
Artificial Intelligence 272 (2019) 1–51
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Query inseparability for ALC ontologies

Elena Botoeva a,b, Carsten Lutz c, Vladislav Ryzhikov d, Frank Wolter e,∗,
Michael Zakharyaschev d

a KRDB Research Centre, Free University of Bozen-Bolzano, Italy
b Department of Computing, Imperial College London, UK
c Fachbereich Informatik, University of Bremen, Germany
d Department of Computer Science and Information Systems, Birkbeck, University of London, UK
e Department of Computer Science, University of Liverpool, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 July 2017
Received in revised form 3 June 2018
Accepted 24 September 2018
Available online 30 January 2019

Keywords:
Description logic
Knowledge base
Conjunctive query
Query inseparability
Computational complexity
Tree automaton

We investigate the problem whether two ALC ontologies are indistinguishable (or
inseparable) by means of queries in a given signature, which is fundamental for ontology
engineering tasks such as ontology versioning, modularisation, update, and forgetting. We
consider both knowledge base (KB) and TBox inseparability. For KBs, we give model-
theoretic criteria in terms of (finite partial) homomorphisms and products and prove
that this problem is undecidable for conjunctive queries (CQs), but 2ExpTime-complete
for unions of CQs (UCQs). The same results hold if (U)CQs are replaced by rooted (U)CQs,
where every variable is connected to an answer variable. We also show that inseparability
by CQs is still undecidable if one KB is given in the lightweight DL EL and if no restrictions
are imposed on the signature of the CQs. We also consider the problem whether two ALC
TBoxes give the same answers to any query over any ABox in a given signature and show
that, for CQs, this problem is undecidable, too. We then develop model-theoretic criteria for
HornALC TBoxes and show using tree automata that, in contrast, inseparability becomes
decidable and 2ExpTime-complete, even ExpTime-complete when restricted to (unions of)
rooted CQs.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, data access using description logic (DL) TBoxes has become one of the most important applications of
DLs (see, e.g., [1–3] and references therein), where the underlying idea is to use a TBox to specify semantics and background
knowledge for the data (stored in an ABox) and thereby derive more complete answers to queries. A major research effort
has led to the development of efficient querying algorithms and tools for a number of DLs ranging from DL-Lite [4–6] via
more expressive Horn DLs such as HornALC [7,8] to DLs with full Boolean constructors including ALC and extensions such
as SHIQ [9,10].

While query answering with DLs is now well-developed, this is much less the case for reasoning services that sup-
port ontology engineering when ontologies are used to query data. Important ontology engineering tasks include ontology
versioning [11–15], ontology modularisation [16–20], ontology revision and update [21–24], and forgetting in ontolo-

* Corresponding author.
E-mail addresses: botoeva@inf.unibz.it, e.botoeva@imperial.ac.uk (E. Botoeva), clu@informatik.uni-bremen.de (C. Lutz), vlad@dcs.bbk.ac.uk (V. Ryzhikov),

wolter@liverpool.ac.uk (F. Wolter), michael@dcs.bbk.ac.uk (M. Zakharyaschev).
https://doi.org/10.1016/j.artint.2018.09.003
0004-3702/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.artint.2018.09.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:botoeva@inf.unibz.it
mailto:e.botoeva@imperial.ac.uk
mailto:clu@informatik.uni-bremen.de
mailto:vlad@dcs.bbk.ac.uk
mailto:wolter@liverpool.ac.uk
mailto:michael@dcs.bbk.ac.uk
https://doi.org/10.1016/j.artint.2018.09.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2018.09.003&domain=pdf

2 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
gies [25–31]. A fundamental reasoning problem in all these tasks is to compare two ontologies. For example, in ontology
versioning, the user is interested in comparing two versions of an ontology and understanding the relevant difference be-
tween them. In ontology modularisation, the relevant consequences of the full ontology should be preserved when it is
replaced by a module. In ontology revision and update, one typically minimises the relevant difference between the up-
dated or revised ontology and the original ontology while taking into account new knowledge. In ontology forgetting, one
constructs a new ontology, which is indistinguishable from the original ontology with respect to a signature of interest.
The relevant consequences that should be considered when comparing two ontologies depend on the application. In the
context of querying data via ontologies, it is natural to consider the answers the ontologies give to queries. Then, in ontol-
ogy versioning, the relevant difference between two versions of an ontology is based on the queries that receive distinct
answers with respect to the ontology versions. In ontology modularisation, it is the answers to queries that should be pre-
served when a module is extracted from an ontology. In ontology update or revision, the difference between the answers
to queries over the updated or revised ontology and the original one should be minimised when constructing update or
revision operators. Similarly, in forgetting, it is the answers to queries which should be preserved under appropriate forget-
ting operators. Thus, in the context of query answering, the fundamental relationship between ontologies is not whether
they are logically equivalent (have the same models), but whether they give the same answers to any relevant query. To
illustrate, consider the following simple TBox

T = {Book � ∃author.¬Book}
saying that every book has an author who is not a book. Clearly, T is not logically equivalent to the TBox

T ′ = {Book � ∃author.�},
which only states that every book has an author. However, if one takes as the query language the popular classes of
conjunctive queries (CQs) or unions of CQs (UCQs), then no matter what the data is, every query will have the same
answers independently of whether one uses T or T ′ . Intuitively, the reason is that the ‘positive’ information given by T
coincides with the ‘positive’ information given by T ′ . If the main purpose of the ontology is answering UCQs, it is thus
more important to know that T can be safely replaced by T ′ without affecting the answers to UCQs than to establish that
T and T ′ are not logically equivalent.

In most ontology engineering applications for ontology-based data access, the relevant class Q of queries can be further
restricted to those given in a finite signature of relevant concept and role names. For example, to establish that a subset
M of an ontology O is a module of O, one should not require that M and O give the same answers to all queries in Q,
but only to those that are in the signature of M. Similarly, in the versioning context, often only the answers to queries
in Q given in a small signature containing a fraction of the concept and role names of the ontology are relevant for the
application, and so for the difference that should be presented to a user.

The resulting entailment problem can be formalised in two ways. Recall that, in DL, a knowledge base (KB) K = (T , A)

consists of a TBox T and an ABox A. Now, given a class Q of queries, KBs K1 and K2, and a signature � of relevant concept
and role names, we say that K1 �-Q entails K2 if the answers to any �-query in Q over K2 are contained in the answers
to the same query over K1. Further, K1 and K2 are �-Q inseparable if they �-Q entail each other. Since a KB includes an
ABox, this notion of entailment is appropriate if the data is known while the ontology engineering task is completed and
does not change frequently. This is the case for many real-world ontologies, which not only provide a conceptual model
of the domain of interest, but also introduce the individuals relevant for the domain and their properties. In addition to
versioning, modularisation, revision, update, and forgetting, applications of �-KB entailment and �-KB inseparability also
include knowledge exchange [32–34], where a user wants to transform a KB K1 given in a signature �1 to a KB K2 in a
new signature �2 connected to �1 using a mapping M, also known as an ontology alignment or ontology matching [35].
The condition that the target KB K2 is a sound and complete representation of K1 under M with respect to the answers
to a class Q of relevant queries can then be formulated as the condition that K1 ∪M and K2 are �2-Q inseparable [34].
The following simple example illustrates the notion of KB inseparability.

Example 1. Suppose we are given the KBs K1 = (T1, A) and K2 = (T2, A), where

T1 = {Lecturer � ∀teaches.(Undergraduate 	 Graduate)}, T2 = ∅,

A= {Lecturer(a), teaches(a,b)}.
Then K1 and K2 are �-CQ inseparable, for any signature �. However, they are not �-UCQ inseparable for the signature �
containing the concept names Undergraduate and Graduate. To see this, consider the �-UCQ

q(x) = Undergraduate(x) ∨ Graduate(x).

Clearly, b is an answer to q(x) over K1, but not over K2.

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 3
Table 1
KB query inseparability.

Queries ALC and ALC ALC and EL
CQ and rCQ undecidable undecidable
UCQ and rUCQ 2ExpTime-complete in 2ExpTime

Table 2
TBox query inseparability.

Queries ALC and ALC ALC and EL HornALC and HornALC
CQs undecidable undecidable 2ExpTime-complete
rCQs undecidable undecidable ExpTime-complete

KB entailment and inseparability are appropriate if the data is known and does not change frequently. If, however, the
data is not known or tends to change, it is not KBs that should be compared, but TBoxes. Given a pair � = (�1, �2) that
specifies a relevant signature �1 for ABoxes and a relevant signature �2 for queries, we say that a TBox T1 �-Q entails a
TBox T2 if, for every �1-ABox A, the KB (T1, A) �2-Q entails (T2, A). TBoxes T1 and T2 are �-Q inseparable if they �-Q
entail each other.

Example 2. Consider again the TBoxes T1 and T2 from Example 1. Clearly, T1 and T2 are not (�0, �1)-UCQ inseparable for
�0 = {Lecturer, teaches} and �1 = {Undergraduate, Graduate} as we have seen a �0-ABox A for which (T1, A) and (T2, A)

are not �1-UCQ inseparable. Notice, however, that T1 and T2 are both (�0, �0)-UCQ and (�1, �1)-UCQ inseparable. On the
other hand, it is not difficult to see that T1 and T2 are (�0, �1)-CQ inseparable. The situation changes drastically if the
ABox can contain additional role names, for instance hasFriend. Indeed, suppose �2 = �0 ∪ �1 ∪ {hasFriend}. Then T1 and
T2 are (�2, �2)-CQ separable by the ABox A′ shown in the picture below and the CQ

q′(x) = ∃y∃z
(
teaches(x, y) ∧ Undergraduate(y) ∧ hasFriend(y, z) ∧ Graduate(z)

)
since a is returned as an answer to q′(x) over (T1, A′) but not over (T2, A′). (This example is a variant of the well-known
[36, Example 4.2.5].)

In this paper, we investigate entailment and inseparability for KBs and TBoxes and for queries that are CQs or UCQs. In
practice, the majority of queries are rooted in the sense that every variable is connected to an answer variable. We therefore
also consider the classes of rooted CQs (rCQs) and UCQs (rUCQs). So far, query entailment and inseparability have been
studied for Horn DL KBs [37], EL TBoxes [38,15], DL-Lite TBoxes [39], and also for OBDA specifications, that is, DL-Lite
TBoxes with mappings [40]; for a recent survey see [41]. No results are yet available for non-Horn DLs (neither in the
KB nor in the TBox case) and for expressive Horn DLs in the TBox case. In particular, query entailment in non-Horn DLs
has had the reputation of being a technically challenging problem. Here, we make first steps towards understanding query
entailment and inseparability in these cases. To begin with, we give model-theoretic characterisations of these notions for
ALC and HornALC in terms of (finite partial) homomorphisms and products of interpretations. The obtained character-
isations together with various types of automata are then used to investigate the computational complexity of deciding
query entailment and inseparability. Our main results on KB and TBox inseparabilities are summarised in Tables 1 and 2,
respectively:

Three of these results came as a real surprise to us. First, it turned out that CQ and rCQ inseparability between ALC KBs
is undecidable, even if one of the KBs is formulated in the lightweight DL EL and without any signature restriction. This
should be contrasted with the decidability of subsumption-based entailment between ALC TBoxes [42] (and even theories
in guarded fragments of FO [43]) and of CQ entailment between HornALC KBs [37]. The second surprising result is that
inseparability between ALC KBs becomes decidable when CQs are replaced with UCQs or rUCQs. In fact, we show that
inseparability is 2ExpTime-complete for both UCQs and rUCQs. An even more fine-grained picture is obtained by considering
entailment instead of inseparability. It turns out that (r)CQ entailment of HornALC KBs by ALC KBs coincides with (r)UCQ
entailment of HornALC KBs by ALC KBs and is 2ExpTime-complete, but that in contrast (r)CQ entailment of ALC KBs by
HornALC KBs is undecidable.

For ALC TBoxes, CQ and rCQ entailment as well as CQ and rCQ inseparability are undecidable as well. We obtain
decidability for HornALC TBoxes (where CQ and UCQ entailments coincide) using the fact that non-entailment is always

4 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
witnessed by tree-shaped ABoxes. As another surprise, CQ inseparability of HornALC TBoxes is 2ExpTime-complete while
rCQ-entailment is only ExpTime-complete. This applies to CQ entailment and rCQ entailment as well. This result should be
contrasted with the EL case, where both problems are ExpTime-complete [38]. Table 2 does not contain any results in the
UCQ case, as the decidability of UCQ entailment and inseparability between ALC TBoxes remains open.

We now discuss the structure and contributions of this paper in more detail. Section 2 defines the DLs we are inter-
ested in, which range from EL to HornALC and ALC . It also introduces query answering for DL KBs and provides basic
completeness results and homomorphism characterisations for query answering. Section 3 defines query entailment and
inseparability between DL KBs. It provides illustrating examples and characterises UCQ entailment in terms of finite par-
tial homomorphisms between models of KBs. To characterise CQ entailment, products of KB models are also required. The
difference between the characterisations will play a crucial role in our algorithmic analysis of entailment. In some impor-
tant cases later on in the paper, finite partial homomorphisms are replaced by full homomorphisms using, for example,
automata-theoretic techniques and, in particular, Rabin’s result that any tree automaton that accepts some tree accepts al-
ready a regular tree. This move from finite partial homomorphisms to full homomorphisms is non-trivial and crucial for our
decision procedures.

In Section 4, we prove the undecidability of (r)CQ entailment of an ALC KB by an EL KB using a reduction of an un-
decidable tiling problem. The direction is important, as we prove later that (r)CQ entailment of an EL KB by an ALC KB is
decidable (in 2ExpTime). We also prove undecidability of CQ inseparability between EL and ALC KBs. The model-theoretic
characterisation of (r)CQ entailment via products and finite homomorphisms is crucial for these proofs. We then use a ‘hid-
ing technique’ replacing concept names by complex concepts to extend the undecidability results to the full signature. Thus,
for example, even without any restriction on the signature it is undecidable whether two ALC KBs are (r)CQ inseparable.

In Section 5, we first show that, in the (r)UCQ case, partial homomorphisms can be replaced by full homomorphisms in
the model-theoretic characterisation of rUCQ entailment between ALC KBs if one considers regular tree-shaped models of
the KBs. This result is then used to encode the UCQ entailment problem into an emptiness problem for two-way alternating
parity automata on infinite trees (2APTAs). Using results from automata theory we then obtain a 2ExpTime upper bound for
(r)UCQ entailment between ALC KBs and a characterisation of (r)UCQ entailment with full homomorphisms that does not
require the restriction to regular tree-shaped models. We prove that the 2ExpTime upper bound is tight by a reduction of
the word problem for alternating Turing machines. Finally, we show using the hiding technique that the 2ExpTime lower
bounds still hold without restrictions on the signature.

