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Abstract

We investigate conjunctive query inseparability of description
logic (DL) knowledge bases (KBs) with respect to a given
signature, a fundamental problem for KB versioning, module
extraction, forgetting and knowledge exchange. We study the
data and combined complexity of deciding KB query insep-
arability for fragments of Horn-ALCHI, including the DLs
underpinning OWL 2 QL and OWL 2 EL. While all of these
DLs are P-complete for data complexity, the combined com-
plexity ranges from P to EXPTIME and 2EXPTIME. We also
resolve two major open problems for OWL 2 QL by showing
that TBox query inseparability and the membership problem
for universal UCQ-solutions in knowledge exchange are both
EXPTIME-complete for combined complexity.

Introduction
A description logic (DL) knowledge base (KB) consists of a
terminological box (TBox), storing conceptual knowledge,
and an assertion box (ABox), storing data. Typical applica-
tions of KBs involve answering queries over incomplete data
sources (ABoxes) augmented by ontologies (TBoxes) that
provide additional information about the domain of inter-
est as well as a convenient vocabulary for user queries. The
standard query language in such applications, which bal-
ances expressiveness and computational complexity, is the
language of conjunctive queries (CQs).

With typically large data, often tangled ontologies, and
the hard problem of answering CQs over ontologies, vari-
ous transformation and comparison tasks are becoming in-
dispensable for KB engineering and maintenance. For ex-
ample, to make answering certain CQs more efficient, one
may want to extract from a given KB a smaller module re-
turning the same answers to those CQs as the original KB;
to provide the user with a more convenient query vocabu-
lary, one may want to reformulate the KB in a new language.
These tasks are known as module extraction (Stucken-
schmidt, Parent, and Spaccapietra 2009) and knowledge ex-
change (Arenas et al. 2012); other relevant tasks include ver-
sioning, revision and forgetting (Jiménez-Ruiz et al. 2011;
Wang, Wang, and Topor 2010; Lin and Reiter 1994).

In this paper, we investigate the following relationship be-
tween KBs that is fundamental for all such tasks. Let Σ be
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a signature consisting of concept and role names. We call
KBs K1 and K2 Σ-query inseparable and write K1 ≡Σ K2

if any CQ formulated in Σ has the same answers over K1

and K2. Note that even for Σ containing all concept and
role names, Σ-query inseparability does not necessarily im-
ply logical equivalence. The relativisation to (smaller) sig-
natures is crucial to support the tasks mentioned above:

(versioning) When comparing two versions K1 and K2 of
a KB with respect to their answers to CQs in a relevant
signature Σ, the basic task is to check whetherK1 ≡Σ K2.

(modularisation) A Σ-module of a KB K is a KB K′ ⊆ K
such that K′ ≡Σ K. If we are only interested in answer-
ing CQs in Σ over K, then we can achieve our aim by
querying any Σ-module of K instead of K itself.

(knowledge exchange) In knowledge exchange, we want
to transform a KBK1 in a signature Σ1 to a new KBK2 in
a disjoint signature Σ2 connected to Σ1 via a declarative
mapping specification given by a TBox T12. Thus, the tar-
get KBK2 should satisfy the conditionK1∪T12 ≡Σ2 K2,
in which case it is called a universal UCQ-solution (CQ
and UCQ inseparabilities coincide for Horn DLs).

(forgetting) A KB K′ results from forgetting a signature Σ
in a KB K if K′ ≡sig(K)\Σ K and sig(K′) ⊆ sig(K) \ Σ.
Thus, the result of forgetting Σ does not use Σ and gives
the same answers to CQs without symbols in Σ as K.

We investigate the data and combined complexity of decid-
ing Σ-query inseparability for KBs given in various frag-
ments of the DL Horn-ALCHI (Krötzsch, Rudolph, and
Hitzler 2013), which include DL-LiteHcore (Calvanese et al.
2007) and EL (Baader, Brandt, and Lutz 2005) underly-
ing the W3C profiles OWL 2 QL and OWL 2 EL. For all of
these DLs, Σ-query inseparability turns out to be P-complete
for data complexity, which matches the data complexity of
CQ evaluation for all of our DLs lying outside the DL-
Lite family. For combined complexity, the obtained tight
complexity results are summarised in the diagram below.
Most interesting are EXPTIME-completeness of DL-LiteHcore
and 2EXPTIME-completeness of Horn-ALCI, which con-
trast with NP-completeness and EXPTIME-completeness of
CQ evaluation for those logics. For DL-Lite without role
inclusions and ELH, Σ-query inseparability is P-complete,
while CQ evaluation is NP-complete. In general, it is the
combined presence of inverse roles and qualified existential



restrictions (or role inclusions) that makes Σ-query insepa-
rability hard. To establish the upper complexity bounds, we
develop a uniform game-theoretic technique for checking fi-
nite Σ-homomorphic embeddability between (possibly infi-
nite) materialisations of KBs.

Horn-ALCHI

Horn-ALCIHorn-ALCH

Horn-ALCELH

EL

DL-LiteHhorn

DL-Litehorn

DL-LiteHcore

DL-LitecoreP
Thms. 12, 24

EXPTIME
Thms. 12, 25

EXPTIME
Thms. 23, 25

P
Thms. 16, 24

2EXPTIME
Thms. 23, 25

forward strategy

arbitrary strategy

backward+forward strategy

Σ-query inseparability for KBs has not been investigated
systematically before. The polynomial upper bound for EL
was established as a preliminary step to study TBox insep-
arability (Lutz and Wolter 2010), and this notion was also
used to study forgetting for DL-LiteNbool (Wang et al. 2010).

We apply our results to resolve two important open prob-
lems. First, we show that the membership problem for uni-
versal UCQ-solutions in knowledge exchange for KBs in
DL-LiteHcore is EXPTIME-complete for combined complex-
ity, which settles an open question of (Arenas et al. 2013),
where only PSPACE-hardness was established. We also
show that Σ-query inseparability of DL-LiteHcore TBoxes is
EXPTIME-complete, which closes the PSPACE–EXPTIME
gap that was left open by Konev et al. (2011).

Recall that TBoxes T1 and T2 are Σ-query inseparable if,
for all Σ-ABoxesA (which only use concept and role names
from Σ), the KBs (T1,A) and (T2,A) are Σ-query insepa-
rable. TBox and KB inseparabilities have different applica-
tions. The former supports ontology engineering when data
is not known or changes frequently: one can equivalently
replace one TBox with another only if they return the same
answers to queries for every Σ-ABox. In contrast, KB insep-
arability is useful in applications where data is stable—such
as knowledge exchange or variants of module extraction and
forgetting with fixed data—in order to use the KB in a new
application or as a compilation step to make CQ answering
more efficient. As we show below, TBox and KB Σ-query
inseparabilities also have different computational properties.

