅, we can map u to, say,
σ but then only the shaded part of M2 can be mapped Σ-
homomorphically toM1). However, for any Σ-query q(x),
M2 |= q(a) impliesM1 |= q(a) as any finite subinterpreta-
tion ofM2 can be Σ-homomorphically mapped toM1.

We say that M2 is finitely Σ-homomorphically embed-
dable into M1 if, for every finite subinterpretation M′2 of
M2, there exists a Σ-homomorphism fromM′2 toM1. Intu-
itively, finiteM′2 can be regarded as a CQ whose variables are
elements of ∆M2 and the answer variables are the ind(K2).

Theorem 2. Suppose Ki is a consistent KB with a material-
isationMi, i = 1, 2. Then K1 Σ-query entails K2 iffM2 is
finitely Σ-homomorphically embeddable intoM1.

One problem with applying Theorem 2 is that material-
isations are in general infinite. We address this problem
by introducing finite representations of materialisations, and
show that Horn-ALCHI and all of its fragments enjoy hav-
ing such representations. Let K = (T ,A) be a KB and let
G = (∆G , ·G ,;) be a finite structure such that

– ∆G = ind(K) ∪ Ω, for some Ω with ind(K) ∩ Ω = ∅,
– (∆G , ·G) is an interpretation with PGi ⊆ ind(K)× ind(K),

for all role names Pi,

– (∆G ,;) is a directed graph (possibly containing loops)
with nodes ∆G and arcs ;⊆ ∆G × Ω, where each u; v
is labelled with a set (u, v)G 6= ∅ of roles satisfying the
condition: if ui ; v and u2 ; v then (u1, v)G = (u2, v)G.

A path σ in G is a sequence u0 . . . un with u0 ∈ ind(K) and
ui ; ui+1 for i < n. Denote the last element of σ by tail(σ).
The unravelling M of G is an interpretation (∆M, ·M),
where ∆M is the set of paths in G and ·M is given by:

aM = a, for each a ∈ ind(K),

AM = {σ | tail(σ) ∈ AG },
PM = PG ∪ { (σ, σu) | tail(σ) ; u, P ∈ (tail(σ), u)G }

∪ { (σu, σ) | tail(σ) ; u, P− ∈ (tail(σ), u)G },
for concept and role names A and P . We call G a generating
structure for K if its unravelling is a materialisation of K.
We say that a DL L has finitely generated materialisations if
every L-KB has a generating structure. In Example 1,M2 is
generated by the structure G2 in Fig. 1b.
Theorem 3. Horn-ALCHI and all its fragments defined
above have finitely generated materialisations. Moreover,
– for any L ∈ {ALCHI,ALCI,ALCH,ALC} and any

Horn-L KB (T ,A), a generating structure can be con-
structed in time |A| · 2p(|T |), p a polynomial;

– for anyL in the EL and DL-Lite families introduced above
and any L-KB (T ,A), a generating structure can be con-
structed in time |A| · p(|T |), p a polynomial.

4 Σ-Query Entailment by Games
Suppose a DL L has finitely generated materialisations. We
now show that the problem of checking finite Σ-homo-
morphic embeddability between materialisations of L-KBs
can be reduced to the problem of finding a winning strategy
in a game played on the generating structures for these KBs.

For a generating structure G for K and a signature Σ, the
Σ-types tGΣ(u) and rGΣ(u, v) of u, v ∈ ∆G are defined by:

tGΣ(u) ={Σ-concept name A | u ∈ AG },

rGΣ(u, v) =


{Σ-role R | (u, v) ∈ RG }, if u, v ∈ ind(K),

{Σ-role R | R ∈ (u, v)G }, if u; v,

∅, otherwise,

where (P−)G is the converse of PG . We write u ;Σ v if
u; v and rGΣ(u, v) 6= ∅.