In Section 6, we introduce query entailment and inseparability between TBoxes and prove that the undecidability results
for (r)CQ entailment and (r)CQ inseparability can be lifted from KBs to TBoxes. In this case, however, undecidability without
any restrictions regarding the signatures remains open. In Section 7, we develop model-theoretic criteria for (r)CQ entail-
ment of HornALC TBoxes by ALC TBoxes. The crucial observation is that it suffices to consider tree-shaped ABoxes when
searching for counterexamples to (r)CQ entailment between TBoxes. This allows us to use, in Section 8, automata on trees
to decide (r)CQ entailment.

In Section 8, we first prove an ExpTime upper bound for rCQ entailment of HornALC TBoxes by ALC TBoxes via an
encoding into emptiness problems for a mix of two-way alternating Büchi automata and non-deterministic top-down tree
automata on finite trees (that represent tree-shaped ABoxes). As satisfiability of HornALC TBoxes is ExpTime-hard already,
this bound is tight. We then consider arbitrary (not necessarily rooted) CQs and extend the previous encoding into emptiness
problems for tree automata to this case, thereby obtaining a 2ExpTime upper bound. Here, it is non-trivial to show that this
bound is tight. We use a reduction of alternating Turing machines to prove the corresponding 2ExpTime lower bound (also
for CQ inseparability).

We conclude in Section 9 by discussing open problems. A small number of proofs that follow ideas presented in the
main paper are deferred to the appendix. An extended abstract with initial results that led to this paper was presented at
IJCAI 2016 [44].

2. Preliminaries

In DL, knowledge is represented by means of concepts and roles that are defined inductively starting from a count-
ably infinite set NC of concept names and a countably-infinite set NR of role names, and using a set of concept and role
constructors [45]. Different sets of concept and role constructors give rise to different DLs.

We begin by introducing the description logic ALC . The concept constructors available in ALC are shown in Table 3,
where R is a role name and C , D are concepts. A concept built using these constructors is called an ALC-concept. ALC
does not have any role constructors. An ALC TBox is a finite set of ALC concept inclusions (CIs) of the form C � D and ALC
concept equivalences (CEs) C ≡ D . (A CE C ≡ D will be regarded as an abbreviation for the two CIs C � D and D � C .) The
size |T | of a TBox T is the number of occurrences of symbols in T .

The semantics of TBoxes is given by interpretations I = (�I , ·I), where the domain �I is a non-empty set and the
interpretation function ·I maps each concept name A ∈ NC to a subset AI of �I , and each role name R ∈ NR to a binary
relation RI on �I . The extension of ·I to arbitrary concepts is defined inductively as shown in the third column of Table 3.
We say that an interpretation I satisfies a CI C � D if CI ⊆ DI , and that I is a model of a TBox T if I satisfies all the CIs
in T . A TBox is consistent (or satisfiable) if it has a model. A concept C is satisfiable with respect to T if there exists a model
I of T such that CI �= ∅. A concept C is subsumed by a concept D with respect to T (T |= C � D , in symbols) if every model

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 5
Table 3
Syntax and semantics of ALC.

Name Syntax Semantics

top concept � �I

bottom concept ⊥ ∅
negation ¬C �I \ CI

conjunction C � D CI ∩ DI

disjunction C 	 D CI ∪ DI

existential restriction ∃R.C { d ∈ �I | ∃e ∈ CI (d, e) ∈ RI}
universal restriction ∀R.C { d ∈ �I | ∀e ∈ �I (

(d, e) ∈ RI → e ∈ CI)}

I of T satisfies the CI C � D . For TBoxes T1 and T2, we write T1 |= T2 and say that T1 entails T2 if T1 |= α for all α ∈ T2.
TBoxes T1 and T2 are logically equivalent if they have the same models. This is the case if and only if T1 entails T2, and vice
versa.

We next define two syntactic fragments of ALC for which query answering (see below) is tractable in data complexity.
The fragment of ALC obtained by disallowing the constructors ⊥, ¬, 	 and ∀ is known as EL. Thus, EL concepts are
constructed using �, � and ∃ only [46]. A more expressive fragment with tractable query answering is HornALC . Following
[47,48], we say, inductively, that a concept C occurs positively in C itself and, if C occurs positively (negatively) in C ′ , then

– C occurs positively (respectively, negatively) in C ′ 	 D , C ′ � D , ∃R.C ′ , ∀R.C ′ , D � C ′ , and
– C occurs negatively (respectively, positively) in ¬C ′ and C ′ � D .

Now, we call an ALC TBox T Horn if no concept of the form C 	 D occurs positively in T , and no concept of the form ¬C
or ∀R.C occurs negatively in T . In the DL HornALC , only Horn TBoxes are allowed.

In DL, data is represented in the form of ABoxes. To introduce ABoxes, we fix a countably-infinite set NI of individual
names, which correspond to individual constants in first-order logic. An assertion is an expression of the form A(a) or
R(a, b), where A is a concept name, R a role name, and a, b individual names. An ABox A is a finite set of assertions. We
call the pair K = (T , A) of a TBox T in a DL L and an ABox A an L knowledge base (KB, for short). By ind(A) and ind(K),
we denote the set of individual names in A and K, respectively.

To interpret ABoxes A, we consider interpretations I that map all individual names a ∈ ind(A) to elements aI ∈ �I in
such a way that aI �= bI if a �= b (thus, we adopt the unique name assumption). It is to be noted that we do not assume all
the individual names from NI to be interpreted in I . Sometimes, we make the standard name assumption, that is, set aI = a,
for all the relevant a. Both assumptions are without loss of generality as it is well known, and easy to check, that in ALC
the certain answers to (unions of) conjunctive queries, as defined below, do not depend on the unique name assumption.
We say that I satisfies assertions A(a) and R(a, b) if aI ∈ AI and, respectively, (aI , bI) ∈ RI . It is a model of an ABox A if
it satisfies all the assertions in A, and it is a model of a KB K = (T , A) if it is a model of both T and A. We say that K
is consistent (or satisfiable) if it has a model. We apply the TBox terminology introduced above to KBs as well. For example,
KBs K1 and K2 are logically equivalent if they have the same models (or, equivalently, entail each other).

We next introduce query answering over KBs, starting with conjunctive queries [49–51]. An atom takes the form A(x) or
R(x, y), where x, y are from a set of individual variables NV , A is a concept name, and R a role name. A conjunctive query (or
CQ) is an expression of the form q(x) = ∃y ϕ(x, y), where x and y are disjoint sequences of variables and ϕ is a conjunction
of atoms that only contain variables from x∪ y—we (ab)use set-theoretic notation for sequences where convenient. We often
write A(x) ∈ q and R(x, y) ∈ q to indicate that A(x) and R(x, y) are conjuncts of ϕ . We call a CQ q(x) = ∃y ϕ(x, y) rooted
(or an rCQ) if every y ∈ y is connected to some x ∈ x by a path in the undirected graph whose nodes are the variables in
q and edges are the pairs {u, v} with R(u, v) ∈ q, for some R . A union of CQs (UCQ) is a disjunction q(x) = ∨

i qi(x) of CQs
qi(x) with the same answer variables x; it is rooted (rUCQ) if all the qi are rooted. If the sequence x is empty, q(x) is called
a Boolean CQ or UCQ. Observe that no Boolean query is rooted.

Example 3. The CQ q(x1, x2) = ∃y1∃y2(R(x1, y1) ∧ S(x2, y2)) is an rCQ but q(x1) = ∃x2∃y1∃y2(R(x1, y1) ∧ S(x2, y2)) is not
an rCQ.

Given a UCQ q(x) = ∨
i qi(x) with x = x1, . . . , xk and a KB K, a sequence a = a1, . . . , ak of individual names from K is

called a certain answer to q(x) over K if, for every model I of K, there exist a CQ qi in q and a map (homomorphism) h of its
variables to �I such that h(x j) = aIj , for 1 ≤ j ≤ k, A(z) ∈ qi implies h(z) ∈ AI , and R(z, z′) ∈ qi implies (h(z), h(z′)) ∈ RI .
If this is the case, we write K |= q(a). For a Boolean UCQ q, we say that the certain answer to q over K is ‘yes’ if K |= q and
‘no’ otherwise. CQ or UCQ answering means to decide—given a CQ or UCQ q(x), a KB K and a tuple a from ind(K)—whether
K |= q(a).

Example 4. To see that a is a certain answer to the CQ q′(x) over the KB K = (T1, A′) from Example 2, we observe that, by
the axiom of T1, we have c ∈ UndergraduateI or c ∈ GraduateI in any model I of K. In the former case, the map h1 with

6 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
h1(x) = a, h1(y) = c and h1(z) = d is a homomorphism from q′ to I , while in the latter one, h2 with h2(x) = a, h2(y) = b
and h2(z) = c is such a homomorphism.

A signature, �, is a finite set of concept and role names. The signature sig(C) of a concept C is the set of concept and
role names that occur in C , and likewise for TBoxes T , CIs C � D , assertions R(a, b) and A(a), ABoxes A, KBs K, UCQs q.
Note that individual names are not in any signature and, in particular, not in the signature of an assertion, ABox or KB.
We are often interested in concepts, TBoxes, KBs, and ABoxes formulated using a specific signature �, in which case we
use the terms �-concept, �-TBox, �-KB, etc. When dealing with �-KBs, it mostly suffices to consider �-interpretations I
where XI = ∅ for all concept and role names X �∈ �. A �-model of a KB is a �-interpretation that is a model of the KB.
The �-reduct J of an interpretation I is obtained from I by setting �J = �I , AJ = AI for all concept names A ∈ �,
RJ = RI for all role names R ∈ �, and AJ = RJ = ∅ for all remaining concept names A and role names R .

To compute the certain answers to queries over a KB K, it is convenient to work with a ‘small’ subset M of sig(K)-models
of K that is complete for K in the sense that, for any UCQ q(x) and any a ⊆ ind(K), we have K |= q(a) iff I |= q(a) for all
I ∈ M . We shall frequently use the following characterisation of complete sets of models based on (partial) homomorphisms.

Suppose I and J are interpretations and � a signature. A function h : �I → �J is called a �-homomorphism if u ∈ AI

implies h(u) ∈ AJ and (u, v) ∈ RI implies (h(u), h(v)) ∈ RJ , for all u, v ∈ �I , �-concept names A, and �-role names R .
If � is the set of all concept and role names, then h is called simply a homomorphism. We say that h preserves a set N of
individual names if h(aI) = aJ , for all a ∈ N that are defined in I . It is known from database theory that homomorphisms
characterise CQ-containment [52]. To characterise completeness for KBs, we require finite partial homomorphisms. An in-
terpretation I is a subinterpretation of an interpretation J (induced by a set �) if � = �I ⊆ �J , AI = AJ ∩ �I for all
concept names A, RI = RJ ∩ (�I ×�I) for all role names R , and the interpretation aI of an individual name a is defined
exactly if aJ ∈ �I , in which case aI = aJ . For a natural number n, we say that an interpretation I is n�-homomorphically
embeddable into an interpretation J if, for any subinterpretation I ′ of I with |�I ′ | ≤ n, there is a �-homomorphism from
I ′ to J . If � is the set of all concept and role names, then we omit � and speak about n-homomorphic embeddability. If we
require all �-homomorphisms to preserve a set N of individual names, then we speak about n�-homomorphic embeddability
preserving N .

Example 5. Let I and J be interpretations whose domain is the set N of natural numbers and, for any n, m ∈ N, we have
(n, m) ∈ RI if m = n + 1, and (n, m) ∈ RJ if n = m + 1. Then, for all n ≥ 0, I is n-homomorphically embeddable into J , but
I is not homomorphically embeddable into J . Now, let aI = 0, aJ = m, and N = {a}. Then I is (m + 1)-homomorphically
embeddable into J preserving N , but I is not (m + 2)-homomorphically embeddable into J preserving N .

Proposition 6. A set M of sig(K)-models of an ALC KB K is complete for K iff, for any model J of K and any n > 0, there is I ∈ M
such that I is n-homomorphically embeddable into J preserving ind(K).

Proof. Let � = sig(K) and let M be a class of �-models of K. Suppose first that M is not complete for K. Then there
exist a UCQ q(x) and a tuple a from ind(K) such that K �|= q(a) but I |= q(a) for all I ∈ M . Let J be a model of K
such that J �|= q(a) and let n be the number of variables in q(x). For every I ∈ M , there exists a subinterpretation I ′ of
I with |�I ′ | ≤ n and I ′ |= q(a). No such I ′ is homomorphically embeddable into J preserving a, and so no I ∈ M is
n-homomorphically embeddable into J preserving ind(K).

Conversely, suppose there exists a model J of K and n > 0 such that no I ∈ M is n-homomorphically embeddable into
J preserving ind(K). Let ind(K) = {a1, . . . , ak}. For every finite �-interpretation I with domain {u1, . . . , um} such that m ≥ k
and ai = ui (1 ≤ i ≤ k), we define the canonical CQ qI by taking

qI(x1, . . . , xk) = ∃xk+1 · · · ∃xm

(∧
ui∈AI,A∈�

A(xi) ∧
∧

(ui ,u j)∈RI,R∈�

R(xi, x j)
)
.

Then there exists a homomorphism from I to J preserving ind(K) iff J |= qI(a1, . . . , ak). Now pick for any I ∈ M a
subinterpretation I ′ of I with �I ′ ⊇ ind(K) and |�I ′ \ ind(K)| ≤ n such that I ′ is not homomorphically embeddable into
J preserving ind(K). Let q(x1, . . . , xk) be the disjunction of all canonical CQs qI ′ (x1, . . . , xk) determined by these I ′ . Then
J �|= q(a1, . . . , ak), and so K �|= q(a1, . . . , ak), but I |= q(a1, . . . , ak), for all I ∈ M . �

Observe that, in the characterisation of Proposition 6, one cannot replace n-homomorphic embeddability by homomor-
phic embeddability as shown by the following example.

Example 7. Let K = ({� � ∃R.�}, {A(a)}). Then the class M of all interpretations that consist of a finite R-chain starting
with A(a) and followed by an R-cycle (of arbitrary length) is complete for K. However, there is no homomorphism from
any member of M into the model of K that consists of an infinite R-chain starting from A(a).