TBox Σ-query inseparability has been extensively stud-
ied (Kontchakov, Wolter, and Zakharyaschev 2010; Lutz
and Wolter 2010; Konev et al. 2012). For work on dif-
ferent notions of TBox inseparability and the correspond-
ing notions of modules and forgetting, we refer the reader
to (Cuenca Grau et al. 2008; Konev, Walther, and Wolter
2009; Del Vescovo et al. 2011; Nikitina and Rudolph 2012;
Nikitina and Glimm 2012; Lutz, Seylan, and Wolter 2012).

Omitted proofs can be found in the full version available
at www.dcs.bbk.ac.uk/˜roman/KR2014.pdf.

Horn-ALCHI and its Fragments
All the DLs for which we investigate KB Σ-query insepara-
bility are Horn fragments of ALCHI. To define these DLs,
we fix sequences of individual names ai, concept names Ai,

and role names Pi, where i < ω. A role is either a role name
Pi or an inverse role P−i ; we assume that (P−i )− = Pi.
ALCI-concepts, C, are defined by the grammar

C ::= Ai | > | ⊥ | ¬C | C1uC2 | C1tC2 | ∃R.C | ∀R.C,
where R is a role. ALC-concepts are ALCI-concepts with-
out inverse roles; EL-concepts are ALC-concepts without
the constructs ⊥, t, ¬ and ∀R.C. DL-Litehorn-concepts are
ALCI-concepts without t, ¬ and ∀R.C, in which C = >
in every occurrence of ∃R.C. Finally, DL-Litecore-concepts
are DL-Litehorn-concepts without u; in other words, they are
basic concepts of the form ⊥, >, Ai or ∃R.>.

For a DL L, an L-concept inclusion (CI) takes the form
C v D, where C and D are L-concepts. An L-TBox, T ,
contains a finite set of L-CIs. An ALCHI, DL-LiteHhorn and
DL-LiteHcore TBox can also contain a finite set of role in-
clusions (RIs) R1 v R2, where the Ri are roles. In ELH
TBoxes, RIs do not have inverse roles. DL-Lite TBoxes may
also contain disjointness constraints B1 u B2 v ⊥ and
R1 uR2 v ⊥, for basic concepts Bi and roles Ri.

To introduce the Horn fragments of these DLs, we re-
quire the following (standard) recursive definition (Hustadt,
Motik, and Sattler 2005; Kazakov 2009): a concept C oc-
curs positively in C; if C occurs positively (respectively,
negatively) in C ′ then C occurs positively (negatively) in
C ′ t D, C ′ u D, ∃R.C ′, ∀R.C ′, D v C ′, and it occurs
negatively (positively) in ¬C ′ and C ′ v D. Now, we call a
TBox T Horn if no concept of the form C tD occurs posi-
tively in T , and no concept of the form ¬C or ∀R.C occurs
negatively in T . In the DL Horn-L, where L is one of our
DLs, only Horn-L-TBoxes are allowed. Clearly, the EL- and
DL-Lite-TBoxes are Horn by definition.

An ABox, A, is a finite set of assertions of the form
Ak(ai) or Pk(ai, aj). An L-TBox T and an ABox A to-
gether form an L knowledge base (KB) K = (T ,A). The
set of individual names in K is denoted by ind(K).

The semantics for the DLs is defined in the usual way
based on interpretations I = (∆I , ·I) that comply with the
unique name assumption: aIi 6= aIj for i 6= j (Baader et al.
2003). We write I |= α in case an inclusion or assertion α
is true in I. If I |= α, for all α ∈ T ∪ A, then I is a model
of a KB K = (T ,A); in symbols: I |= K. K is consistent if
it has a model. K |= α means that I |= α for all I |= K.

A conjunctive query (CQ) q(~x) is a formula ∃~y ϕ(~x, ~y),
where ϕ is a conjunction of atoms of the form Ak(z1) or
Pk(z1, z2) with zi ∈ ~x∪~y. A tuple ~a ⊆ ind(K) (of the same
length as ~x) is a certain answer to q(~x) over K = (T ,A) if
I |= q(~a) for all I |= K; in this case we write K |= q(~a). If
~x = ∅, the answer to q is ‘yes’ if K |= q and ‘no’ otherwise.

For combined complexity, the problem ‘K |= q(~a)?’ is
NP-complete for the DL-Lite logics (Calvanese et al. 2007),
EL and ELH (Rosati 2007), and EXPTIME-complete for the
remaining Horn DLs above (Eiter et al. 2008). For data com-
plexity (with fixed T and q), this problem is in AC0 for the
DL-Lite logics (Calvanese et al. 2007) and P-complete for
the remaining DLs (Rosati 2007; Eiter et al. 2008).

A signature, Σ, is a set of concept and role names. By a
Σ-concept, Σ-role, Σ-CQ, etc. we understand any concept,
role, CQ, etc. constructed using the names from Σ.



Σ-Query Entailment and Inseparability
We define the central notions of this paper.
Definition 1 Let K1 and K2 be KBs and Σ a signature.
– K1 Σ-query entails K2 if K2 |= q(~a) implies K1 |= q(~a)

for all Σ-CQs q(~x) and all ~a ⊆ ind(K2).
– K1 andK2 are Σ-query inseparable if they Σ-query entail

each other. In this case we write K1 ≡Σ K2.
Observe that Σ-query inseparability is weaker than log-

ical equivalence even if Σ = sig(K1) ∪ sig(K2), where
sig(Ki) is the signature of Ki. For example, (∅, {A(a)}) is
{A,B}-query inseparable from ({B v A}, {A(a)}) but the
two KBs are clearly not logically equivalent. Since check-
ing Σ-query inseparability can be reduced to two Σ-query
entailment checks, we can prove complexity upper bounds
for entailment. Conversely, for most languages we have a
semantically transparent reduction of Σ-query entailment to
Σ-query inseparability:
Theorem 2 Let L be any of our DLs containing EL or hav-
ing role inclusions. Then Σ-query entailment for L-KBs is
LOGSPACE-reducible to Σ-query inseparability for L-KBs.
Proof sketch. Let Ki = (Ti,Ai), i = 1, 2, and Σ be given.
We may assume that Σ = sig(K1)∩sig(K2). We also assume
that L has role inclusions, K1 and K2 are consistent and the
trivial interpretation I∅ (with |∆I∅ | = 1 and SI∅ = ∅, for
any S) is a model of the Ti (a proof without those assump-
tions is given in the full version). Let K′i be a copy of Ki in
which all symbols S are replaced by fresh Si, and let KΣ

i
extend K′i with Si v S, for S ∈ Σ. One can show that K1

Σ-query entails K2 iff K1 ≡Σ KΣ
1 ∪ KΣ

2 . q

That I∅ |= Ki is essential in the reduction above. Take
T1 = {A v B,A v ∃R.C}, T2 = {> v B,C u B v ⊥}
and Σ = {A,B,R,C}. Then K1 = (T1, {A(a)}) Σ-query
entails K2 = (T2, {A(a)}) but K1 6≡Σ KΣ

1 ∪ KΣ
2 .

