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We investigate the problem whether two ALC ontologies are indistinguishable (or 
inseparable) by means of queries in a given signature, which is fundamental for ontology 
engineering tasks such as ontology versioning, modularisation, update, and forgetting. We 
consider both knowledge base (KB) and TBox inseparability. For KBs, we give model-
theoretic criteria in terms of (finite partial) homomorphisms and products and prove 
that this problem is undecidable for conjunctive queries (CQs), but 2ExpTime-complete 
for unions of CQs (UCQs). The same results hold if (U)CQs are replaced by rooted (U)CQs, 
where every variable is connected to an answer variable. We also show that inseparability 
by CQs is still undecidable if one KB is given in the lightweight DL EL and if no restrictions 
are imposed on the signature of the CQs. We also consider the problem whether two ALC
TBoxes give the same answers to any query over any ABox in a given signature and show 
that, for CQs, this problem is undecidable, too. We then develop model-theoretic criteria for 
HornALC TBoxes and show using tree automata that, in contrast, inseparability becomes 
decidable and 2ExpTime-complete, even ExpTime-complete when restricted to (unions of) 
rooted CQs.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, data access using description logic (DL) TBoxes has become one of the most important applications of 
DLs (see, e.g., [1–3] and references therein), where the underlying idea is to use a TBox to specify semantics and background 
knowledge for the data (stored in an ABox) and thereby derive more complete answers to queries. A major research effort 
has led to the development of efficient querying algorithms and tools for a number of DLs ranging from DL-Lite [4–6] via 
more expressive Horn DLs such as HornALC [7,8] to DLs with full Boolean constructors including ALC and extensions such 
as SHIQ [9,10].

While query answering with DLs is now well-developed, this is much less the case for reasoning services that sup-
port ontology engineering when ontologies are used to query data. Important ontology engineering tasks include ontology 
versioning [11–15], ontology modularisation [16–20], ontology revision and update [21–24], and forgetting in ontolo-
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gies [25–31]. A fundamental reasoning problem in all these tasks is to compare two ontologies. For example, in ontology 
versioning, the user is interested in comparing two versions of an ontology and understanding the relevant difference be-
tween them. In ontology modularisation, the relevant consequences of the full ontology should be preserved when it is 
replaced by a module. In ontology revision and update, one typically minimises the relevant difference between the up-
dated or revised ontology and the original ontology while taking into account new knowledge. In ontology forgetting, one 
constructs a new ontology, which is indistinguishable from the original ontology with respect to a signature of interest. 
The relevant consequences that should be considered when comparing two ontologies depend on the application. In the 
context of querying data via ontologies, it is natural to consider the answers the ontologies give to queries. Then, in ontol-
ogy versioning, the relevant difference between two versions of an ontology is based on the queries that receive distinct 
answers with respect to the ontology versions. In ontology modularisation, it is the answers to queries that should be pre-
served when a module is extracted from an ontology. In ontology update or revision, the difference between the answers 
to queries over the updated or revised ontology and the original one should be minimised when constructing update or 
revision operators. Similarly, in forgetting, it is the answers to queries which should be preserved under appropriate forget-
ting operators. Thus, in the context of query answering, the fundamental relationship between ontologies is not whether 
they are logically equivalent (have the same models), but whether they give the same answers to any relevant query. To 
illustrate, consider the following simple TBox

T = {Book � ∃author.¬Book}
saying that every book has an author who is not a book. Clearly, T is not logically equivalent to the TBox

T ′ = {Book � ∃author.�},
which only states that every book has an author. However, if one takes as the query language the popular classes of 
conjunctive queries (CQs) or unions of CQs (UCQs), then no matter what the data is, every query will have the same 
answers independently of whether one uses T or T ′ . Intuitively, the reason is that the ‘positive’ information given by T
coincides with the ‘positive’ information given by T ′ . If the main purpose of the ontology is answering UCQs, it is thus 
more important to know that T can be safely replaced by T ′ without affecting the answers to UCQs than to establish that 
T and T ′ are not logically equivalent.

In most ontology engineering applications for ontology-based data access, the relevant class Q of queries can be further 
restricted to those given in a finite signature of relevant concept and role names. For example, to establish that a subset 
M of an ontology O is a module of O, one should not require that M and O give the same answers to all queries in Q, 
but only to those that are in the signature of M. Similarly, in the versioning context, often only the answers to queries 
in Q given in a small signature containing a fraction of the concept and role names of the ontology are relevant for the 
application, and so for the difference that should be presented to a user.

The resulting entailment problem can be formalised in two ways. Recall that, in DL, a knowledge base (KB) K = (T , A)

consists of a TBox T and an ABox A. Now, given a class Q of queries, KBs K1 and K2, and a signature � of relevant concept 
and role names, we say that K1 �-Q entails K2 if the answers to any �-query in Q over K2 are contained in the answers 
to the same query over K1. Further, K1 and K2 are �-Q inseparable if they �-Q entail each other. Since a KB includes an 
ABox, this notion of entailment is appropriate if the data is known while the ontology engineering task is completed and 
does not change frequently. This is the case for many real-world ontologies, which not only provide a conceptual model 
of the domain of interest, but also introduce the individuals relevant for the domain and their properties. In addition to 
versioning, modularisation, revision, update, and forgetting, applications of �-KB entailment and �-KB inseparability also 
include knowledge exchange [32–34], where a user wants to transform a KB K1 given in a signature �1 to a KB K2 in a 
new signature �2 connected to �1 using a mapping M, also known as an ontology alignment or ontology matching [35]. 
The condition that the target KB K2 is a sound and complete representation of K1 under M with respect to the answers 
to a class Q of relevant queries can then be formulated as the condition that K1 ∪M and K2 are �2-Q inseparable [34]. 
The following simple example illustrates the notion of KB inseparability.

Example 1. Suppose we are given the KBs K1 = (T1, A) and K2 = (T2, A), where

T1 = {Lecturer � ∀teaches.(Undergraduate 	 Graduate)}, T2 = ∅,

A= {Lecturer(a), teaches(a,b)}.
Then K1 and K2 are �-CQ inseparable, for any signature �. However, they are not �-UCQ inseparable for the signature �
containing the concept names Undergraduate and Graduate. To see this, consider the �-UCQ

q(x) = Undergraduate(x) ∨ Graduate(x).

Clearly, b is an answer to q(x) over K1, but not over K2.
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Table 1
KB query inseparability.

Queries ALC and ALC ALC and EL
CQ and rCQ undecidable undecidable
UCQ and rUCQ 2ExpTime-complete in 2ExpTime

Table 2
TBox query inseparability.

Queries ALC and ALC ALC and EL HornALC and HornALC
CQs undecidable undecidable 2ExpTime-complete
rCQs undecidable undecidable ExpTime-complete

KB entailment and inseparability are appropriate if the data is known and does not change frequently. If, however, the 
data is not known or tends to change, it is not KBs that should be compared, but TBoxes. Given a pair � = (�1, �2) that 
specifies a relevant signature �1 for ABoxes and a relevant signature �2 for queries, we say that a TBox T1 �-Q entails a 
TBox T2 if, for every �1-ABox A, the KB (T1, A) �2-Q entails (T2, A). TBoxes T1 and T2 are �-Q inseparable if they �-Q
entail each other.

Example 2. Consider again the TBoxes T1 and T2 from Example 1. Clearly, T1 and T2 are not (�0, �1)-UCQ inseparable for 
�0 = {Lecturer, teaches} and �1 = {Undergraduate, Graduate} as we have seen a �0-ABox A for which (T1, A) and (T2, A)

are not �1-UCQ inseparable. Notice, however, that T1 and T2 are both (�0, �0)-UCQ and (�1, �1)-UCQ inseparable. On the 
other hand, it is not difficult to see that T1 and T2 are (�0, �1)-CQ inseparable. The situation changes drastically if the 
ABox can contain additional role names, for instance hasFriend. Indeed, suppose �2 = �0 ∪ �1 ∪ {hasFriend}. Then T1 and 
T2 are (�2, �2)-CQ separable by the ABox A′ shown in the picture below and the CQ

q′(x) = ∃y∃z
(
teaches(x, y) ∧ Undergraduate(y) ∧ hasFriend(y, z) ∧ Graduate(z)

)
since a is returned as an answer to q′(x) over (T1, A′) but not over (T2, A′). (This example is a variant of the well-known 
[36, Example 4.2.5].)

In this paper, we investigate entailment and inseparability for KBs and TBoxes and for queries that are CQs or UCQs. In 
practice, the majority of queries are rooted in the sense that every variable is connected to an answer variable. We therefore 
also consider the classes of rooted CQs (rCQs) and UCQs (rUCQs). So far, query entailment and inseparability have been 
studied for Horn DL KBs [37], EL TBoxes [38,15], DL-Lite TBoxes [39], and also for OBDA specifications, that is, DL-Lite 
TBoxes with mappings [40]; for a recent survey see [41]. No results are yet available for non-Horn DLs (neither in the 
KB nor in the TBox case) and for expressive Horn DLs in the TBox case. In particular, query entailment in non-Horn DLs 
has had the reputation of being a technically challenging problem. Here, we make first steps towards understanding query 
entailment and inseparability in these cases. To begin with, we give model-theoretic characterisations of these notions for 
ALC and HornALC in terms of (finite partial) homomorphisms and products of interpretations. The obtained character-
isations together with various types of automata are then used to investigate the computational complexity of deciding 
query entailment and inseparability. Our main results on KB and TBox inseparabilities are summarised in Tables 1 and 2, 
respectively:

Three of these results came as a real surprise to us. First, it turned out that CQ and rCQ inseparability between ALC KBs 
is undecidable, even if one of the KBs is formulated in the lightweight DL EL and without any signature restriction. This 
should be contrasted with the decidability of subsumption-based entailment between ALC TBoxes [42] (and even theories 
in guarded fragments of FO [43]) and of CQ entailment between HornALC KBs [37]. The second surprising result is that 
inseparability between ALC KBs becomes decidable when CQs are replaced with UCQs or rUCQs. In fact, we show that 
inseparability is 2ExpTime-complete for both UCQs and rUCQs. An even more fine-grained picture is obtained by considering 
entailment instead of inseparability. It turns out that (r)CQ entailment of HornALC KBs by ALC KBs coincides with (r)UCQ 
entailment of HornALC KBs by ALC KBs and is 2ExpTime-complete, but that in contrast (r)CQ entailment of ALC KBs by 
HornALC KBs is undecidable.

For ALC TBoxes, CQ and rCQ entailment as well as CQ and rCQ inseparability are undecidable as well. We obtain 
decidability for HornALC TBoxes (where CQ and UCQ entailments coincide) using the fact that non-entailment is always 
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witnessed by tree-shaped ABoxes. As another surprise, CQ inseparability of HornALC TBoxes is 2ExpTime-complete while 
rCQ-entailment is only ExpTime-complete. This applies to CQ entailment and rCQ entailment as well. This result should be 
contrasted with the EL case, where both problems are ExpTime-complete [38]. Table 2 does not contain any results in the 
UCQ case, as the decidability of UCQ entailment and inseparability between ALC TBoxes remains open.

We now discuss the structure and contributions of this paper in more detail. Section 2 defines the DLs we are inter-
ested in, which range from EL to HornALC and ALC . It also introduces query answering for DL KBs and provides basic 
completeness results and homomorphism characterisations for query answering. Section 3 defines query entailment and 
inseparability between DL KBs. It provides illustrating examples and characterises UCQ entailment in terms of finite par-
tial homomorphisms between models of KBs. To characterise CQ entailment, products of KB models are also required. The 
difference between the characterisations will play a crucial role in our algorithmic analysis of entailment. In some impor-
tant cases later on in the paper, finite partial homomorphisms are replaced by full homomorphisms using, for example, 
automata-theoretic techniques and, in particular, Rabin’s result that any tree automaton that accepts some tree accepts al-
ready a regular tree. This move from finite partial homomorphisms to full homomorphisms is non-trivial and crucial for our 
decision procedures.

In Section 4, we prove the undecidability of (r)CQ entailment of an ALC KB by an EL KB using a reduction of an un-
decidable tiling problem. The direction is important, as we prove later that (r)CQ entailment of an EL KB by an ALC KB is 
decidable (in 2ExpTime). We also prove undecidability of CQ inseparability between EL and ALC KBs. The model-theoretic 
characterisation of (r)CQ entailment via products and finite homomorphisms is crucial for these proofs. We then use a ‘hid-
ing technique’ replacing concept names by complex concepts to extend the undecidability results to the full signature. Thus, 
for example, even without any restriction on the signature it is undecidable whether two ALC KBs are (r)CQ inseparable.

In Section 5, we first show that, in the (r)UCQ case, partial homomorphisms can be replaced by full homomorphisms in 
the model-theoretic characterisation of rUCQ entailment between ALC KBs if one considers regular tree-shaped models of 
the KBs. This result is then used to encode the UCQ entailment problem into an emptiness problem for two-way alternating 
parity automata on infinite trees (2APTAs). Using results from automata theory we then obtain a 2ExpTime upper bound for 
(r)UCQ entailment between ALC KBs and a characterisation of (r)UCQ entailment with full homomorphisms that does not 
require the restriction to regular tree-shaped models. We prove that the 2ExpTime upper bound is tight by a reduction of 
the word problem for alternating Turing machines. Finally, we show using the hiding technique that the 2ExpTime lower 
bounds still hold without restrictions on the signature.

In Section 6, we introduce query entailment and inseparability between TBoxes and prove that the undecidability results 
for (r)CQ entailment and (r)CQ inseparability can be lifted from KBs to TBoxes. In this case, however, undecidability without 
any restrictions regarding the signatures remains open. In Section 7, we develop model-theoretic criteria for (r)CQ entail-
ment of HornALC TBoxes by ALC TBoxes. The crucial observation is that it suffices to consider tree-shaped ABoxes when 
searching for counterexamples to (r)CQ entailment between TBoxes. This allows us to use, in Section 8, automata on trees 
to decide (r)CQ entailment.

In Section 8, we first prove an ExpTime upper bound for rCQ entailment of HornALC TBoxes by ALC TBoxes via an 
encoding into emptiness problems for a mix of two-way alternating Büchi automata and non-deterministic top-down tree 
automata on finite trees (that represent tree-shaped ABoxes). As satisfiability of HornALC TBoxes is ExpTime-hard already, 
this bound is tight. We then consider arbitrary (not necessarily rooted) CQs and extend the previous encoding into emptiness 
problems for tree automata to this case, thereby obtaining a 2ExpTime upper bound. Here, it is non-trivial to show that this 
bound is tight. We use a reduction of alternating Turing machines to prove the corresponding 2ExpTime lower bound (also 
for CQ inseparability).

We conclude in Section 9 by discussing open problems. A small number of proofs that follow ideas presented in the 
main paper are deferred to the appendix. An extended abstract with initial results that led to this paper was presented at 
IJCAI 2016 [44].

2. Preliminaries

In DL, knowledge is represented by means of concepts and roles that are defined inductively starting from a count-
ably infinite set NC of concept names and a countably-infinite set NR of role names, and using a set of concept and role 
constructors [45]. Different sets of concept and role constructors give rise to different DLs.

We begin by introducing the description logic ALC . The concept constructors available in ALC are shown in Table 3, 
where R is a role name and C , D are concepts. A concept built using these constructors is called an ALC-concept. ALC
does not have any role constructors. An ALC TBox is a finite set of ALC concept inclusions (CIs) of the form C � D and ALC
concept equivalences (CEs) C ≡ D . (A CE C ≡ D will be regarded as an abbreviation for the two CIs C � D and D � C .) The 
size |T | of a TBox T is the number of occurrences of symbols in T .

The semantics of TBoxes is given by interpretations I = (�I , ·I), where the domain �I is a non-empty set and the 
interpretation function ·I maps each concept name A ∈ NC to a subset AI of �I , and each role name R ∈ NR to a binary 
relation RI on �I . The extension of ·I to arbitrary concepts is defined inductively as shown in the third column of Table 3. 
We say that an interpretation I satisfies a CI C � D if CI ⊆ DI , and that I is a model of a TBox T if I satisfies all the CIs 
in T . A TBox is consistent (or satisfiable) if it has a model. A concept C is satisfiable with respect to T if there exists a model 
I of T such that CI �= ∅. A concept C is subsumed by a concept D with respect to T (T |= C � D , in symbols) if every model 
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Table 3
Syntax and semantics of ALC.

Name Syntax Semantics

top concept � �I

bottom concept ⊥ ∅
negation ¬C �I \ CI

conjunction C � D CI ∩ DI

disjunction C 	 D CI ∪ DI

existential restriction ∃R.C { d ∈ �I | ∃e ∈ CI (d, e) ∈ RI}
universal restriction ∀R.C { d ∈ �I | ∀e ∈ �I (

(d, e) ∈ RI → e ∈ CI)}

I of T satisfies the CI C � D . For TBoxes T1 and T2, we write T1 |= T2 and say that T1 entails T2 if T1 |= α for all α ∈ T2. 
TBoxes T1 and T2 are logically equivalent if they have the same models. This is the case if and only if T1 entails T2, and vice 
versa.

We next define two syntactic fragments of ALC for which query answering (see below) is tractable in data complexity. 
The fragment of ALC obtained by disallowing the constructors ⊥, ¬, 	 and ∀ is known as EL. Thus, EL concepts are 
constructed using �, � and ∃ only [46]. A more expressive fragment with tractable query answering is HornALC . Following 
[47,48], we say, inductively, that a concept C occurs positively in C itself and, if C occurs positively (negatively) in C ′ , then

– C occurs positively (respectively, negatively) in C ′ 	 D , C ′ � D , ∃R.C ′ , ∀R.C ′ , D � C ′ , and
– C occurs negatively (respectively, positively) in ¬C ′ and C ′ � D .

Now, we call an ALC TBox T Horn if no concept of the form C 	 D occurs positively in T , and no concept of the form ¬C
or ∀R.C occurs negatively in T . In the DL HornALC , only Horn TBoxes are allowed.

In DL, data is represented in the form of ABoxes. To introduce ABoxes, we fix a countably-infinite set NI of individual 
names, which correspond to individual constants in first-order logic. An assertion is an expression of the form A(a) or 
R(a, b), where A is a concept name, R a role name, and a, b individual names. An ABox A is a finite set of assertions. We 
call the pair K = (T , A) of a TBox T in a DL L and an ABox A an L knowledge base (KB, for short). By ind(A) and ind(K), 
we denote the set of individual names in A and K, respectively.

To interpret ABoxes A, we consider interpretations I that map all individual names a ∈ ind(A) to elements aI ∈ �I in 
such a way that aI �= bI if a �= b (thus, we adopt the unique name assumption). It is to be noted that we do not assume all 
the individual names from NI to be interpreted in I . Sometimes, we make the standard name assumption, that is, set aI = a, 
for all the relevant a. Both assumptions are without loss of generality as it is well known, and easy to check, that in ALC
the certain answers to (unions of) conjunctive queries, as defined below, do not depend on the unique name assumption. 
We say that I satisfies assertions A(a) and R(a, b) if aI ∈ AI and, respectively, (aI , bI) ∈ RI . It is a model of an ABox A if 
it satisfies all the assertions in A, and it is a model of a KB K = (T , A) if it is a model of both T and A. We say that K
is consistent (or satisfiable) if it has a model. We apply the TBox terminology introduced above to KBs as well. For example, 
KBs K1 and K2 are logically equivalent if they have the same models (or, equivalently, entail each other).

We next introduce query answering over KBs, starting with conjunctive queries [49–51]. An atom takes the form A(x) or 
R(x, y), where x, y are from a set of individual variables NV , A is a concept name, and R a role name. A conjunctive query (or 
CQ) is an expression of the form q(x) = ∃y ϕ(x, y), where x and y are disjoint sequences of variables and ϕ is a conjunction 
of atoms that only contain variables from x∪ y—we (ab)use set-theoretic notation for sequences where convenient. We often 
write A(x) ∈ q and R(x, y) ∈ q to indicate that A(x) and R(x, y) are conjuncts of ϕ . We call a CQ q(x) = ∃y ϕ(x, y) rooted
(or an rCQ) if every y ∈ y is connected to some x ∈ x by a path in the undirected graph whose nodes are the variables in 
q and edges are the pairs {u, v} with R(u, v) ∈ q, for some R . A union of CQs (UCQ) is a disjunction q(x) = ∨

i qi(x) of CQs 
qi(x) with the same answer variables x; it is rooted (rUCQ) if all the qi are rooted. If the sequence x is empty, q(x) is called 
a Boolean CQ or UCQ. Observe that no Boolean query is rooted.

Example 3. The CQ q(x1, x2) = ∃y1∃y2(R(x1, y1) ∧ S(x2, y2)) is an rCQ but q(x1) = ∃x2∃y1∃y2(R(x1, y1) ∧ S(x2, y2)) is not 
an rCQ.

Given a UCQ q(x) = ∨
i qi(x) with x = x1, . . . , xk and a KB K, a sequence a = a1, . . . , ak of individual names from K is 

called a certain answer to q(x) over K if, for every model I of K, there exist a CQ qi in q and a map (homomorphism) h of its 
variables to �I such that h(x j) = aIj , for 1 ≤ j ≤ k, A(z) ∈ qi implies h(z) ∈ AI , and R(z, z′) ∈ qi implies (h(z), h(z′)) ∈ RI . 
If this is the case, we write K |= q(a). For a Boolean UCQ q, we say that the certain answer to q over K is ‘yes’ if K |= q and 
‘no’ otherwise. CQ or UCQ answering means to decide—given a CQ or UCQ q(x), a KB K and a tuple a from ind(K)—whether 
K |= q(a).

Example 4. To see that a is a certain answer to the CQ q′(x) over the KB K = (T1, A′) from Example 2, we observe that, by 
the axiom of T1, we have c ∈ UndergraduateI or c ∈ GraduateI in any model I of K. In the former case, the map h1 with 
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h1(x) = a, h1(y) = c and h1(z) = d is a homomorphism from q′ to I , while in the latter one, h2 with h2(x) = a, h2(y) = b
and h2(z) = c is such a homomorphism.

A signature, �, is a finite set of concept and role names. The signature sig(C) of a concept C is the set of concept and 
role names that occur in C , and likewise for TBoxes T , CIs C � D , assertions R(a, b) and A(a), ABoxes A, KBs K, UCQs q. 
Note that individual names are not in any signature and, in particular, not in the signature of an assertion, ABox or KB. 
We are often interested in concepts, TBoxes, KBs, and ABoxes formulated using a specific signature �, in which case we 
use the terms �-concept, �-TBox, �-KB, etc. When dealing with �-KBs, it mostly suffices to consider �-interpretations I
where XI = ∅ for all concept and role names X �∈ �. A �-model of a KB is a �-interpretation that is a model of the KB. 
The �-reduct J of an interpretation I is obtained from I by setting �J = �I , AJ = AI for all concept names A ∈ �, 
RJ = RI for all role names R ∈ �, and AJ = RJ = ∅ for all remaining concept names A and role names R .

To compute the certain answers to queries over a KB K, it is convenient to work with a ‘small’ subset M of sig(K)-models 
of K that is complete for K in the sense that, for any UCQ q(x) and any a ⊆ ind(K), we have K |= q(a) iff I |= q(a) for all 
I ∈ M . We shall frequently use the following characterisation of complete sets of models based on (partial) homomorphisms.

Suppose I and J are interpretations and � a signature. A function h : �I → �J is called a �-homomorphism if u ∈ AI

implies h(u) ∈ AJ and (u, v) ∈ RI implies (h(u), h(v)) ∈ RJ , for all u, v ∈ �I , �-concept names A, and �-role names R . 
If � is the set of all concept and role names, then h is called simply a homomorphism. We say that h preserves a set N of 
individual names if h(aI) = aJ , for all a ∈ N that are defined in I . It is known from database theory that homomorphisms 
characterise CQ-containment [52]. To characterise completeness for KBs, we require finite partial homomorphisms. An in-
terpretation I is a subinterpretation of an interpretation J (induced by a set �) if � = �I ⊆ �J , AI = AJ ∩ �I for all 
concept names A, RI = RJ ∩ (�I ×�I) for all role names R , and the interpretation aI of an individual name a is defined 
exactly if aJ ∈ �I , in which case aI = aJ . For a natural number n, we say that an interpretation I is n�-homomorphically 
embeddable into an interpretation J if, for any subinterpretation I ′ of I with |�I ′ | ≤ n, there is a �-homomorphism from 
I ′ to J . If � is the set of all concept and role names, then we omit � and speak about n-homomorphic embeddability. If we 
require all �-homomorphisms to preserve a set N of individual names, then we speak about n�-homomorphic embeddability 
preserving N .

Example 5. Let I and J be interpretations whose domain is the set N of natural numbers and, for any n, m ∈ N, we have 
(n, m) ∈ RI if m = n + 1, and (n, m) ∈ RJ if n = m + 1. Then, for all n ≥ 0, I is n-homomorphically embeddable into J , but 
I is not homomorphically embeddable into J . Now, let aI = 0, aJ = m, and N = {a}. Then I is (m + 1)-homomorphically 
embeddable into J preserving N , but I is not (m + 2)-homomorphically embeddable into J preserving N .

Proposition 6. A set M of sig(K)-models of an ALC KB K is complete for K iff, for any model J of K and any n > 0, there is I ∈ M
such that I is n-homomorphically embeddable into J preserving ind(K).

Proof. Let � = sig(K) and let M be a class of �-models of K. Suppose first that M is not complete for K. Then there 
exist a UCQ q(x) and a tuple a from ind(K) such that K �|= q(a) but I |= q(a) for all I ∈ M . Let J be a model of K
such that J �|= q(a) and let n be the number of variables in q(x). For every I ∈ M , there exists a subinterpretation I ′ of 
I with |�I ′ | ≤ n and I ′ |= q(a). No such I ′ is homomorphically embeddable into J preserving a, and so no I ∈ M is 
n-homomorphically embeddable into J preserving ind(K).

Conversely, suppose there exists a model J of K and n > 0 such that no I ∈ M is n-homomorphically embeddable into 
J preserving ind(K). Let ind(K) = {a1, . . . , ak}. For every finite �-interpretation I with domain {u1, . . . , um} such that m ≥ k
and ai = ui (1 ≤ i ≤ k), we define the canonical CQ qI by taking

qI(x1, . . . , xk) = ∃xk+1 · · · ∃xm

( ∧
ui∈AI,A∈�

A(xi) ∧
∧

(ui ,u j)∈RI,R∈�

R(xi, x j)
)
.

Then there exists a homomorphism from I to J preserving ind(K) iff J |= qI(a1, . . . , ak). Now pick for any I ∈ M a 
subinterpretation I ′ of I with �I ′ ⊇ ind(K) and |�I ′ \ ind(K)| ≤ n such that I ′ is not homomorphically embeddable into 
J preserving ind(K). Let q(x1, . . . , xk) be the disjunction of all canonical CQs qI ′ (x1, . . . , xk) determined by these I ′ . Then 
J �|= q(a1, . . . , ak), and so K �|= q(a1, . . . , ak), but I |= q(a1, . . . , ak), for all I ∈ M . �

Observe that, in the characterisation of Proposition 6, one cannot replace n-homomorphic embeddability by homomor-
phic embeddability as shown by the following example.

Example 7. Let K = ({� � ∃R.�}, {A(a)}). Then the class M of all interpretations that consist of a finite R-chain starting 
with A(a) and followed by an R-cycle (of arbitrary length) is complete for K. However, there is no homomorphism from 
any member of M into the model of K that consists of an infinite R-chain starting from A(a).
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We call an interpretation I a ditree interpretation if the directed graph GI defined by taking

GI = (�I , {(d, e) | (d, e) ∈
⋃

R∈NR

RI})

is a directed tree and RI ∩ SI = ∅, for any distinct role names R and S . I has outdegree n if GI has outdegree n. A model 
I of K = (T , A) is forest-shaped if I is the disjoint union of ditree interpretations Ia with root a, for a ∈ ind(A), extended 
with all R(a, b) ∈ A. In this case, the outdegree of I is the maximum outdegree of the interpretations Ia , for a ∈ ind(A). 
Denote by Mbo

K the class of all forest-shaped sig(K)-models of K of outdegree ≤ |T |. The following completeness result is 
well known [53] (the first part is shown in the proof of Proposition 9):

Proposition 8. Mbo
K is complete for any ALC KB K. If K is a HornALC KB, then there is a single member IK of Mbo

K that is complete 
for K.