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 7
We call an interpretation I a ditree interpretation if the directed graph GI defined by taking

GI = (�I , {(d, e) | (d, e) ∈
⋃

R∈NR

RI})

is a directed tree and RI ∩ SI = ∅, for any distinct role names R and S . I has outdegree n if GI has outdegree n. A model
I of K = (T , A) is forest-shaped if I is the disjoint union of ditree interpretations Ia with root a, for a ∈ ind(A), extended
with all R(a, b) ∈ A. In this case, the outdegree of I is the maximum outdegree of the interpretations Ia , for a ∈ ind(A).
Denote by Mbo

K the class of all forest-shaped sig(K)-models of K of outdegree ≤ |T |. The following completeness result is
well known [53] (the first part is shown in the proof of Proposition 9):

Proposition 8. Mbo
K is complete for any ALC KB K. If K is a HornALC KB, then there is a single member IK of Mbo

K that is complete
for K.

The model IK mentioned in Proposition 8 is constructed using the standard chase procedure and called the canonical
model of K. Proposition 8 can be strengthened further. Call a subinterpretation I of a ditree interpretation J a rooted
subinterpretation of J if there exists u ∈ �J such that the domain �I of I is the set of all u′ ∈ �J for which there is a
path u0, . . . , un ∈ �J with u0 = u, un = u′ and (ui, ui+1) ∈ RI

i (i < n), for some role name Ri . Call a ditree interpretation
I regular if it has, up to isomorphism, only finitely many rooted subinterpretations. A forest-shaped model I of a KB K
is regular if the ditree interpretations Ia , a ∈ ind(K), are regular. Denote by M reg

K the class of all regular forest-shaped
sig(K)-models of K = (T , A) of outdegree bounded by |T |.

Proposition 9. M reg
K is complete for any ALC KB K.

Proof. Suppose K is an ALC KB and K �|= q(a), for some UCQ q(x). As shown in [53], there exists a consistent KB K′ =
(T ′, A′) with T ′ ⊇ T , A′ ⊇ A, and ind(A′) = ind(A) such that I �|= q(a), for every model I of K′ (called a spoiler for q
and K in [53] and constructed by carefully analysing all possible homomorphism from q to models of K and ‘spoiling’ all
of them by suitable KB extensions). We construct a regular model J ′ of K′ as follows. Let I ′ be a model of K′ . We may
assume that T ′ does not use the constructor ∀r.C . Denote by cl(T ′) the set of subconcepts of concepts in T ′ closed under
single negation. For d ∈ �I ′

, the T ′-type of d in I ′ , denoted tI
′

T ′ (d), is defined as tI
′

T ′ (d) = {C ∈ cl(T ′) | d ∈ CI ′ }. A subset
t ⊆ cl(T ′) is a T ′-type if t = tIT ′ (d), for some model I of T ′ and d ∈ �I . We denote the set of all T ′-types by type(T ′). Let
t, t ′ ∈ type(T ′). For ∃R.C ∈ t , we say that t ′ is an ∃R.C-witness for t if C ∈ t ′ and the concept � t � ∃R.(� t ′) is satisfiable
with respect to T ′ . Denote by succ∃R.C (t) the set of all ∃R.C-witnesses for t . Now choose, for any T ′-type t and ∃R.C such
that succ∃R.C (t) �= ∅, a single type s∃R.C (t) ∈ succ∃R.C (t). We construct the model J ′ of K′ as follows. The domain �J ′

is
the set of words

aR1t1 · · · Rntn,

where a ∈ ind(K′) and, for t0 = tI
′

T ′(a) and i < n, t i+1 = s∃Ri+1.C (t i) for some ∃Ri+1.C ∈ t i . Set aR1t1 · · · Rntn ∈ AJ ′
if n = 0

and A ∈ tI
′

T ′ (a) or n > 0 and A ∈ tn . Finally, set (aR1t1 · · · Rntn, bS1t ′
1 · · · Smt ′

m) ∈ RJ ′
iff n = m = 0 and R(a, b) ∈ A or

0 < m = n + 1, Sm = R and aR1t1 · · · tn = bS1t ′
1 · · · t ′

m−1. One can easily show that J ′ is a regular model of K′ . Hence
J ′ �|= q(a). The outdegree of J ′ is bounded by |T ′| but possibly not by |T |, and so it remains to modify J ′ in such a
way that its outdegree is bounded by |T |. To this end, we remove from J ′ all R-successors (together with the subtrees
they root) aR1t1 · · · Rntn Rt of all aR1t1 · · · Rntn ∈ �J ′

such that t �= s∃R.C (tn) for any ∃R.C ∈ cl(T). By the construction, the
resulting interpretation J is still regular, it is a model of K (since T ′ ⊇ T), its outdegree is bounded by |T |, and J �|= q(a)

since J ′ �|= q(a). �
Example 10. Consider the KB K = (T , A) with T = {A 	 B � ∃R.(A 	 B)} and A = {A(a)}. The following class of regular
models I is complete for K. The domain of I is the natural numbers with aI = 0 ∈ AI , (i, j) ∈ RI if j = i + 1, for all
natural numbers i and j, and there are k, n, m ≥ 0 such that AI and BI are mutually disjoint, cover the initial segment
{1, . . . , k} and, on the remainder {k + 1, . . . }, they are interpreted by alternating between n consecutive nodes in AI and m
consecutive nodes in BI . Then I is regular since the number of non-isomorphic rooted subinterpretations of I with root
r > k is ≤ n +m (the number of non-isomorphic rooted subinterpretations of I with root r ≤ k is clearly bounded by k + 1).

In the undecidability proofs of Section 4, we do not use the full expressive power of ALC but work with a small
fragment denoted ELU rhs . An ELU rhs TBox T consists of CIs of the form

– A � C ,
– A � C 	 D ,

8 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
where A is a concept name and C, D are EL-concepts. Given an ELU rhs KB K = (T , A), we construct by induction a
(possibly infinite) labelled forest O with a labelling function �. For each a ∈ ind(A), a is the root of a tree in O with
A ∈ �(a) iff A(a) ∈ A. Suppose now that σ is a node in O and A ∈ �(σ). If A � C is an axiom of T and C /∈ �(σ), then we
add C to �(σ). If A � C 	 D is an axiom of T and neither C ∈ �(σ) nor D ∈ �(σ), then we add to �(σ) either C or D (but
not both); in this case, we call σ an or-node. If C � D ∈ �(σ), then we add both C and D to �(σ) provided that they are not
there yet. Finally, if ∃R.C ∈ �(σ) and the constructed part of the tree does not contain a node of the form σ · w∃R.C , then
we add σ · w∃R.C as an R-successor of σ and set �(σ · w∃R.C) = {C}. Now we define a minimal model I = (�I , ·I) of K by
taking �I to be the set of nodes in O, aI = a for a ∈ ind(A), RI to be the R-relation in O together with (a, b) such that
R(a, b) ∈A, and AI = { σ ∈ �I | A ∈ �(σ) }, for every concept name A. It follows from the construction that I is a model
of K.

Lemma 11. For any ELU rhs KB K, the set MK of its minimal models is complete for K.

Proof. By Proposition 6, it suffices to show that, for every model J of K, there is a minimal model I that is homomor-
phically embeddable into J preserving ind(K). Suppose a model J of K is given. We can now inductively construct a set
�, a labelling function � defining a minimal model I , and a homomorphism h from I to J such that h(σ) ∈ CJ , for each
C ∈ �(σ) and σ ∈ �. The model J is used as a guide. For instance, let σ ∈ � such that h(σ) is set. Suppose that A ∈ �(σ),
A � C 	 D is an axiom in T , and C /∈ �(σ), D /∈ �(σ). Since J is a model of K, it must be the case that h(σ)J ∈ CJ or
h(σ)J ∈ DJ . In the former case, we add C to �(σ), in the latter case, we add D to �(σ). Suppose further that σ · w∃R.C is
in � and h(σ · w∃R.C) is not set. Since J is a model of K and by inductive assumption h(σ) ∈ (∃R.C)J , there exists d ∈ �J

such that (h(σ), d) ∈ RJ and d ∈ CJ . So we set h(σ · w∃R.C) = d.
Now we take the minimal model I = (�, ·I), where ·I is defined according to the labelling function �. By the construc-

tion of � and the fact that I is minimal, we obtain that h is indeed a homomorphism from I to J . �
3. Model-theoretic criteria for query entailment and inseparability between knowledge bases

In this section, we first define the central notions of query entailment and inseparability between KBs for CQs and UCQs
as well as their restrictions to rooted queries. Then we give model-theoretic characterisations of these notions based on
products of interpretations and (partial) homomorphisms.

Definition 12. Let K1 and K2 be consistent KBs, � a signature, and Q one of CQ, rCQ, UCQ or rUCQ. We say that K1
�-Q-entails K2 if K2 |= q(a) implies a ⊆ ind(K1) and K1 |= q(a), for all �-Q q(x) and all tuples a in ind(K2). We say that
K1 and K2 are �-Q inseparable if they �-Q entail each other. If � is the set of all concept and role names, we say ‘full
signature Q-entails’ or ‘full signature Q-inseparable’.

As larger classes of queries separate more KBs, �-UCQ inseparability implies all other inseparabilities and �-CQ insep-
arability implies �-rCQ inseparability. The following example shows that, in general, no other implications between the
different notions of inseparability hold for ALC .

Example 13. Suppose T0 = ∅, T ′
0 = {E � A 	 B} and �0 = {A, B, E}. Let A0 = {E(a)}, K0 = (T0, A0), and K′

0 = (T ′
0 , A0). Then

K0 and K′
0 are �0-CQ inseparable (and so also �0-rCQ inseparable) but not �0-rUCQ inseparable (and so also not �0-UCQ

inseparable). The former claim can be proved using the model-theoretic criterion given in Theorem 17 below, and the latter
one follows from K′

0 |= q(a) and K0 �|= q(a), for q(x) = A(x) ∨ B(x).
Now, let �1 = {E, B}, T1 = ∅, and T ′

1 = {E � ∃R.B}. Let A1 = {E(a)}, K1 = (T1, A1), and K′
1 = (T ′

1 , A1). Then K1 and
K′

1 are �1-rUCQ inseparable (and so also �1-rCQ inseparable) but not �1-CQ inseparable. The former claim can be proved
using the model-theoretic criterion of Theorem 17 and the latter one follows from the observation that K′

1 |= ∃xB(x) but
K1 �|= ∃xB(x).

The situation changes for HornALC KBs. The following can be easily proved by observing (using Proposition 8) that the
certain answers to a UCQ over a HornALC KB K coincide with the certain answers to its disjuncts over K:

Proposition 14. Let K1 be an ALC KB and K2 a HornALC KB. Then K1 �-UCQ entails K2 iff K1 �-CQ entails K2 . The same holds
for rUCQ and rCQ.

Now we give model-theoretic criteria of �-query entailment between KBs. As usual in model theory [54, page 405], we
define the product

∏
I of a family I = {Ii | i ∈ I} of interpretations by taking

�
∏

I = { f : I →
⋃

�Ii | ∀i ∈ I f (i) ∈ �Ii },

i∈I

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 9
A
∏

I = { f | ∀i ∈ I f (i) ∈ AIi },
R

∏
I = {(f , g) | ∀i ∈ I (f (i), g(i)) ∈ RIi },

a
∏

I = fa, where fa(i) = aIi for all i ∈ I.

Proposition 15 ([54]). For any CQ q(x) and any tuple a of individual names,
∏

I |= q(a) iff I |= q(a) for all I ∈ I .

Example 16. The KB K = (T1, A′) from Example 2 has two minimal models: I1 that agrees with A′ on a, b, d and has
c ∈ UndergraduateI2 , and I2 that also agrees with A′ on a, b, d but has c ∈ GraduateI1 (cf. Example 4). By Lemma 11, the
set I = {I1, I2} is complete for K. The picture below1 shows the ‘interesting’ part of

∏
I . Clearly,

∏
I |= q′(a), where q′ is

the CQ from Example 2. It follows that K |= q′(a).

We characterise �-query entailment in terms of products and n�-homomorphic embeddability. To also capture rooted
queries, we first introduce the corresponding refinement of �-homomorphic and, respectively, n�-homomorphic embed-
dability. A �-path ρ from u to v in an interpretation I is a sequence u0, . . . , un ∈ �I such that u0 = u, un = v , and there
are R0, . . . , Rn−1 ∈ � with (ui, ui+1) ∈ RI

i , for 0 ≤ i < n. For a KB K = (T , A) and model I of K, we say that u ∈ �I is
�-connected to A in I if there exist a ∈ ind(K) and a �-path from aI to u in I . The subinterpretation Icon of I induced by
the set of all u ∈ �I that are �-connected to A in I is called the �-component of I with respect to K. Let I1 be a model
of K1 and I2 a model of K2. We say that I2 is con-�-homomorphically embeddable into I1 if the �-component Icon

2 of I2
with respect to K2 is �-homomorphically embeddable into I1; and we say that I2 is con-n�-homomorphically embeddable
into I1 if the �-component Icon

2 of I2 with respect to K2 is n�-homomorphically embeddable into I1.

Theorem 17. Let K1 and K2 be ALC KBs, � a signature, and let Mi = {I j | j ∈ Ii} be complete for Ki , i = 1, 2.

(1) K1 �-UCQ entails K2 iff, for any n > 0 and I1 ∈ M1 , there exists I2 ∈ M2 that is n�-homomorphically embeddable into I1
preserving ind(K2).

(2) K1 �-rUCQ entails K2 iff, for any n > 0 and I1 ∈ M1 , there exists I2 ∈ M2 that is con-n�-homomorphically embeddable into I1
preserving ind(K2).

(3) K1 �-CQ entails K2 iff
∏

M2 is n�-homomorphically embeddable into
∏

M1 preserving ind(K2) for any n > 0.
(4) K1 �-rCQ entails K2 iff

∏
M2 is con-n�-homomorphically embeddable into

∏
M1 preserving ind(K2) for any n > 0.

Proof. (1) Suppose K2 |= q(a) but K1 �|= q(a), for a �-UCQ q and a in ind(K1). Let n be the number of variables in q.
Take I1 ∈ M1 such that I1 �|= q(a). Then no I2 ∈ M2 is n�-homomorphically embeddable into I1 preserving ind(K2) since
this would imply I2 �|= q(a). Conversely, suppose I1 ∈ M1 is such that, for some n > 0, no I2 ∈ M2 is n�-homomorphically
embeddable into I1 preserving ind(K2). Fix such an n > 0 and take for every I2 ∈ M2 a subinterpretation I ′

2 of I2 with
domain of size ≤ n such that I ′

2 is not �-homomorphically embeddable into I1 preserving ind(K2). Recall from the proof
of Proposition 6 that we can regard the �-reduct of any such I ′

2 as a �-CQ (with the answer variables corresponding to
the ABox individuals). The disjunction of all these CQs (up to isomorphisms) is entailed by K2 but not by K1. The proof of
(2) is similar.