We now consider the relationship between inseparability
and universal UCQ-solutions in knowledge exchange. Sup-
pose K1 and K2 are KBs in disjoint signatures Σ1 and Σ2.
Let T12 be a mapping consisting of inclusions of the form
S1 v S2, where the Si are concept (or role) names in Σi.
Then K2 is a universal UCQ-solution for (K1, T12,Σ2) if
K1 ∪ T12 ≡Σ2 K2. Deciding the latter is called the member-
ship problem for universal UCQ-solutions. For DLs L with
role inclusions, the problem whether K1 ∪ T12 ≡Σ2

K2 is a
Σ2-query inseparability problem in L. Conversely, we have:
Theorem 3 Σ-query entailment for any of our DLs L is
LOGSPACE-reducible to the membership problem for uni-
versal UCQ-solutions in L.
Proof sketch. We want to decide whether K1 Σ-query
entails K2. We again assume that I∅ |= Ti and use the
proof of Theorem 2 (for the general case, see the full ver-
sion). We may assume that Σ = sig(K1) ∩ sig(K2). Let
Σ1 = sig(K1). Then K1 Σ-query entails K2 iff K1 Σ1-
query entails K2. By the proof of Theorem 2, the latter
is the case iff K1 Σ1-query entails KΣ1

1 ∪ KΣ1
2 . Clearly,

KΣ1
1 ∪ KΣ1

2 Σ1-query entails K1, and so the two KBs are
Σ1-query inseparable. Then K1 Σ-query entails K2 iff K1

is a universal UCQ-solution for (K′1 ∪ K′2, T12,Σ1), where
T12 = {S1 v S, S2 v S | S ∈ Σ1}. q

Semantic Characterisation
In this section, we give a semantic characterisation of KB
Σ-query entailment based on an abstract notion of material-
isation and finite homomorphisms between such structures.

Let K be a KB. An interpretation I is called a materiali-
sation of K if, for all CQs q(~x) and tuples ~a ⊆ ind(K),

K |= q(~a) iff I |= q(~a).

We say that K is materialisable if it has a materialisation.
Materialisations can be used to characterise KB Σ-query

entailment by means of Σ-homomorphisms. For an interpre-
tation I and a signature Σ, the Σ-types tIΣ(x) and rIΣ(x, y)
of x, y ∈ ∆I are defined by taking:

tIΣ(x) = {Σ-concept name A | x ∈ AI },
rIΣ(x, y) = {Σ-role R | (x, y) ∈ RI }.

Suppose Ii is a materialisation of Ki, i = 1, 2. A function
h : ∆I2 → ∆I1 is a Σ-homomorphism from I2 to I1 if, for
any a ∈ ind(K2) and any x, y ∈ ∆I2 ,

– h(aI2) = aI1 whenever tI2Σ (a) 6= ∅ or rI2Σ (a, y) 6= ∅ for
some y ∈ ∆I2 , and

– tI2Σ (x) ⊆ tI1Σ (h(x)), rI2Σ (x, y) ⊆ rI1Σ (h(x), h(y)).
As answers to Σ-CQs are preserved under Σ-homomorph-
isms, K1 Σ-query entails K2 if there is a Σ-homomorphism
from I2 to I1. However, the converse does not hold:
Example 4 Suppose I2 and I1 below are materialisations
of KBs K2 and K1, where a is the only ABox individual:

a u

P R S T S T

Q

Q Q Q

a

x

T,Q

R

S,Q

R

T,Q

R

S,Q

I2

I1

Let Σ = {Q,R, S, T}. Then there is no Σ-homomorphism
from I2 to I1 (as rI2Σ (a, u) = ∅, we can map u to, say,
x but then only the shaded part of I2 can be mapped Σ-
homomorphically to I1). However, for any Σ-query q(~x),
I2 |= q(~a) implies I1 |= q(~a) as any finite subinterpretation
of I2 can be Σ-homomorphically mapped to I1.

We say that I2 is finitely Σ-homomorphically embeddable
into I1 if, for every finite subinterpretation I ′2 of I2, there
exists a Σ-homomorphism from I ′2 to I1.

To prove the following theorem, one can regard any finite
subinterpretation of I2 as a CQ whose variables are elements
of ∆I2 , with the answer variables being in ind(K2).
Theorem 5 Suppose Ki is a consistent KB with a material-
isation Ii, i = 1, 2. Then K1 Σ-query entails K2 iff I2 is
finitely Σ-homomorphically embeddable into I1.

One problem with applying Theorem 5 is that materiali-
sations are in general infinite for any of the DLs considered
in this paper. We address this problem by introducing finite
representations of materialisations. Let K = (T ,A) be a
KB and let G = (∆G , ·G , ) be a finite structure such that
∆G = ind(K)∪Ω, for ind(K)∩Ω = ∅, ·G is an interpretation



function on ∆G withAGi ⊆ ∆G , PGi ⊆ ind(K)×ind(K), and
(∆G , ) is a directed graph (containing loops) with nodes
∆G and edges ⊆ ∆G × Ω, in which every edge u v is
labelled with a set (u, v)G 6= ∅ of roles satisfying the condi-
tion: if u1  v and u2  v, then (u1, v)G = (u2, v)G. We
call G a generating structure for K if the interpretation M
defined below is a materialisation of K.

A path in G is a sequence σ = u0 . . . un with u0 ∈ ind(K)
and ui  ui+1 for i < n. Let tail(σ) = un and let path(G)
be the set of paths in G. The materialisationM is given by:

∆M = path(G), aM = a, for a ∈ ind(K),

AM = {σ | tail(σ) ∈ AG},
PM = PG ∪ {(σ, σu) | tail(σ) u, P ∈ (tail(σ), u)G}

∪ {(σu, σ) | tail(σ) u, P− ∈ (tail(σ), u)G}.
We say that a DL L has finitely generated materialisations
if every L-KB has a generating structure.

Theorem 6 Horn-ALCHI and all of its fragments defined
above have finitely generated materialisations. Moreover,
– for any L ∈ {ALCHI,ALCI,ALCH,ALC} and any

Horn-L KB (T ,A), a generating structure can be con-
structed in time |A| · 2p(|T |), p a polynomial;

– for any L in the EL and DL-Lite families introduced
above and any L-KB (T ,A), a generating structure can
be constructed in time |A| · p(|T |), p a polynomial.

Finite generating structures have been defined for
EL (Lutz, Toman, and Wolter 2009), DL-Lite (Kontchakov
et al. 2010) and more expressive Horn DLs (Eiter et al.
2008). With the exception of DL-Lite, however, the relation
 guiding the construction of materialisations was implicit.
We show how the existing constructions can be converted to
generating structures in the full version.
Example 7 The materialisation I2 from Example 4 can be
generated by the structure G2 shown below:

a

P R−

S−

T−

S−

Q
−

Q−

G2

For a generating structure G for K and a signature Σ, the
Σ-types tGΣ(u) and rGΣ(u, v) of u, v ∈ ∆G are defined by:

tGΣ(u) = {Σ-concept name A | u ∈ AG },

rGΣ(u, v) =


{Σ-role R | (u, v) ∈ RG }, if u, v ∈ ind(K),

{Σ-role R | R ∈ (u, v)G }, if u v,

∅, otherwise,

where (P−)G is the converse of PG . We also define r̄GΣ(u, v)
to contain the inverses of the roles in rGΣ(u, v); note that
r̄GΣ(u, v) is not the same as rGΣ(v, u); cf. the T−, S−-cycle
in Example 7. We write u Σ v if u v and rGΣ(u, v) 6= ∅.