The model IK mentioned in Proposition 8 is constructed using the standard chase procedure and called the canonical 
model of K. Proposition 8 can be strengthened further. Call a subinterpretation I of a ditree interpretation J a rooted 
subinterpretation of J if there exists u ∈ �J such that the domain �I of I is the set of all u′ ∈ �J for which there is a 
path u0, . . . , un ∈ �J with u0 = u, un = u′ and (ui, ui+1) ∈ RI

i (i < n), for some role name Ri . Call a ditree interpretation 
I regular if it has, up to isomorphism, only finitely many rooted subinterpretations. A forest-shaped model I of a KB K
is regular if the ditree interpretations Ia , a ∈ ind(K), are regular. Denote by M reg

K the class of all regular forest-shaped 
sig(K)-models of K = (T , A) of outdegree bounded by |T |.

Proposition 9. M reg
K is complete for any ALC KB K.

Proof. Suppose K is an ALC KB and K �|= q(a), for some UCQ q(x). As shown in [53], there exists a consistent KB K′ =
(T ′, A′) with T ′ ⊇ T , A′ ⊇ A, and ind(A′) = ind(A) such that I �|= q(a), for every model I of K′ (called a spoiler for q
and K in [53] and constructed by carefully analysing all possible homomorphism from q to models of K and ‘spoiling’ all 
of them by suitable KB extensions). We construct a regular model J ′ of K′ as follows. Let I ′ be a model of K′ . We may 
assume that T ′ does not use the constructor ∀r.C . Denote by cl(T ′) the set of subconcepts of concepts in T ′ closed under 
single negation. For d ∈ �I ′

, the T ′-type of d in I ′ , denoted tI
′

T ′ (d), is defined as tI
′

T ′ (d) = {C ∈ cl(T ′) | d ∈ CI ′ }. A subset 
t ⊆ cl(T ′) is a T ′-type if t = tIT ′ (d), for some model I of T ′ and d ∈ �I . We denote the set of all T ′-types by type(T ′). Let 
t, t ′ ∈ type(T ′). For ∃R.C ∈ t , we say that t ′ is an ∃R.C-witness for t if C ∈ t ′ and the concept � t � ∃R.(� t ′) is satisfiable 
with respect to T ′ . Denote by succ∃R.C (t) the set of all ∃R.C-witnesses for t . Now choose, for any T ′-type t and ∃R.C such 
that succ∃R.C (t) �= ∅, a single type s∃R.C (t) ∈ succ∃R.C (t). We construct the model J ′ of K′ as follows. The domain �J ′

is 
the set of words

aR1t1 · · · Rntn,

where a ∈ ind(K′) and, for t0 = tI
′

T ′(a) and i < n, t i+1 = s∃Ri+1.C (t i) for some ∃Ri+1.C ∈ t i . Set aR1t1 · · · Rntn ∈ AJ ′
if n = 0

and A ∈ tI
′

T ′ (a) or n > 0 and A ∈ tn . Finally, set (aR1t1 · · · Rntn, bS1t ′
1 · · · Smt ′

m) ∈ RJ ′
iff n = m = 0 and R(a, b) ∈ A or 

0 < m = n + 1, Sm = R and aR1t1 · · · tn = bS1t ′
1 · · · t ′

m−1. One can easily show that J ′ is a regular model of K′ . Hence 
J ′ �|= q(a). The outdegree of J ′ is bounded by |T ′| but possibly not by |T |, and so it remains to modify J ′ in such a 
way that its outdegree is bounded by |T |. To this end, we remove from J ′ all R-successors (together with the subtrees 
they root) aR1t1 · · · Rntn Rt of all aR1t1 · · · Rntn ∈ �J ′

such that t �= s∃R.C (tn) for any ∃R.C ∈ cl(T ). By the construction, the 
resulting interpretation J is still regular, it is a model of K (since T ′ ⊇ T ), its outdegree is bounded by |T |, and J �|= q(a)

since J ′ �|= q(a). �
Example 10. Consider the KB K = (T , A) with T = {A 	 B � ∃R.(A 	 B)} and A = {A(a)}. The following class of regular 
models I is complete for K. The domain of I is the natural numbers with aI = 0 ∈ AI , (i, j) ∈ RI if j = i + 1, for all 
natural numbers i and j, and there are k, n, m ≥ 0 such that AI and BI are mutually disjoint, cover the initial segment 
{1, . . . , k} and, on the remainder {k + 1, . . . }, they are interpreted by alternating between n consecutive nodes in AI and m
consecutive nodes in BI . Then I is regular since the number of non-isomorphic rooted subinterpretations of I with root 
r > k is ≤ n +m (the number of non-isomorphic rooted subinterpretations of I with root r ≤ k is clearly bounded by k + 1).

In the undecidability proofs of Section 4, we do not use the full expressive power of ALC but work with a small 
fragment denoted ELU rhs . An ELU rhs TBox T consists of CIs of the form

– A � C ,
– A � C 	 D ,
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where A is a concept name and C, D are EL-concepts. Given an ELU rhs KB K = (T , A), we construct by induction a 
(possibly infinite) labelled forest O with a labelling function �. For each a ∈ ind(A), a is the root of a tree in O with 
A ∈ �(a) iff A(a) ∈ A. Suppose now that σ is a node in O and A ∈ �(σ ). If A � C is an axiom of T and C /∈ �(σ ), then we 
add C to �(σ ). If A � C 	 D is an axiom of T and neither C ∈ �(σ ) nor D ∈ �(σ ), then we add to �(σ ) either C or D (but 
not both); in this case, we call σ an or-node. If C � D ∈ �(σ ), then we add both C and D to �(σ ) provided that they are not 
there yet. Finally, if ∃R.C ∈ �(σ ) and the constructed part of the tree does not contain a node of the form σ · w∃R.C , then 
we add σ · w∃R.C as an R-successor of σ and set �(σ · w∃R.C ) = {C}. Now we define a minimal model I = (�I , ·I) of K by 
taking �I to be the set of nodes in O, aI = a for a ∈ ind(A), RI to be the R-relation in O together with (a, b) such that 
R(a, b) ∈A, and AI = { σ ∈ �I | A ∈ �(σ ) }, for every concept name A. It follows from the construction that I is a model 
of K.

Lemma 11. For any ELU rhs KB K, the set MK of its minimal models is complete for K.

Proof. By Proposition 6, it suffices to show that, for every model J of K, there is a minimal model I that is homomor-
phically embeddable into J preserving ind(K). Suppose a model J of K is given. We can now inductively construct a set 
�, a labelling function � defining a minimal model I , and a homomorphism h from I to J such that h(σ ) ∈ CJ , for each 
C ∈ �(σ ) and σ ∈ �. The model J is used as a guide. For instance, let σ ∈ � such that h(σ ) is set. Suppose that A ∈ �(σ ), 
A � C 	 D is an axiom in T , and C /∈ �(σ ), D /∈ �(σ ). Since J is a model of K, it must be the case that h(σ )J ∈ CJ or 
h(σ )J ∈ DJ . In the former case, we add C to �(σ ), in the latter case, we add D to �(σ ). Suppose further that σ · w∃R.C is 
in � and h(σ · w∃R.C ) is not set. Since J is a model of K and by inductive assumption h(σ ) ∈ (∃R.C)J , there exists d ∈ �J

such that (h(σ ), d) ∈ RJ and d ∈ CJ . So we set h(σ · w∃R.C ) = d.
Now we take the minimal model I = (�, ·I), where ·I is defined according to the labelling function �. By the construc-

tion of � and the fact that I is minimal, we obtain that h is indeed a homomorphism from I to J . �
3. Model-theoretic criteria for query entailment and inseparability between knowledge bases

In this section, we first define the central notions of query entailment and inseparability between KBs for CQs and UCQs 
as well as their restrictions to rooted queries. Then we give model-theoretic characterisations of these notions based on 
products of interpretations and (partial) homomorphisms.

Definition 12. Let K1 and K2 be consistent KBs, � a signature, and Q one of CQ, rCQ, UCQ or rUCQ. We say that K1
�-Q-entails K2 if K2 |= q(a) implies a ⊆ ind(K1) and K1 |= q(a), for all �-Q q(x) and all tuples a in ind(K2). We say that 
K1 and K2 are �-Q inseparable if they �-Q entail each other. If � is the set of all concept and role names, we say ‘full 
signature Q-entails’ or ‘full signature Q-inseparable’.

As larger classes of queries separate more KBs, �-UCQ inseparability implies all other inseparabilities and �-CQ insep-
arability implies �-rCQ inseparability. The following example shows that, in general, no other implications between the 
different notions of inseparability hold for ALC .

Example 13. Suppose T0 = ∅, T ′
0 = {E � A 	 B} and �0 = {A, B, E}. Let A0 = {E(a)}, K0 = (T0, A0), and K′

0 = (T ′
0 , A0). Then 

K0 and K′
0 are �0-CQ inseparable (and so also �0-rCQ inseparable) but not �0-rUCQ inseparable (and so also not �0-UCQ 

inseparable). The former claim can be proved using the model-theoretic criterion given in Theorem 17 below, and the latter 
one follows from K′

0 |= q(a) and K0 �|= q(a), for q(x) = A(x) ∨ B(x).
Now, let �1 = {E, B}, T1 = ∅, and T ′

1 = {E � ∃R.B}. Let A1 = {E(a)}, K1 = (T1, A1), and K′
1 = (T ′

1 , A1). Then K1 and 
K′

1 are �1-rUCQ inseparable (and so also �1-rCQ inseparable) but not �1-CQ inseparable. The former claim can be proved 
using the model-theoretic criterion of Theorem 17 and the latter one follows from the observation that K′

1 |= ∃xB(x) but 
K1 �|= ∃xB(x).

The situation changes for HornALC KBs. The following can be easily proved by observing (using Proposition 8) that the 
certain answers to a UCQ over a HornALC KB K coincide with the certain answers to its disjuncts over K:

Proposition 14. Let K1 be an ALC KB and K2 a HornALC KB. Then K1 �-UCQ entails K2 iff K1 �-CQ entails K2 . The same holds 
for rUCQ and rCQ.

Now we give model-theoretic criteria of �-query entailment between KBs. As usual in model theory [54, page 405], we 
define the product

∏
I of a family I = {Ii | i ∈ I} of interpretations by taking

�
∏

I = { f : I →
⋃

�Ii | ∀i ∈ I f (i) ∈ �Ii },

i∈I
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A
∏

I = { f | ∀i ∈ I f (i) ∈ AIi },
R

∏
I = {( f , g) | ∀i ∈ I ( f (i), g(i)) ∈ RIi },

a
∏

I = fa, where fa(i) = aIi for all i ∈ I.

Proposition 15 ([54]). For any CQ q(x) and any tuple a of individual names, 
∏

I |= q(a) iff I |= q(a) for all I ∈ I .

Example 16. The KB K = (T1, A′) from Example 2 has two minimal models: I1 that agrees with A′ on a, b, d and has 
c ∈ UndergraduateI2 , and I2 that also agrees with A′ on a, b, d but has c ∈ GraduateI1 (cf. Example 4). By Lemma 11, the 
set I = {I1, I2} is complete for K. The picture below1 shows the ‘interesting’ part of 

∏
I . Clearly, 

∏
I |= q′(a), where q′ is 

the CQ from Example 2. It follows that K |= q′(a).

We characterise �-query entailment in terms of products and n�-homomorphic embeddability. To also capture rooted 
queries, we first introduce the corresponding refinement of �-homomorphic and, respectively, n�-homomorphic embed-
dability. A �-path ρ from u to v in an interpretation I is a sequence u0, . . . , un ∈ �I such that u0 = u, un = v , and there 
are R0, . . . , Rn−1 ∈ � with (ui, ui+1) ∈ RI

i , for 0 ≤ i < n. For a KB K = (T , A) and model I of K, we say that u ∈ �I is 
�-connected to A in I if there exist a ∈ ind(K) and a �-path from aI to u in I . The subinterpretation Icon of I induced by 
the set of all u ∈ �I that are �-connected to A in I is called the �-component of I with respect to K. Let I1 be a model 
of K1 and I2 a model of K2. We say that I2 is con-�-homomorphically embeddable into I1 if the �-component Icon

2 of I2
with respect to K2 is �-homomorphically embeddable into I1; and we say that I2 is con-n�-homomorphically embeddable 
into I1 if the �-component Icon

2 of I2 with respect to K2 is n�-homomorphically embeddable into I1.

Theorem 17. Let K1 and K2 be ALC KBs, � a signature, and let Mi = {I j | j ∈ Ii} be complete for Ki , i = 1, 2.

(1) K1 �-UCQ entails K2 iff, for any n > 0 and I1 ∈ M1 , there exists I2 ∈ M2 that is n�-homomorphically embeddable into I1
preserving ind(K2).

(2) K1 �-rUCQ entails K2 iff, for any n > 0 and I1 ∈ M1 , there exists I2 ∈ M2 that is con-n�-homomorphically embeddable into I1
preserving ind(K2).

(3) K1 �-CQ entails K2 iff 
∏

M2 is n�-homomorphically embeddable into 
∏

M1 preserving ind(K2) for any n > 0.
(4) K1 �-rCQ entails K2 iff 

∏
M2 is con-n�-homomorphically embeddable into 

∏
M1 preserving ind(K2) for any n > 0.

Proof. (1) Suppose K2 |= q(a) but K1 �|= q(a), for a �-UCQ q and a in ind(K1). Let n be the number of variables in q. 
Take I1 ∈ M1 such that I1 �|= q(a). Then no I2 ∈ M2 is n�-homomorphically embeddable into I1 preserving ind(K2) since 
this would imply I2 �|= q(a). Conversely, suppose I1 ∈ M1 is such that, for some n > 0, no I2 ∈ M2 is n�-homomorphically 
embeddable into I1 preserving ind(K2). Fix such an n > 0 and take for every I2 ∈ M2 a subinterpretation I ′

2 of I2 with 
domain of size ≤ n such that I ′

2 is not �-homomorphically embeddable into I1 preserving ind(K2). Recall from the proof 
of Proposition 6 that we can regard the �-reduct of any such I ′

2 as a �-CQ (with the answer variables corresponding to 
the ABox individuals). The disjunction of all these CQs (up to isomorphisms) is entailed by K2 but not by K1. The proof of 
(2) is similar.

(3) Suppose K2 |= q(a) but K1 �|= q(a), for a �-CQ q and a in ind(K1). By Proposition 15, 
∏

M2 |= q(a) but 
∏

M1 �|=
q(a). Let n be the number of variables in q. Then 

∏
M2 is not n�-homomorphically embeddable into 

∏
M1 preserving 

1 As usual in model theory, we write (b, c) for f with f : 1 �→ b and f : 2 �→ c, and similarly for (c, b), (c, d) and (d, c).
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ind(K2) since this would imply 
∏

M1 |= q(a). Conversely, suppose that, for some n > 0, 
∏

M2 is not n�-homomorphically 
embeddable into 

∏
M1 preserving ind(K2). Let I be the subinterpretation of 

∏
M2 with domain of size ≤ n which cannot be 

�-homomorphically embedded in 
∏

M1 preserving ind(K2) ∩ {a | a
∏

M2 ∈ �I}. We can regard the �-reduct of I as a �-CQ 
which is entailed by K2 but not by K1 (by Proposition 15). The proof of (4) is similar. �

Example 7 can be used to show that, in Theorem 17, n�-homomorphic embeddability cannot be replaced by 
�-homomorphic embeddability. In Section 5, however, we show that in some cases we can find characterisations with 
full �-homomorphisms and use them to present decision procedures for entailment.

If both Mi are finite and contain only finite interpretations, then Theorem 17 provides a decision procedure for KB en-
tailment. This applies, for example, to KBs with acyclic classical TBoxes [45], and to KBs for which the chase terminates [55].

4. Undecidability of (r)CQ-entailment and inseparability for ALC KBs

The aim of this section is to show that CQ and rCQ-entailment and inseparability for ALC KBs are undecidable. We begin 
by proving that it is undecidable whether an EL KB �-CQ entails an ALC KB. A straightforward modification of the KBs 
constructed in that proof is then used to prove that �-CQ inseparability between EL and ALC KBs is undecidable as well. 
It is to be noted that, as shown in Section 5, both �-UCQ and �-rUCQ entailments between ALC KBs are decidable, which 
means, by Proposition 14, that checking whether an ALC KB �-(r)CQ entails an EL KB is decidable. We then consider 
rooted CQs and prove that �-rCQ entailment and inseparability between EL and ALC KBs are still undecidable. (In fact, 
the undecidability proof for rCQs implies the undecidability results for CQs, but is somewhat trickier.) The signature � used 
in these undecidability proofs is a proper subset of the signatures of the KBs involved. In the final part of this section, 
we prove that one can modify the KBs in such a way that all the results stated above hold for full signature CQ and rCQ 
entailment and inseparability.

4.1. Undecidability of CQ-entailment and inseparability with respect to a signature �

Our undecidability proofs are by reduction of the undecidable rectangle tiling problem: given a finite set T of tile types T
with four colours up(T ), down(T ), left(T ) and right(T ), a tile type I ∈ T, and two colours W (for wall) and C (for ceiling), 
decide whether there exist N, M ∈N such that the N × M grid can be tiled using T in such a way that left(T ) = right(T ′) if 
(i, j) is covered by a tile of type T and (i + 1, j) is covered by a tile of type T ′ , and 1 ≤ i < N , 1 ≤ j ≤ M; up(T ) = down(T ′)
if (i, j) is covered by a tile of type T and (i, j +1) is covered by a tile of type T ′ , and 1 ≤ i ≤ N , 1 ≤ j < M; (1, 1) is covered 
by a tile of type I; every (N, i), for i ≤ M , is covered by a tile of type T with right(T ) = W ; and every (i, M), for i ≤ N , is 
covered by a tile of type T with up(T ) = C . (The reader can easily show that this problem is undecidable by reduction of 
the halting problem for Turing machines; cf. [56].) If an instance T of the rectangle tiling problem has a positive solution, 
we say that T admits tiling.

Given such an instance T, we construct an EL TBox T 1
CQ, an ALC TBox T 2

CQ, an ABox ACQ, and a signature �CQ such 
that, for the KBs K1

CQ = (T 1
CQ, ACQ) and K2

CQ = (T 2
CQ, ACQ), the following conditions are equivalent:

– K1
CQ �CQ-CQ entails K2

CQ;
– the instance T does not admit tiling.

The ABox ACQ does not depend on T and is defined by setting ACQ = {A(a)}. The TBox T 2
CQ uses a role name R to encode a 

grid by putting one row of the grid after the other starting with the lower left corner of the grid. It also uses the following 
concept names:

– T first , for each tile type T ∈ T, to encode the first row of a tiling;
– Tk , for T ∈ T and k = 0, 1, 2, to encode intermediate rows, with three copies of each T ∈ T needed to ensure the vertical 

matching conditions between rows;
– T halt

k , for T ∈ T and k = 0, 1, 2, to encode the last row;
– T̂k , for T ∈ T and k = 0, 1, 2.

Of all these concept names, only the T̂k are in the signature �CQ of the entailment problem we construct. Thus, the T first , 
T halt

k , and Tk are auxiliary concept names used to generate tilings, while the T̂k make the tilings ‘visible’ to relevant CQs.
The TBox T 2

CQ uses the concept names Start and End as markers for the start and end of a tiling. Both concept names 
are in �CQ. To mark the end of rows, T 2

CQ employs the concept names Rowk and Rowhalt
k , for k = 0, 1, 2, where the Rowhalt

k

indicate the last row. Similarly to the encoding of tile types above, the concept names Rowk and Rowhalt
k are auxiliary concept 

names used to construct tilings. Three copies are needed to ensure the vertical matching condition. In addition, we use a 
concept name Row ∈ �CQ that marks the end of rows and is visible to separating CQs.



E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 11
The role name R generating the grid is in �CQ. An additional concept name A and role name P link the individual a in 
ACQ to the first row of the tiling. The encoding does not depend on whether A, P are in �CQ, but it will be useful later, 
when we consider full signature CQ-entailment, to include them in �CQ.

Before writing up the axioms of T 2
CQ, we explain how they generate all possible tilings. We ensure that if a point x in 

a model I of K2
CQ is in T̂k and right(T ) = left(S), then x has an R-successor in Ŝk . Thus, branches of I define (possibly 

infinite) horizontal rows of tilings with T. If a branch contains a point y ∈ T̂k with right(T ) = W , then this y can be the 
last point in the row, which is indicated by an R-successor z ∈ Row of y. In turn, z has R-successors in all T̂(k+1) mod 3
that can be possible beginnings of the next row of tiles. To coordinate the up and down colours between the rows—which 
will be done by the CQs separating K1

CQ and K2
CQ—we make every x ∈ T̂k , starting from the second row, an instance of all 

Ŝ(k−1) mod 3 with down(T ) = up(S). The row started by z ∈ Row can be the last one in the tiling, in which case we require 
that each of its tiles T has up(T ) = C . After the point in Row indicating the end of the final row, we add an R-successor in 
End for the end of tiling. The beginning of the first row is indicated by a P -successor in Start of the ABox element a, after 
which we add an R-successor in Ifirst for the given initial tile type I .

The TBox T 2
CQ contains the following CIs, for k = 0, 1, 2:

A � ∃P .(Start � ∃R.Ifirst), (1)

T first � ∃R.Sfirst, if right(T ) = left(S) and T , S ∈ T, (2)

T first � ∃R.(Start � Row1), if right(T ) = W and T ∈ T, (3)

T first � T̂0, for T ∈ T, (4)

Rowk � ∃R.Tk, for T ∈ T, (5)

Tk � ∃R.Sk, if right(T ) = left(S) and T , S ∈ T, (6)

Tk � ∃R.Row(k+1) mod 3, if right(T ) = W and T ∈ T, (7)

Tk � ∃R.Rowhalt
(k+1) mod 3, if right(T ) = W and T ∈ T, (8)

Rowk � Row, (9)

Tk � T̂k, for T ∈ T, (10)

Tk � Ŝ(k−1) mod 3, if down(T ) = up(S) and T , S ∈ T, (11)

Rowhalt
k � ∃R.End 	 �

up(T )=C, T∈T
∃R.T halt

k , (12)

T halt
k � ∃R.Shalt

k , if right(T ) = left(S), up(S) = C and T , S ∈ T, (13)

T halt
k � ∃R.(Row � ∃R.End), if right(T ) = W and T ∈ T, (14)

Rowhalt
k � Row, (15)

T halt
k � Ŝ(k−1) mod 3, if down(T ) = up(S) and T , S ∈ T. (16)

The KB T 2
CQ is an ELU rhs KB, with (12) being the only CIs with 	. Throughout the proof, we work with the set MK2

CQ
of 

minimal models of K2
CQ and use the notation introduced in the construction of minimal models. In figures, ∨ indicates an 

or-node. We now comment on the role of the CIs in T 2
CQ.

– The CIs (1)–(3) produce all possible first rows whose ends are indicated by points in Start and Row1; see Fig. 1(a), where 
τ1 denotes trees described below. The CI (4) ensures that the tiling of the first row is visible in �CQ using the concept 
names T̂0. Note that Row is visible in �CQ due to (9).

– The CIs (5)–(8) produce all possible intermediate rows starting with points in Rowk and ending by points in 
Row(k+1) mod 3 or Rowhalt

(k+1) mod 3; see Fig. 1(b), where τk is the tree with root in Rowk and τ halt
k the tree with root in 

Rowhalt
k as described below. The CIs (9)–(11) ensure that the tilings of the intermediate rows as well as Row are visible 

in �CQ. Note that, for each intermediate row, there exists k such that the current row is encoded using T̂k and the 
matching previous row using T̂(k−1) mod 3.

– The CIs (12)–(14) produce all possible final rows starting with points in Rowhalt
k . The role of the disjunction is explained 

below; see Fig. 1(c). Finally, the axioms (15)–(16) make Row and the matching previous row visible in �CQ. Note that 
the last row itself is not visible in �CQ.

The existence of a tiling of some N × M grid for the given instance T can be checked by Boolean CQs qn , for n ≥ 1, that 
require an R-path from Start to End going through T̂k- or Row-points:
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Fig. 1. The paths in the minimal models generated by the axioms of T 2
CQ.

Fig. 2. The structure of the models Il and Ir of K2, and homomorphisms hl : qn → Il and hr : qn → Ir .

qn = ∃x
(
Start(x0) ∧

n∧
i=0

R(xi, xi+1) ∧
n∧

i=1

Bi(xi) ∧ End(xn+1)
)
,

where Bi ∈ {Row} ∪ {T̂k | T ∈ T, k = 0, 1, 2}. The qn will serve as the separating �CQ-CQs if T admits a tiling (in fact, if T
admits a tiling of some N × M grid, then qn is a separating �CQ-CQ for n = (N +1) × (M −1)). We illustrate the relationship 
between MK2

CQ
and the CQs qn in Fig. 2: the lower part of the figure shows two interpretations, Il and Ir , from MK2

CQ
(we 

only mention the extensions of concept names in �CQ). The two interpretations coincide up to the Row-point before the 
final row of the tiling. Then, because of the axiom (12), they realise two alternative continuations: one as described above, 
and the other one having just a single R-successor in End. In the picture, we show a situation where row m coincides 
with the row depicted below row m + 1 (that satisfies the vertical tiling conditions with row m + 1). For example, the first 
row ̂ I0 · · · T̂ N1

0 coincides with the row depicted below the second row (after the second Start). This is no accident and is 
enforced by the query qn that is depicted in the upper part of the figure. If K2

CQ |= qn , then qn holds in both Il and Ir , 
and so there are homomorphisms hl : qn → Il and hr : qn → Ir . As hl(xn−1) and hr(xn−1) are instances of Bn−1, we have 
Bn−1 = T̂ N M−1

1 in the figure, and so up(T N M−1) = down(T N M). By repeating this argument until x0, we see that the colours 
between horizontal rows match and the rows are of the same length. Note that for this to work, we have to make both 
the P -successor of a and the first Row-point an instance of Start. We now formalise the observations above by proving the 
following:

Lemma 18. The instance T admits a rectangle tiling iff there exists qn such that K2
CQ |= qn.

Proof. (⇒) Suppose T tiles the N × M grid so that a tile of type T ij ∈ T covers (i, j). Let

block j = (T̂ 1, j
k , . . . , T̂ N, j

k ,Row),

for j = 1, . . . , M − 1 and k = ( j − 1) mod 3. Let qn be the CQ in which the Bi follow the pattern
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block1, block2, . . . , blockM−1

(thus, n = (N + 1) × (M − 1)). In view of Lemma 11, we only need to prove that I |= qn , for each model I ∈ MK2
CQ

. Take 

such an I . We have to show that there is an R-path x0, . . . , xn+1 in I such that x0 ∈ StartI , xi ∈ BI
i for 1 ≤ i ≤ n, and 

xn+1 ∈ EndI .
First, we construct an auxiliary R-path y0, . . . , yn . We take y0 ∈ StartI and y1 ∈ I0

I by (1) (I = T 1,1). Then we take 
y2 ∈ (T 2,1

0 )I , . . . , yN ∈ (T N,1
0 )I by (2). We now have right(T N,1) = W . By (3), we obtain yN+1 ∈ RowI

1 ∩ StartI . By (9), 
yN+1 ∈ RowI

1 ⊆ RowI . We proceed in this way, starting with (5), till the moment we construct yn−1 ∈ (T N,M−1
k )I with 

right(T N,M−1) = W , for which we use (8) and (15) to obtain yn ∈ Rowhalt
k ⊆ RowI , for some k. Note that Tk

I ⊆ T̂k
I

by (10), 
for a tile type T .