Suppose Ki is a consistent L-KB, for i = 1, 2, and Σ a
signature. Let Gi = (∆Gi , ·Gi ,;i) be a generating structure

4243

for Ki and letMi be its unravelling; GΣ
i andMΣ

i denote the
restrictions of Gi andMi to Σ. We begin with a very simple
game on the finite generating structure GΣ

2 and the possibly
infinite materialisationMΣ

1 .
Infinite Game. This game is played by two players. Intu-
itively, player 1 tries to construct a homomorphism, while
player 2 wants to impede him by choosing a path in M2

to which player 1 cannot find a homomorphic image given
his previous choices. The states of the game are of the form
si = (ui 7→ σi), for i ≥ 0, where ui ∈ ∆G2 and σi ∈ ∆M1

satisfy the following condition:
(s1) tG2Σ (ui) ⊆ tM1

Σ (σi).
The game starts in a state s0 = (u0 7→ σ0) with σ0 = u0

in case u0 ∈ ind(K2) belongs to a Σ-concept or a Σ-role. In
each round i > 0, player 2 challenges player 1 with some
ui ∈ ∆G2 such that ui−1 ;Σ

2 ui. Player 1 has to respond
with a σi ∈ ∆M1 satisfying (s1) and
(s2) rG2Σ (ui−1, ui) ⊆ rM1

Σ (σi−1, σi).
This gives the next state si = (ui 7→ σi). Note that of all the
ui only u0 may be an ABox individual; however, there is no
such a restriction on the σi. A play of length n ≥ 0 starting
from s0 is any sequence s0, . . . , sn of states obtained as de-
scribed above. For an ordinal λ ≤ ω, we say that player 1 has
a λ-winning strategy in the game GΣ(G2,M1) starting from
a state s0 if, for any play of length i < λ, which starts from s0

and conforms with this strategy, and any challenge of player 2
in round i+1, player 1 has a response. The next theorem gives
a game-theoretic flavour to the criterion of Theorem 2.
Theorem 4. M2 is finitely Σ-homomorphically embeddable
intoM1 iff the following conditions hold:
(abox) tM2

Σ (a) ⊆ tM1
Σ (a), rM2

Σ (a, b) ⊆ rM1
Σ (a, b), for any

a, b ∈ ind(K2) that belong to a Σ-concept or a Σ-role;
(win) for any u0 ∈ ∆G2 and n < ω, there exists σ0 ∈ ∆M1

such that player 1 has an n-winning strategy in the game
GΣ(G2,M1) starting from (u0 7→ σ0).

Example 2. Consider GΣ
2 forK2,MΣ

1 forK1 and Σ from Ex-
ample 1. For each n < ω, player 1 has an n-winning strategy
from (u 7→ σn0): for n = 4, it is shown in Fig. 1b by dotted
lines (in round 2, player 2 has two possible challenges).

The criterion of Theorem 4 does not seem to be a big im-
provement on Theorem 2 as we still have to deal with an in-
finite materialisation. Our aim now is to replace (win) by a
more complex game on the finite generating structures G2 and
G1. We consider four types, τ , of strategies in GΣ(G2,M1)
and for each of them we define a game GτΣ(G2,G1) such that,
for any u0 ∈ ∆G2 , the following conditions are equivalent:
(<ωτ) for every n < ω, player 1 has an n-winning τ -

strategy inGΣ(G2,M1) starting from some (u0 7→ σn0);
(ωτ) player 1 has an ω-winning strategy inGτΣ(G2,G1) start-

ing from some state depending on u0 and τ .
We begin with simplest ‘forward’ winning strategies.
Forward Strategies. We say that a λ-strategy (λ ≤ ω) for
player 1 in the game GΣ(G2,M1) is forward if, for any
play of length i − 1 < λ, which conforms with this strat-
egy, and any challenge ui−1 ;Σ

2 ui by player 2, the re-
sponse σi of player 1 is such that either σi−1, σi ∈ ind(K1) or

σi = σi−1w, for some w ∈ ∆G1 . If the Gi, i = 1, 2, are such
that the Σ-labels on ;i-edges contain no inverse roles, then
every strategy in GΣ(G2,M1) is forward. This is the case for
DLs without inverse roles: Horn-ALCH, EL, etc.

The existence of a forward λ-winning strategy for player 1
in GΣ(G2,M1) is equivalent to the existence of such a strat-
egy in the game GfΣ(G2,G1), which is defined similarly to
GΣ(G2,M1) except that it is played on G2 and G1, and the re-
sponsewi ∈ ∆G1 of player 1 to a challenge ui−1 ;Σ

2 ui must
be such that either wi−1, wi ∈ ind(K1) or wi−1 ;1 wi. This
game is a standard reachability game on finite graphs, where
the existence of ω-winning strategies for player 1 can be
checked in polynomial time in the size of G1 and G2 [Mazala,
2001]. By Theorem 3, we obtain the P and EXPTIME upper
complexity bounds for ELH and Horn-ALCH, respectively.
In contrast to forward strategies, the winning strategies of Ex-
ample 2 can be described as ‘backward.’