In the next section, we show that, for a DL L having
finitely generated materialisations, the problem of checking
Σ-query entailment between L-KBs can be reduced to the
problem of finding a winning strategy in a game played on
the generating structures for these KBs.

Σ-Query Entailment by Games
Suppose a DL L has finitely generated materialisations, Ki
is a consistent L-KB, for i = 1, 2, and Σ a signature. Let
Gi = (∆Gi , ·Gi , i) be a generating structure for Ki and let
Mi be its materialisation; GΣ

i and MΣ
i denote the restric-

tions of Gi andMi to Σ.
We begin with a very simple game on the finite generating

structure GΣ
2 and the possibly infinite materialisationMΣ

1 .

Infinite game GΣ(G2,M1). This game is played by two
players: player 2 and player 1. The states of the game are
of the form si = (ui 7→ σi), for i ≥ 0, where ui ∈ ∆G2 and
σi ∈ ∆M1 satisfy the following condition:

(s1) tG2Σ (ui) ⊆ tM1

Σ (σi).

The game starts in a state s0 = (u0 7→ σ0) with σ0 = u0

in case u0 ∈ ind(K2). In each round i > 0, player 2 chal-
lenges player 1 with some ui ∈ ∆G2 such that ui−1  Σ

2 ui.
Player 1 has to respond with a σi ∈ ∆M1 satisfying (s1) and

(s2) rG2Σ (ui−1, ui) ⊆ rM1

Σ (σi−1, σi).

This gives the next state si = (ui 7→ σi). Note that of all the
ui only u0 may be an ABox individual; however, there is no
such a restriction on the σi. A play of length n ≥ 0 starting
from s0 is any sequence s0, . . . , sn of states obtained as de-
scribed above. For an ordinal λ ≤ ω, we say that player 1
has a λ-winning strategy in the game GΣ(G2,M1) starting
from a state s0 if, for any play of length i < λ, which starts
from s0 and conforms with this strategy, and any challenge
of player 2 in round i+ 1, player 1 has a response.

The following theorem gives a game-theoretic flavour to
the criterion of Theorem 5 (see the full paper for a proof).

Theorem 8 M2 is finitely Σ-homomorphically embeddable
intoM1 iff the following conditions hold:

(abox) rM2

Σ (a, b) ⊆ rM1

Σ (a, b), for any a, b ∈ ind(K2);
(win) for any u0 ∈ ∆G2 and n < ω, there exists σ0 ∈ ∆M1

such that player 1 has an n-winning strategy in the game
GΣ(G2,M1) starting from (u0 7→ σ0).

Example 9 Let Σ = {Q,R, S, T}. Consider GΣ
2 and MΣ

1
shown in the picture below:

a

u

R− S−

T−

S−

Q
−

Q−

a

σ

T,Q

R

S,Q

R

T,Q

R

S,Q

0 1 2 2 3

3

4

4

GΣ
2

MΣ
1

For any n < ω and u ∈ ∆G2 , player 1 has an n-winning
strategy inGΣ(G2,M1). A 4-winning strategy starting from
(u 7→ σ) is shown by dotted lines (in round 2, player 2 has
two possible challenges). For a larger n, a suitable σ can be
chosen further away from the root a ofM1.

The criterion of Theorem 8 does not seem to be a big im-
provement on Theorem 5 as we still have to deal with an
infinite materialisation. Our aim now is to show that condi-
tion (win) in the infinite game GΣ(G2,M1) can be checked



by analysing a more complex game on the finite generat-
ing structures G2 and G1. We consider four types of strate-
gies in GΣ(G2,M1). For each type, τ , we define a game
GτΣ(G2,G1) such that, for any u0 ∈ ∆G2 , the following con-
ditions are equivalent:

(< ω) for every n < ω, player 1 has an n-winning strategy
of type τ in GΣ(G2,M1) starting from some (u0 7→ σn0 );

(ω) player 1 has an ω-winning strategy in GτΣ(G2,G1) start-
ing from some state depending on u0 and τ .

We start by considering ‘forward’ winning strategies that
are sufficient for the DLs without inverse roles.

Forward strategy and game GfΣ(G2,G1). We say that a λ-
strategy (λ ≤ ω) for player 1 in the game GΣ(G2,M1) is
forward if, for any play of length i − 1 < λ, which con-
forms with this strategy, and any challenge ui−1  Σ

2 ui
by player 2, the response σi of player 1 is such that either
σi−1, σi ∈ ind(K1) or σi = σi−1v, for some v ∈ ∆G1 .

For example, if the Gi, i = 1, 2, satisfy the condition

(f) the Σ-labels on i-edges contain no inverse roles,

then every strategy in GΣ(G2,M1) is forward. This is
clearly the case for Horn-ALCH, Horn-ALC, ELH and EL,
which by definition do not have inverse roles.

The existence of a forward λ-winning strategy for player 1
in GΣ(G2,M1) is equivalent to the existence of such a
strategy in the game GfΣ(G2,G1), which is defined simi-
larly to GΣ(G2,M1) but with two modifications: (1) it is
played on G2 and G1; and (2) the response xi ∈ ∆G1 of
player 1 to a challenge ui−1  Σ

2 ui must be such that either
xi−1, xi ∈ ind(K1) or xi−1  1 xi, and (s1)–(s2) hold (with
G1 and xi in place ofM1 and σi).

Example 10 Let G2 and G1 be as shown below. Then, for
any u ∈ ∆G2 , there is x ∈ ∆G1 such that player 1 has an
ω-winning strategy in GfΣ(G2,G1) starting from (u 7→ x).

a
R

R
Q

R R

a
R

R
Q

0
1

1
2

GΣ
2

GΣ
1

The next theorem follows from König’s Lemma:

Lemma 11 For u0 ∈ ∆G2 , condition (< ω) holds for for-
ward strategies in GΣ(G2,M1) iff (ω) holds in GfΣ(G2,G1)
for some state (u0 7→ x0).

GfΣ(G2,G1) is a standard simulation or reachability game
on finite graphs, where the existence of ω-winning strate-
gies for player 1 follows from the existence of n-winning
strategies for n = O(|G2| × |G1|), which can be checked in
polynomial time (Mazala 2001; Baier and Katoen 2007). By
Theorem 6 and (f), we obtain:

Theorem 12 For combined complexity, checking Σ-query
entailment is in P for EL and ELH KBs, and in EXPTIME
for Horn-ALC and Horn-ALCH KBs. For data complexity,
it is in P for all these DLs.