By (12), two cases are possible now:
Case 1: there is y such that (yn, y) ∈ RI and y ∈ EndI . Then we take x0 = y0, . . . , xn = yn, xn+1 = y.
Case 2: there is z1 such that (yn, z1) ∈ RI and z1 ∈ (T halt

k )I , where T = T 1,M and up(T ) = C . We then use (13)

and find a sequence z2, . . . , zN , u, v such that zi ∈ (T halt
k )I , where T = T i,M , u ∈ RowI and v ∈ EndI . So we take 

x0 = yN+1, . . . , xn−N−1 = yn , xn−N = z1, . . . , xn−1 = zN , and xn = u, xn+1 = v . Note that, by (11) and (16), we have 
(T i, j

k )I ⊆ (T̂ i, j−1
(k−1) mod 3)

I .

(⇐) Let qn be such that K2
CQ |= qn . Then I |= qn , for each I ∈ MK2

CQ
. Consider all the pairwise distinct pairs (I, h) such 

that I ∈ MK2
CQ

and h is a homomorphism from qn to I . Note that h(qn) contains an or-node σh (which is an instance of 

Rowhalt
k , for some k). We call (I, h) and h left if h(xn+1) = σh · w∃R.End , and right otherwise. It is not hard to see that there 

exist a left (Il, hl) and a right (Ir, hr) with σhl = σhr (if this is not the case, we can construct I ∈ MK2
CQ

with I �|= qn by 
choosing at every or-node σ the left (right) branch if there is no left (respectively, right) homomorphism h from qn such 
that h(xn) = σ ).

Take (Il, hl) and (Ir, hr) such that σhl = σhr = σ and use them to construct the required tiling. Let σ = aw0 · · · wn . 
We have hl(xn+1) = σ · w∃R.End and hl(xn) = σ . Let hr(xn+1) = σ v1 · · · vm+2, which is an instance of End (see Fig. 2). Then 
hr(xn) = σ v1 · · · vm+1, which is an instance of Row.

Suppose vm = w∃R.T halt
2

(other ks are treated analogously). By (14), right(T ) = W ; by (13), up(T ) = C . Suppose wn−1 =
w∃R.Sk . Then k = 1. By (8), right(S) = W . By considering the atom Bn−1(xn−1) in qn , we obtain that both aw0 · · · wn−1 and 
σ v1 · · · vm are instances of Bn−1. By (10) and (16), Bn−1 = Ŝ1 and down(T ) = up(S).

Suppose vm−1 = w∃R.U halt
2

. By (13), right(U ) = left(T ) and up(U ) = C . Suppose wn−2 = w∃R.Q 1 . By (6), we have right(Q ) =
left(S). By considering Bn−2(xn−2) in qn , we obtain that both aw0 · · · wn−2 and σ v1 · · · vm−1 are instances of Bn−2. By (10)
and (16), Bn−2 = Q̂ 1 and down(U ) = up(Q ).

We proceed in the same way until we reach σ and aw0 · · · wn−N−1, for N = m, both of which are instances of Bn−N−1 =
Row. Thus, we have tiled the two last rows of the grid. We proceed further and tile the whole N × M grid, where M =
n/(N + 1) + 1. �

Next, we define the EL-KB K1
CQ = (T 1

CQ, ACQ). Let �0 = {Row} ∪{T̂k | T ∈ T, k = 0, 1, 2}, and let T 1
CQ contain the following 

CIs:

A � ∃P .D, (17)

D � ∃R.D � ∃R.∃R.E � �
X∈�0

X � Start, (18)

E � ∃R.E � �
X∈�0

X � End. (19)

As K1
CQ is an EL-KB, it has a canonical model IK1

CQ
:

Note that the vertical R-successors of the Start-points are not instances of any concept name, and so K1
CQ does not satisfy 

any CQ qn . Now let �CQ = sig(K1
CQ). We show that K2

CQ |= q implies K1
CQ |= q, for every �CQ-CQ q without a subquery of 

the form qn .
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Fig. 3. A query that contains both Start and End atoms must have variables with empty concept labels.

Lemma 19. 
∏

MK2
CQ

is n�CQ-homomorphically embeddable into IK1
CQ

preserving {a}, for all n ≥ 1, iff K2
CQ �|= qm, for all m ≥ 1.

Proof. (⇒) Suppose K2
CQ |= qm for some m. Then 

∏
MK2

CQ
|= qm . By assumption, 

∏
MK2

CQ
is m�CQ-homomorphically em-

beddable into IK1
CQ

preserving {a}, and so we have IK1
CQ

|= qm , which is clearly impossible because none of the paths of 
IK1

CQ
contains the full sequence of symbols mentioned in qm .

(⇐) Suppose K2
CQ �|= qm for all m. Then 

∏
MK2

CQ
�|= qm for all m. Take any subinterpretation of 

∏
MK2

CQ
whose domain 

contains n elements. Recall from the proof of Proposition 6 that we can regard the �CQ-reduct of this subinterpretation 
as a Boolean �CQ-CQ, and so denote it by q. Without loss of generality we can assume that q is connected; clearly, q is 
tree-shaped. We know that there is no �CQ-homomorphism from qm into q for any m; in particular, q does not have a 
subquery of the form qm . We have to show that IK1

CQ
|= q.

If q contains A or P , then they appear at the root of q or, respectively, in the first edge of q. By the structure of K2, 
the product 

∏
MK2

CQ
does not contain a path from A to End, so q does not contain End and, therefore, can be mapped into 

IK1
CQ

. In what follows, we assume that q does not contain A and P (note that D and E also do not occur in q).

If q does not contain Start atoms or q does not contain End atoms, then clearly, IK1
CQ

|= q.

Suppose q contains both Start and End atoms. If there exists an R-path from a Start node to an End node in q then, by 
the structure of K2

CQ, the End node is a leaf of q (as End nodes are always leaves in the models from MK2
CQ

) and the Start

node is the root of q (as there are minimal models Il and Ir in Fig. 2, in which the first Start node has no R-predecessor). 
Since q does not contain a subquery of the form qm , this R-path should contain variables with the empty �CQ-concept 
label, in which case q can be mapped into IK1

CQ
by sending the root of q to the P -successor of a and the rest of the query 

so as to map a variable with the empty �CQ-concept label to the vertical R-successor of a Start node.
Now, suppose that q does not contain a (directed) path from a Start node to an End node. Then the Start node is not 

the root of q. We denote by qStart the subtree of q generated by this node (see Fig. 3), and by qEnd the path from the root 
y0 of q to the End node. By the structure of K2

CQ shown in Fig. 1(a), the projection of y0 onto every minimal model of 
K2

CQ is of the form δ · w∃R.T first . We prove that qEnd must have at least one intermediate node with the empty �CQ-concept 
label. Indeed, suppose to the contrary that each intermediate variable x in qEnd appears in an atom of the form B(x), for 
B ∈ {T̂k | k = 0, 1, 2} ∪{Row}. Since K2

CQ |= qEnd , it follows that there is some k such that the distance between two neighbour 
Row nodes in qEnd is k. Let Il and Ir be the minimal models that satisfy (12) by picking the first and the second disjunct, 
respectively, and identical, otherwise (see Fig. 3). Suppose that Il satisfies qEnd by mapping y0 to σl of the form δ · w∃R.T first

and Ir satisfies qEnd by mapping y0 to σr of the form σl · · · w∃R.T first . Then the distance between σl and σr is k. Let t be 
the distance from y0 to the first Row node yt . If t ≤ k, then yt should be mapped to σ ′ that is a predecessor of σr in Il
or σr itself. However, such a map is not possible as the �CQ-label of σ ′ does not contain Row (only a concept of the form 
T̂0), and we get a contradiction. In the case t > k, the argument is similar; one needs to observe that the structure of K2

CQ
(in particular, (4), (7), (10)) makes it impossible to map y0, . . . , yt onto the common part of Il and Ir in such a way that 
hr(yi) = hl(yi)σ with |σ | = k. Thus, we conclude that q can be homomorphically mapped to IK1

CQ
as follows: y0 goes to 

aw∃P .D , qStart to the infinite path of Start nodes, and qEnd so as to map a variable with the empty �CQ-concept label to the 
vertical successor of a Start node. �

As an immediate consequence of Lemmas 18 and 19 and the characterisation of �-CQ-entailment given in Theorem 17
(3), we obtain:

Theorem 20. The problem whether an EL KB �-CQ entails an ALC KB is undecidable.
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We now modify the KBs constructed in the proof of Theorem 20 to show undecidability of �-CQ-inseparability.

Theorem 21. �-CQ inseparability between EL and ALC KBs is undecidable.

Proof. We set K2 =K2
CQ ∪K1

CQ and show that the following conditions are equivalent:

(1) K1
CQ �CQ-CQ entails K2

CQ;

(2) K1
CQ and K2 are �CQ-CQ inseparable.

Let IK1
CQ

be the canonical model of K1
CQ and MK2

CQ
the set of minimal models of K2

CQ. One can easily show that the 
following set MK2 is complete for K2:

MK2 = { I � IK1
CQ

| I ∈ MK2
CQ

},
where I �IK1

CQ
is the interpretation that results from merging the roots a of I and IK1

CQ
. Now, the implication (2) ⇒ (1) is 

trivial. For the converse direction, suppose K1
CQ �CQ-CQ entails K2

CQ. It follows that K2 �CQ-CQ entails K1
CQ. So it remains 

to show that K1
CQ �CQ-CQ entails K2. Suppose this is not the case and there is a �CQ-CQ q such that K2 |= q and K1

CQ �|= q. 
We can assume q to be a smallest connected CQ with this property; in particular, no proper sub-CQ of q separates K1

CQ and 
K2. Now, we cannot have K2

CQ |= q because this would contradict the fact that K1
CQ �CQ-CQ entails K2

CQ. Then K2
CQ �|= q, and 

so there is I ∈ MK2
CQ

such that I �|= q. On the other hand, we have I � IK1
CQ

|= q. Take a homomorphism h : q → I � IK1
CQ

. 
As q is connected, I �|= q and IK1

CQ
�|= q, there is a variable x in q such that h(x) = a. For every variable x with h(x) = a, we 

remove ∃x from the prefix of q if any. Denote by q′ the maximal sub-CQ of q such that h(q′) ⊆ I (more precisely, S(y) ∈ q
is in q′ iff h(y) ⊆ �I ). Clearly, q′ � q and K2 |= q′ . Denote by q′′ the complement of q′ to q. Obviously, h(q′′) ⊆ IK1

CQ
. 

Now, we either have K1
CQ |= q′ or K1

CQ �|= q′ . The latter case contradicts the choice of q because q′ is a proper sub-CQ 
of q. Thus, K1

CQ |= q′ , and so there is a homomorphism h′ : q′ → IK1
CQ

with h′(x) = a, for every free variable x. Define a 
map g : q → IK1

CQ
by taking g(y) = h′(y) if y is in q′ and g(y) = h(y) otherwise. The map g is a homomorphism because 

all the variables that occur in both q′ and q′′ are free and must be mapped by g to a. Therefore, IK1
CQ

|= q, which is a 
contradiction. �

Observe that our undecidability proof does not work for UCQs as the UCQ composed of the two disjunctive branches 
shown in Fig. 2 (for non-trivial instances) distinguishes between the KBs independently of the existence of a tiling. In 
Section 5, we show that, for UCQs, entailment is decidable.

4.2. Undecidability of rCQ-entailment and inseparability with respect to a signature �

It is not difficult to see that the KBs K1
CQ and K2

CQ constructed in the undecidability proof for CQ-entailment cannot be 
used to prove undecidability of rCQ-entailment. In fact, K1

CQ �CQ-rCQ entails K2
CQ, for any instance of the rectangle tiling 

problem. We now sketch how the KBs defined above can be modified to show that rCQ-entailment and inseparability are 
indeed undecidable. Detailed proofs are given in the appendix.

Theorem 22. (i) The problem whether an EL KB �-rCQ entails an ALC KB is undecidable.
(ii) �-rCQ inseparability between EL and ALC KBs is undecidable.

Proof. For (i), we do not use the role name P but add R(a, a) and Row(a) to the ABox {A(a)}. The CQs qn are modified by 
adding a conjunct R(y, x0) with answer variable y to qn . In more detail, suppose that an instance T of the rectangle tiling 
problem is given. Let

ArCQ = {R(a,a),Row(a), A(a)} ∪ {T̂0(a) | T ∈ T}, (20)

let T 2
rCQ contain the CIs (5)–(16) of T 2

CQ as well as

A � ∃R.(Row � ∃R.I0), (21)

and let K2
rCQ = (T 2

rCQ, ArCQ). Note that the loop R(a, a) in ArCQ plays roughly the same role as the path between two 
Start-points in the previous construction (see Fig. 2). The existence of a tiling can now be checked by the rCQs
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Fig. 4. The structure of models Il and Ir of K2, and homomorphisms hl : qr
n → Il and hr : qr

n → Ir .

qr
n(y) = ∃x

(
R(y, x0) ∧

n∧
i=0

(
R(xi, xi+1) ∧ Bi(xi)

) ∧ End(xn+1)
)
,

where Bi ∈ {Row} ∪ {T̂k | T ∈ T, k = 0, 1, 2}, for which we have an analogue of Lemma 18 for K2
rCQ. The structure of the two 

homomorphisms is shown in Fig. 4. Note that the CQ encodes the first row two times. Now, we take K1
rCQ = (T 1

rCQ, ArCQ), 
where T 1

rCQ contains the following CIs (recall that we set �0 = {Row} ∪ {T̂k | T ∈ T, k = 0, 1, 2}):

A � ∃R.D � ∃R.∃R.E, (22)

D � ∃R.D � ∃R.∃R.E � �
X∈�0

X, (23)

E � ∃R.E � �
X∈�0

X � End. (24)

The canonical model IK1
rCQ

of K1
rCQ is shown below:

We set �rCQ = sig(K1
rCQ). Again, one can show Lemma 19 for K1

rCQ and K2
rCQ. The proof of (ii) is similar to the non-rooted 

case and given in the appendix. �
4.3. Undecidability of (r)CQ-entailment and inseparability for full signature

The KBs used in the undecidability proofs above trivially do not �-CQ-entail each other for the full signature �. For 
example, the answer to the CQ ∃y∃z (P (a, y) ∧ R(y, z) ∧ Ifirst(z)) is ‘yes’ over K2

CQ and ‘no’ over K1
CQ. To establish undecid-

ability results for separating CQs with arbitrary symbols, we modify the KBs constructed above. We follow [57] and replace 
the non-�-symbols by complex ALC-concepts that, in contrast to concept names, cannot occur in CQs. Let � be a set of 
concept names. For any B ∈ �, let Z B be a fresh concept name and let R B and S B be fresh role names. The abstraction of B
is the ALC-concept

H B = ∀R B .∃S B .¬Z B .

The �-abstraction C↑� of a (possibly compound) concept C is obtained from C by replacing every B ∈ � with H B . The 
�-abstraction T ↑� of a TBox T is obtained from T by replacing all concepts in T with their �-abstractions. We associate 
with � an auxiliary TBox

T ∃
� = { � � ∃R B .�, � � ∃S B .Z B | B ∈ � }

and call T ↑� ∪ T ∃
� the enriched �-abstraction of T for �. In what follows, we are going to replace TBoxes T with their 

enriched �-abstractions. We say that a TBox T admits trivial models if any interpretation I with XI = ∅, for any concept or 
role name X , is a model of T . The TBoxes used in the undecidability proofs above admit trivial models.
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Theorem 23. Suppose K1 = (T1, A) and K2 = (T2, A) are ALC KBs and � a signature such that sig(A) ⊆ �, � = sig(T1 ∪ T2) \ �

contains no role names, and T1 and T2 admit trivial models. Let K↑�

i = (T ↑�

i ∪ T ∃
� , A), for i = 1, 2. Then the following conditions are 

equivalent:

(1) K1 �-(r)CQ entails K2;
(2) K↑�

1 full signature (r)CQ entails K↑�
2 .

Proof. We start by defining the �-abstraction I↑� and the �-instantiation I↓� of an interpretation I . The latter is defined 
in the same way as I except that BI↓� = H B

I , for all B ∈ �. It is straightforward to show the following.

Fact 1. For all ALC concepts D over the signature sig(K1 ∪ K2) and all d ∈ �I , we have d ∈ DI↓�
iff d ∈ (D↑�)I . In 

particular, if I is a model of K↑�

i , then I↓� is a model of Ki , for i = 1, 2.

We now define the interpretation I↑� . The domain �I↑�
of I↑� is the set of words w = dv1 · · · vn such that d ∈ �I and 

vi ∈ {R B , S B , ̄S B | B ∈ �}, where vi �= S̄ B if either (i) i > 2 or (ii) i = 2 and d �∈ BI or v1 �= R B . Then

AI↑� = AI , for all concept names A ∈ sig(K1 ∪K2) \ �;

BI↑� = ∅, for all concept names B ∈ �;

Z B
I↑� = Z B

I ∪ {w | tail(w) = S B}, for all concept names B ∈ �;

SI
↑� = SI , for all role names S �∈ {R B , S B | B ∈ �};

R B
I↑� = R B

I ∪ {(w, w R B) | w R B ∈ �I↑�}, for all concept names B ∈ �;

S B
I↑� = S B

I ∪ {(w, w S B) | w S B ∈ �I↑�} ∪ {(w, w S̄ B) | w S̄ B ∈ �I↑�}, for all concept names B ∈ �.

By the construction of I↑� , we have H B
I↑� = BI , for all concept names B ∈ �. For the interpretation I below consisting 

of two elements d1 and d2 with d1 ∈ BI and d2 ∈ (¬B)I and � = {B}, the �-abstraction I↑� can be depicted as follows, 
where the grey points correspond to the words of the form w S̄ B :

Fact 2. For all ALC concepts D over the signature sig(K1 ∪K2) and all d ∈ �I , we have d ∈ (D↑�)I
↑�

iff d ∈ DI . Moreover, 
if I is a model of Ki , then I↑� is a model of K↑�

i , for i = 1, 2.

Proof of Fact 2. For the ‘moreover’-part, observe that, for C � D ∈ Ti and d ∈ �I , we have that d ∈ (C↑�)I
↑�

implies d ∈
(D↑�)I

↑�
by the first part of Fact 2. For d ∈ �I↑� \ �I , observe that d �∈ HI↑�

B for any B ∈ �, d �∈ AI↑�
and any concept 

name A ∈ sig(K1 ∪K2), and (d, d′) �∈ RI↑�
for any d′ and role name R ∈ sig(K1 ∪K2). Thus, if C � D ∈ Ti and d ∈ CI↑�

then 
it follows from the condition that Ti admits trivial models that d ∈ DI↑�

. Thus I↑� is a model of T ↑�

i . Since I↑� is a model 
of T ∃

� by construction, it follows that I↑� is a model of T ↑�

i ∪ T ∃
� .

We collect further basic properties of the interpretations I↑� and I↓� . In the formulation and proofs of Facts 3–6 below, 
the homomorphisms are always constructed in such a way that individual names are preserved. For simplicity, we do not 
state this explicitly.

Fact 3. Let I, J be interpretations and n > 0. If I is n-homomorphically embeddable into J , then I↑� is n-homomorphically 
embeddable into J ↑� .

Proof of Fact 3. Suppose n > 0 and I is n-homomorphically embeddable into J . Let I ′ be a subinterpretation of I↑� with 
|�I ′ | ≤ n. For the subinterpretation I ′′ of I induced by �0 = �I ∩ �I ′

, there exists a homomorphism h0 from I ′′ to J . 
We extend h0 to a homomorphism h from I ′ to J ↑� inductively as follows. Suppose d ∈ �I ′ \ �I and h(d) has not yet 
been defined, but there is no R B or S B -predecessor of d in I↑� for which h(d) has not been defined. We distinguish three 
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cases (which are mutually exclusive by the construction of I↑�). If (i) h(d′) has been defined for an R B -predecessor d′ of 
d in I ′ , then choose an R B -successor e of h(d′) in J ↑� and set h(d) = e. Observe that such an R B -successor exists by the 
construction of J ↑� . If (ii) h(d′) has been defined for an S B -predecessor d′ of d in I ′ , then choose an S B -successor e of 
h(d′) in J ↑� such that e ∈ Z B

J ↑�
and set h(d) = e. Again such an S B -successor exists by the construction of J ↑� . (iii) There 

does not exist any R B or S B -predecessor of d in I ′ for which h has been defined. In this case, choose h(d) arbitrarily in 
J ↑� such that if d ∈ Z B

I↑�
, then h(d) ∈ Z B

J ↑�
. Such a d exists since Z B

J ↑� �= ∅. The resulting map is a homomorphism 
from I ′ to J ↑� .

Fact 4. Let I be a model of K↑� , for K ∈ {K1, K2}. Then (I↓�)↑� is homomorphically embeddable into I .

Proof of Fact 4. Let h0 be the identity mapping from I↓� to I (observe that �I↓� = �I ). One can now extend h0 to a 
homomorphism h from (I↓�)↑� to I in the same way as in the construction of h in the proof of Fact 3 above.

Fact 5. Let K ∈ {K1, K2}. If M is complete for K, then {I↑� | I ∈ M} is complete for K↑� .

Proof of Fact 5. Suppose J is a model of K↑� . By Proposition 6, it suffices to show that, for any n > 0, there is I ∈ M such 
that I↑� is n-homomorphically embeddable into J . Fix n > 0 and consider the interpretation J ↓� . By Fact 1, J ↓� is a 
model of K and so there exists a model I of K such that I is n-homomorphically embeddable into J ↓� . But then, by 
Fact 3, I↑� is n-homomorphically embeddable into (J ↓�)↑� which, by Fact 4, itself is homomorphically embeddable into 
J . Thus, I↑� is n-homomorphically embeddable into J . By Fact 2, I↑� is a model of K↑� .

Fact 6. Let M i be families of interpretations with XI = ∅, for all I ∈ M i and all concept and role names X with X �∈ sig(Ki), 
i = 1, 2. Then the following conditions are equivalent:

(a)
∏

M2 is n�-homomorphically embeddable into 
∏

M1, for all n > 0;
(b)

∏{I↑� | I ∈ M2} is n-homomorphically embeddable into 
∏{I↑� | I ∈ M1}, for all n > 0.

Proof of Fact 6. Suppose M1 = {Ii | i ∈ I} and M2 = {J j | j ∈ J }.

Assume first that (a) holds and let J is a subinterpretation of 
∏{J ↑�

j | j ∈ J } with |�J | ≤ n. We have to construct a 
homomorphism from J to 

∏{I↑�

i | i ∈ I}. There is a �-homomorphism h0 from the subinterpretation J ′ of 
∏

M2 induced 
by �J ∩ �

∏
M2 to 

∏
M1. By definition, h0 is a homomorphism from the subinterpretation J ′′ of 

∏{J ↑�

j | j ∈ J } induced 
by �J ∩ �

∏
M2 to 

∏{I↑�

i | i ∈ I} (the only difference between J ′ and J ′′ is that BJ ′′ = ∅ for all B ∈ �). Following the 
proof of Fact 3, one can now expand h0 to a homomorphism h from J to 

∏{I↑�

i | i ∈ I}.
Conversely, assume that (b) holds and assume that J is a subinterpretation of 

∏
M2 with |�J | ≤ n. We have to 

construct a �-homomorphism from J to 
∏

M1. There is a �-homomorphism h0 from the subinterpretation J ′ of ∏{J ↑�

j | j ∈ J } induced by �J to 
∏{I↑�

i | i ∈ I}. To obtain from h0 the required �-homomorphism h, we have to re-define 

h0(d) for any d with h0(d) ∈ �
∏{I↑�

i | i∈I} \ �
∏

M1 . Consider such a d. Observe that h0(d) �∈ B
∏{I↑�

i | i∈I} for any concept 
name B ∈ � and h0(d) is not in the range or domain of any R

∏{I↑�
i | i∈I} for any role name R ∈ �. But then, since h0 is 

a �-homomorphism, d �∈ BJ for any concept name B ∈ � and d is not in the range or domain of RJ for any role name 
R ∈ �. Thus, we can choose h(d) arbitrarily in �

∏
M1 and obtain the required �-homomorphism.

For CQs, Theorem 23 now follows directly from Theorem 17 (3) and Facts 5 and 6. Note that we can consider sets M i of 
interpretations that are complete for Ki such that XI = ∅, for all I ∈ M i and all concept and role names X with X �∈ sig(Ki), 
i = 1, 2. For rCQs, we use Theorem 17 (4). �

Now, to prove undecidability of full signature (r)CQ entailment and inseparability, we apply Theorem 23 to the KBs 
constructed in the proofs of Theorems 20, 21 and 22. Note that the KBs (K1

CQ)↑� with � = sig(K1
CQ ∪ K2

CQ) \ �CQ and 
(K1

rCQ)↑� with � = sig(K1
rCQ ∪K2

rCQ) \ �rCQ are still EL-KBs since �CQ = sig(K1
CQ) and �rCQ = sig(K1

rCQ).

Theorem 24. (i) The problem whether an EL KB full signature-(r)CQ entails an ALC KB is undecidable.
(ii) Full signature-(r)CQ inseparability between EL and ALC KBs is undecidable.

5. Decidability of (r)UCQ-entailment and inseparability for ALC KBs

We show that, in sharp contrast to the case of (r)CQs, �-(r)UCQ-entailment and inseparability of ALC KBs are decidable 
and 2ExpTime-complete. We start by proving a new model-theoretic criterion for �-(r)UCQ entailment that replaces finite 
partial �-homomorphisms by �-homomorphisms and uses the class of regular forest-shaped models for the entailing KB 
K1 and the class of forest-shaped models for the entailed KB K2 . We then encode this characterisation into an emptiness 
problem for two-way alternating parity automata on infinite trees (2APTAs) by constructing a 2APTA that accepts (represen-
tations of) forest-shaped models of the entailing KB into which there is no �-homomorphism from any forest-shaped model 
of the entailed KB. Rabin’s result that such an automaton accepts a regular model iff it accepts any model will then yield 
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the desired 2ExpTime upper bound for (r)UCQ-entailment. Matching lower bounds are proved by a reduction of the word 
problem for exponentially space bounded alternating Turing machines. Finally, we show that the same tight complexity 
bounds still hold in the full signature case.

5.1. Model-theoretic characterisation of (r)UCQ-entailment based on regular models

We show that finite partial homomorphisms can be replaced by homomorphisms in the characterisation of �-(r)UCQ 
entailment between ALC-KBs given in Theorem 17 if one considers regular forest-shaped models of the entailing KB K1
and forest-shaped models of the entailed KB K2. Recall that, by Proposition 9, the class M reg

K of regular forest-shaped models 
of outdegree ≤ |T | is complete for any ALC-KB K = (T , A). We also show that if � contains all role names in the entailed 
KB, then �-rUCQ entailment coincides with �-UCQ entailment. This allows us to transfer our 2ExpTime lower bound from 
the non-rooted to the rooted case.

Theorem 25. Let K1 and K2 be ALC-KBs and � a signature.

(1) K1 �-UCQ entails K2 iff, for any I1 ∈ M reg
K1

, there exists I2 ∈ Mbo
K2

that is �-homomorphically embeddable into I1 preserving 
ind(K2).

(2) K1 �-rUCQ entails K2 iff, for any I1 ∈ M reg
K1

, there exists I2 ∈ Mbo
K2

that is con-�-homomorphically embeddable into I1 pre-
serving ind(K2).

Proof. We only prove (1) as the proof of (2) is similar. The direction (⇐) follows from Theorem 17 and the facts that M reg
K1

and Mbo
K2

are complete for K1 and K2, respectively (Propositions 8 and 9). To show (⇒), suppose that K1 �-UCQ entails 
K2 and let I1 ∈ M reg

K1
. We construct I2 ∈ Mbo

K2
and a �-homomorphism h from I2 to I1 preserving ind(K2). By Theorem 17

(1) and Propositions 8 and 9, we have

(∗) for any n > 0, there exists a model J ∈ Mbo
K2

that is n�-homomorphically embeddable into I1 preserving ind(K2).