(3) Suppose K2 |= q(a) but K1 �|= q(a), for a �-CQ q and a in ind(K1). By Proposition 15,
∏

M2 |= q(a) but
∏

M1 �|=
q(a). Let n be the number of variables in q. Then

∏
M2 is not n�-homomorphically embeddable into

∏
M1 preserving

1 As usual in model theory, we write (b, c) for f with f : 1 �→ b and f : 2 �→ c, and similarly for (c, b), (c, d) and (d, c).

10 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
ind(K2) since this would imply
∏

M1 |= q(a). Conversely, suppose that, for some n > 0,
∏

M2 is not n�-homomorphically
embeddable into

∏
M1 preserving ind(K2). Let I be the subinterpretation of

∏
M2 with domain of size ≤ n which cannot be

�-homomorphically embedded in
∏

M1 preserving ind(K2) ∩ {a | a
∏

M2 ∈ �I}. We can regard the �-reduct of I as a �-CQ
which is entailed by K2 but not by K1 (by Proposition 15). The proof of (4) is similar. �

Example 7 can be used to show that, in Theorem 17, n�-homomorphic embeddability cannot be replaced by
�-homomorphic embeddability. In Section 5, however, we show that in some cases we can find characterisations with
full �-homomorphisms and use them to present decision procedures for entailment.

If both Mi are finite and contain only finite interpretations, then Theorem 17 provides a decision procedure for KB en-
tailment. This applies, for example, to KBs with acyclic classical TBoxes [45], and to KBs for which the chase terminates [55].

4. Undecidability of (r)CQ-entailment and inseparability for ALC KBs

The aim of this section is to show that CQ and rCQ-entailment and inseparability for ALC KBs are undecidable. We begin
by proving that it is undecidable whether an EL KB �-CQ entails an ALC KB. A straightforward modification of the KBs
constructed in that proof is then used to prove that �-CQ inseparability between EL and ALC KBs is undecidable as well.
It is to be noted that, as shown in Section 5, both �-UCQ and �-rUCQ entailments between ALC KBs are decidable, which
means, by Proposition 14, that checking whether an ALC KB �-(r)CQ entails an EL KB is decidable. We then consider
rooted CQs and prove that �-rCQ entailment and inseparability between EL and ALC KBs are still undecidable. (In fact,
the undecidability proof for rCQs implies the undecidability results for CQs, but is somewhat trickier.) The signature � used
in these undecidability proofs is a proper subset of the signatures of the KBs involved. In the final part of this section,
we prove that one can modify the KBs in such a way that all the results stated above hold for full signature CQ and rCQ
entailment and inseparability.

4.1. Undecidability of CQ-entailment and inseparability with respect to a signature �

Our undecidability proofs are by reduction of the undecidable rectangle tiling problem: given a finite set T of tile types T
with four colours up(T), down(T), left(T) and right(T), a tile type I ∈ T, and two colours W (for wall) and C (for ceiling),
decide whether there exist N, M ∈N such that the N × M grid can be tiled using T in such a way that left(T) = right(T ′) if
(i, j) is covered by a tile of type T and (i + 1, j) is covered by a tile of type T ′ , and 1 ≤ i < N , 1 ≤ j ≤ M; up(T) = down(T ′)
if (i, j) is covered by a tile of type T and (i, j +1) is covered by a tile of type T ′ , and 1 ≤ i ≤ N , 1 ≤ j < M; (1, 1) is covered
by a tile of type I; every (N, i), for i ≤ M , is covered by a tile of type T with right(T) = W ; and every (i, M), for i ≤ N , is
covered by a tile of type T with up(T) = C . (The reader can easily show that this problem is undecidable by reduction of
the halting problem for Turing machines; cf. [56].) If an instance T of the rectangle tiling problem has a positive solution,
we say that T admits tiling.

Given such an instance T, we construct an EL TBox T 1
CQ, an ALC TBox T 2

CQ, an ABox ACQ, and a signature �CQ such
that, for the KBs K1

CQ = (T 1
CQ, ACQ) and K2

CQ = (T 2
CQ, ACQ), the following conditions are equivalent:

– K1
CQ �CQ-CQ entails K2

CQ;
– the instance T does not admit tiling.

The ABox ACQ does not depend on T and is defined by setting ACQ = {A(a)}. The TBox T 2
CQ uses a role name R to encode a

grid by putting one row of the grid after the other starting with the lower left corner of the grid. It also uses the following
concept names:

– T first , for each tile type T ∈ T, to encode the first row of a tiling;
– Tk , for T ∈ T and k = 0, 1, 2, to encode intermediate rows, with three copies of each T ∈ T needed to ensure the vertical

matching conditions between rows;
– T halt

k , for T ∈ T and k = 0, 1, 2, to encode the last row;
– T̂k , for T ∈ T and k = 0, 1, 2.

Of all these concept names, only the T̂k are in the signature �CQ of the entailment problem we construct. Thus, the T first ,
T halt

k , and Tk are auxiliary concept names used to generate tilings, while the T̂k make the tilings ‘visible’ to relevant CQs.
The TBox T 2

CQ uses the concept names Start and End as markers for the start and end of a tiling. Both concept names
are in �CQ. To mark the end of rows, T 2

CQ employs the concept names Rowk and Rowhalt
k , for k = 0, 1, 2, where the Rowhalt

k

indicate the last row. Similarly to the encoding of tile types above, the concept names Rowk and Rowhalt
k are auxiliary concept

names used to construct tilings. Three copies are needed to ensure the vertical matching condition. In addition, we use a
concept name Row ∈ �CQ that marks the end of rows and is visible to separating CQs.

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 11
The role name R generating the grid is in �CQ. An additional concept name A and role name P link the individual a in
ACQ to the first row of the tiling. The encoding does not depend on whether A, P are in �CQ, but it will be useful later,
when we consider full signature CQ-entailment, to include them in �CQ.

Before writing up the axioms of T 2
CQ, we explain how they generate all possible tilings. We ensure that if a point x in

a model I of K2
CQ is in T̂k and right(T) = left(S), then x has an R-successor in Ŝk . Thus, branches of I define (possibly

infinite) horizontal rows of tilings with T. If a branch contains a point y ∈ T̂k with right(T) = W , then this y can be the
last point in the row, which is indicated by an R-successor z ∈ Row of y. In turn, z has R-successors in all T̂(k+1) mod 3
that can be possible beginnings of the next row of tiles. To coordinate the up and down colours between the rows—which
will be done by the CQs separating K1

CQ and K2
CQ—we make every x ∈ T̂k , starting from the second row, an instance of all

Ŝ(k−1) mod 3 with down(T) = up(S). The row started by z ∈ Row can be the last one in the tiling, in which case we require
that each of its tiles T has up(T) = C . After the point in Row indicating the end of the final row, we add an R-successor in
End for the end of tiling. The beginning of the first row is indicated by a P -successor in Start of the ABox element a, after
which we add an R-successor in Ifirst for the given initial tile type I .

The TBox T 2
CQ contains the following CIs, for k = 0, 1, 2:

A � ∃P .(Start � ∃R.Ifirst), (1)

T first � ∃R.Sfirst, if right(T) = left(S) and T , S ∈ T, (2)

T first � ∃R.(Start � Row1), if right(T) = W and T ∈ T, (3)

T first � T̂0, for T ∈ T, (4)

Rowk � ∃R.Tk, for T ∈ T, (5)

Tk � ∃R.Sk, if right(T) = left(S) and T , S ∈ T, (6)

Tk � ∃R.Row(k+1) mod 3, if right(T) = W and T ∈ T, (7)

Tk � ∃R.Rowhalt
(k+1) mod 3, if right(T) = W and T ∈ T, (8)

Rowk � Row, (9)

Tk � T̂k, for T ∈ T, (10)

Tk � Ŝ(k−1) mod 3, if down(T) = up(S) and T , S ∈ T, (11)

Rowhalt
k � ∃R.End 	 �

up(T)=C, T∈T
∃R.T halt

k , (12)

T halt
k � ∃R.Shalt

k , if right(T) = left(S), up(S) = C and T , S ∈ T, (13)

T halt
k � ∃R.(Row � ∃R.End), if right(T) = W and T ∈ T, (14)

Rowhalt
k � Row, (15)

T halt
k � Ŝ(k−1) mod 3, if down(T) = up(S) and T , S ∈ T. (16)

The KB T 2
CQ is an ELU rhs KB, with (12) being the only CIs with 	. Throughout the proof, we work with the set MK2

CQ
of

minimal models of K2
CQ and use the notation introduced in the construction of minimal models. In figures, ∨ indicates an

or-node. We now comment on the role of the CIs in T 2
CQ.

– The CIs (1)–(3) produce all possible first rows whose ends are indicated by points in Start and Row1; see Fig. 1(a), where
τ1 denotes trees described below. The CI (4) ensures that the tiling of the first row is visible in �CQ using the concept
names T̂0. Note that Row is visible in �CQ due to (9).

– The CIs (5)–(8) produce all possible intermediate rows starting with points in Rowk and ending by points in
Row(k+1) mod 3 or Rowhalt

(k+1) mod 3; see Fig. 1(b), where τk is the tree with root in Rowk and τ halt
k the tree with root in

Rowhalt
k as described below. The CIs (9)–(11) ensure that the tilings of the intermediate rows as well as Row are visible

in �CQ. Note that, for each intermediate row, there exists k such that the current row is encoded using T̂k and the
matching previous row using T̂(k−1) mod 3.

– The CIs (12)–(14) produce all possible final rows starting with points in Rowhalt
k . The role of the disjunction is explained

below; see Fig. 1(c). Finally, the axioms (15)–(16) make Row and the matching previous row visible in �CQ. Note that
the last row itself is not visible in �CQ.

The existence of a tiling of some N × M grid for the given instance T can be checked by Boolean CQs qn , for n ≥ 1, that
require an R-path from Start to End going through T̂k- or Row-points:

12 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
Fig. 1. The paths in the minimal models generated by the axioms of T 2
CQ.

Fig. 2. The structure of the models Il and Ir of K2, and homomorphisms hl : qn → Il and hr : qn → Ir .

qn = ∃x
(
Start(x0) ∧

n∧
i=0

R(xi, xi+1) ∧
n∧

i=1

Bi(xi) ∧ End(xn+1)
)
,

where Bi ∈ {Row} ∪ {T̂k | T ∈ T, k = 0, 1, 2}. The qn will serve as the separating �CQ-CQs if T admits a tiling (in fact, if T
admits a tiling of some N × M grid, then qn is a separating �CQ-CQ for n = (N +1) × (M −1)). We illustrate the relationship
between MK2

CQ
and the CQs qn in Fig. 2: the lower part of the figure shows two interpretations, Il and Ir , from MK2

CQ
(we

only mention the extensions of concept names in �CQ). The two interpretations coincide up to the Row-point before the
final row of the tiling. Then, because of the axiom (12), they realise two alternative continuations: one as described above,
and the other one having just a single R-successor in End. In the picture, we show a situation where row m coincides
with the row depicted below row m + 1 (that satisfies the vertical tiling conditions with row m + 1). For example, the first
row ̂ I0 · · · T̂ N1

0 coincides with the row depicted below the second row (after the second Start). This is no accident and is
enforced by the query qn that is depicted in the upper part of the figure. If K2

CQ |= qn , then qn holds in both Il and Ir ,
and so there are homomorphisms hl : qn → Il and hr : qn → Ir . As hl(xn−1) and hr(xn−1) are instances of Bn−1, we have
Bn−1 = T̂ N M−1

1 in the figure, and so up(T N M−1) = down(T N M). By repeating this argument until x0, we see that the colours
between horizontal rows match and the rows are of the same length. Note that for this to work, we have to make both
the P -successor of a and the first Row-point an instance of Start. We now formalise the observations above by proving the
following:

Lemma 18. The instance T admits a rectangle tiling iff there exists qn such that K2
CQ |= qn.

Proof. (⇒) Suppose T tiles the N × M grid so that a tile of type T ij ∈ T covers (i, j). Let

block j = (T̂ 1, j
k , . . . , T̂ N, j

k ,Row),

for j = 1, . . . , M − 1 and k = (j − 1) mod 3. Let qn be the CQ in which the Bi follow the pattern

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 13
block1, block2, . . . , blockM−1

(thus, n = (N + 1) × (M − 1)). In view of Lemma 11, we only need to prove that I |= qn , for each model I ∈ MK2
CQ

. Take

such an I . We have to show that there is an R-path x0, . . . , xn+1 in I such that x0 ∈ StartI , xi ∈ BI
i for 1 ≤ i ≤ n, and

xn+1 ∈ EndI .
First, we construct an auxiliary R-path y0, . . . , yn . We take y0 ∈ StartI and y1 ∈ I0

I by (1) (I = T 1,1). Then we take
y2 ∈ (T 2,1

0)I , . . . , yN ∈ (T N,1
0)I by (2). We now have right(T N,1) = W . By (3), we obtain yN+1 ∈ RowI

1 ∩ StartI . By (9),
yN+1 ∈ RowI

1 ⊆ RowI . We proceed in this way, starting with (5), till the moment we construct yn−1 ∈ (T N,M−1
k)I with

right(T N,M−1) = W , for which we use (8) and (15) to obtain yn ∈ Rowhalt
k ⊆ RowI , for some k. Note that Tk

I ⊆ T̂k
I

by (10),
for a tile type T .

By (12), two cases are possible now:
Case 1: there is y such that (yn, y) ∈ RI and y ∈ EndI . Then we take x0 = y0, . . . , xn = yn, xn+1 = y.
Case 2: there is z1 such that (yn, z1) ∈ RI and z1 ∈ (T halt

k)I , where T = T 1,M and up(T) = C . We then use (13)

and find a sequence z2, . . . , zN , u, v such that zi ∈ (T halt
k)I , where T = T i,M , u ∈ RowI and v ∈ EndI . So we take

x0 = yN+1, . . . , xn−N−1 = yn , xn−N = z1, . . . , xn−1 = zN , and xn = u, xn+1 = v . Note that, by (11) and (16), we have
(T i, j

k)I ⊆ (T̂ i, j−1
(k−1) mod 3)

I .