In comparison to forward strategies, the winning strate-
gies used in Example 9 can be described as ‘backward.’
Backward strategy and game GbΣ(G2,G1). A λ-strategy
for player 1 in GΣ(G2,M1) is backward if, for any play
of length i − 1 < λ, which conforms with this strategy,
and any challenge ui−1  Σ

2 ui by player 2, the response
σi of player 1 is the immediate predecessor of σi−1 inM1

in the sense that σi−1 = σiw, for some w ∈ ∆G1 (player 1
loses in case σi−1 ∈ ind(K1)). Note that, sinceM1 is tree-
shaped, the response of player 1 to any different challenge
ui−1  Σ

2 u′i must be the same σi; cf. Example 9.
That is why the states of the game GbΣ(G2,G1) are of the

form si = (Ξi 7→ xi), where Ξi ⊆ ∆G2 , Ξi 6= ∅, and
xi ∈ ∆G1 satisfy the following condition:
(s′1) tG2Σ (u) ⊆ tG1Σ (xi), for all u ∈ Ξi.
The game starts in a state s0 = (Ξ0 7→ x0) such that
(s′0) if u ∈ Ξ0 ∩ ind(K2), then x0 = u ∈ ind(K1).
For each i > 0, player 2 always challenges player 1 with the
set Ξi = Ξ i−1, where

Ξ = {v ∈ ∆G2 | u Σ
2 v, for some u ∈ Ξ},

provided that it is not empty (otherwise, player 2 loses).
Player 1 responds with xi ∈ ∆G1 such that xi  1 xi−1

and (s′1) and the following condition hold:

(s′2) rG2Σ (u, v) ⊆ r̄G1Σ (xi−1, xi), for all u ∈ Ξi−1, v ∈ Ξi.

Lemma 13 For u0 ∈ ∆G2 , condition (< ω) holds for back-
ward strategies in GΣ(G2,M1) iff (ω) holds in GbΣ(G2,G1)
for some state ({u0} 7→ x0).

Although Lemmas 11 and 13 look similar, the game
GbΣ(G2,G1) turns out to be more complex than GfΣ(G2,G1).

Example 14 To illustrate, consider GΣ
2 shown below (with

concepts and roles omitted) and an arbitrary G1:

GΣ
2

a u

w1

v1

w2

v2
v3

A play in GbΣ(G2,G1) may proceed as: ({u} 7→ x0),
({v1, w1} 7→ x1), ({v2, w2} 7→ x2), ({v3, w1} 7→ x3), etc.
This gives at least 6 different sets Ξi. But if G2 contained k
cycles of lengths p1, . . . , pk, where pi is the ith prime num-
ber, then the number of states in GbΣ(G2,G1) could be expo-
nential (p1 × · · · × pk). In fact, we have the following:
Lemma 15 Checking (ω) in Lemma 13 is CONP-hard.

Observe that in the case of DL-Litecore and DL-Litehorn
(which have inverse roles but no RIs), generating structures
G = (∆G , ·G , ) can be defined so that, for any u ∈ ∆G

and R, there is at most one v with u v and R ∈ rG(u, v)
(Kontchakov et al. 2010). As a result, any n-winning strat-
egy starting from (u0 7→ σ0) in GΣ(G2,M1) consists of
a (possibly empty) backward part followed by a (possibly
empty) forward part. Moreover, in the backward games for
these DLs, the sets Ξi are always singletons. Thus, the num-
ber of states in the combined backward/forward games on
the Gi is polynomial, and the existence of winning strategies
can be checked in polynomial time.



Theorem 16 Checking Σ-query entailment for DL-Litecore
and DL-Litehorn KBs is in P for both combined and data
complexity.

An arbitrary strategy for player 1 in GΣ(G2,M1) is a
combination of a backward strategy and a number of start-
bounded strategies to be defined next.
Start-bounded strategy and game GsΣ(G2,G1). A strategy
for player 1 in the game GΣ(G2,M1) starting from a state
(u0 7→ σ0) is start-bounded if it never leads to (ui 7→ σi)
such that σ0 = σiv, for some v and i > 0. In other words,
player 1 cannot use those elements of M1 that are located
closer to the ABox than σ0; the ABox individuals inM1 can
only be used if σ0 ∈ ind(K1).

Example 17 The strategy starting from (u2 7→ σ1) and
shown below is start-bounded:

u2
T W W−1 T−1

σ1 T, T1 W,W1

0

4

1

3

2
GΣ

2

MΣ
1

In the game GsΣ(G2,G1), player 1 will have to guess all the
points of G2 that are mapped to the same point ofM1.

The states of GsΣ(G2,G1) are of the form (Γi,Ξi 7→ xi),
i ≥ 0, where Γi,Ξi ⊆ ∆G2 , Ξi 6= ∅, xi ∈ ∆G1 and (s′1)
holds. The initial state is of the form (∅,Ξ0 7→ x0) such that
(s′0) holds. In each round i > 0, player 2 challenges player 1
with some u Σ

2 v such that u ∈ Ξi−1 and

(nbk) if v ∈ Γi−1 then rG2Σ (u, v) 6⊆ r̄G1Σ (xi−2, xi−1).

Player 1 responds with either a state (Ξi−1,Ξi 7→ xi) such
that xi−1  1 xi (and so xi /∈ ind(K1)) and (s′′2 ) holds, or a
state (∅,Ξi 7→ xi) such that xi−1, xi ∈ ind(K1) and

(s′′2 ) rG2Σ (u, v) ⊆ rG1Σ (xi−1, xi).

We make challenges u Σ
2 v, for which u ∈ Ξi−1 and (nbk)

does not hold, ‘illegitimate’ because xi−2 can always be
used as a response. Because of this, player 1 always moves
‘forward’ in G1, but has to guess appropriate sets Ξi in ad-
vance. Note that Γi is always uniquely determined by xi−1,
xi and Ξi−1 (and it is either Ξi−1 or empty).

Example 18 Let GΣ
2 and GΣ

1 be as follows (cf. Example 17):
u2 u6T u7W u8W−1 u9T−1

x1 x3T, T1 x4W,W1

a 0

0

1

1

2

GΣ
2

GΣ
1

We show that player 1 has an ω-winning strategy in
GsΣ(G2,G1) starting from (∅, {u2, u9} 7→ x1). Player 2
challenges with u2  Σ

2 u6, and player 1 responds with
({u2, u9}, {u6, u8} 7→ x3). Then player 2 picks u6  Σ

2 u7

and player 1 responds with ({u6, u8}, {u7} 7→ x4), where
the game ends. Note the crucial guesses {u2, u9} 7→ x1 and
{u6, u8} 7→ x3 made by player 1. If player 1 responded with
({u2, u9}, {u6} 7→ x3) (and failed to guess that u8 must
also be mapped to x3), then after the challenge u6  Σ

2 u7

and response ({u6}, {u7} 7→ x4)), player 2 would pick
u7  Σ

2 u8, to which player 1 could not respond.

Lemma 19 For any u0 ∈ ∆G2 , condition (< ω) holds for
start-bounded strategies in GΣ(G2,M1) iff (ω) holds in
GsΣ(G2,G1) for some state (∅,Ξ0 7→ x0) with u0 ∈ Ξ0.