Denote by J|≤n the subinterpretation of an interpretation J ∈ Mbo
K2

induced by the domain elements of J connected to 
ABox individuals in ind(K2) by paths of role names (possibly not in �) of length ≤ n. A (�, n)-homomorphism h from J to I1
preserving ind(K2) is a �-homomorphism preserving ind(K2) whose domain is a finite subinterpretation of J that contains 
J|≤n . Let 
n be the class of pairs (J , h) with J ∈ Mbo

K2
and h a (�, n)-homomorphism from J to I1. By (∗), all 
n are 

non-empty. We may assume that for (I, h), (J , f ) ∈ ⋃
n≥0 
n , if I|≤n and J|≤n are isomorphic then I|≤n = J|≤n , for all 

n ≥ 0. We define classes �n ⊆ ⋃
m≥n 
m , n ≥ 0, with �0 ⊇ �1 ⊇ · · · such that the following conditions hold:

(a) �n ∩ 
m �= ∅ for all m ≥ n;
(b) I|≤n =J|≤n and h|≤n = f |≤n for all (I, h), (J , f ) ∈ �n (here and below, h|≤n denotes the restriction of h to I|≤n).

Let �0 be the set of all pairs (J , h) such that (J , h) ∈ 
0. Our assumptions imply that �0 has the properties (a) and (b) 
because h(aJ ) = aI holds for every �-homomorphism h preserving ind(K2) and all ABox individuals a ∈ ind(K2). Suppose 
now that �n is defined and satisfies (a) and (b). Define an equivalence relation ∼ on �n ∩ (

⋃
m≥n+1 
m) by setting (I, h) ∼

(J , f ) if I|≤n+1 =J|≤n+1 and, for all x ∈ �J|≤n+1 \�J|≤n , the following holds: h(x) and f (x) are always roots of isomorphic 
ditree subinterpretations of I1 and if, in addition, either h(x) ∈ ind(K1) or f (x) ∈ ind(K1), or there is a y ∈ �J|≤n such that x
is an R-successor of y in J|≤n+1, for some role name R ∈ �, then h(x) = f (x). By the finite outdegree and regularity of I1, 
the properties (a) and (b) of �n , and the finite outdegree of all J such that (J , h) ∈ 
n , the number of equivalence classes 
for ∼ is finite. Hence there exists an equivalence class � satisfying (a). Clearly, we can modify the (�, n)-homomorphisms 
h, f in the pairs (I, h), (J , f ) ∈ � in such a way that h(x) = f (x) holds for all x ∈ �J|≤n+1 \ �J|≤n while preserving the 
remaining properties of �. The resulting set of pairs satisfies (a) and (b).

We define an interpretation I2 as the union of all J|≤n such that there exists (J , h) ∈ �n , n ≥ 0:

�I2 =
⋃
n≥0

{
�J|≤n | ∃h (J ,h) ∈ �n

};
AI2 =

⋃
n≥0

{
AJ|≤n | ∃h (J ,h) ∈ �n

}
, for all concept names A;

RI2 =
⋃
n≥0

{
RJ|≤n | ∃h (J ,h) ∈ �n

}
, for all role names R.

Using Conditions (a) and (b) and the fact that the sequence �0, �1, · · · is decreasing, it is straightforward to show that 
I2 ∈ Mbo

K2
. Define a function h from I2 to I1 by setting

h =
⋃ {

h|≤n | ∃J (J ,h) ∈ �n
}
.

n≥0
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It follows from Condition (b) that h is well defined. It is readily checked that h is a �-homomorphism from I2 to I1
preserving ind(K2). �
Lemma 26. Let K1 and K2 be ALC-KBs and � a signature containing all role names in sig(K2). Then K1 �-UCQ entails K2 iff K1
�-rUCQ entails K2.

Proof. Suppose K1 �-rUCQ entails K1. By Theorem 25, it suffices to prove that, for any I1 ∈ M reg
K1

, there exists I2 ∈ Mbo
K2

that is �-homomorphically embeddable into I1 preserving ind(K2). By Theorem 25, we know that, for any I1 ∈ M reg
K1

, 
there exists I2 ∈ Mbo

K2
that is con-�-homomorphically embeddable into I1 preserving ind(K2). Moreover, as � contains 

the role names in sig(K2), we may assume that every u ∈ �I2 is �-connected to the ABox A2 of K2. But then I2 is 
con-�-homomorphically embeddable into I1 preserving ind(K2) iff it is �-homomorphically embeddable into I1 preserving 
ind(K2), as required. �
5.2. 2ExpTime upper bound for (r)UCQ-entailment with respect to signature �

We use the model-theoretic criterion of Theorem 25 to prove a 2ExpTime upper bound for (r)UCQ-entailment between 
ALC-KBs with respect to a signature �. We focus on the non-rooted case and then discuss the modifications required for 
the rooted one. Let K1, K2 be ALC-KBs and � a signature. We aim to check if there is a model I1 ∈ M reg

K1
into which no 

model I2 ∈ Mbo
K1

is �-homomorphically embeddable. In the following, we construct an automaton A that accepts (a suitable 
representation of) the desired models I1. It then remains to check whether the language L(A) accepted by A is non-empty. 
Note that L(A) contains also non-regular models, but a well-known result by Rabin [58] implies that, if L(A) is non-empty, 
then it contains a regular model, which is sufficient for our purposes.

We use two-way alternating parity automata on infinite trees (2APTAs) and encode forest-shaped interpretations as 
labelled trees to make them inputs to 2APTAs. Let N denote the positive integers. A tree is a non-empty (possibly infinite) 
set T ⊆N∗ closed under prefixes. The node ε is the root of T . As a convention, for x ∈N∗ , we take x ·0 = x and (x · i) ·−1 = x. 
Note that ε · −1 is undefined. We say that T is m-ary if, for every x ∈ T , the set {i | x · i ∈ T } is of cardinality exactly m. 
Without loss of generality, we assume that all nodes in an m-ary tree are from {1, . . . , m}∗ .

We use [m] to denote the set {−1, 0, . . . , m} and, for any set X , let B+(X) denote the set of all positive Boolean formulas 
over X , i.e., formulas built using conjunction and disjunction over the elements of X used as propositional variables, and 
where the special formulas true and false are allowed as well. For an alphabet �, a �-labelled tree is a pair (T , L), where T
is a tree and L : T → � a node labelling function.

Definition 27. A two-way alternating parity automaton (2APTA ) on infinite m-ary trees is a tuple A = (Q , �, δ, q0, c), where 
Q is a finite set of states, � a finite alphabet, δ : Q × � → B+(tran(A)) the transition function with the set of transitions
tran(A) = [m] × Q , q0 ∈ Q the initial state, and c : Q →N is the acceptance condition.

Intuitively, a transition (i, q) with i > 0 means that a copy of the automaton in state q is sent to the i-th successor of 
the current node. Similarly, (0, q) means that the automaton stays at the current node and switches to state q, and (−1, q)

indicates moving to the predecessor of the current node.

Definition 28. A run of a 2APTA A = (Q , �, δ, q0, c) on an infinite �-labelled tree (T , L) is a T × Q -labelled tree (Tr, r) such 
that the following conditions are satisfied:

– r(ε) = (ε, q0);
– if y ∈ Tr , r(y) = (x, q), and δ(q, L(x)) = ϕ , then there is a (possibly empty) set Q = {(c1, q1), . . . , (cn, qn)} ⊆ tran(A) such 

that Q satisfies ϕ and, for 1 ≤ i ≤ n, x · ci is a node in T , and there is a y · i ∈ Tr such that r(y · i) = (x · ci, qi).

We say that (Tr, r) is accepting if in all infinite paths y1 y2 · · · of Tr , min({c(q) | r(yi) = (x, q) for infinitely many i}) is even. 
An infinite �-labelled tree (T , L) is accepted by A if there is an accepting run of A on (T , L). We use L(A) to denote the 
set of all infinite �-labelled trees accepted by A.

We require the following results from automata theory:

Theorem 29 ([58,59]).

1. Given a 2APTA A, one can construct in polynomial time a 2APTA B with L(B) = L(A).
2. Given a constant number of 2APTAs A1, . . . , Ac , one can construct in polynomial time a 2APTA A such that L(A) = L(A1) ∩ · · · ∩

L(Ac).
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3. Emptiness of 2APTAs can be decided in time single exponential in the number of states.
4. For any 2APTA A, L(A) �= ∅ implies that L(A) contains a regular tree.

Now, let � be the alphabet with symbols from the set

{root, empty} ∪ (ind(K1) × 2CN(T1)) ∪ (RN(T1) × 2CN(T1)),

where CN(Ti) (respectively, RN(Ti)) denotes the set of concept (respectively, role) names in Ti . We represent forest-shaped 
models of T1 as m-ary �-labelled trees, with m = max(|T1|, |ind(K1)|). The root node labelled with root is not used in the 
representation. Each ABox individual is represented by a successor of the root labelled with a symbol from ind(K1) ×2CN(T1); 
non-ABox elements are represented by nodes deeper in the tree labelled with a symbol from RN(T1) × 2CN(T1) . The label 
empty is used for padding to make sure that every tree node has exactly m successors.

We call a �-labelled tree proper if it satisfies the following conditions:

– the root is labelled with root;
– for every a ∈ ind(A1), there is exactly one successor of the root that is labelled with a symbol from {a} × 2CN(T1); all of 

the remaining successors of the root are labelled with empty;
– all other nodes are labelled with a symbol from RN(T1) × 2CN(T1) or with empty;
– if a node is labelled with empty, then so are all of its successors.

A proper �-labelled tree (T , L) represents the following interpretation I(T ,L):

�I(T ,L) = ind(A1) ∪ {x ∈ T | |x| > 1 and L(x) �= empty},
AI(T ,L) = {a | ∃x ∈ T : L(x) = (a, t) with A ∈ t} ∪ {x ∈ T | L(x) = (R, t) with A ∈ t},
RI(T ,L) = {(a,b) | R(a,b) ∈A1} ∪

{(a, i j) | i j ∈ T , L(i) = (a, t1), and L(i j) = (R, t2)} ∪
{(x, xi) | xi ∈ T , L(x) = (S, t1), and L(xi) = (R, t2)}.

Note that I(T ,L) is a forest-shaped interpretation of outdegree at most |T1| that satisfies all required conditions to qualify 
as a forest-shaped model of T1 except that it need not satisfy T1. In addition, the interpretation I(T ,L) is regular iff the tree 
(T , L) is regular (has, up to isomorphisms, only finitely many rooted subtrees). Conversely, every model I ∈ Mbo

K1
can be 

represented as a proper m-ary �-labelled tree. Note that the assertions from A1 are not explicitly represented in (T , L), but 
readded in the construction of I(T ,L) .

The required 2APTA A is assembled from the following three automata:

– a 2APTA A0 that accepts an m-ary �-labelled tree iff it is proper;
– a 2APTA A1 that accepts a proper m-ary �-labelled tree (T , L) iff I(T ,L) is a model of T1;
– a 2APTA A2 that accepts a proper m-ary �-labelled tree (T , L) iff there is a model I2 ∈ Mbo

K2
that is �-homomorphically 

embeddable into I(T ,L) preserving ind(K2).

The following result shows that we would achieve our goal once we have constructed A0, A1, and A2 and then define A in 
such a way that L(A) =L(A0) ∩L(A1) ∩L(A2).

Lemma 30. The following conditions are equivalent:

(1) L(A0) ∩L(A1) ∩L(A2) = ∅,
(2) for each model I1 ∈ Mbo

K1
, there exists a model I2 ∈ Mbo

K2
that is �-homomorphically embeddable into I1 preserving ind(K2),

(3) for each regular model I1 ∈ Mbo
K1

, there exists a model I2 ∈ Mbo
K2

that is �-homomorphically embeddable into I1 preserving 
ind(K2),

(4) K1 �-UCQ-entails K2.

Proof. (1) ⇔ (2) follows from the properties of A0, A1, A2; (1) ⇔ (3) follows from the properties of A0, A1, A2, and 
Rabin’s Theorem [58]; and (3) ⇔ (4) is Theorem 25. �

The construction of A0 is trivial and left to the reader. The construction of A1 is quite standard [51]. Let CT1 be the 
negation normal form (NNF) of the concept

� (¬C 	 D)

C�D∈T1
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and let cl(CT1 ) denote the set of subconcepts of CT1 , closed under single negation. Now, the 2APTA A1 = (Q , �, δ, q0, c) is 
defined by setting

Q = {q0,q1,q∅} ∪ {qa,C ,qC ,qR ,q¬R | a ∈ ind(A1), C ∈ cl(CT1), R ∈ RN(T1)}
and defining the transition function δ as follows:

δ(q0, root) =
m∧

i=1

(i,q1),

δ(q1, �) = ((0,q∅) ∨ (0,qCT1 )) ∧
m∧

i=1

(i,q1),

δ(q∃R.C , (a, U )) =
m∨

i=1

((i,qR) ∧ (i,qC )) ∨
∨

R(a,b)∈A1

(−1,qb,C ),

δ(q∀R.C , (a, U )) =
m∧

i=1

((i,q∅) ∨ (i,q¬R) ∨ (i,qC )) ∧
∧

R(a,b)∈A1

(−1,qb,C ),

δ(q∃R.C , (S, U )) =
m∨

i=1

((i,qR) ∧ (i,qC )),

δ(q∀R.C , (S, U )) =
m∧

i=1

((i,q∅) ∨ (i,q¬R) ∨ (i,qC )),

δ(qC�C ′
, (x, U )) = (0,qC ) ∧ (0,qC ′

),

δ(qC	C ′
, (x, U )) = (0,qC ) ∨ (0,qC ′

),

δ(qa,C , root) =
m∨

i=1

(i,qa,C ),

δ(qa,C , (a, U )) = (0,qC ),

δ(qA, (x, U )) = true, if A ∈ U ,

δ(q¬A, (x, U )) = true, if A /∈ U ,

δ(qR , (R, U )) = true,

δ(q¬R , (S, U )) = true, if R �= S,

δ(q∅, empty) = true,

δ(q, �) = false, for all other q ∈ Q , � ∈ �.

Here x in the labels (x, U ) stands for an individual a or for a role name S , and � in the second transition is any label 
from �. The acceptance condition c is trivial (c(q) = 0 for all q ∈ Q ). It is standard to show that A1 accepts the desired tree 
language.

To construct A2, we use the notation introduced in the proof of Proposition 9. Note that the set type(T2) of T2-types can 
be computed in time single exponential in |K2|. A completion of K2 is a function τ : ind(A2) → type(T2) such that, for any 
a ∈ ind(A2), the KB(

T2 ∪
⋃

a∈ind(A2),C∈τ (a)

{Aa � C}, A∪
⋃

a∈ind(A2)

{Aa(a)})
is consistent, where Aa is a fresh concept name for each a ∈ ind(A2). Denote by compl(K2) the set of all completions of K2; 
it can be computed in time single exponential in |K2|.

We now construct the 2APTA A2. It is easy to see that if there is an assertion R(a, b) ∈ A2 \ A1 with R ∈ �, then no 
model of K2 is �-homomorphically embeddable into a forest-shaped model of K1 preserving ind(K2). In this case, we 
choose A2 so that it accepts the empty language. Suppose there is no such assertion. It is easy to see that any model I2

of K2 such that some a ∈ ind(K2) \ ind(K1) occurs in SI2 , for some symbol S ∈ �, is not �-homomorphically embeddable 
into a forest-shaped model of K1 preserving ind(K2). For this reason, we should only consider completions of K2 such that, 
for all a ∈ ind(K2) \ ind(K1), τ (a) contains no �-concept names and no existential restrictions ∃R.C with R ∈ �. We use 
complok(K2) to denote the set of all such completions. We define the 2APTA A2 = (Q , �, δ, q0, c) by setting

Q = {q0} ∪ {qa,t ,qR,t , f t | a ∈ ind(A1), t ∈ type(T2), R ∈ RN(T2) ∩ �}
and defining the transition function δ as follows:

δ(q0, root) =
∨

τ∈complok(K2)

∧
a∈ind(A2)∩ind(A1)

m∨
i=1

(i,qa,τ (a)),

δ(qa,t , (a, U )) =
∧

∃R.C∈t
R∈�

∨
s∈succ∃R.C (t)

( m∨
i=1

(i,qR,s) ∨
∨

R(a,b)∈A1

(−1,qb,s)
)

∧
∧

∃R.C∈t
R /∈�

∨
s∈succ∃R.C (t)

(0, f s),

δ(qS,t , (S, U )) =
∧

∃R.C∈t
R∈�

∨
s∈succ∃R.C (t)

m∨
i=1

(i,qR,s) ∧
∧

∃R.C∈t
R /∈�

∨
s∈succ∃R.C (t)

(0, f s),

where the last two transitions are subject to the conditions that every �-concept name in t is also in U ,
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δ( f t , (v, U )) = (0,qv,t) ∨
m∨

i=1

(i, f t) ∨ (−1, f t),

δ( f t , root) =
m∨

i=1

(i, f t),

δ(qa,t , root) =
m∨

i=1

(i,qa,t),

δ(q, �) = false, for all other q ∈ Q and � ∈ �,

where v is an individual a or a role name S . Note that the states f t are used to find non-deterministically the homomorphic 
image of �-disconnected successors in the tree. Finally, we set c(q) = 0 for q ∈ {q0, qa,t , qR,t} and c( f t) = 1.

Lemma 31. (T , L) ∈ L(A2) iff there is a model I2 ∈ Mbo
K2

such that I2 is �-homomorphically embeddable into I(T ,L) preserving 
ind(K2).

Proof. (⇒) Given an accepting run (Tr, r) for (T , L), we can construct a model I2 ∈ Mbo
K2

and a �-homomorphism h from 
I2 to I(T ,L) . Intuitively, the type t of a in I2 is given by the child ya of ε in Tr with r(ya) = (xa, qa,t), and the tree-shaped 
part of I2 is defined inductively as follows. If an element d of I2 has type t and yd ∈ Tr , then for each ∃R.C ∈ t such that 
R ∈ �, d has an R-successor d′ whose type s ∈ succ∃R.C (t) is determined by a child yd′ of yd in Tr with r(yd′ ) = (xd′ , qv,s), 
for some v . Moreover, for each ∃R.C ∈ t such that R /∈ �, d has an R-successor d′ whose type s ∈ succ∃R.C (t) is determined 
by the descendants y1, . . . , yn, yd′ of yd in Tr , n ≥ 1, with r(yi) = (xi, f s), 1 ≤ i ≤ n, and r(yd′ ) = (xd′ , qv,s) for some v . 
The homomorphism h is defined by taking the identity on individual names, and setting h(d) = a if r(yd) = (xd, qa,t), and 
h(d) = xd if r(yd) = (xd, qR,t). Observe that due to the accepting condition for which c( f t) = 1, the automaton cannot remain 
forever in the states f t , and so has to eventually find the homomorphic image of �-disconnected successors in the tree.

(⇐) Suppose there is a model I2 ∈ Mbo
K2

such that I2 is �-homomorphically embeddable into I(T ,L) preserving ind(K2). 
It is straightforward to construct an accepting run for (T , L) by using I2 as a guide. �

The constructed automaton A has only single exponentially many states. Thus, by Theorem 29, checking its emptiness 
can be done in 2ExpTime.

Theorem 32. The problem whether an ALC KB �-UCQ entails an ALC KB is decidable in 2ExpTime.

We now briefly discuss the modifications needed in the automata construction to obtain the same upper bound for 
�-rUCQ entailment. In the rooted case, we modify the automaton A2 in such way that it does not attempt to construct a 
�-homomorphism when reaching �-disconnected successors. Thus, the set Q of states of A2 does not contain f t , and the 
transition function is simplified accordingly. In particular, in the definition of the transitions δ(qx,t , (x, U )), for x ∈ {a, S}, the 
second set of conjunctions for ∃R.C ∈ t and R /∈ � is omitted.

Theorem 33. The problem whether an ALC KB �-rUCQ entails an ALC KB is decidable in 2ExpTime.

Our characterisation of �-(r)UCQ entailment using automata also allows us to formulate Theorem 25 without the restric-
tion to regular interpretations. For UCQs, this is a consequence of Lemma 30 and, for rUCQs, one can prove an analogous 
lemma.

Theorem 34. Let K1 and K2 be ALC KBs and � a signature.

(1) K1 �-UCQ entails K2 iff, for any I1 ∈ Mbo
K1

, there exists I2 ∈ Mbo
K2

that is �-homomorphically embeddable into I1 preserving 
ind(K2).

(2) K1 �-rUCQ entails K2 iff, for any I1 ∈ Mbo
K1

, there exists I2 ∈ Mbo
K2

that is con-�-homomorphically embeddable into I1 pre-
serving ind(K2).

5.3. 2ExpTime lower bound for (r)UCQ-entailment and inseparability with respect to a signature

We first show a 2ExpTime lower bound for �-UCQ entailment between ALC KBs by giving a polynomial reduction of 
the word problem for exponentially space bounded alternating Turing machines. Using Lemma 26, we obtain the same 
lower bound for rUCQs. We then modify the KBs from the entailment case to obtain 2ExpTime lower bounds for �-(r)UCQ 
inseparability.



24 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
An alternating Turing machine (ATM) is a quintuple of the form M = (Q , �I , �, q0, �), where the set of states Q = Q ∃ �
Q ∀ � {qa} � {qr} consists of existential states in Q ∃ , universal states in Q ∀ , an accepting state qa , and a rejecting state qr ; �I

is the input alphabet and � ⊇ �I the work alphabet containing a blank symbol �; q0 ∈ Q ∃ ∪ Q ∀ is the starting state; and the 
transition relation � is of the form

� ⊆ (Q \ {qa,qr}) × � × Q × � × {−1,+1}.

We write �(q, σ) to denote {(q′, σ ′, m) | (q, σ , q′, σ ′, m) ∈ �} and assume without loss of generality that every set �(q, σ)

contains exactly two elements. A configuration of M is a word wqw ′ with w, w ′ ∈ �∗ and q ∈ Q . The intended meaning 
is that the tape contains the word w w ′ , the machine is in state q, and the head is on the symbol just after w . The 
successor configurations of a configuration wqw ′ are defined in the usual way in terms of the transition relation �. A halting 
configuration is of the form wqw ′ with q ∈ {qa, qr}. A configuration wqw ′ is accepting if it is a halting configuration and q =
qa or q ∈ Q ∀ and all of its successor configurations are accepting or q ∈ Q ∃ and there is an accepting successor configuration. 
M accepts input w if the initial configuration q0 w is accepting. There is an exponentially space bounded ATM M whose word 
problem is 2ExpTime-hard.

Theorem 35. The problem whether an ALC KB K1 �-(r)UCQ entails an ALC KB K2 is 2ExpTime-hard.

Proof. We only consider the non-rooted case; the rooted case follows using Lemma 26 since the signature � in our proof 
contains all the role names used in the entailed KB K2. The proof is by reduction of the word problem for exponentially 
space bounded ATMs. Let M = (Q , �I , �, q0, �) be such an ATM. We may assume without loss of generality that

– the length of every (path in a) computation of M on w ∈ �I
n is bounded by 22n

;
– all the configurations wqw ′ in such computations satisfy |w w ′| ≤ 2n , see [60];
– M never attempts to move left of the tape cell on which the head was located in the initial configuration;
– the two transitions contained in �(q, σ) are ordered and use δ0(q, σ) and δ1(q, σ) to denote the first and second 

transition in �(q, σ), respectively;
– the existential and universal states strictly alternate: any transition from an existential state leads to a universal state, 

and vice versa;
– q0 ∈ Q ∃;
– any run of M on every input stops either in qa or qr .

Let w ∈ �I
n be an input to M . We construct ALC TBoxes T1 and T2 and a signature � such that M accepts w iff there 

is a model I1 of K1 = (T1, {A(a)}) such that no model of K2 = (T2, {A(a)}) is �-homomorphically embeddable into I1. In 
our construction, the models of K1 encode all possible sequences of configurations of M starting from the initial one and 
forming a full binary tree. Hence, most of the models do not correspond to correct runs of M . The branches of the models 
stop at the accepting and rejecting states. On the other hand, the models of K2 encode all possible local defects (such as 
invalid configurations or incorrect executions of the transition function), after the first step of the machine, or after the 
second step, and so on, or detect valid (hence without local defects) but rejecting runs. Then, if there exists a finite model 
I1 of K1 such that no model of K2 is �-homomorphically embeddable into I1 preserving {a}, we have that I1 represents 
a valid accepting computation of M .

The signature � contains the following symbols:

– the concept name A;
– the concept names A0, . . . , An−1, A0, . . . , An−1 that serve as bits in the binary representation of a number between 0 

and 2n − 1, identifying the position of tape cells inside configurations (A0, A0 represent the lowest bit);
– the concept names Aσ , for σ ∈ �;
– the concept names Aq,σ , for σ ∈ � and q ∈ Q ;
– the concept names X0, X1 to distinguish the two successor configurations;
– the role names R , S; R is used to connect the successor configurations, whereas S is used to connect the root of each 

configuration with symbols that occur in the cells of it.

Also, we make use of the following auxiliary symbols that are not in �:

– Bi , Bi , Bσ , Bq,σ ; Gi , Gi , Gσ , Gq,σ ; Cσ , Cq,σ , for σ ∈ �, q ∈ Q , and 0 ≤ i ≤ n − 1,
– L�

i , D�
trans , for � ∈ {0, 1} and 0 ≤ i ≤ n − 1,

– K0, K , Stop, Y , D , D , Dconf , Dtrans , Drej , D∃ , D∀ , Counterm for m ∈ {−1, 0, +1}, E B , EG .
rej rej
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Fig. 5. The structure of the models of K1.

TBox T1. Each model of K1 encodes a binary tree of configurations of M . Thus, T1 contains the axioms:

A � ∃R.(X0 � K ) � ∃R.(X1 � K ),

(X0 	 X1) � ¬Stop � ∃R.(X0 � K ) � ∃R.(X1 � K ),

K � ∃S.(L0
0 � A0) � ∃S.(L1

0 � A0),

L�
i � ∃S.(L0

i+1 � Ai+1) � ∃S.(L1
i+1 � Ai+1), for 0 ≤ i ≤ n − 2, � ∈ {0,1},

L�
n−1 ��

σ∈�
(Aσ 	�

q∈Q
Aq,σ ),

Aσ1 � Aσ2 � ⊥, for σ1 �= σ2,

Aσ1 � Aq2,σ2 � ⊥,

Aq1,σ1 � Aq2,σ2 � ⊥, for (q1,σ1) �= (q2,σ2),

Ai � ∀S.Ai, Ai � ∀S.Ai,

∃Sn.Aqa,σ � Stop, ∃Sn.Aqr ,σ � Stop,

where ∃Sn.A is an abbreviation for the concept ∃S.∃S. . . .∃S.A (S occurs n times). The models of K1 look as in Fig. 5, 
where the grey triangles are the trees encoding configurations rooted at K except for the initial configuration. These trees 
are binary trees of depth n, where each leaf represents a tape cell. For w = σ1 · · ·σn , the initial configuration is encoded at 
a by the following T1-axioms:

A � ∃S.(L0
0 � A0 � K0) � ∃S.(L1

0 � A0 � K0),

K0 � ∀S.K0,

K0 � (valA = 0) � Aq0,σ1 ,

K0 � (valA = i) � Aσi+1 , for 1 ≤ i ≤ n − 1,

K0 � (valA ≥ n) � A�,

where (valA = j) is the conjunction over Ai, Ai expressing the fact that the value of the A-counter is j, for j ≤ 2n − 1.

TBox T2. Each model of K2 encodes (at least) one of four possible defects:

– invalid configuration defect Dconf;
– transition defect Dtrans encoding errors in executing the transition function;
– copying defect Dcopy encoding errors in copying a symbol not under the head;
– a rejecting run defect Drej .