(⇐) Let qn be such that K2
CQ |= qn . Then I |= qn , for each I ∈ MK2

CQ
. Consider all the pairwise distinct pairs (I, h) such

that I ∈ MK2
CQ

and h is a homomorphism from qn to I . Note that h(qn) contains an or-node σh (which is an instance of

Rowhalt
k , for some k). We call (I, h) and h left if h(xn+1) = σh · w∃R.End , and right otherwise. It is not hard to see that there

exist a left (Il, hl) and a right (Ir, hr) with σhl = σhr (if this is not the case, we can construct I ∈ MK2
CQ

with I �|= qn by
choosing at every or-node σ the left (right) branch if there is no left (respectively, right) homomorphism h from qn such
that h(xn) = σ).

Take (Il, hl) and (Ir, hr) such that σhl = σhr = σ and use them to construct the required tiling. Let σ = aw0 · · · wn .
We have hl(xn+1) = σ · w∃R.End and hl(xn) = σ . Let hr(xn+1) = σ v1 · · · vm+2, which is an instance of End (see Fig. 2). Then
hr(xn) = σ v1 · · · vm+1, which is an instance of Row.

Suppose vm = w∃R.T halt
2

(other ks are treated analogously). By (14), right(T) = W ; by (13), up(T) = C . Suppose wn−1 =
w∃R.Sk . Then k = 1. By (8), right(S) = W . By considering the atom Bn−1(xn−1) in qn , we obtain that both aw0 · · · wn−1 and
σ v1 · · · vm are instances of Bn−1. By (10) and (16), Bn−1 = Ŝ1 and down(T) = up(S).

Suppose vm−1 = w∃R.U halt
2

. By (13), right(U) = left(T) and up(U) = C . Suppose wn−2 = w∃R.Q 1 . By (6), we have right(Q) =
left(S). By considering Bn−2(xn−2) in qn , we obtain that both aw0 · · · wn−2 and σ v1 · · · vm−1 are instances of Bn−2. By (10)
and (16), Bn−2 = Q̂ 1 and down(U) = up(Q).

We proceed in the same way until we reach σ and aw0 · · · wn−N−1, for N = m, both of which are instances of Bn−N−1 =
Row. Thus, we have tiled the two last rows of the grid. We proceed further and tile the whole N × M grid, where M =
n/(N + 1) + 1. �

Next, we define the EL-KB K1
CQ = (T 1

CQ, ACQ). Let �0 = {Row} ∪{T̂k | T ∈ T, k = 0, 1, 2}, and let T 1
CQ contain the following

CIs:

A � ∃P .D, (17)

D � ∃R.D � ∃R.∃R.E � �
X∈�0

X � Start, (18)

E � ∃R.E � �
X∈�0

X � End. (19)

As K1
CQ is an EL-KB, it has a canonical model IK1

CQ
:

Note that the vertical R-successors of the Start-points are not instances of any concept name, and so K1
CQ does not satisfy

any CQ qn . Now let �CQ = sig(K1
CQ). We show that K2

CQ |= q implies K1
CQ |= q, for every �CQ-CQ q without a subquery of

the form qn .

14 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
Fig. 3. A query that contains both Start and End atoms must have variables with empty concept labels.

Lemma 19.
∏

MK2
CQ

is n�CQ-homomorphically embeddable into IK1
CQ

preserving {a}, for all n ≥ 1, iff K2
CQ �|= qm, for all m ≥ 1.

Proof. (⇒) Suppose K2
CQ |= qm for some m. Then

∏
MK2

CQ
|= qm . By assumption,

∏
MK2

CQ
is m�CQ-homomorphically em-

beddable into IK1
CQ

preserving {a}, and so we have IK1
CQ

|= qm , which is clearly impossible because none of the paths of
IK1

CQ
contains the full sequence of symbols mentioned in qm .

(⇐) Suppose K2
CQ �|= qm for all m. Then

∏
MK2

CQ
�|= qm for all m. Take any subinterpretation of

∏
MK2

CQ
whose domain

contains n elements. Recall from the proof of Proposition 6 that we can regard the �CQ-reduct of this subinterpretation
as a Boolean �CQ-CQ, and so denote it by q. Without loss of generality we can assume that q is connected; clearly, q is
tree-shaped. We know that there is no �CQ-homomorphism from qm into q for any m; in particular, q does not have a
subquery of the form qm . We have to show that IK1

CQ
|= q.

If q contains A or P , then they appear at the root of q or, respectively, in the first edge of q. By the structure of K2,
the product

∏
MK2

CQ
does not contain a path from A to End, so q does not contain End and, therefore, can be mapped into

IK1
CQ

. In what follows, we assume that q does not contain A and P (note that D and E also do not occur in q).

If q does not contain Start atoms or q does not contain End atoms, then clearly, IK1
CQ

|= q.

Suppose q contains both Start and End atoms. If there exists an R-path from a Start node to an End node in q then, by
the structure of K2

CQ, the End node is a leaf of q (as End nodes are always leaves in the models from MK2
CQ

) and the Start

node is the root of q (as there are minimal models Il and Ir in Fig. 2, in which the first Start node has no R-predecessor).
Since q does not contain a subquery of the form qm , this R-path should contain variables with the empty �CQ-concept
label, in which case q can be mapped into IK1

CQ
by sending the root of q to the P -successor of a and the rest of the query

so as to map a variable with the empty �CQ-concept label to the vertical R-successor of a Start node.
Now, suppose that q does not contain a (directed) path from a Start node to an End node. Then the Start node is not

the root of q. We denote by qStart the subtree of q generated by this node (see Fig. 3), and by qEnd the path from the root
y0 of q to the End node. By the structure of K2

CQ shown in Fig. 1(a), the projection of y0 onto every minimal model of
K2

CQ is of the form δ · w∃R.T first . We prove that qEnd must have at least one intermediate node with the empty �CQ-concept
label. Indeed, suppose to the contrary that each intermediate variable x in qEnd appears in an atom of the form B(x), for
B ∈ {T̂k | k = 0, 1, 2} ∪{Row}. Since K2

CQ |= qEnd , it follows that there is some k such that the distance between two neighbour
Row nodes in qEnd is k. Let Il and Ir be the minimal models that satisfy (12) by picking the first and the second disjunct,
respectively, and identical, otherwise (see Fig. 3). Suppose that Il satisfies qEnd by mapping y0 to σl of the form δ · w∃R.T first

and Ir satisfies qEnd by mapping y0 to σr of the form σl · · · w∃R.T first . Then the distance between σl and σr is k. Let t be
the distance from y0 to the first Row node yt . If t ≤ k, then yt should be mapped to σ ′ that is a predecessor of σr in Il
or σr itself. However, such a map is not possible as the �CQ-label of σ ′ does not contain Row (only a concept of the form
T̂0), and we get a contradiction. In the case t > k, the argument is similar; one needs to observe that the structure of K2

CQ
(in particular, (4), (7), (10)) makes it impossible to map y0, . . . , yt onto the common part of Il and Ir in such a way that
hr(yi) = hl(yi)σ with |σ | = k. Thus, we conclude that q can be homomorphically mapped to IK1

CQ
as follows: y0 goes to

aw∃P .D , qStart to the infinite path of Start nodes, and qEnd so as to map a variable with the empty �CQ-concept label to the
vertical successor of a Start node. �

As an immediate consequence of Lemmas 18 and 19 and the characterisation of �-CQ-entailment given in Theorem 17
(3), we obtain:

Theorem 20. The problem whether an EL KB �-CQ entails an ALC KB is undecidable.

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 15
We now modify the KBs constructed in the proof of Theorem 20 to show undecidability of �-CQ-inseparability.

Theorem 21. �-CQ inseparability between EL and ALC KBs is undecidable.

Proof. We set K2 =K2
CQ ∪K1

CQ and show that the following conditions are equivalent:

(1) K1
CQ �CQ-CQ entails K2

CQ;

(2) K1
CQ and K2 are �CQ-CQ inseparable.

Let IK1
CQ

be the canonical model of K1
CQ and MK2

CQ
the set of minimal models of K2

CQ. One can easily show that the
following set MK2 is complete for K2:

MK2 = { I � IK1
CQ

| I ∈ MK2
CQ

},
where I �IK1

CQ
is the interpretation that results from merging the roots a of I and IK1

CQ
. Now, the implication (2) ⇒ (1) is

trivial. For the converse direction, suppose K1
CQ �CQ-CQ entails K2

CQ. It follows that K2 �CQ-CQ entails K1
CQ. So it remains

to show that K1
CQ �CQ-CQ entails K2. Suppose this is not the case and there is a �CQ-CQ q such that K2 |= q and K1

CQ �|= q.
We can assume q to be a smallest connected CQ with this property; in particular, no proper sub-CQ of q separates K1

CQ and
K2. Now, we cannot have K2

CQ |= q because this would contradict the fact that K1
CQ �CQ-CQ entails K2

CQ. Then K2
CQ �|= q, and

so there is I ∈ MK2
CQ

such that I �|= q. On the other hand, we have I � IK1
CQ

|= q. Take a homomorphism h : q → I � IK1
CQ

.
As q is connected, I �|= q and IK1

CQ
�|= q, there is a variable x in q such that h(x) = a. For every variable x with h(x) = a, we

remove ∃x from the prefix of q if any. Denote by q′ the maximal sub-CQ of q such that h(q′) ⊆ I (more precisely, S(y) ∈ q
is in q′ iff h(y) ⊆ �I). Clearly, q′ � q and K2 |= q′ . Denote by q′′ the complement of q′ to q. Obviously, h(q′′) ⊆ IK1

CQ
.

Now, we either have K1
CQ |= q′ or K1

CQ �|= q′ . The latter case contradicts the choice of q because q′ is a proper sub-CQ
of q. Thus, K1

CQ |= q′ , and so there is a homomorphism h′ : q′ → IK1
CQ

with h′(x) = a, for every free variable x. Define a
map g : q → IK1

CQ
by taking g(y) = h′(y) if y is in q′ and g(y) = h(y) otherwise. The map g is a homomorphism because

all the variables that occur in both q′ and q′′ are free and must be mapped by g to a. Therefore, IK1
CQ

|= q, which is a
contradiction. �

Observe that our undecidability proof does not work for UCQs as the UCQ composed of the two disjunctive branches
shown in Fig. 2 (for non-trivial instances) distinguishes between the KBs independently of the existence of a tiling. In
Section 5, we show that, for UCQs, entailment is decidable.

4.2. Undecidability of rCQ-entailment and inseparability with respect to a signature �

It is not difficult to see that the KBs K1
CQ and K2

CQ constructed in the undecidability proof for CQ-entailment cannot be
used to prove undecidability of rCQ-entailment. In fact, K1

CQ �CQ-rCQ entails K2
CQ, for any instance of the rectangle tiling

problem. We now sketch how the KBs defined above can be modified to show that rCQ-entailment and inseparability are
indeed undecidable. Detailed proofs are given in the appendix.

Theorem 22. (i) The problem whether an EL KB �-rCQ entails an ALC KB is undecidable.
(ii) �-rCQ inseparability between EL and ALC KBs is undecidable.

Proof. For (i), we do not use the role name P but add R(a, a) and Row(a) to the ABox {A(a)}. The CQs qn are modified by
adding a conjunct R(y, x0) with answer variable y to qn . In more detail, suppose that an instance T of the rectangle tiling
problem is given. Let

ArCQ = {R(a,a),Row(a), A(a)} ∪ {T̂0(a) | T ∈ T}, (20)

let T 2
rCQ contain the CIs (5)–(16) of T 2

CQ as well as

A � ∃R.(Row � ∃R.I0), (21)

and let K2
rCQ = (T 2

rCQ, ArCQ). Note that the loop R(a, a) in ArCQ plays roughly the same role as the path between two
Start-points in the previous construction (see Fig. 2). The existence of a tiling can now be checked by the rCQs

16 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
Fig. 4. The structure of models Il and Ir of K2, and homomorphisms hl : qr
n → Il and hr : qr

n → Ir .

qr
n(y) = ∃x

(
R(y, x0) ∧

n∧
i=0

(
R(xi, xi+1) ∧ Bi(xi)

) ∧ End(xn+1)
)
,

where Bi ∈ {Row} ∪ {T̂k | T ∈ T, k = 0, 1, 2}, for which we have an analogue of Lemma 18 for K2
rCQ. The structure of the two

homomorphisms is shown in Fig. 4. Note that the CQ encodes the first row two times. Now, we take K1
rCQ = (T 1

rCQ, ArCQ),
where T 1

rCQ contains the following CIs (recall that we set �0 = {Row} ∪ {T̂k | T ∈ T, k = 0, 1, 2}):

A � ∃R.D � ∃R.∃R.E, (22)

D � ∃R.D � ∃R.∃R.E � �
X∈�0

X, (23)

E � ∃R.E � �
X∈�0

X � End. (24)

The canonical model IK1
rCQ

of K1
rCQ is shown below:

We set �rCQ = sig(K1
rCQ). Again, one can show Lemma 19 for K1

rCQ and K2
rCQ. The proof of (ii) is similar to the non-rooted

case and given in the appendix. �
4.3. Undecidability of (r)CQ-entailment and inseparability for full signature

The KBs used in the undecidability proofs above trivially do not �-CQ-entail each other for the full signature �. For
example, the answer to the CQ ∃y∃z (P (a, y) ∧ R(y, z) ∧ Ifirst(z)) is ‘yes’ over K2

CQ and ‘no’ over K1
CQ. To establish undecid-

ability results for separating CQs with arbitrary symbols, we modify the KBs constructed above. We follow [57] and replace
the non-�-symbols by complex ALC-concepts that, in contrast to concept names, cannot occur in CQs. Let � be a set of
concept names. For any B ∈ �, let Z B be a fresh concept name and let R B and S B be fresh role names. The abstraction of B
is the ALC-concept

H B = ∀R B .∃S B .¬Z B .

The �-abstraction C↑� of a (possibly compound) concept C is obtained from C by replacing every B ∈ � with H B . The
�-abstraction T ↑� of a TBox T is obtained from T by replacing all concepts in T with their �-abstractions. We associate
with � an auxiliary TBox

T ∃
� = { � � ∃R B .�, � � ∃S B .Z B | B ∈ � }

and call T ↑� ∪ T ∃
� the enriched �-abstraction of T for �. In what follows, we are going to replace TBoxes T with their

enriched �-abstractions. We say that a TBox T admits trivial models if any interpretation I with XI = ∅, for any concept or
role name X , is a model of T . The TBoxes used in the undecidability proofs above admit trivial models.