Backward Strategies. A λ-strategy for player 1 in
GΣ(G2,M1) is backward if, for any play of length i− 1 < λ,
which conforms with this strategy, and any challenge
ui−1 ;Σ

2 ui by player 2, the response σi of player 1 is
the immediate predecessor of σi−1 in M1 in the sense that
σi−1 = σiw, for some w ∈ ∆G1 ; player 1 loses if σi−1 ∈
ind(K1). Note that, sinceM1 is tree-shaped, the response of
player 1 to any other challenge ui−1 ;Σ

2 u′i must be the same
σi. That is why the states of the game GbΣ(G2,G1) are of the
form (Ξi 7→ wi), where Ξi is the set of all ;Σ

2 -successors
of elements of Ξi−1 (forward strategies need only one suc-
cessor). The more complex structure of the states leads to an
increase in the complexity: checking whether player 1 has an
ω-winning strategy in GbΣ(G2,G1) is CONP-hard.

Observe that in the case of DL-Litecore and DL-Litehorn
(which have inverse roles but no RIs), generating structures
G = (∆G , ·G ,;) are so that, for any u ∈ ∆G and R, there
is at most one v with u ; v and R ∈ rG(u, v) [Kontchakov
et al., 2010a]. As a result, any n-winning strategy consists
of a (possibly empty) backward part followed by a (possibly
empty) forward part. Moreover, in the backward games for
these DLs, the sets Ξi are singletons. Thus, the number of
states in the combined backward/forward games is polyno-
mial, and the existence of winning strategies is in P.

In general, however, the forward strategy in the combina-
tion is not enough, and we require start-bounded strategies.

Start-Bounded Strategies. A strategy for player 1 in the
gameGΣ(G2,M1) starting from (u0 7→ σ0) is start-bounded
if it never leads to (ui 7→ σi) with σ0 = σiw, for some
w ∈ ∆G1 and i > 0. In other words, player 1 cannot use ele-
ments ofM1 that are located closer to the ABox than σ0; the
ABox individuals inM1 can only be used if σ0 ∈ ind(K1).
Consider GΣ

2 andMΣ
1 in Fig. 2a. Player 1 has a winning start-

bounded strategy from (u2 7→ σ1) as shown in Fig. 2a by
dashed lines (indices indicate rounds). Observe that player 1
moves forwards and backwards along ;1 inM1: σ4 = σ3w
is visited in round 2 between visits to σ3 in rounds 1 and 3.

Start-bounded finite game GsΣ(G2,G1) ensures that
player 1 moves only forwards along ;1 in G1 and so, he
has to guess all elements of G2 that are mapped to the same
element in M1. The states of GsΣ(G2,G1) are of the form

4244

u2 u6T u7P u8P−
1

u9T−
1

σ1 σ3

T, T1

σ4

P, P1
a

0
4

1 32

GΣ
2

MΣ
1 a)

u1 u2

R−

u3

u6

S−

T u7P u8P−
1

u9T−
1

u10

S−
1σ2

σ1

R

σ3 T, T1

σ4
P, P1

a
S, S1

0

1 1

2 2

GΣ
2

MΣ
1 b)

Figure 2: a) start-bounded strategy and b) general strategy as a composition of a backward and start-bounded strategies.

si = (Γi,Ξi 7→ wi), where Ξi is the guess and Γi is required
to ensure that only forward moves are possible.

Consider GΣ
2 andMΣ

1 in Fig. 2a. Suppose that G1 is iso-
morphic to M1 and denote by wi the element of G1 that
corresponds to σi in M1. Then player 1 has an ω-winning
strategy in GsΣ(G2,G1) from (∅, {u2, u9} 7→ w1). Player 2
challenges with u2 ;Σ

2 u6, and player 1 responds with
({u2, u9}, {u6, u8} 7→ w3). Then player 2 picks u6 ;Σ