The first three defects are used to filter out sequences of configurations that do not correspond to valid runs of M . These 
defects are ‘local’, and so they are connected to a via paths. Instead, the last defect is used to detect valid rejecting runs of 
M , so it is ‘global’ and is represented by a tree. Thus, T2 contains the following axioms:

A � ∃R.(X0 � Y ) 	 ∃R.(X1 � Y ) 	 D∃
rej,

Y � D � ∃R.(X0 � Y ) 	 ∃R.(X1 � Y ),

Y � D 	 D, D � D � ⊥,

D � Dconf 	 Dtrans 	 Dcopy.

We now describe each of the defects separately, using the following abbreviations:

posB = (B0 	 B0) � · · · � (Bn−1 	 Bn−1), symbolB =�
σ∈�

Bσ , stateB = �
q∈Q , σ∈�

Bq,σ .

The abbreviations posG , symbolG and stateG are defined analogously using concept names Gi , Gi , Gq,σ , and Gσ .

Invalid configuration defect. Dconf is the simplest ‘local’ defect that encodes incorrect configurations, that is, configurations 
with at least two heads on the tape. It guesses the first position of the head, the symbol under it and the state by means 
of the concepts posB and stateB , and similarly, it guesses the second position using the corresponding concepts with the 
superscript G . This information is stored in the symbols transparent to � (Bx , Bx and Gx , Gx).
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Fig. 6. Models of defects.

Dconf � posB � stateB � ∃Sn.E B � posG � stateG � ∃Sn.EG � (valB �= valG),

where (valB �= valG) stands for (B0 � G0) 	 (G0 � B0) 	 · · · 	 (Bn−1 � Gn−1) 	 (Gn−1 � Bn−1) and ensures that the position 
encoded using B-symbols is different from the position encoded using G-symbols.

All the symbols Bx and Bx , and Gx and Gx are propagated down the S-successors, and at the concepts E B and EG they 
are copied into the �-symbols Ax and Ax:

Bx � ∀S.Bx, Gx � ∀S.Gx, E B � Bx � Ax, EG � Gx � Ax, for x ∈ {0, . . . ,n − 1} ∪ {(q,σ ),σ | q ∈ Q ,σ ∈ �},
Bi � ∀S.Bi, Gi � ∀S.Gi, E B � Bi � Ai, EG � Gi � Ai, for i ∈ {0, . . . ,n − 1}. (25)

A (partial) model of an invalid configuration defect is shown in Fig. 6(a), for n = 3.

Transition defect. Given a (correct) configuration, Dtrans encodes defects in a following configuration coming from an in-
correct execution of the transition function. It is also a ‘local’ defect, but it operates on two consecutive configurations. It 
guesses the position of the head, the symbol under it and the state by means of the concepts posB and stateB , and also 
guesses which of the two transitions is violated:

Dtrans � posB � stateB � ∃Sn.E B � (D0
trans 	 D1

trans).

Then, given the current state and the symbol under the head, the transition defect guesses the result of an incorrect 
execution of the transition function. The defective value at the successor configuration is stored in symbols Cx , while the 
relative position of the defect is stored in Counterm , for m ∈ {−1, 0, +1}. Thus, for δ�(q, σ) = (q�, σ�, m�), � ∈ {0, 1}, m� ∈
{−1, +1}, we have

D�
trans � ∃R.(X� � ∃Sn.E B),

Bq,σ � D�
trans � (Counter0 � �

σ ′∈�\{σ�}
Cσ ′) 	 (Counterm�

��
σ ′∈�

(Cσ ′ 	 �
q′∈Q \{q�}

Cq′,σ ′)).

The position of the defect is passed/updated along the R-successor as follows:

Counter+1 � Bk � Bk−1 � · · · � B0 � ∀R.(Bk � Bk−1 � · · · � B0), for n > k ≥ 0,

Counter+1 � B � Bk � ∀R.B, for B ∈ {B j, B j | n > j > k},
Counter−1 � Bk � Bk−1 � · · · � B0 � ∀R.(Bk � Bk−1 � · · · � B0), for n > k ≥ 0,

Counter−1 � B � Bk � ∀R.B, for B ∈ {B j, B j | n > j > k},
Counter0 � B � ∀R.B, for B ∈ {Bi, Bi | 0 ≤ i ≤ n − 1}.

(26)

The defect is copied via R as follows:

Cx � ∀R.Bx, x ∈ {(q,σ ), σ | q ∈ Q ,σ ∈ �}. (27)

Then the symbols Bx and Bx that have been copied via R are propagated down the S-successors, and copied at E B into the 
�-symbols Ax and Ax using (25). A model of a transition defect is shown in Fig. 6(b), for n = 3 and δ1(q1, σ1) = (q2, σ2, +1).

Copying defect. Similarly to the transition defect, the copying defect concerns two consecutive configurations and encodes 
errors in copying symbols that are not under the head. So it guesses a position of the head, a symbol under it, and a state 
by means of the concepts posG and stateG , and a position different from the position of the head and a symbol at this 
position by means of the concepts posB and symbolB :
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Dcopy � posG � stateG � ∃Sn.EG � posB � symbolB � ∃Sn.E B � ∃R.∃Sn.E B � (valB �= valG).

Then it chooses a new (incorrect) symbol (possibly with a state) at the B-position in the subsequent configuration:

Bσ � Dcopy � Counter0 � �
σ ′∈�, σ ′ �=σ

(Cσ ′ 	�
q∈Q

Cq,σ ′).

Using (26) and (27), the incorrect value and its position are copied via R , and then propagated via the S-successors and 
copied at E B to A-symbols using (25).

Rejecting run defect. The rejecting run defect detects when M does not accept w . It is done by checking the negation of 
the accepting condition. So this defect is a tree starting at A where every node at even distance from the root (D∃

rej) has 
two successors (recall that q0 ∈ Q ∃), every node at odd distance from the root (D∀

rej) has one successor, and the leaves are 
‘labelled’ by rejecting states:

D∃
rej � �

�∈{0,1}
∃R.(X� � (D∀

rej 	 Drej)),

D∀
rej � ∃R.(D∃

rej 	 Drej),

Drej ��
σ∈�

∃Sn.Aqr ,σ .

A (partial) model of a rejecting defect is shown in Fig. 6(c).
Now we sketch a proof that M accepts w iff K1 does not �-UCQ-entail K2.
(⇒) Suppose M accepts w . Then there is a model I1 of K1 such that

– it has no local defects, that is, it has only valid configurations, and at each step the transition function is executed 
correctly and all symbols not affected by the head are copied correctly;

– it contains a subtree representing an accepting computation of M on w .

Note that the former means that I1 is finite as we assumed that any run of M on every input stops either in qa or qr . 
So the models of K2 that are infinite paths or trees not ‘realising’ any defect (such models never actually pick D or Drej
to satisfy disjunction) will not be �-homomorphically embeddable into I1 . Moreover, the latter implies that the models 
of K2 encoding rejecting run defect will not be �-homomorphically embeddable into I1 either. So no model of K2 is 
�-homomorphically embeddable into I1, and hence K1 does not �-UCQ entail K2.

(⇐) Suppose K1 does not �-UCQ entail K2. Then there exists a model I1 of K1 such that no model I2 of K2 is 
�-homomorphically embeddable into I1. It follows that:

– parts of I1 in grey triangles (see Fig. 5) represent configurations with at most one head, because of the models I2 of 
K2 that detect invalid configurations;

– for every non-final configuration in I1 as explained above and for each of its two successor configurations, there are 
neither transition nor copying defects, because of the models of I2 that detect such defects;

– it is not the case that the tree of configurations represented by I1 witnesses that M does not accept w , because of the 
models I2 that detect such cases.

We thus conclude that I1 contains a valid accepting computation. �
We now modify the KBs in the proof above to obtain the following:

Theorem 36. �-(r)UCQ inseparability between ALC KBs is 2ExpTime-hard.

Proof. We only deal with the non-rooted case; the rooted case follows using Lemma 26. Consider the KBs Ki , i = 1, 2, and 
the signature � from the proof of Theorem 35. We construct (in LogSpace) a KB K′′

2 such that K1 �-UCQ entails K2 iff K1

and K′′
2 are �-UCQ inseparable. This provides us with the desired lower bound for �-UCQ inseparability. Let T i

i be a copy 
of Ti in which all concept names X ∈ sig(Ti) \ {A} are replaced by fresh symbols Xi , and let T ′

i be the extension of T i
i with 

Xi � X , for all concept names X ∈ � \ {A}. We set K′
i = (T ′

i , {A(a)}), i = 1, 2, and let K′′
2 = (T ′

1 ∪ T ′
2 , {A(a)}). Observe that 

K′
i and Ki are �-UCQ inseparable, for i = 1, 2. We prove that K1 �-UCQ entails K2 iff K′

1 and K′′
2 are �-UCQ inseparable. 

The implication (⇐) is straightforward.
Conversely, suppose K1 �-UCQ entails K2. Clearly, K′′

2 �-UCQ entails K′
1, and thus it remains to prove that K′

1 �-UCQ 
entails K′′

2 . For i = 1, 2, we consider the class M i of models I ∈ Mbo
K′

i
such that AI = {a}, if a ∈ XI for a concept name 

X , then X ∈ {D0
rej

′
, A}, and XI = ∅, for all concept names X �∈ sig(K′

i). It follows from the construction of Ki that M i is 
complete for K′ . Let
i
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M = {I1 � I2 | Ii ∈ M i, i = 1,2},
where I1 � I2 is the interpretation that results from merging the root a of I1 and I2. We first show that M is com-
plete for K′′

2 . The interpretations I ∈ M are models of K′′
2 since, for all axioms C � D ∈ T ′

i , either CI ⊆ �Ii \ {a} or 
C ∈ {D0

rej
′
, A, ∃Sn.Aqa,σ , ∃Sn.Aqr ,σ } and D is either a concept name or of the form ∃R.C ′ or ∃S.C ′ . To see that M is com-

plete for K′′
2, let J be a model of K′′

2 and n ≥ 1. It suffices to show that there exists I ∈ M that is n-homomorphically 
embeddable into J preserving {a} (Proposition 6). But since J is a model of K′

i , there are models Ii ∈ M i such that Ii

is n-homomorphically embeddable into J preserving {a}, i = 1, 2 (Proposition 6). By taking the union of the two partial 
witness homomorphisms from I1 and I2, one can show that I1 � I2 is n-homomorphically embeddable into J preserving 
{a}, as required.

We now use Theorem 17 (1) to prove that K′
1 �-UCQ entails K′′

2 . Let I1 ∈ M1 and n ≥ 1. It suffices to find J ∈ M that is 
n�-homomorphically embeddable into I1 preserving {a}. But since K′

1 �-UCQ-entails K′
2, there exists I2 ∈ M2 such that I2

is n�-homomorphically embeddable into I1 preserving {a}. By combining n�-homomorphisms from I2 with the identity 
mapping from I1, it is now straightforward to show that the model I1 � I2 ∈ M is n�-homomorphically embeddable into 
I1 preserving {a}, as required. �

The following theorem summarises the results obtained so far.

Theorem 37. �-(r)UCQ inseparability and �-(r)UCQ-entailment between ALC KBs are both 2ExpTime-complete.

5.4. (r)UCQ-entailment and inseparability with full signature

We extend the 2ExpTime lower bound from �-(r)UCQ entailment and inseparability to full signature (r)UCQ entailment 
and inseparability. To this end we prove a UCQ-variant of Theorem 23:

Theorem 38. Let K1 = (T1, A) and K2 = (T2, A) be ALC KBs and � a signature such that sig(A) ⊆ � and � = sig(T1 ∪ T2) \ �

contains no role names. Suppose T1 and T2 admit trivial models. Let K↑�

i = (T ↑�

i ∪T ∃
� , A), for i = 1, 2. Then the following conditions 

are equivalent:

(1) K1 �-(r)UCQ entails K2;
(2) K↑�

1 full signature (r)UCQ entails K↑�
2 .

Proof. We use and modify the proof of Theorem 23. Let M i be complete for Ki , i = 1, 2. We may assume that XI = ∅
for all concept and role names X �∈ sig(Ki) and I ∈ M i , i = 1, 2. By Fact 5 of the proof of Theorem 23, {I↑� | I ∈ M i} is 
complete for K↑�

i . Thus, by Theorem 17, it suffices to prove that I2 is n�-homomorphically embeddable into I1 preserving 
ind(K2) iff I↑�

2 is n-homomorphically embeddable into I↑�
1 preserving ind(K2), for any n > 0, I1 ∈ M1 and I2 ∈ M2. This 

can be done in the same way as in the proof of Fact 6. �
The following complexity result now follows from the observation that the KBs and signature � used in the proof of 

Theorem 36 satisfy the conditions of Theorem 38: � contains the signature of the ABox and all role names of the KBs, and 
the TBoxes admit trivial models.

Theorem 39. Full signature (r)UCQ inseparability and entailment between ALC KBs are both 2ExpTime-complete.

6. Query entailment and inseparability for ALC TBoxes

In this section, we introduce query entailment and inseparability between TBoxes. Two TBoxes T1 and T2 are query 
inseparable for a class Q of queries if, for all ABoxes A that are consistent with T1 and T2, queries from Q have the 
same certain answers over the KBs (T1, A) and (T2, A). The TBox T1 Q-entails T2 if, for any such A, the certain answers 
to queries from Q over (T2, A) are contained in the certain answers over (T1, A). As in the KB case, we consider the 
restriction of CQs and UCQs to a signature � of relevant symbols and their restrictions to rooted queries. In applications, it 
is also natural to restrict the signature of the ABox which might be different from the signature of the relevant queries.

Definition 40. Let T1 and T2 be TBoxes, Q one of CQ, rCQ, UCQ or rUCQ, and let � = (�1, �2) be a pair of signatures. We 
say that T1 �-Q entails T2 if, for every �1-ABox A that is consistent with both T1 and T2, the KB (T1, A) �2-Q entails the 
KB (T2, A). T1 and T2 are �-Q inseparable if they �-Q entail each other. If �1 is the set of all concept and role names, we 
say ‘full ABox signature �2-Q entails’ or ‘full ABox signature �2-Q inseparable’.
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In the definition of �-Q entailment, we only consider ABoxes that are consistent with both TBoxes. The reason is that 
the complexity of the problem of deciding whether every �-ABox consistent with a TBox T1 is also consistent with a TBox 
T2 is already well understood and is dominated by the �-Q-entailment problem as defined above. More precisely, we 
say that a TBox T1 �⊥-entails a TBox T2 if all �-ABoxes A consistent with T1 are consistent with T2. �⊥-entailment is 
closely related to the containment problem between ontology-mediated queries, which we define next [61–63]. For a query 
q, TBoxes T1 and T2, and a signature �, we say that (T1, q) is contained in (T2, q) for � and write (T1, q) ⊆� (T2, q) if, for 
every �-ABox A, the certain answers to q over (T1, A) are contained in the certain answers to q over (T2, A). We note 
that the authors of [61,63] demand that the �-ABoxes considered in the definition of containment are consistent with both 
TBoxes, but the complexity results for deciding containment do not depend on this condition. The containment problem for 
a description logic L relative to a class Q of queries is to decide, for TBoxes T1 and T2 in L, signature �, and query q ∈Q, 
whether (T1, q) ⊆� (T2, q). Thus, in contrast to �-Q-entailment, an instance of the containment problem does not quantify 
over all q ∈ Q but takes the queries q ∈ Q as inputs to the decision problem. It is known [61–63] that the containment 
problem is

– NExpTime-complete for ALC TBoxes and CQs of the form ∃xA(x);
– ExpTime-complete for HornALC TBoxes and CQs of the form ∃xA(x).

It is straightforward to show that the containment problem for a DL L and CQs of the form ∃xA(x) is mutually polynomially 
reducible with the problem to decide �⊥-entailment between L TBoxes. For a polynomial reduction of �⊥-entailment to 
containment, observe that T1 �⊥-entails T2 iff (T2, ∃xA(x)) ⊆� (T1, ∃xA(x)) for A �∈ sig(T1 ∪T2). For a polynomial reduction 
of containment to �⊥-entailment, assume that T1, T2, �, and A are given. Let T ′

i = Ti ∪ {A � ⊥}. Then (T1, ∃xA(x)) ⊆�

(T2, ∃xA(x)) iff T ′
2 �⊥-entails T ′

1 . We obtain the following result.

Theorem 41. The problem whether an ALC TBox �⊥-entails an ALC TBox is NExpTime-complete. For HornALC TBoxes T1 and T2 , 
this problem is ExpTime-complete.

It follows, in particular, that our complexity upper bounds for �-CQ-entailment still hold if one admits ABoxes that are 
not consistent with the TBoxes.

As in the KB case, �-UCQ inseparability of ALC TBoxes implies all other types of inseparability, and Example 13 can 
be used to show that no other implications hold in general. The situation is different for HornALC TBoxes. In fact, the 
following result follows directly from Proposition 14:

Proposition 42. For any ALC TBox T1 and HornALC TBox T2 , T1 �-(r)UCQ entails T2 iff T1 �-(r)CQ entails T2 .

We now show that �-(r)CQ entailment and inseparability are undecidable for ALC TBoxes. In fact, we show that �-(r)CQ 
inseparability is undecidable even if one of the TBoxes is given in EL and that �-(r)CQ entailment is undecidable even if the 
entailing TBox T1 is in EL. The proofs re-use the TBoxes constructed in the undecidability proofs for KBs in Theorems 20
and 22. We also show that, for CQs, these problems are still undecidable in the full ABox signature case or if one assumes 
that the signatures for the ABoxes and CQs coincide. It remains open whether rCQ-entailment or inseparability are still 
undecidable in those cases.

Theorem 43. (i) The problem whether an EL TBox �-Q entails an ALC TBox is undecidable for Q ∈ {CQ, rCQ}.
(ii) �-Q inseparability between EL and ALC TBoxes is undecidable for Q ∈ {CQ, rCQ}.
(iii) For CQs, (i) and (ii) hold for full ABox signatures and for � = (�1, �2) with �1 = �2 .

Proof. Here, we focus on the CQs; the proofs for rCQs are given in the appendix. We use the KBs K1
CQ = (T 1

CQ, ACQ) and 
K2

CQ = (T 2
CQ, ACQ) and the signature �CQ = sig(K1

CQ) from the proof of Theorem 20. Recall that it is undecidable whether 
K1

CQ �CQ-CQ entails K2
CQ. Also recall that, for K2 = (T2, ACQ) with T2 = T 1

CQ ∪ T 2
CQ, it is undecidable whether K1

CQ and K2
are �CQ-CQ inseparable (Theorem 21).

(i) Let �1 = {A}, �2 = �CQ, and � = (�1, �2). We show that T 1
CQ �-CQ-entails T 2

CQ iff K1
CQ �CQ-CQ-entails K2

CQ. Recall 
that ACQ = {A(a)}. Thus, if K1

CQ does not �CQ-CQ entail K2
CQ, then we have found a �1-ABox witnessing that T 1

CQ does not 
�-CQ entail T 2

CQ. Conversely, observe that �1-ABoxes A are sets of the form {A(b) | b ∈ I}, with I a finite set of individual 
names. Thus, if there exists a �1-ABox A such that (T 1

CQ, A) does not �CQ-CQ entail (T 2
CQ, A), then (T 1

CQ, ACQ) does not 
�CQ-CQ entail (T 2

CQ, ACQ) either.

(ii) Set again � = (�1, �2), for �1 = {A} and �2 = �CQ. In exactly the same way as in (i) one can show that K1
CQ and 

K2 are �CQ-inseparable iff T 1
CQ and T2 are �-CQ inseparable.

(iii) We first show undecidability of full ABox signature �-CQ inseparability. The undecidability of full ABox signature 
�-CQ entailment follows directly from our proof. We employ the abstraction technique from Theorem 23 for � = sig(T2) \
�CQ. Let T ′ = T 1 ∪ T ∃ , T ′ = T ↑� ∪ T ∃ and � = �CQ \ {P }. We aim to prove that the following conditions are equivalent:
1 CQ � 2 2 �
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(1) K1
CQ and K2 are �-CQ inseparable;

(2) T ′
1 and T ′

2 are full ABox signature �-CQ inseparable.

Observe that undecidability of full ABox signature CQ-inseparability of TBoxes of the form T ′
1 and T ′

2 follows since the proof 
of Theorems 20 and 21 shows that the role name P is not needed to CQ-separate the KBs K1

CQ and K2 (if they are �CQ-CQ 
separable). Thus, it is undecidable whether K1

CQ and K2 are �-CQ inseparable.

The implication (2) ⇒ (1) is straightforward: if K1
CQ and K2 are not �-CQ inseparable, then the ABox ACQ witnesses that 

T ′
1 and T ′

2 are not full ABox signature �-CQ inseparable. Conversely, suppose T ′
1 and T ′

2 are not full ABox signature �-CQ 
inseparable. Then there exists an ABox A such that (T ′

1 , A) and (T ′
2 , A) are not �-CQ inseparable. The canonical model I1

of the EL KB (T ′
1 , A) can be constructed as follows:

– for any A(b) ∈A, take a copy of the canonical model IK1
CQ

and hook it to b by identifying a in IK1
CQ

with b;

– for any D(b) ∈A, take a copy of the subinterpretation of the canonical model IK1
CQ

rooted at the P -successor of a and 
hook it to b by identifying the P -successor of a with b;

– for any E(b) ∈A, take a copy of the (unique up to isomorphism) subinterpretation of the canonical model IK1
CQ

rooted 
at an E-node and hook it to b by identifying the E-node with b;

– to satisfy T ∃
� , let J be the singleton interpretation with XJ = ∅ for all concept and role names X ; we hook to any 

element u of the interpretation constructed so far a copy of J ↑� by identifying the root of J ↑� with u (see the proof 
of Theorem 23 for the construction and properties of J ↑�).

Let M be the class of interpretations obtained from I1 by adding to any b with A(b) ∈ A a P -successor b′ to which one 
hooks the subinterpretation rooted in the P -successor of a in an interpretation from {I↑� | I ∈ MK2

CQ
}. One can show that 

M is complete for the KB (T ′
2 , A). To this end, first recall from the proof of Theorem 21 that for the canonical model IK1

CQ

of K1
CQ, the set MK2 = { I � IK1

CQ
| I ∈ MK2

CQ
} (where I � IK1

CQ
is the interpretation that results from merging the roots a

of I and IK1
CQ

) is complete for K2. By Theorem 23 (Fact 5), {I↑� | I ∈ MK2 } is complete for K↑�
2 . Now completeness of M

for (T ′
2 , A) follows directly from the fact that every I ∈ M is a model of (T ′

2 , A). Next, observe that P �∈ � and that two KBs 
are �-CQ inseparable iff they are �-CQ inseparable for connected �-CQs. Thus, the only �-components of interpretations 
in M that could distinguish �-CQs true in M from �-CQs true in I1 are the interpretations {I↑� | I ∈ MK2

CQ
}. It follows 

that if (T ′
1 , A) and (T ′

2 , A) are not �-CQ inseparable, then (K1
CQ)↑� and K↑�

2 are not �-CQ inseparable either. But then, by 
the proof of Theorem 24, K1

CQ and K2 are not �-CQ inseparable, as required.
To show undecidability of �-CQ inseparability and entailment for � = (�1, �2) with �1 = �2, we re-use the unde-

cidability proof for the full ABox signature case. Set � = (�, �). Then the proof above shows that T ′
1 and T ′

2 are �-CQ 
inseparable iff they are full ABox signature �-CQ inseparable since one can always choose the ABox ACQ as a witness for 
CQ-inseparability if T ′

1 and T ′
2 are full ABox signature �-CQ inseparable. �

7. Model-theoretic criteria for query entailment of HornALC TBoxes by ALC TBoxes

We have seen that �-(r)CQ entailment of an ALC TBox T2 by an EL TBox T1 is undecidable. We now investigate the 
converse direction, with drastically different results (which even hold if EL TBoxes are replaced by HornALC TBoxes). Thus, 
in this section, we give model-theoretic criteria for �-(r)CQ entailment of a HornALC TBox T2 by an ALC TBox T1. In 
the next section, we use these criteria to prove tight complexity bounds for deciding �-(r)CQ entailment and inseparability. 
Recall that, by Proposition 42, our model-theoretic criteria and complexity results also apply to �-(r)UCQ entailment.

We assume that HornALC TBoxes are given in normal form where concept inclusions look as follows:

A � B, A1 � A2 � B, ∃R.A � B, A � ⊥, � � B, A � ∃R.B, A � ∀R.B

and A, B are concept names. It is standard (see, e.g., [64, Proposition 28]) to show the following reduction of �-(r)CQ 
entailment for arbitrary HornALC TBoxes to HornALC TBoxes in normal form.

Proposition 44. For any HornALC TBox T2 and any pair � of signatures, one can construct in polynomial time a HornALC TBox T ′
2

in normal form such that an ALC TBox T1 �-(r)CQ entails T2 iff T1 �-(r)CQ entails T ′
2 .

Our model-theoretic criteria are based on two crucial observations. First, to characterise �-(r)CQ entailment between 
HornALC TBoxes and ALC TBoxes, it suffices to consider a very restricted class of acyclic (r)CQs that corresponds exactly 
to queries constructed using EL concepts. Second, it suffices to consider ABoxes that are tree-shaped rather than arbitrary 
ABoxes when searching for witnesses for non-�-(r)CQ entailment. We begin by introducing the relevant classes of CQs and 
rCQs. A rooted EL query takes the form C(x), where C is an EL concept. The set of rooted EL queries is denoted by rELQ. 
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Given a KB K, a ∈ ind(K), and an rELQ C(x) we say that a is a certain answer to C(x) over K if aI ∈ CI , for every model I
of K. Note that rELQs can be regarded as acyclic CQs with one answer variable. A Boolean EL query takes the form ∃xC(x), 
where C is an EL concept. The set of rooted and Boolean EL queries is denoted by ELQ. Given a KB K and a Boolean 
EL query ∃xC(x), we say that K entails ∃xC(x) if CI �= ∅, for every model I of K. Boolean EL queries can be regarded as 
Boolean acyclic CQs. In what follows we use the same notation for (r)ELQs as for (r)CQs. For TBoxes T1 and T2 and a pair 
� = (�1, �2) of signatures, we say that T1 �-(r)ELQ entails T2 if, for every �1 ABox A that is consistent with both T1 and 
T2, and every �2-(r)ELQ q(a) with a ∈ ind(A), whenever (T2, A) |= q(a) then (T1, A) |= q(a).

Proposition 45. Let T1 be an ALC TBox, T2 a HornALC TBox, and � = (�1, �2) a pair of signatures. Then T1 �-(r)CQ entails T2 iff 
T1 �-(r)ELQ entails T2 .

Proof. Suppose A is a �1-ABox and (T2, A) |= q(a) but (T1, A) �|= q(a) for a �2-CQ q. As (T2, A) |= q(a), there is a homo-
morphism h : q → I(T2,A) . Let I be the �2-reduct of the subinterpretation of I(T2,A) induced by the image of q under h. 
Then I is the disjoint union of

– ditree interpretations Ia attached to a ∈ ind(A) ∩ �I such that ind(A) ∩ �Ia = {a}, and
– ditree interpretations J with ind(A) ∩ �J = ∅ (there exists no such J if q is an rCQ),

and, additionally, pairs (a, b) in RI for a, b ∈ ind(A) ∩ �I , R ∈ �1, and R(a, b) ∈A. Thus, if q is an rCQ then there exists Ia

such that the canonical CQ qIa
(x) determined by Ia is an rELQ (see the proof of Proposition 6) and (T2, A) |= qIa

(a) but 
(T1, A) �|= qIa

(a), as required. If q is not an rCQ and no such Ia exists, then there exists J such that the canonical CQ qJ
determined by J is a Boolean EL query and (T2, A) |= qJ but (T1, A) �|= qJ . �

An ABox A is called a tree ABox if the undirected graph

GA = (
ind(A),

{{a,b} | R(a,b) ∈A
})

is an undirected tree and R(a, b) ∈ A implies R(b, a) �∈ A and S(a, b) /∈ A, for S �= R . The outdegree of A is defined as the 
outdegree of GA .