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 17
Theorem 23. Suppose K1 = (T1, A) and K2 = (T2, A) are ALC KBs and � a signature such that sig(A) ⊆ �, � = sig(T1 ∪ T2) \ �

contains no role names, and T1 and T2 admit trivial models. Let K↑�

i = (T ↑�

i ∪ T ∃
� , A), for i = 1, 2. Then the following conditions are

equivalent:

(1) K1 �-(r)CQ entails K2;
(2) K↑�

1 full signature (r)CQ entails K↑�
2 .

Proof. We start by defining the �-abstraction I↑� and the �-instantiation I↓� of an interpretation I . The latter is defined
in the same way as I except that BI↓� = H B

I , for all B ∈ �. It is straightforward to show the following.

Fact 1. For all ALC concepts D over the signature sig(K1 ∪ K2) and all d ∈ �I , we have d ∈ DI↓�
iff d ∈ (D↑�)I . In

particular, if I is a model of K↑�

i , then I↓� is a model of Ki , for i = 1, 2.

We now define the interpretation I↑� . The domain �I↑�
of I↑� is the set of words w = dv1 · · · vn such that d ∈ �I and

vi ∈ {R B , S B , ̄S B | B ∈ �}, where vi �= S̄ B if either (i) i > 2 or (ii) i = 2 and d �∈ BI or v1 �= R B . Then

AI↑� = AI , for all concept names A ∈ sig(K1 ∪K2) \ �;

BI↑� = ∅, for all concept names B ∈ �;

Z B
I↑� = Z B

I ∪ {w | tail(w) = S B}, for all concept names B ∈ �;

SI
↑� = SI , for all role names S �∈ {R B , S B | B ∈ �};

R B
I↑� = R B

I ∪ {(w, w R B) | w R B ∈ �I↑�}, for all concept names B ∈ �;

S B
I↑� = S B

I ∪ {(w, w S B) | w S B ∈ �I↑�} ∪ {(w, w S̄ B) | w S̄ B ∈ �I↑�}, for all concept names B ∈ �.

By the construction of I↑� , we have H B
I↑� = BI , for all concept names B ∈ �. For the interpretation I below consisting

of two elements d1 and d2 with d1 ∈ BI and d2 ∈ (¬B)I and � = {B}, the �-abstraction I↑� can be depicted as follows,
where the grey points correspond to the words of the form w S̄ B :

Fact 2. For all ALC concepts D over the signature sig(K1 ∪K2) and all d ∈ �I , we have d ∈ (D↑�)I
↑�

iff d ∈ DI . Moreover,
if I is a model of Ki , then I↑� is a model of K↑�

i , for i = 1, 2.

Proof of Fact 2. For the ‘moreover’-part, observe that, for C � D ∈ Ti and d ∈ �I , we have that d ∈ (C↑�)I
↑�

implies d ∈
(D↑�)I

↑�
by the first part of Fact 2. For d ∈ �I↑� \ �I , observe that d �∈ HI↑�

B for any B ∈ �, d �∈ AI↑�
and any concept

name A ∈ sig(K1 ∪K2), and (d, d′) �∈ RI↑�
for any d′ and role name R ∈ sig(K1 ∪K2). Thus, if C � D ∈ Ti and d ∈ CI↑�

then
it follows from the condition that Ti admits trivial models that d ∈ DI↑�

. Thus I↑� is a model of T ↑�

i . Since I↑� is a model
of T ∃

� by construction, it follows that I↑� is a model of T ↑�

i ∪ T ∃
� .

We collect further basic properties of the interpretations I↑� and I↓� . In the formulation and proofs of Facts 3–6 below,
the homomorphisms are always constructed in such a way that individual names are preserved. For simplicity, we do not
state this explicitly.

Fact 3. Let I, J be interpretations and n > 0. If I is n-homomorphically embeddable into J , then I↑� is n-homomorphically
embeddable into J ↑� .

Proof of Fact 3. Suppose n > 0 and I is n-homomorphically embeddable into J . Let I ′ be a subinterpretation of I↑� with
|�I ′ | ≤ n. For the subinterpretation I ′′ of I induced by �0 = �I ∩ �I ′

, there exists a homomorphism h0 from I ′′ to J .
We extend h0 to a homomorphism h from I ′ to J ↑� inductively as follows. Suppose d ∈ �I ′ \ �I and h(d) has not yet
been defined, but there is no R B or S B -predecessor of d in I↑� for which h(d) has not been defined. We distinguish three

18 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
cases (which are mutually exclusive by the construction of I↑�). If (i) h(d′) has been defined for an R B -predecessor d′ of
d in I ′ , then choose an R B -successor e of h(d′) in J ↑� and set h(d) = e. Observe that such an R B -successor exists by the
construction of J ↑� . If (ii) h(d′) has been defined for an S B -predecessor d′ of d in I ′ , then choose an S B -successor e of
h(d′) in J ↑� such that e ∈ Z B

J ↑�
and set h(d) = e. Again such an S B -successor exists by the construction of J ↑� . (iii) There

does not exist any R B or S B -predecessor of d in I ′ for which h has been defined. In this case, choose h(d) arbitrarily in
J ↑� such that if d ∈ Z B

I↑�
, then h(d) ∈ Z B

J ↑�
. Such a d exists since Z B

J ↑� �= ∅. The resulting map is a homomorphism
from I ′ to J ↑� .

Fact 4. Let I be a model of K↑� , for K ∈ {K1, K2}. Then (I↓�)↑� is homomorphically embeddable into I .

Proof of Fact 4. Let h0 be the identity mapping from I↓� to I (observe that �I↓� = �I). One can now extend h0 to a
homomorphism h from (I↓�)↑� to I in the same way as in the construction of h in the proof of Fact 3 above.

Fact 5. Let K ∈ {K1, K2}. If M is complete for K, then {I↑� | I ∈ M} is complete for K↑� .

Proof of Fact 5. Suppose J is a model of K↑� . By Proposition 6, it suffices to show that, for any n > 0, there is I ∈ M such
that I↑� is n-homomorphically embeddable into J . Fix n > 0 and consider the interpretation J ↓� . By Fact 1, J ↓� is a
model of K and so there exists a model I of K such that I is n-homomorphically embeddable into J ↓� . But then, by
Fact 3, I↑� is n-homomorphically embeddable into (J ↓�)↑� which, by Fact 4, itself is homomorphically embeddable into
J . Thus, I↑� is n-homomorphically embeddable into J . By Fact 2, I↑� is a model of K↑� .

Fact 6. Let M i be families of interpretations with XI = ∅, for all I ∈ M i and all concept and role names X with X �∈ sig(Ki),
i = 1, 2. Then the following conditions are equivalent:

(a)
∏

M2 is n�-homomorphically embeddable into
∏

M1, for all n > 0;
(b)

∏{I↑� | I ∈ M2} is n-homomorphically embeddable into
∏{I↑� | I ∈ M1}, for all n > 0.

Proof of Fact 6. Suppose M1 = {Ii | i ∈ I} and M2 = {J j | j ∈ J }.

Assume first that (a) holds and let J is a subinterpretation of
∏{J ↑�

j | j ∈ J } with |�J | ≤ n. We have to construct a
homomorphism from J to

∏{I↑�

i | i ∈ I}. There is a �-homomorphism h0 from the subinterpretation J ′ of
∏

M2 induced
by �J ∩ �

∏
M2 to

∏
M1. By definition, h0 is a homomorphism from the subinterpretation J ′′ of

∏{J ↑�

j | j ∈ J } induced
by �J ∩ �

∏
M2 to

∏{I↑�

i | i ∈ I} (the only difference between J ′ and J ′′ is that BJ ′′ = ∅ for all B ∈ �). Following the
proof of Fact 3, one can now expand h0 to a homomorphism h from J to

∏{I↑�

i | i ∈ I}.
Conversely, assume that (b) holds and assume that J is a subinterpretation of

∏
M2 with |�J | ≤ n. We have to

construct a �-homomorphism from J to
∏

M1. There is a �-homomorphism h0 from the subinterpretation J ′ of ∏{J ↑�

j | j ∈ J } induced by �J to
∏{I↑�

i | i ∈ I}. To obtain from h0 the required �-homomorphism h, we have to re-define

h0(d) for any d with h0(d) ∈ �
∏{I↑�

i | i∈I} \ �
∏

M1 . Consider such a d. Observe that h0(d) �∈ B
∏{I↑�

i | i∈I} for any concept
name B ∈ � and h0(d) is not in the range or domain of any R

∏{I↑�
i | i∈I} for any role name R ∈ �. But then, since h0 is

a �-homomorphism, d �∈ BJ for any concept name B ∈ � and d is not in the range or domain of RJ for any role name
R ∈ �. Thus, we can choose h(d) arbitrarily in �

∏
M1 and obtain the required �-homomorphism.

For CQs, Theorem 23 now follows directly from Theorem 17 (3) and Facts 5 and 6. Note that we can consider sets M i of
interpretations that are complete for Ki such that XI = ∅, for all I ∈ M i and all concept and role names X with X �∈ sig(Ki),
i = 1, 2. For rCQs, we use Theorem 17 (4). �

Now, to prove undecidability of full signature (r)CQ entailment and inseparability, we apply Theorem 23 to the KBs
constructed in the proofs of Theorems 20, 21 and 22. Note that the KBs (K1

CQ)↑� with � = sig(K1
CQ ∪ K2

CQ) \ �CQ and
(K1

rCQ)↑� with � = sig(K1
rCQ ∪K2

rCQ) \ �rCQ are still EL-KBs since �CQ = sig(K1
CQ) and �rCQ = sig(K1

rCQ).

Theorem 24. (i) The problem whether an EL KB full signature-(r)CQ entails an ALC KB is undecidable.
(ii) Full signature-(r)CQ inseparability between EL and ALC KBs is undecidable.

5. Decidability of (r)UCQ-entailment and inseparability for ALC KBs

We show that, in sharp contrast to the case of (r)CQs, �-(r)UCQ-entailment and inseparability of ALC KBs are decidable
and 2ExpTime-complete. We start by proving a new model-theoretic criterion for �-(r)UCQ entailment that replaces finite
partial �-homomorphisms by �-homomorphisms and uses the class of regular forest-shaped models for the entailing KB
K1 and the class of forest-shaped models for the entailed KB K2 . We then encode this characterisation into an emptiness
problem for two-way alternating parity automata on infinite trees (2APTAs) by constructing a 2APTA that accepts (represen-
tations of) forest-shaped models of the entailing KB into which there is no �-homomorphism from any forest-shaped model
of the entailed KB. Rabin’s result that such an automaton accepts a regular model iff it accepts any model will then yield

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 19
the desired 2ExpTime upper bound for (r)UCQ-entailment. Matching lower bounds are proved by a reduction of the word
problem for exponentially space bounded alternating Turing machines. Finally, we show that the same tight complexity
bounds still hold in the full signature case.

5.1. Model-theoretic characterisation of (r)UCQ-entailment based on regular models

We show that finite partial homomorphisms can be replaced by homomorphisms in the characterisation of �-(r)UCQ
entailment between ALC-KBs given in Theorem 17 if one considers regular forest-shaped models of the entailing KB K1
and forest-shaped models of the entailed KB K2. Recall that, by Proposition 9, the class M reg

K of regular forest-shaped models
of outdegree ≤ |T | is complete for any ALC-KB K = (T , A). We also show that if � contains all role names in the entailed
KB, then �-rUCQ entailment coincides with �-UCQ entailment. This allows us to transfer our 2ExpTime lower bound from
the non-rooted to the rooted case.

Theorem 25. Let K1 and K2 be ALC-KBs and � a signature.

(1) K1 �-UCQ entails K2 iff, for any I1 ∈ M reg
K1

, there exists I2 ∈ Mbo
K2

that is �-homomorphically embeddable into I1 preserving
ind(K2).

(2) K1 �-rUCQ entails K2 iff, for any I1 ∈ M reg
K1

, there exists I2 ∈ Mbo
K2

that is con-�-homomorphically embeddable into I1 pre-
serving ind(K2).

Proof. We only prove (1) as the proof of (2) is similar. The direction (⇐) follows from Theorem 17 and the facts that M reg
K1

and Mbo
K2

are complete for K1 and K2, respectively (Propositions 8 and 9). To show (⇒), suppose that K1 �-UCQ entails
K2 and let I1 ∈ M reg

K1
. We construct I2 ∈ Mbo

K2
and a �-homomorphism h from I2 to I1 preserving ind(K2). By Theorem 17

(1) and Propositions 8 and 9, we have

(∗) for any n > 0, there exists a model J ∈ Mbo
K2

that is n�-homomorphically embeddable into I1 preserving ind(K2).

Denote by J|≤n the subinterpretation of an interpretation J ∈ Mbo
K2

induced by the domain elements of J connected to
ABox individuals in ind(K2) by paths of role names (possibly not in �) of length ≤ n. A (�, n)-homomorphism h from J to I1
preserving ind(K2) is a �-homomorphism preserving ind(K2) whose domain is a finite subinterpretation of J that contains
J|≤n . Let
n be the class of pairs (J , h) with J ∈ Mbo

K2
and h a (�, n)-homomorphism from J to I1. By (∗), all
n are

non-empty. We may assume that for (I, h), (J , f) ∈ ⋃
n≥0
n , if I|≤n and J|≤n are isomorphic then I|≤n = J|≤n , for all

n ≥ 0. We define classes �n ⊆ ⋃
m≥n
m , n ≥ 0, with �0 ⊇ �1 ⊇ · · · such that the following conditions hold:

(a) �n ∩
m �= ∅ for all m ≥ n;
(b) I|≤n =J|≤n and h|≤n = f |≤n for all (I, h), (J , f) ∈ �n (here and below, h|≤n denotes the restriction of h to I|≤n).

Let �0 be the set of all pairs (J , h) such that (J , h) ∈
0. Our assumptions imply that �0 has the properties (a) and (b)
because h(aJ) = aI holds for every �-homomorphism h preserving ind(K2) and all ABox individuals a ∈ ind(K2). Suppose
now that �n is defined and satisfies (a) and (b). Define an equivalence relation ∼ on �n ∩ (

⋃
m≥n+1
m) by setting (I, h) ∼

(J , f) if I|≤n+1 =J|≤n+1 and, for all x ∈ �J|≤n+1 \�J|≤n , the following holds: h(x) and f (x) are always roots of isomorphic
ditree subinterpretations of I1 and if, in addition, either h(x) ∈ ind(K1) or f (x) ∈ ind(K1), or there is a y ∈ �J|≤n such that x
is an R-successor of y in J|≤n+1, for some role name R ∈ �, then h(x) = f (x). By the finite outdegree and regularity of I1,
the properties (a) and (b) of �n , and the finite outdegree of all J such that (J , h) ∈
n , the number of equivalence classes
for ∼ is finite. Hence there exists an equivalence class � satisfying (a). Clearly, we can modify the (�, n)-homomorphisms
h, f in the pairs (I, h), (J , f) ∈ � in such a way that h(x) = f (x) holds for all x ∈ �J|≤n+1 \ �J|≤n while preserving the
remaining properties of �. The resulting set of pairs satisfies (a) and (b).