2 u7

and player 1 responds with ({u6, u8}, {u7} 7→ w4), where
the game ends. Note the crucial guesses {u2, u9} 7→ w1 and
{u6, u8} 7→ w3 made by player 1. If player 1 responded with
({u2, u9}, {u6} 7→ w3) (and failed to guess that u8 must also
be mapped to w3), then after the challenge u6 ;Σ

2 u7 and the
only possible response ({u6}, {u7} 7→ w4)), player 2 would
pick u7 ;Σ

2 u8, to which player 1 could not respond.
General Strategies. A general winning strategy in the game
GΣ(G2,M1) is composed of one backward and a number of
start-bounded strategies. Consider, for example, GΣ

2 andMΣ
1

in Fig. 2b. Starting from (u1 7→ σ2), player 1 can respond
to the challenges u1 ;Σ

2 u2 ;Σ
2 u3 according to the back-

ward strategy; to u2 ;Σ
2 u6 ;Σ

2 u7 ;Σ
2 u8 ;Σ

2 u9 ac-
cording to the start-bounded strategy as above, see Fig. 2a;
while u9 ;Σ

2 u10 is again responded according to the back-
ward strategy. We can combine the two backward strategies
into a single one, but keep the start-bounded one separate.

In general, the finite game GgΣ(G2,G1) begins as the back-
ward game but with states of the form (Ξi 7→ wi,Ψi), where
Ξi and wi are as above and Ψi indicates initial challenges
in start-bounded games. In each round i > 0, player 2 can
choose from two options. First, if wi−1 /∈ ind(K1), he can
challenge player 1 with the set Ψi−1 (that is, similar to the
backward game but with a possibly smaller Ψi−1 instead of
the set of all successors). Second, player 2 can launch the
start-bounded game from (∅,Ξi−1 7→ wi−1), where his first
challenge cannot be picked from Ψi−1.

The full game graph is exponential in the size of the gener-
ating structures, and so checking whether player 1 has an ω-
winning strategy can also be done in exponential time. This
matches the EXPTIME-hardness of checking whether player 1
has an ω-winning strategy in the start-bounded game.
Theorem 5. For combined complexity, both KB Σ-query in-
separability and KB Σ-query entailment are
(f) P-complete in EL and ELH and EXPTIME-complete in

Horn-ALC and Horn-ALCH;
(b+f) P-complete in DL-Litecore and DL-Litehorn;
(b+s) EXPTIME-complete in DL-LiteHhorn and DL-LiteHcore;

2EXPTIME-complete in Horn-ALCHI, Horn-ALCI.
For data complexity, all these problems are P-complete.

5 Related Work

Σ-query inseparability of KBs has not been investigated sys-
tematically before. However, the polynomial upper bound for
ELwas established as a preliminary step to study TBox query
inseparability [Lutz and Wolter, 2010]. This notion was also
used to study forgetting in DL-LiteNbool [Wang et al., 2010].

Σ-query inseparability of KBs is closely related to knowl-
edge exchange between KBs and inseparability between
TBoxes. Suppose K1 and K2 are KBs given in disjoint sig-
natures Σ1 and Σ2, and T12 consists of inclusions of the form
S1 v S2, where the Si are concept (or role) names in Σi.
Then deciding whether K1 ∪ T12 ≡Σ2 K2 is called the mem-
bership problem for universal CQ-solutions. For DLs L with
role inclusions, this problem is in fact a Σ2-query insepara-
bility problem in L, and so the complexity upper bounds for
Σ-query inseparability can be applied directly to obtain upper
bounds for the membership problem. Conversely, Σ-query
entailment for any of our DLs L is LOGSPACE-reducible to
the membership problem for universal CQ-solutions inL, and
so we can also apply complexity lower bounds for query in-
separability of KBs.