Theorem 46. Let T1 be an ALC TBox, T2 a HornALC TBox, and � = (�1, �2). Then

(1) T1 �-rCQ-entails T2 iff, for any tree �1-ABox A of outdegree bounded by |T2| and consistent with T1 and T2 , and any model I1
of (T1, A), I(T2,A) is con-�2-homomorphically embeddable into I1 preserving ind(A).

(2) T1 �-CQ-entails T2 iff, for any tree �1-ABox A of outdegree bounded by |T2| and consistent with T1 and T2 , and any model I1
of (T1, A), I(T2,A) is �2-homomorphically embeddable into I1 preserving ind(A).

Proof. (1) The direction from left to right follows from Theorem 34 and Proposition 14. Conversely, suppose T1 does not 
�-rCQ-entail T2. By Proposition 45, there are a �1-ABox A consistent with T1 and T2, a �2-rELQ C(x), and a ∈ ind(A) such 
that (T2, A) |= C(a) and (T1, A) �|= C(a). It is shown in [64] (proof of Proposition 30)2 that there exist a tree �1-ABox A′
with outdegree bounded by |T2| and (T2, A′) |= C(a), and an ABox homomorphism3 h from A′ to A with h(a) = a. It follows 
from Proposition 63 in the appendix that A′ is consistent with T1 and T2 and that (T1, A′) �|= C(a). Let I1 be a model of 
(T1, A′) such that I1 �|= C(a). We know that I(T2,A′) |= C(a). Thus, I(T2,A′) is not con-�2-homomorphically embeddable 
into I1 preserving ind(A′), as required. (2) is proved similarly using ELQs instead of rELQs and �2-homomorphisms instead 
of con-�2-homomorphisms. �

The notion of (con-)�-CQ homomorphic embeddability used in Theorem 46 is slightly unwieldy to use in the subsequent 
definitions and automata constructions. We therefore resort to simulations whose advantage is that they are compositional 
(they can be partial and are closed under unions). Let I1, I2 be interpretations and � a signature. A relation S ⊆ �I1 ×�I2

is a �-simulation from I1 to I2 if (i) d ∈ AI1 and (d, d′) ∈ S imply d′ ∈ AI2 for all �-concept names A, and (ii) if (d, e) ∈ RI1

and (d, d′) ∈ S then there is a (d′, e′) ∈ RI2 with (e, e′) ∈ S for all �-role names R . Let di ∈ �Ii , i ∈ {1, 2}. (I1, d1) is 
�-simulated by (I2, d2), in symbols (I1, d1) ≤� (I2, d2), if there exists a �-simulation S with (d1, d2) ∈ S . Observe that 
every �-homomorphism from I1 to I2 is a �-simulation. Conversely, if I1 is a ditree interpretation and (I1, d1) ≤� (I2, d2), 
then one can construct a �-homomorphism h from I1 to I2 with h(d1) = d2.

2 The proof of Proposition 30 in [64] shows this for ELIF⊥ TBoxes. Observe that we can regard every HornALC TBox in normal form as an ELI⊥
TBox by replacing A � ∀R.B by ∃R−.A � B .

3 ABox homomorphisms are defined before Proposition 63 in the appendix.



32 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
Lemma 47. Let �1 and �2 be signatures, A a �1-ABox, and I1 a model of (T1, A). Then

(i) IT2,A is not con-�2-homomorphically embeddable into I1 iff there is a ∈ ind(A) such that one of the following holds:

(1) there is a �2-concept name A with a ∈ AIT2,A \ AI1 ;
(2) there is an R-successor d of a in IT2,A , for some �2-role name R, such that d /∈ ind(A) and, for all R-successors e of a in I1 , we 

have (IT2,A, d) �≤�2 (I1, e).

(ii) IT2,A is not �2-homomorphically embeddable into I1 if there is a ∈ ind(A) such that (1) or (2) or (3) holds, where

(3) there is an element d in the subinterpretation of IT2,A rooted at a (with possibly d = a) and d has an R0-successor d0 , for some 
role name R0 /∈ �2 , such that (IT2,A, d0) �≤�2 (I1, e), for all elements e of I1 .

Proof. We only prove (ii) as (i) is a direct consequence of our proof. Clearly, if there exists a ∈ ind(A) such that (1) or (2) 
or (3) holds for a, then there does not exist a �-homomorphism from I1 to IT2,A preserving {a} ⊆ ind(A).

Conversely, suppose none of (1), (2) or (3) holds for any a ∈ ind(A). Then, for any a ∈ ind(A), R-successor d of a in 
IT2,A with R ∈ �2 and d /∈ ind(A), there is an R-successor d′ of a in I1 and a �2-simulation Sd from IT2,A to I1 such 
that (d, d′) ∈ Sd . As the subinterpretation of IT2,A rooted at d is a ditree interpretation, we can assume that Sd is a partial 
function. Also, for every d0 in IT2,A with d0 �∈ ind(A) that has an R0-predecessor in IT2,A with R0 �∈ �2, we find an e in I1
such that there is a �2-simulation Sd0 between IT2,A and I1 with (d0, e) ∈ Sd0 . As the subinterpretation of IT2,A rooted 
at d0 is ditree interpretation, we can assume that Sd0 is a partial function. Now consider the function h defined by setting 
h(a) = a, for all a ∈ ind(A), and then taking the union with all the simulations Sd and Sd0 . It can be verified that h is a 
�2-homomorphism from IT2,A to I1. �
8. Decidability of query entailment of HornALC TBoxes by ALC TBoxes

We show that the problem whether an ALC TBox �-CQ entails a HornALC TBox is in 2ExpTime, and that the complex-
ity drops to ExpTime in the case of rooted CQs. Using the fact that satisfiability of HornALC TBoxes is ExpTime-hard, it is 
straightforward to prove a matching ExpTime lower bound even for the full ABox signature case and (�, �)-rCQ entailment 
and inseparability between HornALC TBoxes. Proving a matching lower bound for the non-rooted case is more involved. 
Using a reduction of exponentially space bounded alternating Turing machines, we show that (�, �)-CQ inseparability be-
tween the empty TBox and HornALC TBoxes is 2ExpTime-hard. It follows that both (�, �)-CQ inseparability and (�, �)-CQ 
entailment between HornALC TBoxes are 2ExpTime-hard. The problem whether the 2ExpTime upper bound is tight in the 
full ABox signature case remains open.

8.1. ExpTime upper bound for �-rCQ-entailment of HornALC TBoxes by ALC TBoxes

Our aim is to establish the following:

Theorem 48. �-rCQ inseparability between HornALC TBoxes and �-rCQ entailment of a HornALC TBox by an ALC TBox are both
ExpTime-complete. The ExpTime lower bound holds already for � of the form (�, �) and the full ABox signature case.

The lower bounds can be proved in a straightforward way using the fact that satisfiability of HornALC TBoxes is Exp-

Time-hard. Note that ExpTime-hardness of (�, �)-rCQ inseparability is also inherited from [38], where this bound is shown 
for EL TBoxes. It thus remains to prove the upper bound.

We use a mix of two-way alternating Büchi automata (2ABTAs) and non-deterministic top-down tree automata (NTAs), 
both on finite trees (in contrast to Section 5.2). A finite tree T is m-ary if, for any x ∈ T , the set {i | x · i ∈ T } is of cardinality 
zero or exactly m. 2ABTAs on finite trees are defined exactly like 2APTAs on infinite trees except that

– the acceptance condition now takes the form F ⊆ Q and a run is accepting if, for every infinite path y1 y2 · · · , the set 
{i | r(yi) = (x, q) with q ∈ F } is infinite;

– we allow a special transition leaf and add to the definition of a run r the condition that, for any node y of the input 
tree T , r(y) = (x, leaf) implies that x is a leaf in T .

Note that runs can still be infinite.

Definition 49. A nondeterministic top-down tree automaton (NTA) on finite m-ary trees is a tuple A = (Q , �, Q 0, δ, F ) where 
Q is a finite set of states, � a finite alphabet, Q 0 ⊆ Q a set of initial states, δ : Q ×� → 2Q m

a transition function, and F ⊆ Q
is a set of final states. Let (T , L) be a �-labelled m-ary tree. A run of A on (T , L) is a Q -labelled m-ary tree (T , r) such that 
r(ε) ∈ Q 0 and 〈r(x · 1), . . . , r(x · m)〉 ∈ δ(r(x), L(x)), for each node x ∈ T . The run is accepting if r(x) ∈ F , for every leaf x of T . 
The set of trees accepted by A is denoted by L(A).
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We use the following results from automata theory [59,65,66].

Theorem 50.

1. Every 2ABTA A = (Q , �, δ, q0, F ) can be converted into an equivalent NTA A′ whose number of states is (single) exponential in 
|Q |; the conversion needs time polynomial in the size of A′;

2. Given a constant number of 2ABTAs (respectively, NTAs) A1, . . . , Ac , one can construct in polynomial time a 2ABTA (respectively, 
an NTA) A such that L(A) = L(A1) ∩ · · · ∩ L(Ac);

3. Emptiness of NTAs A = (Q , �, Q 0, δ, F ) can be decided in polynomial time.

Before proceeding further, we give a concrete definition of the canonical model for HornALC KBs that was mentioned in 
Proposition 8, tailored towards the constructions used in the rest of this section. Let K = (T , A) be a HornALC KB with T
in normal form. We use CN(T ) to denote the set of concept names in T . For any a ∈ ind(A), we use tpK(a) to denote the 
set {A ∈ CN(T ) | K |= A(a)}. For t ⊆ CN(T ), set clT (t) = {A ∈ CN(T ) | T |=� t � A}. A set S = {∃R.A, ∀R.B1, . . . , ∀R.Bn} is 
a successor set for t if there is a concept name A′ ∈ t such that A′ � ∃R.A ∈ T and ∀R.B1, . . . , ∀R.Bn is the set of all concepts 
of this form such that, for some B ∈ t , we have B � ∀R.Bi ∈ T . Later on, we shall call S a �2-successor set if R ∈ �2. We 
use S↓ to denote the set {A, B1, . . . , Bn}. A path for K is a sequence aS1 · · · Sn such that a ∈ ind(A), S1 is a successor set for 
tpK(a), and Si+1 is a successor set for clT (S↓

i ), for 1 ≤ i < n. Now, the canonical model IK of K is defined as follows:

�IK = ind(A) ∪ {aS1 · · · Sn | aS1 · · · Sn path for K},
AIK = {a | A ∈ tpK(a)} ∪ {aS1 · · · Sn | n ≥ 1 and A ∈ clT (S↓

n )},
RIK = {(a,b) | R(a,b) ∈A} ∪ {(aS1 · · · Sn−1,aS1 · · · Sn) | R is the role name in Sn}.

The following result is standard:

Lemma 51. Let K = (T , A) be a HornALC KB in normal form. Then IK is a model of K iff K is consistent iff there is no a ∈ ind(A)

with T |= tpK(a) � ⊥.

We now establish the upper bound in Theorem 48. Let T1 be an ALC TBox, T2 a HornALC TBox, and �1, �2 signatures. 
Set m = |T2|. We aim to construct an NTA A such that a tree is accepted by A iff this tree encodes a tree �1-ABox A of 
outdegree at most m that is consistent with both T1 and T2 and a (part of a) model I1 of (T1, A) such that the canonical 
model IT2,A of (T2, A) is not con-�2-homomorphically embeddable into I1. By Theorem 46, this means that A accepts the 
empty language iff T2 is (�1, �2)-rCQ entailed by T1. To ensure that IT2,A is not con-�2-homomorphically embeddable 
into I1, we use the characterisation provided by Lemma 47. We first make precise which trees should be accepted by the 
NTA A and then show how to construct A.

We assume that T1 takes the form � � CT1 with CT1 in NNF and use cl(CT1 ) to denote the set of subconcepts of CT1 , 
closed under single negation. We also assume that T2 is in normal form and use sub(T2) for the set of subconcepts of 
(concepts in) T2. Let �0 denote the set of all subsets of �1 ∪ {R− | R ∈ �1} that contain at most one role, where a role is a 
role name R or its inverse R− . Automata will run on m-ary �-labelled trees where

� = �0 × 2cl(T1) × 2CN(T2) × {0,1} × 2sub(T2).

For a �-labelled tree (T , L) and a node x from T , we write Li(x) to denote the i + 1st component of L(x), for each i ∈
{0, . . . , 4}. Informally, the projection of a �-labelled tree to the

– L0-components represents the tree �1-ABox A that witnesses non-�2-query entailment of T2 by T1;
– L1-components (partially) represents a model I1 of (T1, A);
– L2-components (partially) represents the canonical model IT2,A of (T2, A);
– L3-components mark the individual a in A from Lemma 47;
– L4-components contains bookkeeping information that helps to ensure that the individual marked by the L3-component 

indeed satisfies one of the two conditions from Lemma 47.

By ‘partial’ we mean that the restriction of the respective model to individuals in A is represented whereas its ‘anonymous’ 
part is not. We now make these intuitions more precise by defining certain properness conditions for �-labelled trees, 
one for each component in the labels, which make sure that each component can indeed be meaningfully interpreted to 
represent what it is supposed to. A �-labelled tree (T , L) is 0-proper if it satisfies the following conditions:

1. for the root ε of T , L0(ε) contains no role;
2. for every non-root node x of T , L0(x) contains a role.
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Every 0-proper �-labelled tree (T , L) represents the tree �1-ABox

A(T ,L) = {A(x) | A ∈ L0(x)} ∪ {R(x, y) | R ∈ L0(y), y is a child of x} ∪ {R(y, x) | R− ∈ L0(y), y is a child of x}.
A �-labelled tree (T , L) is 1-proper if it satisfies the following conditions, for all x, y ∈ T :

1. there is a model I of T1 and a d ∈ �I such that d ∈ CI iff C ∈ L1(x) for all C ∈ cl(T1);
2. A ∈ L0(x) implies A ∈ L1(x);
3. if y is a child of x and R ∈ L0(y), then ∀R.C ∈ L1(x) implies C ∈ L1(y) for all ∀R.C ∈ cl(T1);
4. if y is a child of x and R− ∈ L0(y), then ∀R.C ∈ L1(y) implies C ∈ L1(x) for all ∀R.C ∈ cl(T1).

A �-labelled tree (T , L) is 2-proper if, for every node x ∈ T ,

1. L2(x) = tpT2,A(T ,L)
(x);

2. T2 �|=� L2(x) � ⊥.

It is 3-proper if there is exactly one node x with L3(x) = 1.
The canonical model IT2,S of T2 and a finite set S ⊆ sub(T2) is the interpretation obtained from the canonical model 

of the KB that consists of the TBox T2 ∪ {AC � C | C ∈ S} and the ABox {AC (aε) | C ∈ S}, with all fresh concept names AC

removed. A �-labelled tree (T , L) is 4-proper if the following conditions hold, for x1, x2 ∈ T :

1. if L3(x1) = 1, then there is a �2-concept name in L2(x1) \ L1(x1) or L4(x1) is a �2-successor set for L2(x1);
2. if L4(x1) = {∃R.A, ∀R.B1, . . . , ∀R.Bn}, then there is a model I of T1 and a d ∈ �I such that d ∈ CI iff C ∈ L1(x1) for all 

C ∈ cl(T1) and (IT2,{A,B1,...,Bn}, aε) �≤�2 (I, e) for all (d, e) ∈ RI ;
3. if x2 is a child of x1, L0(x2) contains the role name R , and L4(x1) = {∃R.A, ∀R.B1, . . . , ∀R.Bn}, then there is a �2-concept 

name in clT2 ({A, B1, . . . , Bn}) \ L1(x2) or L4(x2) is a �2-successor set for clT2 ({A, B1, . . . , Bn});
4. if x2 is a child of x1, L0(x2) contains the role R− , and L4(x2) = {∃R.A, ∀R.B1, . . . , ∀R.Bn}, then there is a �2-concept 

name in clT2 ({A, B1, . . . , Bn}) \ L1(x1) or L4(x1) is a �2-successor set for clT2 ({A, B1, . . . , Bn}).

For L4(x) = {∃R.A, ∀R.B1, . . . , ∀R.Bn}, this expresses the obligation that (IT2,{A,B1,...,Bn}, aε) �≤�2 (I, e), for (d, e) ∈ RI , where 
I is the interpretation that is (partly) represented by the L1-components of the labels in (T , L); see the proof of Lemma 52
for a precise definition of I . With this in mind, note how 4-properness addresses (1) and (2) of Lemma 47. In fact, Condi-
tion 1 of 4-properness decides whether (1) or (2) is satisfied. If (2) is satisfied, which says that there is an R-successor 
d of x1 in IT2,A , for some �2-role name R , such that d /∈ ind(A) and, for all R-successors e of x1 in I , we have 
(IT2,A, d) �≤�2 (I, e), then the role name R and the element d are represented by the successor set stored in L4(x1). In 
fact, that element is d = x1L4(x1), see the definition of canonical models. The remaining conditions of 4-properness imple-
ment the obligations represented by the L4-components of node labels.

Lemma 52. There is an m-ary �-labelled tree that is i-proper for all i ∈ {0, . . . , 4} iff there are a tree �1-ABox A of outdegree 
at most m that is consistent with T1 and T2 and a model I1 of (T1, A) such that the canonical model IT2,A of (T2, A) is not 
con-�2-homomorphically embeddable into I1 .

Proof. (⇒) Let (T , L) be an m-ary �-labelled tree that is i-proper for all i ∈ {0, . . . , 4}. Then A(T ,L) is a tree �1-ABox of 
outdegree at most m. Moreover, A(T ,L) is consistent with T2, by 2-properness and Lemma 51.

Since (T , L) is 3-proper, there is exactly one x0 ∈ T with L3(x0) = 1. By construction, x0 is also an individual name in 
A(T ,L) . To finish this direction of the proof, it suffices to construct a model I1 of (T1, A(T ,L)) such that (IT2,A, x0) �≤�2

(I1, x0). In fact, such an I1 witnesses consistency of A(T ,L) with T1 and, moreover, by the definition of simulations, 
I1 must satisfy one of (1) or (2) of Lemma 47 with a replaced by x0. Consequently, by that lemma, IT2,A is not 
con-�2-homomorphically embeddable into I1.

We start with the interpretation I0 defined as follows:

�I0 = T ,

AI0 = {x ∈ T | A ∈ L1(x)},
RI0 = {(x1, x2) | x2 child of x1 and R ∈ L0(x2)} ∪ {(x2, x1) | x2 child of x1 and R− ∈ L0(x2)}.

Then take, for each x ∈ T , a model Ix of T1 such that x ∈ CIx iff C ∈ L1(x) for all C ∈ cl(T1), which exists by Condition 1 
of 1-properness. Moreover, if L4(x) = {∃R.A, ∀R.B1, . . . , ∀R.Bn}, then choose Ix such that (IT2,{A,B1,...,Bn}, aε) �≤�2 (Ix, y) for 
all (x, y) ∈ RIx , which is possible by Condition 2 of 4-properness. Further, suppose �I0 and �Ix share only the element x. 



E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 35
Then I1 is the union of I0 and all chosen interpretations Ix . It is straightforward to prove that I1 is indeed a model of 
(T1, A(T ,L)).

We show that (IT2,A(T ,L)
, x0) �≤�2 (I1, x0). By Condition 1 of 4-properness, there is a �2-concept name A in L2(x0) \

L1(x0) or L4(x0) is a �2-successor set for L2(x0). In the former case, x0 ∈ AIT2,A(T ,L) \ AI1 , and so we are done. In the latter 
case, it suffices to show the following.

Claim. For all x ∈ T , if L4(x) = {∃R.A, ∀R.B1, . . . , ∀R.Bn}, then (IT2,{A,B1,...,Bn}, aε) �≤�2 (I1, y) for all (x, y) ∈ RI1 .

The proof of the claim is by induction on the co-depth of x in A(T ,L) , which is the length n of the longest sequence of 
role assertions R1(x, x1), . . . , Rn(xn−1, xn) in A(T ,L) . It uses Conditions 2 to 4 of 4-properness.

(⇐) Let A be a tree �1-ABox of outdegree at most m that is consistent with T1 and T2, and I1 a model of (T1, A) such 
that IT2,A is not con-�2-homomorphically embeddable into I1. By duplicating successors, we can make sure that every 
non-leaf in A has exactly m successors. We can further assume without loss of generality that ind(A) is a prefix-closed 
subset of N∗ that reflects the tree-shape of A, that is, R(a, b) ∈A implies b = a ·c or a = b ·c, for some c ∈N. By Lemma 47, 
there is an a0 ∈ ind(A) such that one of the following holds:

(1) there is a �2-concept name A with a0 ∈ AIT2,A \ AI1 ;
(2) there is an R0-successor d0 of a0 in IT2,A , for some �2-role name R0, such that d0 /∈ ind(A) and, for all R0-successors 

d of a0 in I1, we have (IT2,A, d0) �≤�2 (I1, d).

We now show how to construct from A a �-labelled tree (T , L) that is i-proper for all i ∈ {0, . . . , 4}. For each a ∈ ind(A), set 
R(a) = ∅ if a = ε, and otherwise set R(a) = {R} if R(b, a) ∈ A and a = b · c, for some c ∈N, and R(a) = {R−} if R(a, b) ∈ A
and a = b · c, for some c ∈N. Now set

T = ind(A),

L0(x) = {A | A(x) ∈A} ∪ {R(x)},
L1(x) = {C ∈ cl(T1) | x ∈ CI1},
L2(x) = tpT2,A(x),

L3(x) =
{

1 if x = a0,

0 otherwise.

It remains to define L4. Start with setting L4(x) = ∅ for all x. If (1) above holds, we are done. If (2) holds, then there is a 
�2-successor set S = {∃R0.A, ∀R0.B1, . . . , ∀R0.Bn} for L2(a0) such that the restriction of IT2,A to the subtree-interpretation 
rooted at d0 is the canonical model IT2,{A,B1,...,Bn} . Set L4(a0) = S . We continue to modify L4, proceeding in rounds. To keep 
track of the modifications that we have already done, we use a set

� ⊆ ind(A) × (NR ∩ �2) × �
IT2,A

such that the following conditions are satisfied:

(i) if (a, R, d) ∈ �, then L4(a) has the form {∃R.A, ∀R.B1, . . . , ∀R.Bn} and the restriction of IT2,A to the subtree-
interpretation rooted at d is the canonical model IT2,{A,B1,...,Bn};

(ii) if (a, R, d) ∈ � and d′ is an R-successor of a in I1, then (IT2,A, d) �≤�2 (I1, d′).

Initially, set � = {(a0, R0, d0)}. In each round of the modification of L4, iterate over all elements (a, R, d) ∈ � that have not 
been processed in previous rounds. Let L4(a) = {∃R.A, ∀R.B1, . . . , ∀R.Bn} and iterate over all R-successors b of a in A. By 
(ii), (IT2,A, d) �≤�2 (I1, b). By (i), there is thus a top-level �2-concept name A′ in clT2 ({A, B1, . . . , Bn}) such that b /∈ A′I1 or 
there is an R ′-successor d′ of d in IT2,A , R ′ a �2-role name, such that for all R ′-successors d′′ of b in I1, (IT2,A, d′) �≤�2

(I1, d′′). In the former case, we do nothing. In the latter case, there is a �2-successor set S ′ = {∃R ′.A′, ∀R ′.B ′
1, . . . , ∀R ′.B ′

n′ }
for clT2 ({A, B1, . . . , Bn}) such that the restriction of IT2,A to the subtree-interpretation rooted at d′ is the canonical model 
IT2,{A′,B ′

1,...,B ′
n′ } . Set L4(b) = S ′ and add (b, R ′, d′) to �.

Since we are only following role names (but not inverse roles) during the modification of L4 and since A is tree-shaped, 
we shall never process tuples (a1, R1, d1), (a2, R2, d2) from � such that a1 = a2. For any x, we might thus only redefine 
L4(x) from the empty set to a non-empty set, but never from one non-empty set to another. For the same reason, the 
definition of L4 finishes after finitely many rounds.

It can be verified that the �-labelled tree (T , L) just constructed is i-proper for all i ∈ {0, . . . , 4}. The most interesting 
point is 4-properness, which consists of four conditions. Condition 1 is satisfied by the construction of L4. Condition 2 is 
satisfied by (ii), and Conditions 3 and 4 again by the construction of L4. �
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By Theorem 46 and Lemma 52, we can decide whether T1 does (�1, �2)-rCQ entail T2 by checking whether there is 
no �-labelled tree that is i-proper for each i ∈ {0, . . . , 4}. We do this by constructing automata A0, . . . , A4 such that each 
Ai accepts exactly the �-labelled trees that are i-proper, then intersecting the automata and finally testing for emptiness. 
Some of the constructed automata are 2ABTAs while others are NTAs. Before intersecting, all 2ABTAs are converted into 
equivalent NTAs (which involves an exponential blowup). To achieve ExpTime overall complexity, the constructed 2ABTAs 
should thus have at most polynomially many states, while the NTAs can have at most (single) exponentially many states. It 
is straightforward to construct

– an NTA A0 that checks 0-properness and has constantly many states;
– a 2ABTA A1 that checks 1-properness and whose number of states is polynomial in |T1| (note that Conditions 1 and 2 

of 1-properness are in a sense trivial as they could also be guaranteed by removing undesired symbols from the alpha-
bet �;

– an NTA A3 that checks 3-properness and has constantly many states.

It thus remains to construct

– a 2ABTA A2 that checks 2-properness and whose number of states is polynomial in |T2|;
– an NTA A4 that checks 4-properness and whose number of states is (single) exponential in |T2|.

In fact, the reason for mixing 2ABTAs and NTAs is that while A2 is easier to construct as a 2ABTA, there is no obvious way 
to construct A4 as a 2ABTA with only polynomially many states: it seems that one state is needed for every possible value 
of the L4-components in �-labels. The 2ABTA A2 is actually the intersection of two 2ABTAs A2,1 and A2,2. The 2ABTA A2,1

ensures one direction of Condition 1 of 2-properness as well as Condition 2, that is:

(i) (T2, A(T ,L)) |= A(x) implies A ∈ L2(x) for all x ∈ T and A ∈ CN(T2);
(ii) T2 �|=� L2(x) � ⊥.

Note that, by Lemma 51, (i) and (ii) imply that A(T ,L) is consistent with T2. It is easy for a 2ABTA to verify (ii), alternatively 
one can simply refine �. To achieve (i), it suffices to guarantee the following conditions, for x1, x2 ∈ T :

– A ∈ L0(x1) implies A ∈ L2(x1);
– if A1, . . . , An ∈ L2(x1) and T2 |= A1 � · · · � An � A, then A ∈ L2(x1);
– if A ∈ L2(x1), x2 is a successor of x1, R ∈ L0(x2), and A � ∀R.B ∈ T2, then B ∈ L2(x2);
– if A ∈ L2(x2), x2 is a successor of x1, R− ∈ L0(x2), and A � ∀R.B ∈ T2, then B ∈ L2(x1);
– if A ∈ L2(x2), x2 is a successor of x1, R ∈ L0(x2), and ∃R.A � B ∈ T2, then B ∈ L2(x1);
– if A ∈ L2(x1), x2 is a successor of x1, R− ∈ L0(x2), and ∃R.A � B ∈ T2, then B ∈ L2(x2),

all of which are easily verified with a 2ABTA. Note that Conditions 1 and 2 can again be ensured by refining �.
The purpose of A2,2 is to ensure the converse of (i). Before constructing it, it is convenient to characterise the entailment 

of concept names at ABox individuals in terms of derivation trees. A T2-derivation tree for an assertion A0(a0) in A with 
A0 ∈ CN(T2) is a finite ind(A) × CN(T2)-labelled tree (T , V ) that satisfies the following conditions:

– V (ε) = (a0, A0);
– if V (x) = (a, A) and neither A(a) ∈A nor � � A ∈ T2, then one of the following holds:

– x has successors y1, . . . , yn with V (yi) = (a, Ai), for 1 ≤ i ≤ n, and T2 |= A1 � · · · � An � A;
– x has a single successor y with V (y) = (b, B) and there is an ∃R.B � A ∈ T2 such that R(a, b) ∈A;
– x has a single successor y with V (y) = (b, B) and there is a B � ∀R.A ∈ T2 such that R(b, a) ∈A.