We define an interpretation I2 as the union of all J|≤n such that there exists (J , h) ∈ �n , n ≥ 0:

�I2 =
⋃
n≥0

{
�J|≤n | ∃h (J ,h) ∈ �n

};
AI2 =

⋃
n≥0

{
AJ|≤n | ∃h (J ,h) ∈ �n

}
, for all concept names A;

RI2 =
⋃
n≥0

{
RJ|≤n | ∃h (J ,h) ∈ �n

}
, for all role names R.

Using Conditions (a) and (b) and the fact that the sequence �0, �1, · · · is decreasing, it is straightforward to show that
I2 ∈ Mbo

K2
. Define a function h from I2 to I1 by setting

h =
⋃ {

h|≤n | ∃J (J ,h) ∈ �n
}
.

n≥0

20 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
It follows from Condition (b) that h is well defined. It is readily checked that h is a �-homomorphism from I2 to I1
preserving ind(K2). �
Lemma 26. Let K1 and K2 be ALC-KBs and � a signature containing all role names in sig(K2). Then K1 �-UCQ entails K2 iff K1
�-rUCQ entails K2.

Proof. Suppose K1 �-rUCQ entails K1. By Theorem 25, it suffices to prove that, for any I1 ∈ M reg
K1

, there exists I2 ∈ Mbo
K2

that is �-homomorphically embeddable into I1 preserving ind(K2). By Theorem 25, we know that, for any I1 ∈ M reg
K1

,
there exists I2 ∈ Mbo

K2
that is con-�-homomorphically embeddable into I1 preserving ind(K2). Moreover, as � contains

the role names in sig(K2), we may assume that every u ∈ �I2 is �-connected to the ABox A2 of K2. But then I2 is
con-�-homomorphically embeddable into I1 preserving ind(K2) iff it is �-homomorphically embeddable into I1 preserving
ind(K2), as required. �
5.2. 2ExpTime upper bound for (r)UCQ-entailment with respect to signature �

We use the model-theoretic criterion of Theorem 25 to prove a 2ExpTime upper bound for (r)UCQ-entailment between
ALC-KBs with respect to a signature �. We focus on the non-rooted case and then discuss the modifications required for
the rooted one. Let K1, K2 be ALC-KBs and � a signature. We aim to check if there is a model I1 ∈ M reg

K1
into which no

model I2 ∈ Mbo
K1

is �-homomorphically embeddable. In the following, we construct an automaton A that accepts (a suitable
representation of) the desired models I1. It then remains to check whether the language L(A) accepted by A is non-empty.
Note that L(A) contains also non-regular models, but a well-known result by Rabin [58] implies that, if L(A) is non-empty,
then it contains a regular model, which is sufficient for our purposes.

We use two-way alternating parity automata on infinite trees (2APTAs) and encode forest-shaped interpretations as
labelled trees to make them inputs to 2APTAs. Let N denote the positive integers. A tree is a non-empty (possibly infinite)
set T ⊆N∗ closed under prefixes. The node ε is the root of T . As a convention, for x ∈N∗ , we take x ·0 = x and (x · i) ·−1 = x.
Note that ε · −1 is undefined. We say that T is m-ary if, for every x ∈ T , the set {i | x · i ∈ T } is of cardinality exactly m.
Without loss of generality, we assume that all nodes in an m-ary tree are from {1, . . . , m}∗ .

We use [m] to denote the set {−1, 0, . . . , m} and, for any set X , let B+(X) denote the set of all positive Boolean formulas
over X , i.e., formulas built using conjunction and disjunction over the elements of X used as propositional variables, and
where the special formulas true and false are allowed as well. For an alphabet �, a �-labelled tree is a pair (T , L), where T
is a tree and L : T → � a node labelling function.

Definition 27. A two-way alternating parity automaton (2APTA) on infinite m-ary trees is a tuple A = (Q , �, δ, q0, c), where
Q is a finite set of states, � a finite alphabet, δ : Q × � → B+(tran(A)) the transition function with the set of transitions
tran(A) = [m] × Q , q0 ∈ Q the initial state, and c : Q →N is the acceptance condition.

Intuitively, a transition (i, q) with i > 0 means that a copy of the automaton in state q is sent to the i-th successor of
the current node. Similarly, (0, q) means that the automaton stays at the current node and switches to state q, and (−1, q)

indicates moving to the predecessor of the current node.

Definition 28. A run of a 2APTA A = (Q , �, δ, q0, c) on an infinite �-labelled tree (T , L) is a T × Q -labelled tree (Tr, r) such
that the following conditions are satisfied:

– r(ε) = (ε, q0);
– if y ∈ Tr , r(y) = (x, q), and δ(q, L(x)) = ϕ , then there is a (possibly empty) set Q = {(c1, q1), . . . , (cn, qn)} ⊆ tran(A) such

that Q satisfies ϕ and, for 1 ≤ i ≤ n, x · ci is a node in T , and there is a y · i ∈ Tr such that r(y · i) = (x · ci, qi).

We say that (Tr, r) is accepting if in all infinite paths y1 y2 · · · of Tr , min({c(q) | r(yi) = (x, q) for infinitely many i}) is even.
An infinite �-labelled tree (T , L) is accepted by A if there is an accepting run of A on (T , L). We use L(A) to denote the
set of all infinite �-labelled trees accepted by A.

We require the following results from automata theory:

Theorem 29 ([58,59]).

1. Given a 2APTA A, one can construct in polynomial time a 2APTA B with L(B) = L(A).
2. Given a constant number of 2APTAs A1, . . . , Ac , one can construct in polynomial time a 2APTA A such that L(A) = L(A1) ∩ · · · ∩

L(Ac).

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 21
3. Emptiness of 2APTAs can be decided in time single exponential in the number of states.
4. For any 2APTA A, L(A) �= ∅ implies that L(A) contains a regular tree.

Now, let � be the alphabet with symbols from the set

{root, empty} ∪ (ind(K1) × 2CN(T1)) ∪ (RN(T1) × 2CN(T1)),

where CN(Ti) (respectively, RN(Ti)) denotes the set of concept (respectively, role) names in Ti . We represent forest-shaped
models of T1 as m-ary �-labelled trees, with m = max(|T1|, |ind(K1)|). The root node labelled with root is not used in the
representation. Each ABox individual is represented by a successor of the root labelled with a symbol from ind(K1) ×2CN(T1);
non-ABox elements are represented by nodes deeper in the tree labelled with a symbol from RN(T1) × 2CN(T1) . The label
empty is used for padding to make sure that every tree node has exactly m successors.

We call a �-labelled tree proper if it satisfies the following conditions:

– the root is labelled with root;
– for every a ∈ ind(A1), there is exactly one successor of the root that is labelled with a symbol from {a} × 2CN(T1); all of

the remaining successors of the root are labelled with empty;
– all other nodes are labelled with a symbol from RN(T1) × 2CN(T1) or with empty;
– if a node is labelled with empty, then so are all of its successors.

A proper �-labelled tree (T , L) represents the following interpretation I(T ,L):

�I(T ,L) = ind(A1) ∪ {x ∈ T | |x| > 1 and L(x) �= empty},
AI(T ,L) = {a | ∃x ∈ T : L(x) = (a, t) with A ∈ t} ∪ {x ∈ T | L(x) = (R, t) with A ∈ t},
RI(T ,L) = {(a,b) | R(a,b) ∈A1} ∪

{(a, i j) | i j ∈ T , L(i) = (a, t1), and L(i j) = (R, t2)} ∪
{(x, xi) | xi ∈ T , L(x) = (S, t1), and L(xi) = (R, t2)}.

Note that I(T ,L) is a forest-shaped interpretation of outdegree at most |T1| that satisfies all required conditions to qualify
as a forest-shaped model of T1 except that it need not satisfy T1. In addition, the interpretation I(T ,L) is regular iff the tree
(T , L) is regular (has, up to isomorphisms, only finitely many rooted subtrees). Conversely, every model I ∈ Mbo

K1
can be

represented as a proper m-ary �-labelled tree. Note that the assertions from A1 are not explicitly represented in (T , L), but
readded in the construction of I(T ,L) .

The required 2APTA A is assembled from the following three automata:

– a 2APTA A0 that accepts an m-ary �-labelled tree iff it is proper;
– a 2APTA A1 that accepts a proper m-ary �-labelled tree (T , L) iff I(T ,L) is a model of T1;
– a 2APTA A2 that accepts a proper m-ary �-labelled tree (T , L) iff there is a model I2 ∈ Mbo

K2
that is �-homomorphically

embeddable into I(T ,L) preserving ind(K2).

The following result shows that we would achieve our goal once we have constructed A0, A1, and A2 and then define A in
such a way that L(A) =L(A0) ∩L(A1) ∩L(A2).

Lemma 30. The following conditions are equivalent:

(1) L(A0) ∩L(A1) ∩L(A2) = ∅,
(2) for each model I1 ∈ Mbo

K1
, there exists a model I2 ∈ Mbo

K2
that is �-homomorphically embeddable into I1 preserving ind(K2),

(3) for each regular model I1 ∈ Mbo
K1

, there exists a model I2 ∈ Mbo
K2

that is �-homomorphically embeddable into I1 preserving
ind(K2),

(4) K1 �-UCQ-entails K2.

Proof. (1) ⇔ (2) follows from the properties of A0, A1, A2; (1) ⇔ (3) follows from the properties of A0, A1, A2, and
Rabin’s Theorem [58]; and (3) ⇔ (4) is Theorem 25. �

The construction of A0 is trivial and left to the reader. The construction of A1 is quite standard [51]. Let CT1 be the
negation normal form (NNF) of the concept

� (¬C 	 D)

C�D∈T1

22 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
and let cl(CT1) denote the set of subconcepts of CT1 , closed under single negation. Now, the 2APTA A1 = (Q , �, δ, q0, c) is
defined by setting

Q = {q0,q1,q∅} ∪ {qa,C ,qC ,qR ,q¬R | a ∈ ind(A1), C ∈ cl(CT1), R ∈ RN(T1)}
and defining the transition function δ as follows:

δ(q0, root) =
m∧

i=1

(i,q1),

δ(q1, �) = ((0,q∅) ∨ (0,qCT1)) ∧
m∧

i=1

(i,q1),

δ(q∃R.C , (a, U)) =
m∨

i=1

((i,qR) ∧ (i,qC)) ∨
∨

R(a,b)∈A1

(−1,qb,C),

δ(q∀R.C , (a, U)) =
m∧

i=1

((i,q∅) ∨ (i,q¬R) ∨ (i,qC)) ∧
∧

R(a,b)∈A1

(−1,qb,C),

δ(q∃R.C , (S, U)) =
m∨

i=1

((i,qR) ∧ (i,qC)),

δ(q∀R.C , (S, U)) =
m∧

i=1

((i,q∅) ∨ (i,q¬R) ∨ (i,qC)),

δ(qC�C ′
, (x, U)) = (0,qC) ∧ (0,qC ′

),

δ(qC	C ′
, (x, U)) = (0,qC) ∨ (0,qC ′

),

δ(qa,C , root) =
m∨

i=1

(i,qa,C),

δ(qa,C , (a, U)) = (0,qC),

δ(qA, (x, U)) = true, if A ∈ U ,

δ(q¬A, (x, U)) = true, if A /∈ U ,

δ(qR , (R, U)) = true,

δ(q¬R , (S, U)) = true, if R �= S,

δ(q∅, empty) = true,

δ(q, �) = false, for all other q ∈ Q , � ∈ �.

Here x in the labels (x, U) stands for an individual a or for a role name S , and � in the second transition is any label
from �. The acceptance condition c is trivial (c(q) = 0 for all q ∈ Q). It is standard to show that A1 accepts the desired tree
language.

To construct A2, we use the notation introduced in the proof of Proposition 9. Note that the set type(T2) of T2-types can
be computed in time single exponential in |K2|. A completion of K2 is a function τ : ind(A2) → type(T2) such that, for any
a ∈ ind(A2), the KB(

T2 ∪
⋃

a∈ind(A2),C∈τ (a)

{Aa � C}, A∪
⋃

a∈ind(A2)

{Aa(a)})
is consistent, where Aa is a fresh concept name for each a ∈ ind(A2). Denote by compl(K2) the set of all completions of K2;
it can be computed in time single exponential in |K2|.

We now construct the 2APTA A2. It is easy to see that if there is an assertion R(a, b) ∈ A2 \ A1 with R ∈ �, then no
model of K2 is �-homomorphically embeddable into a forest-shaped model of K1 preserving ind(K2). In this case, we
choose A2 so that it accepts the empty language. Suppose there is no such assertion. It is easy to see that any model I2

of K2 such that some a ∈ ind(K2) \ ind(K1) occurs in SI2 , for some symbol S ∈ �, is not �-homomorphically embeddable
into a forest-shaped model of K1 preserving ind(K2). For this reason, we should only consider completions of K2 such that,
for all a ∈ ind(K2) \ ind(K1), τ (a) contains no �-concept names and no existential restrictions ∃R.C with R ∈ �. We use
complok(K2) to denote the set of all such completions. We define the 2APTA A2 = (Q , �, δ, q0, c) by setting

Q = {q0} ∪ {qa,t ,qR,t , f t | a ∈ ind(A1), t ∈ type(T2), R ∈ RN(T2) ∩ �}
and defining the transition function δ as follows:

δ(q0, root) =
∨

τ∈complok(K2)

∧
a∈ind(A2)∩ind(A1)

m∨
i=1

(i,qa,τ (a)),

δ(qa,t , (a, U)) =
∧

∃R.C∈t
R∈�

∨
s∈succ∃R.C (t)

(m∨
i=1

(i,qR,s) ∨
∨

R(a,b)∈A1

(−1,qb,s)
)

∧
∧

∃R.C∈t
R /∈�

∨
s∈succ∃R.C (t)

(0, f s),

δ(qS,t , (S, U)) =
∧

∃R.C∈t
R∈�

∨
s∈succ∃R.C (t)

m∨
i=1

(i,qR,s) ∧
∧

∃R.C∈t
R /∈�

∨
s∈succ∃R.C (t)

(0, f s),

where the last two transitions are subject to the conditions that every �-concept name in t is also in U ,

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 23
δ(f t , (v, U)) = (0,qv,t) ∨
m∨

i=1

(i, f t) ∨ (−1, f t),

δ(f t , root) =
m∨

i=1

(i, f t),

δ(qa,t , root) =
m∨

i=1

(i,qa,t),

δ(q, �) = false, for all other q ∈ Q and � ∈ �,

where v is an individual a or a role name S . Note that the states f t are used to find non-deterministically the homomorphic
image of �-disconnected successors in the tree. Finally, we set c(q) = 0 for q ∈ {q0, qa,t , qR,t} and c(f t) = 1.