As for TBox inseparability, recall that T1 and T2 are Σ-
query inseparable if, for all Σ-ABoxes A, the KBs (T1,A)
and (T2,A) are Σ-query inseparable. This notion has been
extensively studied [Kontchakov et al., 2010b; Lutz and
Wolter, 2010; Konev et al., 2011; 2012]. TBox and KB insep-
arabilities have different applications. The former supports
ontology engineering when data is unknown or changes fre-
quently: one can equivalently replace one TBox with another
only if they return the same answers to queries over every Σ-
ABox. In contrast, KB inseparability is useful in applications
where data is stable—such as knowledge exchange or vari-
ants of module extraction and forgetting with fixed data—in
order to use the KB in a new application or as a compilation
step to make CQ answering more efficient. For many DLs,
TBox Σ-query inseparability is harder than KB query insep-
arability: in DL-Litehorn, the space of relevant ABox coun-
terexamples is exponential and, in fact, TBox inseparability is
NP-hard, while KB inseparability is in P. Similarly, Σ-query
inseparability of EL KBs is tractable, while Σ-query insep-
arability of TBoxes is EXPTIME-complete. The complexity
of TBox inseparability for Horn-DLs extending Horn-ALC
is still unknown. For work on other notions of TBox insep-
arability and the corresponding notions of modules and for-
getting, the reader is referred to [Cuenca Grau et al., 2008;
Konev et al., 2009; Del Vescovo et al., 2011; Nikitina and
Rudolph, 2014; Nikitina and Glimm, 2012; Lutz et al., 2012;
Koopmann and Schmidt, 2014a; Nortje et al., 2013].

4245

References
[Artale et al., 2009] A. Artale, D. Calvanese, R. Kontchakov, and

M. Zakharyaschev. The DL-Lite family and relations. JAIR,
39:1–69, 2009.

[Arenas et al., 2012] M. Arenas, E. Botoeva, D. Calvanese,
V. Ryzhikov, and E. Sherkhonov. Exchanging description logic
knowledge bases. In KR, 2012.

[Arenas et al., 2013] M. Arenas, J. Pérez, and J. L. Reutter. Data
exchange beyond complete data. JACM, 60:28, 2013.

[Arenas et al., 2014] M. Arenas, P. Barceló, L. Libkin, and
F. Murlak. Foundations of Data Exchange. CUP, 2014.

[Baader et al., 2003] F. Baader, D. Calvanese, D. McGuinness,
D. Nardi, and P. F. Patel-Schneider, editors. The Description
Logic Handbook: Theory, Implementation and Applications.
CUP, 2003 (2nd edition, 2007).

[Baader et al., 2005] F. Baader, S. Brandt, and C. Lutz. Pushing the
EL envelope. In IJCAI, 2005.

[Calvanese et al., 2007] D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, and R. Rosati. Tractable reasoning and effi-
cient query answering in description logics: The DL-Lite family.
J. Aut. Reasoning, 39:385–429, 2007.

[Cuenca Grau and Motik, 2012] B. Cuenca Grau and B. Motik.
Reasoning over ontologies with hidden content: The import-by-
query approach. JAIR, 45:197–255, 2012.

[Cuenca Grau et al., 2008] B. Cuenca Grau, I. Horrocks, Y. Kaza-
kov, and U. Sattler. Modular reuse of ontologies: Theory and
practice. JAIR, 31:273–318, 2008.

[Del Vescovo et al., 2011] C. Del Vescovo, B. Parsia, U. Sattler,
and T. Schneider. The modular structure of an ontology: Atomic
decomposition. In IJCAI, 2011.

[Eiter et al., 2008] T. Eiter, G. Gottlob, M. Ortiz, and M. Simkus.
Query answering in the description logic Horn-SHIQ. In
JELIA, 2008.

[Giese et al., 2013] M. Giese, D. Calvanese, P. Haase, I. Hor-
rocks, Y. Ioannidis, H. Kllapi, M. Koubarakis, M. Lenzerini,
R. Möller, M. Rodriguez-Muro, Ö. Özcep, R. Rosati, R. Schlatte,
M. Schmidt, A. Soylu, A. Waaler. Scalable end-user access to big
data. In Big Data Computing, 2013.

[Hitzler et al., 2009] P. Hitzler, M. Krötzsch, S. Rudolph. Founda-
tions of Semantic Web Technologies. CRC, 2009.

[Hustadt et al., 2005] U. Hustadt, B. Motik, and U. Sattler. Data
complexity of reasoning in very expressive description logics. In
IJCAI, 2005.

[Jiménez-Ruiz et al., 2011] E. Jiménez-Ruiz, B. Cuenca Grau,
I. Horrocks, and R. Berlanga Llavori. Supporting concurrent
ontology development: Framework, algorithms and tool. Data
Knowl. Eng., 70(1):146–164, 2011.

[Kazakov, 2009] Y. Kazakov. Consequence-driven reasoning for
Horn-SHIQ ontologies. In IJCAI, 2009.