Lemma 53. If (T2, A) |= A(a) and A is consistent with T2, then there is a derivation tree for A(a) in A, for all assertions A(a) with 
A ∈ CN(T2) and a ∈ ind(A).

(A proof of Lemma 53 is based on the chase procedure, details can be found in [67].) We are now ready to construct the 
2ABTA A2,2. Since A2,1 ensures that A(T ,L) is consistent with T2, by Lemma 53 it is enough for A2,2 to verify that, for each 
node x ∈ T and each concept name A ∈ L2(x), there is a T2-derivation tree for A(x) in A(T ,L) .

For readability, we use �− = �0 × CN(T2) as the alphabet instead of � since transitions of A2,2 only depend on the 
L0- and L2-components of �-labels. Let rol(T2) be the set of all roles R, R− such that the role name R occurs in T2. Set 
A2 = (Q , �−, δ, q0, F ), where Q = {q0} � {qA | A ∈ CN(T2)} � {qA,R , qR | A ∈ CN(T2), R ∈ rol(T2)} and F = ∅ (i.e., exactly the 
finite runs are accepting). For all (σ0, σ2) ∈ �− , set
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δ(q0, (σ0,σ2)) =
∧

A∈σ2

(0,qA) ∧ (leaf ∨
∧

i∈1..m

(i,q0)),

δ(qA, (σ0,σ2)) = true, whenever A ∈ σ0 or � � A ∈ T2,

δ(qA, (σ0,σ2)) =
∨

T2|=A1�···�An�A

((0,qA1) ∧ · · · ∧ (0,qAn )) ∨ whenever A /∈ σ0 and � � A /∈ T2,∨
∃R.B�A∈T , R∈�1

(((0,qR−) ∧ (−1,qB)) ∨
∨

i∈1..m

(i,qB,R)) ∨
∨

B�∀R.A∈T , R∈�1

((0,qR) ∧ (−1,qB)) ∨
∨

i∈1..m

(i,qB,R−)),

δ(qA,R , (σ0,σ2)) = (0,qA), whenever R ∈ σ0,

δ(qA,R , (σ0,σ2)) = false, whenever R /∈ σ0,

δ(qR , (σ0,σ2)) = true, whenever R ∈ σ0,

δ(qR , (σ0,σ2)) = false, whenever R /∈ σ0.

Note that the finiteness of runs ensures that T2-derivation trees are also finite, as required.
We next discuss the construction of the NTA A4, omitting most of the details because the construction is not difficult. 

Conditions 1 and 2 of 4-properness can be enforced by making sure that certain symbols from � do not occur. However, 
in the case of Condition 2, we have to decide during the automaton construction whether, for given sets S1 ⊆ cl(T1) and 
S2 = {∃R0.A, ∀R0.B1, . . . , ∀R0.Bn} ⊆ sub(T2), there is a model I of T1 and a d ∈ �I such that

(a) d ∈ CI iff C ∈ S1 for all C ∈ cl(T1) and
(b) (IT2,S↓

2
, aε) �≤�2 (I, e) for all (d, e) ∈ RI

0 .

We have to show that this check can be done in ExpTime. We give a sketch of a decision procedure based on nondetermin-
istic Büchi automata on infinite trees that borrows ideas from the above constructions, but is much simpler.

Definition 54. A nondeterministic Büchi tree automaton (NBA) on infinite m-ary trees is a tuple A = (Q , �, Q 0, δ, F ) where Q
is a finite set of states, � a finite alphabet, Q 0 ⊆ Q a set of initial states, δ : Q × � → 2Q m

a transition function, and F ⊆ Q
is an acceptance condition. Let (T , L) be a �-labelled m-ary tree. A run of A on (T , L) is a Q -labelled m-ary tree (T , r) such 
that r(ε) ∈ Q 0 and 〈r(x · 1), . . . , r(x · m)〉 ∈ δ(r(x), L(x)), for each x ∈ T . We say that (T , r) is accepting if in all infinite paths 
y1 y2 · · · of T , the set {i | r(yi) ∈ F } is infinite. An infinite �-labelled tree (T , L) is accepted by A if there is an accepting run 
of A on (T , L). We use L(A) to denote the set of all infinite �-labelled trees accepted by A.

The emptiness problem for NBAs can be solved in polynomial time. Our aim is to build an NBA B such that the labelled
trees accepted by B represent tree interpretations I that satisfy Conditions (a) and (b). We make precise which trees should 
be accepted by B. Let �′

0 be the set of all subsets of cl(T1) ∪ {R ∈ NR | R occurs in T1} that contain at most one role name 
and let �′ = (�′

0 × 2sub(T2)) ∪ {empty}. For a �′-labelled tree (T , L) and a node x in T with L(x) �= empty, we write Li(x) to 
denote the i + 1st component of L(x), for i ∈ {0, 1}. Informally, the projection of a �′-labelled tree to the L0-components 
represents I and the projection to the L1-components contains bookkeeping information that helps to ensure Condition (b). 
A �′-labelled tree is proper if the following conditions hold, for x1, x2 ∈ T :

– L(ε) = (S1, S2);
– if L(x1) �= empty, then L0(x1) is satisfiable with T1;
– if x2 is a child of x1 and R ∈ L0(x2), then ∀R.C ∈ L0(x1) implies C ∈ L0(x2) for all ∀R.C ∈ cl(T1);
– if ∃R.C ∈ L0(x1), then there is a child x2 of x1 such that {R, C} ⊆ L0(x2);
– if x2 is a child of x1 and L(x1) = empty, then L(x2) = empty;
– if x2 is a child of x1, L0(x2) contains the role name R , and L1(x1) = {∃R.A, ∀R.B1, . . . , ∀R.Bn}, then there is a �2-concept 

name in clT2 ({A, B1, . . . , Bn}) \ L0(x2) or L1(x2) is a �2-successor set for clT2 ({A, B1, . . . , Bn});
– there are only finitely many nodes x with L1(x) �= ∅.

In the conditions above, we assume that whenever a condition is posed on a component of the label of a node x, then L(x) �=
empty. Note that the L1-component of a node label plays the same role as the L4-component in the previous construction. 
Every proper �′-labelled tree (T , L) represents the following tree interpretation I(T ,L):

�I(T ,L) = {x ∈ T | L(x) �= empty},
AI(T ,L) = {x | A ∈ L0(x)},
RI(T ,L) = {(x1, x2) | x2 child of x1 and R ∈ L0(x2)}.

Set m′ = |T1|. The proof of the following lemma is similar to that of Lemma 52, but simpler.
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Lemma 55. There is an m′-ary proper �′-labelled tree (T , L) iff there is a model I of T1 and a d ∈ �I that satisfy Conditions (a)

and (b) from before Definition 54; in fact, I(T ,L) is such a model.

It is now straightforward to construct an NBA B whose number of states is polynomial in |T1| and exponential in |T2|
and which accepts exactly the m′-ary proper �′-labelled trees. Details are left to the reader.

8.2. 2ExpTime upper bound for �-CQ-entailment of HornALC TBoxes by ALC TBoxes

We now consider the case of non-rooted CQs. Our aim is to prove the following 2ExpTime upper bound:

Theorem 56. �-CQ entailment of HornALC TBoxes by ALC TBoxes is in 2ExpTime.

The proof again builds on the characterisations provided by Theorem 46. Since we are now working with CQs rather 
than rCQs, we have to consider �2-homomorphic embeddability instead of con-�2-homomorphic embeddability. Note that 
Lemma 47 also provides a characterisation in terms of simulations in that case, adding a third condition. We modify the 
previous construction to accommodate this additional condition.

Condition (2) of Lemma 47 tells us to avoid certain simulations. In the previous construction, we were able to do that by 
storing a single successor set in the L4-component of each �-label, that is, it was sufficient to avoid at most one simulation 
into each individual of the ABox A(T ,L) . In the current construction, this is no longer the case. We thus let the L4-component 
of �-labels range over 22sub(T2)

rather than 2sub(T2) and use it to store sets of successor sets. To address (3) in Lemma 47, we 
add an L5-component to �-labels, which also ranges over 22sub(T2)

. The purpose of this component is to represent elements 
of the canonical model IT2,A from which we have to avoid a simulation into any individual in A(T ,L) and, in fact, into 
any element of the interpretation (partially) represented by the L2-components of node labels. The notion of i-properness 
remains the same for i ∈ {0, 1, 2, 3}. We adapt the notion of 4-properness and add a notion of 5-properness.

As a preliminary, we define a notion of �2-descendant set. While a �2-successor set for t ⊆ CN(T2) represents a 
�2-successor of an element d in a canonical model IT2,A that satisfies d ∈ AIT2,A for all A ∈ t , a �2-descendent set 
represents a descendent of such a d that is attached to its predecessor via a role name that is not in �2, as in (3) of 
Lemma 47. Formally, for t ⊆ CN(T2), we define �t to be the smallest set such that t ∈ �t and if t′ ∈ �t and S is a suc-
cessor set for clT2 (t

′), then S↓ ∈ �t . A set s ⊆ CN(T2) is a �2-descendant set for t if there is a t′ ∈ �t and successor set 
S = {∃R.A, ∀R.B1, . . . , ∀R.Bn} for clT2 (t

′) with R �∈ �2 such that s = S↓ .
A �-labelled tree (T , L) is 4-proper if the following conditions are satisfied for all x1, x2 ∈ T :

– if L3(x1) = 1, then one of the following holds:
– there is a �2-concept name in L2(x1) \ L1(x1);
– L4(x1) contains a �2-successor set for L2(x1);
– L5(x1) contains a �2-descendant set for L2(x1);

– there is a model I of T1 and a d ∈ �I such that the following hold:
– d ∈ CI iff C ∈ L1(x1), for all C ∈ cl(T1);
– if {∃R.A, ∀R.B1, . . . , ∀R.Bn} ∈ L4(x1) and (d, e) ∈ RI , then (IT2,{A,B1,...,Bn}, aε) �≤�2 (I, e);
– if s ∈ L5(x1) and e ∈ �I , then (IT2,s, aε) �≤�2 (I, e);

– if x2 is a child of x1, L0(x2) contains the role name R , and L4(x1) " {∃R.A, ∀R.B1, . . . , ∀R.Bn}, then there is a �2-concept 
name in clT2 ({A, B1, . . . , Bn}) \ L1(x2) or L4(x2) contains a �2-successor set for clT2 ({A, B1, . . . , Bn});

– if x2 is a child of x1, L0(x2) contains the role R− , and L4(x2) " {∃R.A, ∀R.B1, . . . , ∀R.Bn}, then there is a �2-concept 
name in clT2 ({A, B1, . . . , Bn}) \ L1(x1) or L4(x1) contains a �2-successor set for clT2 ({A, B1, . . . , Bn}).

A �-labelled tree (T , L) is 5-proper if the following conditions are satisfied for all x1 ∈ T :

– all x ∈ T agree regarding their L5-label;
– if s ∈ L5(x1), then one of the following holds:

– there is a �2-concept name in s \ L1(x1);
– L4(x1) contains a �2-successor set for s.

Note that 4-properness and 5-properness together implement (2) and (3) of Lemma 47; in particular, Point (3) from 
Lemma 47 requires that (IT2,A, d0) �≤�2 (I1, e) for any element e of I1 which can be broken down into the two cases 
above.

The proof of the following lemma is similar to that of Lemma 53:

Lemma 57. There is an m-ary �-labelled tree that is i-proper for all i ∈ {0, . . . , 5} iff there is a tree �1-ABox A of outdegree at most m
that is consistent with T1 and T2 and a model I1 of (T1, A) such that the canonical model IT2,A of (T2, A) is not �2-homomorphically 
embeddable into I1 .
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We can now adapt the automata construction presented in the previous section. It is straightforward to construct an 
NTA A5 with double exponentially many states that verifies 5-properness. Also, the NTA A4 for 4-properness will now have 
double exponentially many states because L4- and L5-components are sets of sets of concepts rather than sets of concepts. 
In fact, we could dispense with NTAs altogether and use a 2ABTA that has exponentially many states, both for A4 and A5. 
The construction of A4 needs to decide whether, for given sets S1 ⊆ cl(T1) and S2, S3 ⊆ 2CN(T2) , there is a model I of T1
and a d ∈ �I such that

(a) d ∈ CI iff C ∈ S1, for all C ∈ cl(T1);
(b) (IT2,S , aε) �≤�2 (I, d) for all S ∈ S2;
(c) (IT2,S , aε) �≤�2 (I, e) for all S ∈ S3 and e ∈ �I ;

This check can be implemented in 2ExpTime using a decision procedure based on NBAs, mixing ideas from the corresponding 
construction in the previous section and the construction above. Overall, we obtain the 2ExpTime upper bound stated in 
Theorem 56.

8.3. 2ExpTime lower bound for �-CQ-inseparability between HornALC TBoxes

We prove a matching lower bound for the 2ExpTime upper bound established in Theorem 56 using a reduction of the 
word problem of exponentially space bounded ATMs (see Section 5.3). More precisely, we show the following:

Theorem 58. (�, �)-CQ inseparability between the empty TBox and HornALC TBoxes is 2ExpTime-hard.

Note that we obtain a 2ExpTime lower bound for �-CQ entailment as well since, clearly, the empty TBox (�, �)-CQ-
entails a TBox T iff the empty TBox and T are (�, �)-CQ-inseparable. Let M = (Q , �I , �, q0, �) be an exponentially space 
bounded ATM whose word problem is 2ExpTime-hard, where Q is the finite set of states, �I the input alphabet, � ⊇ �I the 
tape alphabet with blank symbol � ∈ � \ �I , q0 ∈ Q the initial state, and � ⊆ Q × � × Q × � × {L, R} the transition relation. 
We use �(q, σ) to denote the set of transitions (q′, σ ′, D) ∈ Q × � × {L, R} possible when M is in state q and reads σ , that 
is, (q, σ , q′, σ ′, D) ∈ �. We may assume that the length of every computation path of M on w ∈ �n is bounded by 22n

, and 
all the configurations wqw ′ in such computation paths satisfy |w w ′| ≤ 2n (see [60]). To simplify the reduction, we may also 
assume without loss of generality that M makes at least one step on every input, that it never reaches the last tape cell, 
and that every universal configuration has exactly two successor configurations.

Note that when M accepts an input w , this is witnessed by an accepting computation tree whose nodes are labelled with 
configurations such that the root is labelled with the initial configuration of M on w , the descendants of any non-leaf 
labelled with a universal (respectively, existential) configuration include all (respectively, one) of the successors of that 
configuration, and all leafs are labelled with accepting configurations.

Let w be an input to M . We aim to construct a HornALC TBox T and a signature � such that M accepts w iff there is 
a tree �-ABox A such that

(a) A is consistent with T and
(b) IT ,A is not �-homomorphically embeddable into IT∅,A ,

where T∅ = ∅. Note that this is equivalent to (�, �)-CQ-entailment of T by T∅ due to Theorem 46 (2); that theorem 
additionally imposes a restriction on the outdegree of A, but it is easy to go through the proofs and verify that the char-
acterisation holds also without that restriction. We are going to construct T and � such that A represents an accepting 
computation tree of M on w .

When dealing with an input w of length n, in A we represent configurations of M by a sequence of 2n elements linked 
by the role name R , from now on called configuration sequences. These sequences are then interconnected to form a rep-
resentation of the computation tree of M on w . This is illustrated in Fig. 7, which shows three configuration sequences, 
enclosed by dashed boxes. The topmost configuration is universal, and it has two successor configurations. All solid ar-
rows denote R-edges. We shall see at the very end of the reduction why successor configurations are separated by two 
consecutive edges instead of a single one.

The above description is an oversimplification. In fact, every configuration sequence stores two configurations instead of 
only one: the current configuration and the previous configuration in the computation. We will later use the homomorphism 
condition (b) above to ensure that

(∗) the previous configuration stored in a configuration sequence is identical to the current configuration stored in its 
predecessor configuration sequence.

The actual transitions of M are then enforced locally inside configuration sequences.
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Fig. 7. Configuration tree (partial).

The signature � consists of the following symbols:

– the concept names A0, . . . , An−1, A0, . . . , An−1 that serve as bits in the binary representation of a number between 0 
and 2n − 1, identifying the position of tape cells inside configuration sequences (A0, A0 are the lowest bit);

– the concept names A′
0, . . . , A

′
m−1 and A

′
0, . . . , A

′
m−1, where m = #log(2n + 2)$, that serve as bits of another counter 

which is able to count from 0 to 2n + 2 and whose purpose will be explained later;
– the concept names Aσ , A′

σ , Aσ , for each σ ∈ �;
– the concept names Aq,σ , A′

q,σ , Aq,σ , for each σ ∈ � and q ∈ Q ;
– the concept names X1, X2 that mark the first and second successor configuration;
– the role name R .

From the above list, the concept names Aσ and Aq,σ are used to represent the current configuration and A′
σ and A′

q,σ for 
the previous configuration. The role of the concept names Aσ and Aq,σ will be explained later.

It thus remains to construct the TBox T , which is the most laborious part of the reduction. We use T to verify the 
existence of a computation tree of M on input w in the ABox. For the time being, we are going to assume that (∗) holds 
and, in a second step, we will demonstrate how to actually achieve that. We start with verifying halting configurations, 
which must all be accepting in an accepting computation tree, in a bottom-up manner:

A0 � · · · � An−1 � Aσ � A′
σ � V , (1)

Ai � ∃R.Ai ��
j<i

∃R.A j � oki, (2)

Ai � ∃R.Ai ��
j<i

∃R.A j � oki, (3)

Ai � ∃R.Ai ��
j<i

∃R.A j � oki, (4)

Ai � ∃R.Ai ��
j<i

∃R.A j � oki, (5)

ok0 � · · · � okn−1 � Ai � ∃R.V � Aσ � A′
σ � V , (6)

ok0 � · · · � okn−1 � Ai � ∃R.V � Aσ � A′
q,σ ′ � V L,σ , (7)

ok0 � · · · � okn−1 � Ai � ∃R.V � Aqa,σ � A′
σ � V R,qa , (8)

ok0 � · · · � okn−1 � Ai � ∃R.V L,σ � Aqa,σ ′ � A′
σ ′ � V L,qa,σ , (9)

ok0 � · · · � okn−1 � Ai � ∃R.V R,qa � Aσ � A′
q,σ ′ � V R,qa,σ , (10)

ok0 � · · · � okn−1 � Ai � ∃R.V D,qa,σ � Aσ ′ � A′
σ ′ � V D,qa,σ , (11)

∃R.Ai � ∃R.Ai � ⊥, (12)

where σ , σ ′ range over �, q over Q , i over 0, . . . , n − 1, and D over {L, R}. The first line starts the verification at the last 
tape cell, ensuring that at least one concept name Aσ and one concept name A′

σ is true (it also verifies that the symbol 
is identical in the current and previous configuration, assuming (∗); it is here that the assumption that M never reaches 
the last tape cell makes the construction easier). The following lines implement the verification of the remaining tape cells 
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of the configuration. Lines (2)–(5) implement decrementation of a binary counter and the conjunct Ai in lines (6)–(11) 
prevents the counter from wrapping around once it has reached 0. We use several kinds of verification markers:

– with V , we indicate that we have not yet seen the head of the ATM;
– V L,σ indicates that the ATM made a step to the left to reach the current configuration, writing σ ;
– V R,q indicates that the ATM made a step to the right to reach the current configuration, switching to state q;
– V D,q,σ indicates that the ATM moved in direction D to reach the current configuration, switching to state q and writ-

ing σ .

In the remaining reduction, we expect that a marker V D,q,σ has been derived at the first (thus top-most) cell of the 
configuration. This makes sure that there is exactly one head in the current and previous configuration, and that the head 
moved exactly one step between the previous and current position. Also note that the above CIs ensure that the tape 
content does not change for cells that were not under the head in the previous configuration, assuming (∗). Note that it is 
not immediately clear that lines (2)–(11) work as intended since they can speak about different R-successors for different 
bits. The last line fixes this problem. We also ensure that relevant concept names are mutually exclusive:

Ai � Ai � ⊥, (13)

Aσ1 � Aσ2 � ⊥, if σ1 �= σ2, (14)

Aσ1 � Aq2,σ2 � ⊥, (15)

Aq1,σ1 � Aq2,σ2 � ⊥, if (q1,σ1) �= (q2,σ2), (16)

where i ranges over 0, . . . , n − 1, σ1, σ2 over �, and q1, q2 over Q . We also add the same CIs for the primed versions of 
these concept names. The next step is to verify non-halting configurations:

∃R.∃R.(X1 � A0 � · · · � An−1 � (V D,q,σ 	 V ′
D,q,σ )) � Lok, (17)

∃R.∃R.(X2 � A0 � · · · � An−1 � (V D,q,σ 	 V ′
D,q,σ )) � Rok, (18)

A0 � · · · � An−1 � Aσ � A′
σ � Lok � Rok � V ′, (19)

ok0 � · · · � okn−1 � Ai � ∃R.V ′ � Aσ � A′
σ � V ′, (20)

ok0 � · · · � okn−1 � Ai � ∃R.V ′ � Aσ � A′
q,σ ′ � V ′

L,σ , (21)

ok0 � · · · � okn−1 � Ai � ∃R.V ′
R,q � Aσ � A′

q′,σ ′ � V ′
R,q,σ , (22)

ok0 � · · · � okn−1 � Ai � ∃R.V ′
D,q,σ � Aσ ′ � A′

σ ′ � V ′
D,q,σ , (23)

where σ , σ ′, σ ′′ range over �, q and q′ over Q , i over 0, . . . , n − 1, and D over {L, R}. We switch to different verification 
markers V ′ , V ′

L,σ , V ′
R,q , V ′

D,q,σ to distinguish between halting and non-halting configurations. Note that the first verification 
step is different for non-halting configurations: we expect to see one successor marked with X1 and one with X2, both 
the first cell of an already verified (halting or non-halting) configuration. For easier construction, we require two succes-
sors also for existential configurations; they can simply be identical. The above CIs do not yet deal with cells where the 
head is currently located. We need some prerequisites because when verifying these cells, we want to (locally) verify the 
transition relation. For this purpose, we carry the transitions implemented locally at a configuration up to its predecessor 
configuration:

∃R.∃R.(Xt � A0 � · · · � An−1 � Vq,σ ,D ′) � St
q,σ ,D ′ , (24)

∃R.∃R.(Xt � A0 � · · · � An−1 � V ′
q,σ ,D ′) � St

q,σ ,D ′ , (25)

∃R.(Aσ � St
q,σ ′,D) � St

q,σ ′,D , (26)

where q ranges over Q , σ and σ ′ over �, t over {1, 2}, and i over 0, . . . , n − 1. Note that markers are propagated up exactly 
to the head position. One issue with the above is that additional St

q,σ ,D -markers could be propagated up not from the 
successors that we have verified, but from surplus (unverified) successors. To prevent such undesired markers, we add the 
CIs

St
q1,σ1,D1

� St
q2,σ2,D2

� ⊥ (27)

for all t ∈ {1, 2} and all distinct (q1, σ1, D1), (q2, σ2, D2) ∈ Q × � × {L, R}. We can now implement the verification of the 
cells under the head in non-halting configurations. We take
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ok0 � · · · � okn−1 � Ai � ∃R.V ′ � Aq1,σ1 � A′
σ1

� S1
q2,σ2,D2

� S2
q3,σ3,D3

� V ′
R,q1

, (28)

ok0 � · · · � okn−1 � Ai � ∃R.V ′
L,σ � Aq1,σ1 � A′

σ1
� S1

q2,σ2,D2
� S2

q3,σ3,D3
� V ′

L,q1,σ , (29)

for all (q1, σ1) ∈ Q ×� with q1 a universal state and �(q1, σ1) = {(q2, σ2, D2), (q3, σ3, D3)}, i from 0, . . . , n − 1, and σ from 
�; moreover, we take

ok0 � · · · � okn−1 � Ai � ∃R.V ′ � Aq1,σ1 � A′
σ1

� S1
q2,σ2,D2

� S2
q2,σ2,D2

� V ′
R,q1

, (30)

ok0 � · · · � okn−1 � Ai � ∃R.V ′
L,σ � Aq1,σ1 � A′

σ1
� S1

q2,σ2,D2
� S2

q2,σ2,D2
� V ′

L,q1,σ , (31)

for all (q1, σ1) ∈ Q ×� with q1 an existential state, for all (q2, σ2, D2) ∈ �(q1, σ1), all i from 0, . . . , n − 1, and all σ from �. 
It remains to verify the initial configuration. Let w = σ0 · · ·σn−1, let (C = j) be the conjunction over the concept names 
Ai , Ai that expresses j in binary, for 0 ≤ j < n, and let (C ≥ n) be the Boolean concept over the concept names Ai , Ai

expressing that the counter value is at least n. Then we take

A0 � · · · � An−1 � A� � Lok � Rok � V I , (32)

ok0 � · · · � okn−1 � (C ≥ n) � ∃R.V I � A� � V I , (33)

ok0 � · · · � okn−1 � (C = i) � ∃R.V I � Aσi � V I , (34)

where i ranges over 1, . . . , n − 1 and σ , σ ′ over �. This verifies the initial conditions except for the left-most cell, where 
the head must be located (in initial state q0) and where we must verify the transition, as in all other configurations. Recall 
that we assume q0 to be an existential state. We can thus add

ok0 � · · · � okn−1 � (C = 0) � ∃R.V I � Aq0,σ0 � S1
q,σ ,D � S2

q,σ ,D � I (35)

for all (q, σ , D) ∈ �(q0, σ0).
At this point, we have finished the verification of the computation tree, except that we have assumed but not yet 

established (∗). Achieving (∗) consists of two parts. In the first part, we use the concept names Bi , Bi , i < m (recall that 
m = #log(2n + 2)$) to implement an additional counter that serves the purpose of generating a path whose length is 2n + 2, 
the distance between two corresponding tape cells in consecutive configurations. Let α0, . . . , αk−1 be the elements of Q ∪
(Q × �). We add the following to T :

∃R.I � ∃S. �
�<k

∃R.(Aα�
� Bα�

� (C B = 0)) (36)

Bα�
� ∃R.�, (37)

Bi ��
j<i

B j � ∀R.Bi, (38)

Bi ��
j<i

B j � ∀R.Bi, (39)

Bi ��
j<i

B j � ∀R.Bi, (40)

Bi ��
j<i

B j � ∀R.Bi, (41)

(C B < 2n + 1) � Bα�
� ∀R.Bα�

, (42)

(C B = 2n + 1) � Bα�
� ∀R.Aα�

, (43)

where � ranges over 0, . . . , k − 1, i ranges over 0, . . . , m, and (C B = j) (respectively, (C B < j)) denotes a Boolean concept 
expressing that the value of the Bi/Bi -counter is j (respectively, smaller than j). We will explain shortly why we need to 
travel one more R-step (in the first line) after seeing I .

The above CIs generate, after the verification of the computation tree has ended successfully, a tree in the canonical 
model of the input ABox and of T as shown in Fig. 8. Note that the topmost edge is labelled with the role name S , which 
is not in �. To satisfy Condition (b) above, we must thus not (homomorphically) find the subtree rooted at the node with 
the incoming S-edge anywhere in the canonical model of the ABox and T∅ (which is just a different presentation of A). We 
use this effect to ensure that (∗) is satisfied everywhere. Note that the R-paths in Fig. 8 have length 2n + 2 and that we do 
not display the labelling with the concept names Bi , Bi , Bα . These concept names are not in � and only serve the purpose 
of achieving the intended path length and of memorising α. Informally, every R-path in the tree represents one possible 
copying defect. The concept names of the form Aα stand for the disjunction over all A′

β with β �= α. Although we have not 
done it so far, we can easily modify T to achieve that they are indeed used this way in the input ABox. For example, we 
can add the conjunct �σ ′∈�\{σ } Aσ ′ to the left-hand side of the concept inclusion in (1), and likewise for (6), (7), and so 
on.
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Fig. 8. Tree gadget.