As we shall see in the next section, the problem of check-
ing the conditions of this lemma is EXPTIME-hard.
Arbitrary strategies and game GaΣ(G2,G1). An arbitrary
winning strategy in the gameGΣ(G2,M1) can be composed
of one backward and a number of start-bounded strategies.

Example 20 Consider GΣ
2 andMΣ

1 shown below:

u1 u2

R−

u3

u6

S
−

T u7

W

u8

W−1

u9

T−1

u10

S−1

u4

U
u5

U−

σ2

σ1

R

σ3

T,
T1

σ4

W,W1

aS, S1

bU

0

1 1 2 2

GΣ
2

MΣ
1

Starting from (u1 7→ σ2), player 1 can respond to the chal-
lenges u1  Σ

2 u2  Σ
2 u3 according to the backward

strategy; the challenges u2  Σ
2 u6  Σ

2 u7  Σ
2 u8  Σ

2 u9

according to the start-bounded strategy as in Example 17;
the challenges u3  Σ

2 u4  Σ
2 u5 also according to

the obvious start-bounded strategy; finally, the challenge
u9  Σ

2 u10 needs a response according to the backward
strategy. We will combine the two backward strategies into
a single one, but keep the start-bounded ones separate.

The game GaΣ(G2,G1) begins as GbΣ(G2,G1), but with
states of the form (Ξi 7→ xi,Ψi), i ≥ 0, where Ξi ⊆ ∆G2

and xi ∈ ∆G1 satisfy (s′1) and Ψi is a (possibly empty)
subset of Ξ i , which indicates initial challenges in start-
bounded games. The initial state satisfies (s′0). In each round
i > 0, if xi−1 ∈ ind(K1) then player 2 launches the start-
bounded game GsΣ(G2,G1) with the initial state (∅,Ξi−1 7→
xi−1). Otherwise, if xi−1 /∈ ind(K1), player 2 has two op-
tions. First, he can challenge player 1 with the set Ψi−1

(that is, similar to the backward game but with a possibly
smaller Ψi−1 in place of Ξ i−1); player 1 responds to this
challenge with a state (Ξi 7→ xi,Ψi) such that Ψi−1 ⊆ Ξi,
xi  1 xi−1 and (s′2) holds. Second, player 2 can launch
the start-bounded game GsΣ(G2,G1) with the initial state
(∅,Ξi−1 7→ xi−1), where the first challenge of player 2 must
be picked from Φi−1 = Ξ i−1 \Ψi−1.

Example 21 We illustrate the ω-winning strategy for
player 1 in GaΣ(G2,G1) starting from ({u1} 7→ x2, {u2}),
where GΣ

2 is from Example 20 and GΣ
1 looks likeMΣ

1 from
Example 20 (but with xi in place of σi):

{u1} 7→ x2, {u2}

{u2, u9} 7→ x1, {u3,u10}

{u3, u10} 7→ a, ∅ ∅, {u3, u10} 7→ a

∅, {u4} 7→ b

u3  u4

∅, {u5} 7→ a

u4  u5

∅, {u2, u9} 7→ x1

{u2,u9}, {u6, u8} 7→ x3

u2  u6

{u6,u8}, {u7} 7→ x4

u6  u7



Lemma 22 For any u0 ∈ ∆G2 , condition (< ω) holds
for arbitrary strategies in GΣ(G2,M1) iff (ω) holds in
GaΣ(G2,G1) for some state (Ξ0 7→ x0,Ψ0) with u0 ∈ Ξ0.

Condition (ω) in the lemma above is checked in time
O(|ind(K2)|×2|∆

G2\ind(K2)|×|∆G1 |), which can be readily
seen by analysing the full game graph for GaΣ(G2,G1) (sim-
ilar to that in Example 21). By Theorem 6, we then obtain:

Theorem 23 For combined complexity, Σ-query entailment
is in 2EXPTIME for Horn-ALCHI and Horn-ALCI KBs,
and in EXPTIME for DL-LiteHhorn and DL-LiteHcore KBs. For
data complexity, these problems are all in P.

Lower Bounds
We have shown that, for all of our DLs, Σ-query entailment
and inseparability are in P for data complexity. The next the-
orem establishes a matching lower bound:

Theorem 24 For data complexity, Σ-query entailment and
inseparability are P-hard for DL-Litecore and EL KBs.

Proof. The proof is by reduction of the P-complete entail-
ment problem for acyclic Horn ternary clauses: given a con-
junction ϕ of clauses of the form ai and ai ∧ ai′ → aj ,
i, i′ < j, decide whether an is true in every model of ϕ.
Consider the EL TBox T = {V v ∃P.(∃R1.V u ∃R2.V )}
and an ABox A comprised of F (an) and

P (ai, ai), R1(ai, ai), R2(ai, ai), for each clause ai in ϕ,
P (aj , c), R1(c, ai), R2(c, ai′), for c = ai ∧ ai′ → aj in ϕ.

Set Σ = {F, P,R1, R2}, K2 = (T ,A ∪ {V (an)}) and
K1 = (∅,A). Obviously, K2 Σ-query entails K1. On
the other hand, the materialisation of K2 is (finitely) Σ-
homomorphically embeddable in the materialisation of K1

iff ϕ derives an (see the full version for details). For
DL-Litecore, we take T to contain V v ∃P , ∃P− v ∃Ri
and ∃R−i v V , for i = 1, 2. q

For combined complexity, EXPTIME-hardness of Σ-
query inseparability for Horn-ALC can be proved by reduc-
tion of the subsumption problem: we have T |= A v B iff
(T , {A(a)}) and (T ∪ {A v B}, {A(a)}) are {B}-query
inseparable. We now establish matching lower bounds in the
technically challenging cases.
Theorem 25 For combined complexity, Σ-query entailment
and inseparability are (i) 2EXPTIME-hard for Horn-ALCI
KBs and (ii) EXPTIME-hard for DL-LiteHcore KBs.
Proof. The proof of (i) is by encoding alternating Turing
machines (ATMs) with exponential tape and using the fact
that AEXPSPACE = 2EXPTIME; see, e.g. (Kozen 2006).

Let M = (Γ, Q, q0, q1, δ) be an ATM with a tape alpha-
bet Γ, a set of states Q partitioned into existential Q∃ and
universal Q∀ states, an initial state q0 ∈ Q∃, an accepting
state q1 ∈ Q, and a transition function

δ : (Q \ {q1})× Γ× {1, 2} → Q× Γ× {−1, 0,+1},
which, for a state q and symbol a, gives two instructions,
δ(q, a, 1) and δ(q, a, 2). We assume that existential and uni-
versal states strictly alternate: any transition from an exis-
tential state results in a universal state, and vice versa. We

extend δ with the instructions δ(q1, a, k) = (q1, a, 0), for
a ∈ Γ and k = 1, 2, which go into an infinite loop if M
reaches the accepting state q1. Thus, assuming that M ter-
minates on every input, it accepts ~w iff the modified ATM
M ′ has a run on ~w, all branches of which are infinite.