[Konev et al., 2009] B. Konev, D. Walther, and F. Wolter. Forget-
ting and uniform interpolation in large-scale description logic ter-
minologies. In IJCAI, 2009.

[Konev et al., 2011] B. Konev, R. Kontchakov, M. Ludwig,
T. Schneider, F. Wolter, M. Zakharyaschev. Conjunctive query
inseparability of OWL 2 QL TBoxes. In AAAI, 2011.

[Konev et al., 2012] B. Konev, M. Ludwig, D. Walther, and
F. Wolter. The logical difference for the lightweight description
logic EL. JAIR, 44:633–708, 2012.

[Kontchakov and Zakharyaschev, 2014] R. Kontchakov and M. Za-
kharyaschev. An introduction to description logics and query
rewriting. In RW, 2014.

[Kontchakov et al., 2010a] R. Kontchakov, C. Lutz, D. Toman,
F. Wolter, and M. Zakharyaschev. The combined approach to
query answering in DL-Lite. In KR, 2010.

[Kontchakov et al., 2010b] R. Kontchakov, F. Wolter, and M. Za-
kharyaschev. Logic-based ontology comparison and module ex-
traction, with an application to DL-Lite. Artif. Intell., 174:1093–
1141, 2010.

[Koopmann and Schmidt, 2014a] P. Koopmann and R. A. Schmidt.
Count and forget: Uniform interpolation of SHQ-ontologies. In
IJCAR, 2014.

[Koopmann and Schmidt, 2014b] P. Koopmann and R. A. Schmidt.
Forgetting and uniform interpolation for ALC-ontologies with
ABoxes. In DL, 2014.

[Krötzsch et al., 2013] M. Krötzsch, S. Rudolph, and P. Hitzler.
Complexities of Horn description logics. ACM Trans. Comput.
Log., 14(1):2, 2013.

[Lutz and Wolter, 2010] C. Lutz and F. Wolter. Deciding insepa-
rability and conservative extensions in the description logic EL.
J. Symbolic Computation, 45(2):194–228, 2010.

[Lutz et al., 2009] C. Lutz, D. Toman, and F. Wolter. Conjunctive
query answering in the description logic EL using a relational
database system. In IJCAI, 2009.

[Lutz et al., 2012] C. Lutz, I. Seylan, and F. Wolter. An automata-
theoretic approach to uniform interpolation and approximation in
the description logic EL. In KR, 2012.

[Mazala, 2001] R. Mazala. Infinite games. In Automata, Logics,
and Infinite Games, pages 23–42, 2001.

[Nikitina and Glimm, 2012] N. Nikitina and B. Glimm. Hitting the
sweetspot: Economic rewriting of knowledge bases. In ISWC,
2012.

[Nikitina and Rudolph, 2014] N. Nikitina and S. Rudolph.
(Non-)Succinctness of uniform interpolants of general termi-
nologies in the description logic EL. Artif. Intell., 215:120–140,
2014.

[Nortje et al., 2013] R. Nortje, K. Britz, and T. Meyer. Reachability
modules for the description logic SRIQ. In LPAR, 2013.

[Poggi et al., 2008] A. Poggi, D. Lembo, D. Calvanese, G. De Gia-
como, M. Lenzerini, and R. Rosati. Linking data to ontologies.
J. Data Semantics, X:133–173, 2008.

[Polleres et al., 2013] A. Polleres, A. Hogan, R. Delbru, and J. Um-
brich. RDFS and OWL reasoning for Linked Data. In RW, 2013.

[Rosati, 2007] R. Rosati. On conjunctive query answering in EL.
In DL, 2007.

[Shvaiko and Euzenat, 2013] P. Shvaiko and J. Euzenat. Ontology
matching: State of the art and future challenges. IEEE Trans.
Knowl. Data Eng., 25(1):158–176, 2013.

[Stuckenschmidt et al., 2009] H. Stuckenschmidt, C. Parent, and
S. Spaccapietra, editors. Modular Ontologies: Concepts, The-
ories and Techniques for Knowledge Modularization. Springer,
2009.

[Wang et al., 2010] Z. Wang, K. Wang, R. W. Topor, and J. Z. Pan.
Forgetting for knowledge bases in DL-Lite. Ann. Math. Artif.
Intell., 58(1–2):117–151, 2010.

4246