Fig. 9. Additional paths attached to computation tree. In the sequence of paths on the left, the path for Aαi is missing.

If there is a copying defect somewhere in the ABox, then one of the R-paths in Fig. 8 can be homomorphically embedded. 
We have to ensure that the other paths can be embedded, too. The first step is to add the following CIs:

(C ′ = 2n + 2) � Aα�
� V ′

�, (44)

A′
i � ∃R.A′

i ��j<i
∃R.A′

j � ok′
i, (45)

A
′
i � ∃R.A

′
i ��

j<i
∃R.A′

j � ok′
i, (46)

A′
i � ∃R.A

′
i ��

j<i
∃R.A

′
j � ok′

i, (47)

A
′
i � ∃R.A′

i ��j<i
∃R.A

′
j � ok′

i, (48)

ok′
0 � · · · � ok′

n−1 � A
′
i � ∃R.V ′

� � Aσ � A′
σ � V ′

�, (49)

∃R.((C ′ = 0) � V ′
� � Aα�

) � V�, (50)

where � ranges over 0, . . . , k − 1, i ranges over 0, . . . , m, and (C ′ = j) denotes a Boolean concept which expresses that the 
value of the A′

i/A
′
i -counter is j; recall that the concept names implementing this counter are in �. The purpose of the 

above CIs is to set the verification marker V� at an individual a whenever we find in the ABox an R-path with root a that 
is isomorphic to the R-path labelled with Aα�

/Aα�
in Fig. 8 (and additionally is decorated in an appropriate way with the 

concept names used by the A′
i/A

′
i -counter).

As the second step, it remains to add the verification markers V� to the left-hand side of the CIs in T in such a way that

(∗∗) whenever an ABox individual a that is part of the computation tree has an R-successor in that tree which is labelled
with Aα�

, then all verification markers V j with j ∈ {0, . . . , � − 1, � + 1, . . . , k − 1} must be present at a.

Informally, (∗∗) achieves the presence of additional paths attached to nodes of the computation tree, as displayed in Fig. 9. 
There, a and b are nodes in the computation tree proper and since Aαi holds at b, we attach to a all paths from Fig. 8
except the one for Aαi . By what was achieved in the first step, we can thus homomorphically embed the R-tree in Fig. 8 at 
a iff there is a copying defect at the successor of a.
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We next describe the modifications required to achieve (∗∗). Line (20) needs to be extended by adding to the left-hand 
side the conjunct � j∈{0,...,�−1,�+1,...,k−1} V j � ∃R.α� where � ranges over 0, . . . , k − 1. Here, we want ∃R.α� to refer to the 
same R-successor whose existence is verified by the existing concept ∃R.V ′ on the left-hand side of (20), or at least to a 
successor that has the same α�-label. This can be achieved by adding the CIs

∃R.α� � ∃R.α�′ � ⊥ (51)

where � and �′ are distinct, ranging over 0, . . . , k − 1.
The same conjunct needs to be added to the left-hand sides of Lines (21)–(23), (28)–(31), and (33)–(35). We also need 

to add the conjunct into the scope of the outermost (but not innermost!) existential quantifier in (17) and (18) and to 
(36), outside the scope of the existential quantifier. Note that we indeed need to travel one more R-step after seeing I (the 
explanation of this was deferred until now): we always consider copying defects at R-successor of some individual name 
and thus also the root of our configuration tree should be the R-successor of some individual. Also note that we indeed 
need to separate successor configurations by two R-steps (the remaining deferred explanation). If we used only one R-step, 
then the branching ABox individual would always allow the R-tree from Fig. 8 to be homomorphically embedded, no matter 
whether there is a copying defect or not.

Lemma 59. The following conditions are equivalent:

(1) there is a tree �-ABox A such that (a) A is consistent with T and (b) IT ,A is not �-homomorphically embeddable into IT∅,A;
(2) M accepts w.

Proof. (sketch) For (2) ⇒ (1), suppose M accepts w . The accepting computation tree of M on w can be represented as 
a �-ABox as detailed above alongside the construction of the TBox T . The representation only uses the role name R and 
the concept names Ai , Ai ,A′

i , A
′
i , Aσ , Aq,σ , A′

σ , A′
q,σ , Aσ , Aq,σ , X1, and X2. As explained above, we need to duplicate 

the successor configurations of existential configurations to ensure that there is binary branching after each configuration. 
Also, we need to add one additional incoming R-edge to the root of the tree. The resulting ABox A is consistent with T . 
Moreover, since there are no copying defects, there is no homomorphism from IT ,A to IT∅,A .

For (1) ⇒ (2), suppose there is a tree �-ABox A that satisfies (a) and (b). Because of (b), I must be true somewhere 
in IT ,A: otherwise, IT ,A does not contain anonymous elements and the identity is a homomorphism from IT ,A to 
IT∅,A , contradicting (b). Since I is true somewhere in IT ,A and by the construction of T , the ABox must contain the 
representation of an accepting computation tree of M on w , except satisfaction of (∗). For the same reason, IT ,A must 
contain a tree as shown in Fig. 8. As already been argued during the construction of T , however, condition (∗) follows from 
the existence of such a tree in IT ,A together with (b). �

We remark that the above reduction also yields 2ExpTime hardness for (�, �)-CQ entailment in the DL ELI extending 
EL with inverse roles. In fact, CIs D � ∀r.C can be replaced by ∃r−.D � C and disjunctions on the left-hand side can be 
removed with only a polynomial blowup. It thus remains to eliminate ⊥, which only occurs non-nested on the right-hand 
side of CIs. With the exception of the CIs in (27), this can be done as follows: replace T∅ with a non-empty TBox T1 and 
rename T to T2 for uniformity; include all CIs with ⊥ on the right-hand side in T1 instead of in T2; then replace ⊥ with a 
fresh concept name D and further extend T1 with CIs which make sure that IT1,A contains an R-tree as in Fig. 8 whenever 
D is non-empty, which is straightforward. As a consequence, any ABox that satisfies the left-hand side of a ⊥-CI in the 
original TBox T cannot satisfy (b) from Lemma 59 and does not have to be considered.

For the excluded CIs, a different approach needs to be taken since these CIs rely on many CIs in T2 that are not in-
cluded in T1. We only sketch the required modification: instead of introducing the concept names St

q1,σ1,D1
, one would 

propagate transitions inside the V ′-markers. Thus, S1
q1,σ1,D1

, S2
q2,σ2,D2

, and V ′ would be integrated into a single marker 
V ′

q1,σ1,D1,q2,σ2,D2
, and likewise for V L,q . The excluded CIs can then simply be dropped.

Theorem 60. It is 2ExpTime-hard to decide whether an ELI TBox (�, �)-CQ entails an ELI TBox.

A corresponding upper bound has recently been established in [68].

9. Related work

The comparison of logical theories has been an active research area almost since the invention of formal logic. Important 
concepts include Tarski’s notion of interpretability [69] of one theory into another and the notion of conservative extension, 
which has been employed extensively in mathematical logic, in particular to compare theories of sets and numbers [70]. 
Conservative extensions have also been used to formalise modular software specification [71–73] and to enable modular 
ontology development [42,16,17]. Query entailment can be regarded as a generalisation of conservative extension where we 
do not require that one of the theories under consideration is included in the other and where conservativity depends on 
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Table 4
KB query inseparability [34].

DL Complexity DL Complexity

EL(Hdr⊥ ) P – –
DL-Litecore P DL-LiteHcore ExpTime

HornALC(H) ExpTime HornALC(H)I 2ExpTime

Table 5
TBox query inseparability.

DL Complexity DL Complexity

EL ExpTime [38] HornALC(H)I 2ExpTime [68]
DL-Litecore in P [41] DL-LiteHcore ExpTime [34]

database queries in a signature of interest instead of formulas in the signature of the smaller theory. In an independent but 
closely related research field, various notions of equivalence between (extended) datalog programs have been proposed and 
investigated [74], often focusing on answer set programming [74–77].

The state of the art in the research of inseparability between description logic ontologies has recently been presented in 
great detail in [41]. This survey contains, in particular, a discussion of the relationships between concept-based, model-
based, and query-based inseparability. In the first approach, one compares the concept inclusions entailed by the two 
versions of an ontology. In the second approach, one compares the models of the two versions. In contrast, in the query-
based approach underpinning the present investigation, one compares the certain answers to database queries. It turns 
out that the three approaches exhibit rather different properties and require different model-theoretic and algorithmic 
techniques. While various forms of bisimulations and corresponding bisimulation-invariant tree automata are required to 
investigate concept-based inseparability, query-based inseparability relies on understanding homomorphisms between in-
terpretations and products, which are then reflected in the games or automata required to design algorithms; we refer 
the reader to [41] for an in-depth discussion. Important notions that are closely related to query inseparability, such as 
knowledge exchange and entailment between OBDA specifications, are discussed in [34].

In what follows, we focus on summarising what is known about query inseparability between description logic ontolo-
gies, discussing both the KB and the TBox cases. All existing results are about Horn-DLs as the present paper is the first 
one to study query-based inseparability for expressive non Horn-DLs. As discussed in this paper, for Horn-DLs, there is no 
difference between CQ- and UCQ-inseparability, so we do not explicitly distinguish between them below.

We start with the KB case. In [34], CQ-inseparability between KBs is investigated for Horn-DLs ranging from the 
lightweight EL and DL-Litecore to HornALCHI . The authors develop model-theoretic and game-theoretic characterisations 
of query inseparability. In contrast to the present investigation, the main complexity results, summarised in Table 4, are 
then obtained using the game-theoretic characterisations instead of reductions to the emptiness problem of tree-automata. 
It is also proved that rootedness does not affect the worst-case complexity of query entailment. Observe that the addition 
of the inverse role constructor leads to an exponential increase of the complexity of checking query inseparability.

CQ-inseparability between TBoxes has been investigated for EL terminologies (a restricted form of TBox) extended with 
role inclusions and domain and range restrictions [15,78], for (unrestricted TBoxes in) the description logic EL [38], and for 
variants of DL-Lite [41,34]. The algorithms presented in [15] are based on both model-theoretic and proof-theoretic methods. 
The authors focus not only on deciding inseparability but also on presenting the logical difference between TBoxes to the 
user. A versioning and modularisation system for acyclic EL TBoxes based on CQ-inseparability is presented and evaluated 
in [78]. The system makes intense use of the fact that, in this case, query inseparability can be decided in polynomial time. 
This is in contrast to general EL TBoxes for which ExpTime completeness of deciding CQ-inseparability is shown in [38]. 
The method is purely model-theoretic and based on the close relationship between concept and query inseparability for 
EL. More recently, CQ inseparability has been investigated for HornALCHI and shown to be 2ExpTime-complete, using a 
subtle approach that combines a mosaic technique with automata [68]. The mentioned results are summarised in Table 5.

10. Conclusion and future work

We have made significant steps towards understanding query entailment and inseparability for KBs and TBoxes in ex-
pressive DLs. Our main—and rather unexpected—results are as follows:

– for ALC-KBs, �-(r)UCQ inseparability is decidable and (r)CQ-inseparability is undecidable (even without restrictions on 
the signature);

– for HornALC-TBoxes, �-rCQ inseparability is ExpTime complete and �-CQ inseparability is 2ExpTime complete.

The first result reflects a fundamental difference between the model-theoretic characterisations of inseparability for CQs 
and UCQs: while UCQ-inseparability can be characterised using (partial) homomorphisms between models of the respective 
KBs, CQ-inseparability requires the construction of products of the models of the respective KBs, a result which is at the 
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core of our undecidability proof. The second result reflects a fundamental difference between homomorphisms whose do-
main is connected to ABox individuals (as required for rooted CQs) and those whose domain is not necessarily reachable 
from the ABox. Searching for the latter turns out to be much harder. Both results have important practical implications. 
The first one indicates that one should approximate CQ-inseparability using UCQ-inseparability when designing practical 
algorithms. Observe that this is a sound approximation as no two ontologies that are UCQ-inseparable can be separated by 
CQs. The second one indicates that it is worth focusing on rooted (U)CQs rather than all (U)CQs when designing practical 
algorithms for inseparability. The latter are likely to cover the vast majority of queries used in practice. We believe that our 
model-theoretic characterisations provide a good foundation for developing practical (approximation) algorithms.

Many problems remain open. The main one, which can be directly inferred from the tables presenting our results, is the 
decidability of UCQ-inseparability for ALC TBoxes. We conjecture that this problem is undecidable but have found no way 
of proving this. Another family of interesting open problems concerns the role of the signatures � and � in our investigation 
of the decidability/complexity of inseparability between KBs and TBoxes, respectively. Observe that admitting more symbols 
in � or � leads to sound approximations of the original inseparability problem: for example, if TBoxes are �′-CQ insepa-
rable for a pair of signatures �′ ⊇ �, then they are �-CQ inseparable as well. It would, therefore, be of great interest to 
understand the complexity of inseparability if � and � consist of all concept and role names (the ‘full signature’ case). We 
have been able to prove undecidability of full signature (r)CQ-inseparability for ALC KBs, but the complexity of full signa-
ture (r)UCQ-inseparability between ALC KBs remains open. Similarly, the decidability of full signature (r)CQ-inseparability 
and (r)UCQ-inseparability between ALC TBoxes remains open. The ‘hiding technique’ discussed in this paper might be a 
good starting point to attack those problems. Finally, it would be of interest to consider extensions of ALC with inverse 
roles, qualified number restrictions, nominals, and role inclusions. We conjecture that extensions of our results to DLs with 
qualified number restrictions and role inclusions are rather straightforward (though proofs might become significantly less 
transparent). The addition of inverse roles, however, might lead to non-trivial modifications of the model-theoretic criteria, 
see also [68].
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Appendix A. Proof of Theorem 22

For the proof of Theorem 22 (i), suppose that an instance T of the rectangle tiling problem is given. Consider the KBs 
K1

rCQ = (T 1
rCQ, ArCQ) and K2

rCQ = (T 2
rCQ, ArCQ) given in the proof sketch for Theorem 22 (i). It suffices to prove Lemmas 18

and 19 for the new KBs, the rCQs qr
n(y), and the signature �rCQ.

Lemma 61. The instance T admits a rectangle tiling iff there exists qr
n(a) such that K2

rCQ |= qr
n(a).

Proof. (⇒) Suppose T tiles the N × M grid so that a tile of type T ij ∈ T covers (i, j). Let

block j = (T̂ 1, j
k , . . . , T̂ N, j

k ,Row),

for j = 1, . . . , M − 1 and k = ( j − 1) mod 3. Let qr
n be the CQ in which the Bi follow the pattern

Row, block1, block1, block2, . . . , blockM−1

(thus, n = (N + 1) × M + 1). In view of Lemma 11, we only need to prove I |= qr
n(a) for each minimal model I ∈ MK2

rCQ
. 

Take such an I . We have to show that there is an R-path a, x0, . . . , xn+1 in I such that xi ∈ BI
i and xn+1 ∈ EndI .

First, we construct an auxiliary R-path y0, . . . , yn−N−1. We take y0 ∈ RowI , the successor of a in I , and y1 ∈ I0
I , the 

successor of y0 in I , by (21) (I0 = T 1,1). Then we take y2 ∈ (T 2,1)I , . . . , yN ∈ (T N,1)I by (6). We now have right(T N,1) = W . 
By (7), we obtain yN+1 ∈ Row1

I . By (9), yN+1 ∈ Row1
I ⊆ RowI . We proceed in this way, starting with (5), till the moment 

we construct yn−1 ∈ (T N,M−1)I , for which we use (8) and (15) to obtain yn ∈ (Rowhalt
k )I ⊆ RowI , for some k. Note that 

TI ⊆ T̂I by (10).
By (12), two cases are possible now.
Case 1: there is y such that (yn, y) ∈ RI and y ∈ EndI . Then we take x0 = · · · = xN = a, xN+1 = y0, . . . , xn =

yn−N−1, xn+1 = y.
Case 2: there is z1 such that (yn, z1) ∈ RI and z1 ∈ (T halt

k )I , where T = T 1,M and up(T ) = C . We then use (13) and 
find z2, . . . , zN , u, v such that zi ∈ (T halt

k )I , where T = T i,M , u ∈ RowI and v ∈ EndI . We take x0 = y0, . . . , xn−N−1 =
yn−N−1, xn−N = z1, . . . , xn−1 = zN , xn = u, xn+1 = v . Note that, by (11) and (16), we have (T i, j)I ⊆ (T̂ i, j−1)I .
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Fig. A.1. Two homomorphisms to minimal models.

(⇐) Suppose K2
rCQ |= qr

n(a) for some n > 0. Consider all the pairwise distinct pairs (I, h) such that I ∈ MK2
rCQ

and h is a 

homomorphism from qr
n(a) to I . Note that h(qr

n) contains an or-node σh (which is an instance of Rowhalt
k , for some k). We 

call (I, h) and h left if h(xn+1) = σh · w∃R.End , and right otherwise. It is not hard to see that there exist a left (Il, hl) and a 
right (Ir, hr) with σhl = σhr (if this is not the case, we can construct I ∈ MK2

rCQ
such that I �|= qr

n(a)).

Take (Il, hl) and (Ir, hr) such that σhl = σhr = σ and use them to construct the required tiling. Let σ = aw0 · · · wn′ . We 
have hl(xn) = σ , hl(xn+1) = σ · w∃R.End . Let hr(xn+1) = σ v1 . . . vm+2, which is an instance of End. Then hr(xn) = σ v1 . . . vm+1, 
which is an instance of Row.

Suppose vm = w∃R.T halt
2

(any k other than 2 is treated analogously). By (14), right(T ) = W ; by (13), up(T ) = C . Suppose 
wn′−1 = w∃R.Sk . Now, we know that k = 1. By (8), right(S) = W . Consider the atom Bn−1(xn−1) from qr

n . Both aw0 · · · wn′−1
and σ v1 · · · vm are instances of Bn−1. By (10) and (16), Bn−1 = Ŝ1 and down(T ) = up(S). Suppose vm−1 = w∃R.U halt

2
. By 

(13), right(U ) = left(T ) and up(U ) = C . Suppose wn′−2 = w∃R.Q 1 . By (6), right(Q ) = left(S). Consider the atom Bn−2(xn−2)

from qr
n . Both aw0 · · · wn′−2 and σ · · · vm−1 are instances of Bn−2. By (10) and (16), Bn−2 = Q̂ 1 and down(U ) = up(Q ). We 

proceed in the same way until we reach σ and aw0 · · · wn′−N−1, for N = m, both of which are instances of Bn−N−1 = Row. 
Thus, we have tiled the last two rows of the grid.

We proceed in this way until we have reached some variable xt , for t ≥ 0, of qr
n that is mapped by hl to aw0 w1 (see 

Fig. A.1). Note that this situation is guaranteed to occur. Indeed, hl(a) = a, hl(x0) ∈ {a, aw0}, hl(x1) ∈ {a, aw0, aw0 w1}, etc. 
Clearly, the assumption that hl(xi) ∈ {a, aw0} for all i (0 ≤ i ≤ n + 1) leads to a contradiction. Let hr(xt) = aw0 · · · ws , for 
some s > 1. Note that s = N + 2. By (21), it follows that aw0 w1 is an instance of I0. Therefore, Bt = Î0 and, by (11), 
aw0 · · · ws is an instance of V 1, for some tile V such that down(V ) = up(I).

Thus, we have a tiling as required since the vertical and horizontal compatibility of the tiles is ensured by the construc-
tion above and by the fact that the tile I occurs in it as the initial tile. �

Lemma 62. 
∏

MK2
rCQ

is con-n�rCQ-homomorphically embeddable into IK1
rCQ

preserving {a} for all n ≥ 1 iff there does not exist an 
rCQ qr

m(y) such that 
∏

MK2
rCQ

|= qr
m(a).
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Proof. (⇒) Suppose otherwise, that is, 
∏

MK2
rCQ

|= qr
m(a) for some m. By the assumption, 

∏
MK2

rCQ
is con-n�rCQ-homo-

morphically embeddable into IK1
rCQ

for n = m + 3 (the length of qr
m). So we have IK1

rCQ
|= qr

m(a), which is clearly impossible 
because none of the paths of IK1

rCQ
contains the full sequence of symbols mentioned in qr

m(y).

(⇐) Suppose 
∏

MK2
rCQ

�|= qr
m(a) for all m. Take any subinterpretation of 

∏
MK2

rCQ
whose domain contains n ele-

ments connected to a. Recall from the proof of Theorem 6 that we can regard the �rCQ-reduct of this subinterpretation 
as a �rCQ-rCQ, and so denote it by q(y). Clearly, q is tree shaped plus the atom R(y, y). We know that there is no 
�rCQ-homomorphism from qr

m(y) into q(y) for any m; in particular, q(y) does not have a subquery of the form qr
m(y). 

We have to show that IK1
rCQ

|= q(a). We show how to map q(y) starting from a.

We call a variable x in q(y) a gap if there exists no B ∈ �rCQ such that B(x) is in q(y). Since q(y) does not contain a 
subquery of the form qr

m(y), we know that every path ρ starting from y in q(y) either:

(a) does not contain End(x), or
(b) contains End(x) and contains a gap x′ that occurs between the y and x.

If all paths ρ starting from y in q(y) are of type (a) we map q(y) on the path πω:

Otherwise, let y be the current variable and a the current image. Let x1, . . . , xk be all successor gaps and z1, . . . , zl all 
successor non-gaps of the current variable in q(y). We map all xi to the vertical successor and all zi to the horizontal 
successor of the current image. All the rest of the paths starting from xi can then be mapped to an appropriate πi . We 
then consider each zi as the current variable, and the point where it has been mapped as the current image, and continue 
analogously. Thus, the paths ρ not containing gaps and End(x) atoms would result in being mapped to πω , while the paths 
with gaps would each result in being mapped to an appropriate πi . �

We now prove Theorem 22 (ii). We set K2 =K2
rCQ ∪K1

rCQ and show that the following are equivalent:

(1) K1
rCQ �rCQ-rCQ entails K2

rCQ;

(2) K1
rCQ and K2 are �rCQ-rCQ inseparable.

Let IK1
rCQ

be the canonical model of K1
rCQ and MK2

rCQ
the set of minimal models of K2

rCQ. Again, one can easily show that 
the following set MK2 is complete for K2:

MK2 = {I � IK1
rCQ

| I ∈ MK2
rCQ

},
where I � IK1

rCQ
is the interpretation that results from merging the roots a of I and IK1

rCQ
. Now (2) ⇒ (1) is trivial. For the 

converse, suppose K1
rCQ �rCQ-rCQ entails K2

rCQ. It directly follows that K2 �rCQ-rCQ entails K1
rCQ. So it remains to show that 

K1
rCQ �rCQ-rCQ entails K2. Suppose this is not the case. Without loss of generality, we may assume that there is a �rCQ-rCQ 

q(y), a ditree with one answer variable y not mentioning D and E , such that K2 |= q(a) and K1
rCQ �|= q(a). We can assume 

q to be a smallest rCQ with this property. Consider the various cases of q(y):

– q(y) does not contain End atoms: but then K1
rCQ |= q(a) (see the proof of Lemma 62), contrary to our assumption.

– q(y) contains End atoms and, on each path from y to an End atom, there is a variable x that does not appear in q(y)

in any atom of the form B(x), for a concept name B ∈ �. But then K1
rCQ |= q(a) (see the proof of Lemma 62), contrary 

to our assumption.
– q(y) contains End atoms and a path from y to an End atom such that each variable x on this path appears in an atom 

of the form B(x), for a concept name B ∈ �. Denote this path by q′(y), and observe that q′(y) is a query of the form 
qr

n(y). Then K1
rCQ �|= q′(a) by the construction of K1

rCQ, moreover there is no subquery q′′ of q′(y) such that there is a 
model I ∈ MK2

rCQ
and I � IK1

rCQ
|= q′(a) by mapping q′′ entirely into IK1

rCQ
. So it must be that K2

rCQ |= q′(a). But now, 

as K1 |=K2 , we know that K2 �|= qr
n(a) for each n, which is again a contradiction.
rCQ rCQ rCQ
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The contradictions arise from the assumption that K1
rCQ does not �rCQ-rCQ entail K2.

Appendix B. Proof of Theorem 43 for rooted CQs

We show that it is undecidable whether an EL TBox is �-rCQ inseparable from an ALC TBox. For the proof we require 
homomorphisms between ABoxes and the observation that they preserve certain answers. Let A1 and A2 be ABoxes. A map 
h from ind(A1) to ind(A2) is called an ABox-homomorphism if A(a) ∈A1 implies A(h(a)) ∈A2 for all concept names A, and 
R(a, b) ∈A1 implies R(h(a), h(b)) ∈A2 for all role names R . The following is shown in [64].

Proposition 63. Let T be an ALC TBox, A, A′ be ABoxes, and h : A →A′ an ABox homomorphism. Then

• A is consistent with T if A′ is consistent with T , and
• (T , A) |= q(a) implies (T , A′) |= q(h(a)) for all CQs q(x).

To prove the undecidability of the problem whether an EL TBox is �-rCQ inseparable from an ALC TBox, we use the 
TBoxes constructed in the proof of Theorem 22. Recall the KBs K1

rCQ = (T 1
rCQ, ArCQ), K2

rCQ = (T 2
rCQ, ArCQ) and K2 = (T2, ArCQ), 

where T2 = T 1
rCQ ∪ T 2

rCQ. Set � = (�1, �2), where �1 = sig(ArCQ) and �2 = �rCQ. We aim to show that the following 
conditions are equivalent:

(1) K1
rCQ and K2 are �rCQ-rCQ inseparable;

(2) T 1
rCQ and T2 are �-rCQ inseparable.

The implication (2) ⇒ (1) is straightforward: if K1
rCQ and K2 are not �rCQ-CQ inseparable then the ABox ArCQ witnesses 

that T 1
rCQ and T2 are not �-rCQ inseparable. Conversely, suppose T 1

rCQ and T2 are not �-rCQ inseparable. Take a �1-ABox A
such that (T 1

rCQ, A) and (T2, A) are not �2-rCQ inseparable. Clearly, (T2, A) �2-rCQ entails (T 1
rCQ, A). Thus, (T 1

rCQ, A) does 
not �2-rCQ entail (T2, A). The canonical model I1 of the EL KB (T 1

rCQ, A) can be constructed by taking, for every A(b) ∈A, 
a copy of the canonical model IK1

rCQ
and hooking the two R-successors of a in IK1

rCQ
(together with the subinterpretations 

they root) as fresh R-successors to b. On the other hand, the class M of minimal models of (T2, A) is obtained from I1 by 
hooking to every b with A(b) ∈A a copy of a minimal model Ib ∈ MK2

rCQ
by identifying the root a of Ib with b.

Now consider a �2-rCQ q(a) with (T 1
rCQ, A) �|= q(a) and (T2, A) |= q(a). Suppose q(a) is the smallest rCQ with this 

property. Using the description of the canonical model I1 of (T 1
rCQ, A) and the class M of minimal models of (T2, A), one 

can show in the same way as in the proof of Theorem 22 (ii) given in the appendix above that there must be a path in q
from an answer variable to an End atom such that each variable x on this path appears in an atom of the form B(x) with 
B ∈ �rCQ. But then q contains a query of the form qr

n(x) (see again the proof of Theorem 22 (ii)) such that (T2, A) |= qr
n(a)

for some individual a and n > 0. Observe that the map h : ind(A) → {a} is an ABox-homomorphism from the ABox A
onto the ABox ArCQ. It follows from Proposition 63 that (T2, ArCQ) |= qr

n(h(a)), for some n. We know from the proof of 
Theorem 22 that K1

rCQ �|= qr
n(a). Thus, K1

rCQ and K2 are not �rCQ-rCQ inseparable, as required.

Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .artint .2018 .09 .003.
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