Our aim is to construct, given M and ~w, TBoxes T1 and
T2 and a signature Σ such that M ′ has a run with only in-
finite branches iff the materialisation M2 of (T2, {A(c)})
is finitely Σ-homomorphically embeddable into the materi-
alisation M1 of (T1, {A(c)}). Let f be a polynomial such
that, on any input of length m, M uses at most 2n − 2 tape
cells, with n = f(m), which are numbered from 1 to 2n−2,
and the head stays to the right of cell 0, which contains the
marker [ ∈ Γ. The construction proceeds in five steps.
Step 0. We use tuples of 2n concepts to represent distances
of up to 2n between the cells on the tape in consecutive con-
figurations. We refer to a tuple Yn−1, Y n−1, . . . , Y0, Y 0 of
concept names as Y and assume that the TBox contains the
following CIs to encode an n-bit R-counter on Y :
Y k u Yk−1 u · · · u Y0 v ∀R.(Yk u Y k−1 u · · · u Y 0),

n > k ≥ 0,

Y i u Y k v ∀R.Y i and Yi u Y k v ∀R.Yi, n > i > k.

We use the expression ifY=2n−1 on the left-hand side of CIs
to say that the Y -value is 2n − 1 (which is a shortcut for
Yn−1 u · · · u Y0); we also use ifY<2n−1 on the left-hand side
of CIs for the complementary statement (which is a shortcut
for n CIs with ifY<2n−1 replaced by each of Y n−1, . . . , Y 0).
Finally, we use setY0 on the right-hand side of CIs for the
reset command (which is equivalent to Y n−1 u · · · u Y 0).
Note that the counter stops at 2n − 1: the R-successors of a
domain element in ifY=2n−1 do not have to encode any value.
Step 1. First we encode configurations and transitions ofM ′
using T1. We represent a configuration by a block, which is a
sequence of 2n + 1 domain elements connected by a role P .
The first element distinguishes the blocks for the two alter-
native transitions; using a P -counter on a tuple T , we assign
indices from 0 to 2n − 1 to all other elements in each block.
The element with index 0 is needed for padding. Each of the
remaining 2n−1 elements belongs to a conceptCa, for some
a ∈ Γ: if the element with index i+ 1 is in Ca, then the cell
i is assumed to contain a in the configuration represented by
the block (in particular, the element with index 1 contains [
for cell 0) as shown below:

M1
A

setT0

C[ Ca1

setH0

Ca2 Cam

I

C

I

C

I

C

I
ifT=2n−1

The first block represents the initial configuration: the input
~w = a1 . . . am is followed by 2n −m − 2 blank symbols
and the head is positioned over cell 1, which is indicated by
the 0 value of the P -counter on a tuple H . This is achieved
by the following CIs in the TBox T1:
A v ∃P.(setT0 u ∃P.(C[ u ∃P.(Ca1 u setH0 u

∃P.(Ca2 u ∃P.(. . . ∃P.(Cam u I) . . . ))))), (T1-1)

ifT<2n−1 u I v ∃P.(I u C ), (T1-2)

ifT=2n−1 u I v Z0
q0a1 . (T1-3)



Step 2. The contents of the tape and the head position in
each configuration is encoded in a block of length 2n + 1;
the current state q ∈ Q is recorded in the concept Z0

qa that
contains the last element of the block (a ∈ Γ specifies the
contents of the active cell scanned by the head). At the end
of the block, when the T -value reaches 2n−1, we branch out
one block for each of the two transitions, reset the P -counter
on T , and propagate via Z1

qa and Z2
qa the current state and

symbol in the active cell: for q ∈ Q and a ∈ Γ, we add to T1

the CI
ifT=2n−1 u Z0

qa v
l

k=1,2

∃P.(Xk u ∃P.(setT0 u Zkqa)), (T1-4)

where X1 and X2 are two fresh concept names.
The acceptance condition for M ′ is enforced by means

of T2, which uses a P -counter on a tuple T 0 for a block
representing the initial configuration (a T 0-block):

A v ∃P.setT
0

0 , (T2-1)

ifT
0

<2n−1 v ∃P. (T2-2)

Two P -counters, on T 1 and T 2, are used for blocks rep-
resenting configurations with universal states (T 1- and T 2-
blocks respectively) and one P -counter, on a tuple T 3, suf-
fices for blocks representing configurations with existential
states (T 3-blocks). These blocks are arranged into an infi-
nite tree-like structure: the T 0-block is the root, from which
a T 1- and a T 2-blocks branch out (successors of the initial
state q0 are universal). Each of them is followed by a T 3-
block, which branches out a T 1- and a T 2-block, and so on.
This is achieved by adding to T2 the following CIs:

ifT
k

=2n−1 v
l

j=1,2

∃P.(Xj u ∃P.setT
j

0 ), for k = 0, 3, (T2-3)

ifT
k

<2n−1 v ∃P.G, for k = 1, 2, 3, (T2-4)

ifT
k

=2n−1 v ∃P.∃P.setT
3

0 , for k = 1, 2, (T2-5)
where G is a concept name. If Σ = {A,X1, X2, P} then
there is a unique Σ-homomorphism from the T 0-block in
M2 to the block of the initial configuration in M1. Next,
concepts X1 and X2 ensure that the T 1- and T 2-blocks are
Σ-homomorphically mapped (in a unique way) into the re-
spective blocks in M1, which reflects the acceptance con-
dition of universal states. The following T 3-block, how-
ever, contains neither X1 nor X2 and can be mapped to
either of the blocks in M1, which reflects the choice in
existential states; see the picture below, where possible Σ-
homomorphisms are shown by thick dashed arrows:

M2

M1

A

0
1

2

3

3
A

X1

X2

Step 3. Recall that the P -counter on H measures the dis-
tance from the head: if the active cell in the current configu-
ration is k, then its H-value is 0 and the H-value of the cell
k−2 in a successor configuration is 2n−1. So, until the H-
counter reaches 2n − 1, the following CIs in T1 propagate
the state and symbol in the active cell along the blocks: for
q ∈ Q, a ∈ Γ and k = 0, 1, 2,

ifT<2n−1 u ifH<2n−1 u Zkqa v
l

b∈Γ

∃P.(Cb u Zkqa) (T1-5)

(for each b ∈ Γ, these CIs generate a branch inM1 to repre-
sent the same cell but with a different symbol, b, tentatively
assigned to the cell—Step 4 will ensure that the correct
branch and symbol are selected to match the cell contents
in the preceding configuration). When the distance from the
last head position is 2n, the contents of the cell and the cur-
rent state are changed according to δ:

ifT<2n−1 u ifH=2n−1 u Zkqa v
l

b∈Γ

∃P.(Cb u∆k
qa,b), (T1-6)

where δ(q, a, k) = (q′, a′, σ) and ∆k
qa,b is the concept

setH0 u Z0
q′b u ∃P.(Ca′ uGa′), if σ = −1,

∃P.(Ca′ uGa′ u setH0 u Z0
q′a′), if σ = 0,

∃P.(Ca′ uGa′ u
l

b′∈Γ

∃P.(Cb′ u setH0 u Z0
q′b′)), if σ = +1

(the symbol in the active cell is changed according to the in-
struction, and the current state and symbol in the next active
cell are then recorded in Z0

qa). Since the head never visits
cell 0, this happens over cells 0 to 2n − 1, that is, at least
one element after the P -counter on T is reset to 0. These
three situations are shown below, where grey and hatched
nodes denote domain elements with H-values 2n − 1 and
0, respectively, and the domain elements in the dashed oval
represent the active cell of the preceding configuration:

C
a ′, G

a ′

(a)
Zk

qa

Cb, Z
0
q′b

Cb′ , Z
0
q′b′

Z0
q′b

Z0
q′b′

Cb, Z
0
q′b

Cb′ , Z
0
q′b

(b)
Zk

qa

Cb

Cb′
Z0

q′a′

Z0
q′a′ Cb, Z

0
q′a′

Cb′ , Z
0
q′a′

(c)
Zk

qa

Cb

Cb′

Cb, Z
0
q′b

Cb′ , Z
0
q′b′

(Note that there is only one branch for the modified cell,
which corresponds to the new symbol, a′, in that cell; see
explanations below.) Then, the current state and the symbol
in the active cell are propagated along the tape using (T1-5).

Step 4. The CIs (T1-5)–(T1-6) generate a separate P -
successor for each b ∈ Γ. The correct one is chosen by a



finite Σ-homomorphism, h, from M2 to M1. To exclude
wrong choices, we take

Σ = {A,P,X1, X2} ∪ {Da | a ∈ Γ}.
Recall that if d1 ∈ CM1

a , for some a ∈ Γ, then it represents
a cell containing a. The following CIs in T1 ensure that, for
each b ∈ Γ different from a, there is a block of (2n + 1)-
many P−-connected elements that ends in the concept Db

(called a Db-block in the sequel):

Ca v Da u
l

b∈Γ\{a}
Gb, (T1-7)

Gb v ∃P−.(Sb u setB0 ), (T -1)

ifB<2n−1 u Sb v ∃P−.Sb, (T -2)

ifB=2n−1 u Sb v ∃P−.Db, (T -3)

where we use a P−-counter on a tupleB (unlike P -counters
in all other cases) and a concept Sb to propagate b along the
whole block. Suppose h(d2) = d1 and d2 belongs to G in
M2 (it represents a cell in a non-initial configuration). Then
the following CI and (T -1)–(T -3), added to T2, generate a
Db-block, for each b ∈ Γ (including a):

G v
l

b∈Γ
Gb. (T2-6)

Each of the Db-blocks in M2, for b ∈ Γ with b 6= a, can
be mapped by h to the respective Db-block inM1. By the
choice of Σ, the only remainingDa-block, in case a is tenta-
tively contained in this cell, could be mapped (in the reverse
order) along the branch inM1 but only if the cell contains a
in the preceding configuration (that is, the element which is
2n + 1 steps closer to the root ofM1 belongs to Da):

M2

M1

cell kcell k
2n + 2

G

setB0

ifB=2n−1Da

Db

Db′

setB0

ifB=2n−1

CaDa

Db

Db′

setB0 ifB=2n−1

Note (see ∆k
qa,b) that the cell whose content is changed gen-

erates the additionalDa-block inM1 to allow the respective
Da-block fromM2 to be mapped there.

One can show that M ′ has a run with only infinite
branches iff (T1, {A(c)}) Σ-query entails (T2, {A(c)}). It
follows, by Theorem 2, that deciding Σ-query inseparability
is 2EXPTIME-hard.

(ii) A proof of EXPTIME-hardness of Σ-query insepara-
bility for DL-LiteHcore KBs is given in the full paper. It uses
the same idea of encoding computations of ATMs. One es-
sential difference is that the expressive power of DL-LiteHcore
is not enough to represent n-bit counters in Step 0, and so
we can only encode computations on polynomial tape. q

As a consequence of Theorems 3, 23 and 25 we obtain:

Theorem 26 For combined complexity, the membership
problem for universal UCQ-solutions is 2EXPTIME-
complete for Horn-ALCHI and Horn-ALCI; EXPTIME-
complete for Horn-ALCH, Horn-ALC, DL-LiteHhorn and
DL-LiteHcore; and P-complete for EL and ELH. For data
complexity, all these problems are P-complete.

In the case of DL-LiteHcore, we also obtain an EXPTIME
algorithm for checking the existence and computing univer-
sal UCQ-solutions. Indeed, given a KB K1, a target signa-
ture Σ2 and a mapping T12, we first compute the Σ2-ABox
over ind(K1) that is implied by K1 and T12, and then check
whether at least one KB K2 in Σ2 with this ABox is a uni-
versal UCQ-solution (there are ≤ O(2|Σ2|) such KBs). This
gives an EXPTIME upper bound for the non-emptiness prob-
lem for universal UCQ-solutions in DL-LiteHcore (Arenas et
al. 2013). Similarly, we can check in EXPTIME whether the
result of forgetting a signature in a DL-LiteHcore KB exists.

Σ-query inseparability of DL-LiteHcore TBoxes was known
to sit between PSPACE and EXPTIME (Konev et al. 2011).
Using the fact that witness ABoxes for DL-LiteHcore TBox
separability can always be chosen among the singleton
ABoxes (Konev et al. 2011, Theorem 8), we can modify the
proof of Theorem 25 to improve the PSPACE lower bound:
Theorem 27 Σ-query inseparability of DL-LiteHcore TBoxes
is EXPTIME-complete.

For more expressive DLs, TBox Σ-query inseparability
is often harder than KB inseparability: for DL-Litehorn, the
space of relevant witness ABoxes for TBox separability is
of exponential size and, in fact, TBox inseparability is NP-
hard, while KB inseparability is in P. Similarly, Σ-query in-
separability of EL KBs is tractable, while Σ-query insepa-
rability of TBoxes is EXPTIME-complete (Lutz and Wolter
2010). The complexity of TBox inseparability for Horn-DLs
extending Horn-ALC is not known.

Future Work
From a theoretical point of view, it would be of interest
to investigate the complexity of Σ-query inseparability for
KBs in more expressive Horn DLs (e.g., Horn-SHIQ) and
non-Horn DLs extendingALC. We conjecture that the game
technique developed in this paper can be extended to those
DLs as well. Our games can also be used to define efficient
approximations of Σ-query entailment and inseparability for
KBs. The existence of a forward strategy, for example, pro-
vides a sufficient condition for Σ-query entailment for all of
our DLs. Thus, one can extract a Σ-query module of a given
KB K by exhaustively removing from K those inclusions
and assertions α for which player 1 has a winning strategy
in the game GfΣ(G1,G2), where G1 is a generating structure
forK\{α} and G2 forK. The resulting modules are minimal
for our DLs without inverse roles, and we conjecture that in
practice they are often minimal for DLs with inverse roles as
well; see (Konev et al. 2011) for experiments testing similar
ideas for module extraction from TBoxes.

Finally, we plan to use the developed technique to inves-
tigate the complexity of the non-emptiness problem for uni-
versal UCQ-solutions in data exchange as well as algorithms
for computing universal UCQ-solutions in various DLs.
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