Lemma 31. (T , L) ∈ L(A2) iff there is a model I2 ∈ Mbo
K2

such that I2 is �-homomorphically embeddable into I(T ,L) preserving
ind(K2).

Proof. (⇒) Given an accepting run (Tr, r) for (T , L), we can construct a model I2 ∈ Mbo
K2

and a �-homomorphism h from
I2 to I(T ,L) . Intuitively, the type t of a in I2 is given by the child ya of ε in Tr with r(ya) = (xa, qa,t), and the tree-shaped
part of I2 is defined inductively as follows. If an element d of I2 has type t and yd ∈ Tr , then for each ∃R.C ∈ t such that
R ∈ �, d has an R-successor d′ whose type s ∈ succ∃R.C (t) is determined by a child yd′ of yd in Tr with r(yd′) = (xd′ , qv,s),
for some v . Moreover, for each ∃R.C ∈ t such that R /∈ �, d has an R-successor d′ whose type s ∈ succ∃R.C (t) is determined
by the descendants y1, . . . , yn, yd′ of yd in Tr , n ≥ 1, with r(yi) = (xi, f s), 1 ≤ i ≤ n, and r(yd′) = (xd′ , qv,s) for some v .
The homomorphism h is defined by taking the identity on individual names, and setting h(d) = a if r(yd) = (xd, qa,t), and
h(d) = xd if r(yd) = (xd, qR,t). Observe that due to the accepting condition for which c(f t) = 1, the automaton cannot remain
forever in the states f t , and so has to eventually find the homomorphic image of �-disconnected successors in the tree.

(⇐) Suppose there is a model I2 ∈ Mbo
K2

such that I2 is �-homomorphically embeddable into I(T ,L) preserving ind(K2).
It is straightforward to construct an accepting run for (T , L) by using I2 as a guide. �

The constructed automaton A has only single exponentially many states. Thus, by Theorem 29, checking its emptiness
can be done in 2ExpTime.

Theorem 32. The problem whether an ALC KB �-UCQ entails an ALC KB is decidable in 2ExpTime.

We now briefly discuss the modifications needed in the automata construction to obtain the same upper bound for
�-rUCQ entailment. In the rooted case, we modify the automaton A2 in such way that it does not attempt to construct a
�-homomorphism when reaching �-disconnected successors. Thus, the set Q of states of A2 does not contain f t , and the
transition function is simplified accordingly. In particular, in the definition of the transitions δ(qx,t , (x, U)), for x ∈ {a, S}, the
second set of conjunctions for ∃R.C ∈ t and R /∈ � is omitted.

Theorem 33. The problem whether an ALC KB �-rUCQ entails an ALC KB is decidable in 2ExpTime.

Our characterisation of �-(r)UCQ entailment using automata also allows us to formulate Theorem 25 without the restric-
tion to regular interpretations. For UCQs, this is a consequence of Lemma 30 and, for rUCQs, one can prove an analogous
lemma.

Theorem 34. Let K1 and K2 be ALC KBs and � a signature.

(1) K1 �-UCQ entails K2 iff, for any I1 ∈ Mbo
K1

, there exists I2 ∈ Mbo
K2

that is �-homomorphically embeddable into I1 preserving
ind(K2).

(2) K1 �-rUCQ entails K2 iff, for any I1 ∈ Mbo
K1

, there exists I2 ∈ Mbo
K2

that is con-�-homomorphically embeddable into I1 pre-
serving ind(K2).

5.3. 2ExpTime lower bound for (r)UCQ-entailment and inseparability with respect to a signature

We first show a 2ExpTime lower bound for �-UCQ entailment between ALC KBs by giving a polynomial reduction of
the word problem for exponentially space bounded alternating Turing machines. Using Lemma 26, we obtain the same
lower bound for rUCQs. We then modify the KBs from the entailment case to obtain 2ExpTime lower bounds for �-(r)UCQ
inseparability.

24 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
An alternating Turing machine (ATM) is a quintuple of the form M = (Q , �I , �, q0, �), where the set of states Q = Q ∃ �
Q ∀ � {qa} � {qr} consists of existential states in Q ∃ , universal states in Q ∀ , an accepting state qa , and a rejecting state qr ; �I

is the input alphabet and � ⊇ �I the work alphabet containing a blank symbol �; q0 ∈ Q ∃ ∪ Q ∀ is the starting state; and the
transition relation � is of the form

� ⊆ (Q \ {qa,qr}) × � × Q × � × {−1,+1}.

We write �(q, σ) to denote {(q′, σ ′, m) | (q, σ , q′, σ ′, m) ∈ �} and assume without loss of generality that every set �(q, σ)

contains exactly two elements. A configuration of M is a word wqw ′ with w, w ′ ∈ �∗ and q ∈ Q . The intended meaning
is that the tape contains the word w w ′ , the machine is in state q, and the head is on the symbol just after w . The
successor configurations of a configuration wqw ′ are defined in the usual way in terms of the transition relation �. A halting
configuration is of the form wqw ′ with q ∈ {qa, qr}. A configuration wqw ′ is accepting if it is a halting configuration and q =
qa or q ∈ Q ∀ and all of its successor configurations are accepting or q ∈ Q ∃ and there is an accepting successor configuration.
M accepts input w if the initial configuration q0 w is accepting. There is an exponentially space bounded ATM M whose word
problem is 2ExpTime-hard.

Theorem 35. The problem whether an ALC KB K1 �-(r)UCQ entails an ALC KB K2 is 2ExpTime-hard.

Proof. We only consider the non-rooted case; the rooted case follows using Lemma 26 since the signature � in our proof
contains all the role names used in the entailed KB K2. The proof is by reduction of the word problem for exponentially
space bounded ATMs. Let M = (Q , �I , �, q0, �) be such an ATM. We may assume without loss of generality that

– the length of every (path in a) computation of M on w ∈ �I
n is bounded by 22n

;
– all the configurations wqw ′ in such computations satisfy |w w ′| ≤ 2n , see [60];
– M never attempts to move left of the tape cell on which the head was located in the initial configuration;
– the two transitions contained in �(q, σ) are ordered and use δ0(q, σ) and δ1(q, σ) to denote the first and second

transition in �(q, σ), respectively;
– the existential and universal states strictly alternate: any transition from an existential state leads to a universal state,

and vice versa;
– q0 ∈ Q ∃;
– any run of M on every input stops either in qa or qr .

Let w ∈ �I
n be an input to M . We construct ALC TBoxes T1 and T2 and a signature � such that M accepts w iff there

is a model I1 of K1 = (T1, {A(a)}) such that no model of K2 = (T2, {A(a)}) is �-homomorphically embeddable into I1. In
our construction, the models of K1 encode all possible sequences of configurations of M starting from the initial one and
forming a full binary tree. Hence, most of the models do not correspond to correct runs of M . The branches of the models
stop at the accepting and rejecting states. On the other hand, the models of K2 encode all possible local defects (such as
invalid configurations or incorrect executions of the transition function), after the first step of the machine, or after the
second step, and so on, or detect valid (hence without local defects) but rejecting runs. Then, if there exists a finite model
I1 of K1 such that no model of K2 is �-homomorphically embeddable into I1 preserving {a}, we have that I1 represents
a valid accepting computation of M .

The signature � contains the following symbols:

– the concept name A;
– the concept names A0, . . . , An−1, A0, . . . , An−1 that serve as bits in the binary representation of a number between 0

and 2n − 1, identifying the position of tape cells inside configurations (A0, A0 represent the lowest bit);
– the concept names Aσ , for σ ∈ �;
– the concept names Aq,σ , for σ ∈ � and q ∈ Q ;
– the concept names X0, X1 to distinguish the two successor configurations;
– the role names R , S; R is used to connect the successor configurations, whereas S is used to connect the root of each

configuration with symbols that occur in the cells of it.

Also, we make use of the following auxiliary symbols that are not in �:

– Bi , Bi , Bσ , Bq,σ ; Gi , Gi , Gσ , Gq,σ ; Cσ , Cq,σ , for σ ∈ �, q ∈ Q , and 0 ≤ i ≤ n − 1,
– L�

i , D�
trans , for � ∈ {0, 1} and 0 ≤ i ≤ n − 1,

– K0, K , Stop, Y , D , D , Dconf , Dtrans , Drej , D∃ , D∀ , Counterm for m ∈ {−1, 0, +1}, E B , EG .
rej rej

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 25
Fig. 5. The structure of the models of K1.

TBox T1. Each model of K1 encodes a binary tree of configurations of M . Thus, T1 contains the axioms:

A � ∃R.(X0 � K) � ∃R.(X1 � K),

(X0 	 X1) � ¬Stop � ∃R.(X0 � K) � ∃R.(X1 � K),

K � ∃S.(L0
0 � A0) � ∃S.(L1

0 � A0),

L�
i � ∃S.(L0

i+1 � Ai+1) � ∃S.(L1
i+1 � Ai+1), for 0 ≤ i ≤ n − 2, � ∈ {0,1},

L�
n−1 ��

σ∈�
(Aσ 	�

q∈Q
Aq,σ),

Aσ1 � Aσ2 � ⊥, for σ1 �= σ2,

Aσ1 � Aq2,σ2 � ⊥,

Aq1,σ1 � Aq2,σ2 � ⊥, for (q1,σ1) �= (q2,σ2),

Ai � ∀S.Ai, Ai � ∀S.Ai,

∃Sn.Aqa,σ � Stop, ∃Sn.Aqr ,σ � Stop,

where ∃Sn.A is an abbreviation for the concept ∃S.∃S. . . .∃S.A (S occurs n times). The models of K1 look as in Fig. 5,
where the grey triangles are the trees encoding configurations rooted at K except for the initial configuration. These trees
are binary trees of depth n, where each leaf represents a tape cell. For w = σ1 · · ·σn , the initial configuration is encoded at
a by the following T1-axioms:

A � ∃S.(L0
0 � A0 � K0) � ∃S.(L1

0 � A0 � K0),

K0 � ∀S.K0,

K0 � (valA = 0) � Aq0,σ1 ,

K0 � (valA = i) � Aσi+1 , for 1 ≤ i ≤ n − 1,

K0 � (valA ≥ n) � A�,

where (valA = j) is the conjunction over Ai, Ai expressing the fact that the value of the A-counter is j, for j ≤ 2n − 1.

TBox T2. Each model of K2 encodes (at least) one of four possible defects:

– invalid configuration defect Dconf;
– transition defect Dtrans encoding errors in executing the transition function;
– copying defect Dcopy encoding errors in copying a symbol not under the head;
– a rejecting run defect Drej .

The first three defects are used to filter out sequences of configurations that do not correspond to valid runs of M . These
defects are ‘local’, and so they are connected to a via paths. Instead, the last defect is used to detect valid rejecting runs of
M , so it is ‘global’ and is represented by a tree. Thus, T2 contains the following axioms:

A � ∃R.(X0 � Y) 	 ∃R.(X1 � Y) 	 D∃
rej,

Y � D � ∃R.(X0 � Y) 	 ∃R.(X1 � Y),

Y � D 	 D, D � D � ⊥,

D � Dconf 	 Dtrans 	 Dcopy.

We now describe each of the defects separately, using the following abbreviations:

posB = (B0 	 B0) � · · · � (Bn−1 	 Bn−1), symbolB =�
σ∈�

Bσ , stateB = �
q∈Q , σ∈�

Bq,σ .

The abbreviations posG , symbolG and stateG are defined analogously using concept names Gi , Gi , Gq,σ , and Gσ .

Invalid configuration defect. Dconf is the simplest ‘local’ defect that encodes incorrect configurations, that is, configurations
with at least two heads on the tape. It guesses the first position of the head, the symbol under it and the state by means
of the concepts posB and stateB , and similarly, it guesses the second position using the corresponding concepts with the
superscript G . This information is stored in the symbols transparent to � (Bx , Bx and Gx , Gx).

26 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
Fig. 6. Models of defects.

Dconf � posB � stateB � ∃Sn.E B � posG � stateG � ∃Sn.EG � (valB �= valG),

where (valB �= valG) stands for (B0 � G0) 	 (G0 � B0) 	 · · · 	 (Bn−1 � Gn−1) 	 (Gn−1 � Bn−1) and ensures that the position
encoded using B-symbols is different from the position encoded using G-symbols.

All the symbols Bx and Bx , and Gx and Gx are propagated down the S-successors, and at the concepts E B and EG they
are copied into the �-symbols Ax and Ax:

Bx � ∀S.Bx, Gx � ∀S.Gx, E B � Bx � Ax, EG � Gx � Ax, for x ∈ {0, . . . ,n − 1} ∪ {(q,σ),σ | q ∈ Q ,σ ∈ �},
Bi � ∀S.Bi, Gi � ∀S.Gi, E B � Bi � Ai, EG � Gi � Ai, for i ∈ {0, . . . ,n − 1}. (25)

A (partial) model of an invalid configuration defect is shown in Fig. 6(a), for n = 3.

Transition defect. Given a (correct) configuration, Dtrans encodes defects in a following configuration coming from an in-
correct execution of the transition function. It is also a ‘local’ defect, but it operates on two consecutive configurations. It
guesses the position of the head, the symbol under it and the state by means of the concepts posB and stateB , and also
guesses which of the two transitions is violated:

Dtrans � posB � stateB � ∃Sn.E B � (D0
trans 	 D1

trans).

Then, given the current state and the symbol under the head, the transition defect guesses the result of an incorrect
execution of the transition function. The defective value at the successor configuration is stored in symbols Cx , while the
relative position of the defect is stored in Counterm , for m ∈ {−1, 0, +1}. Thus, for δ�(q, σ) = (q�, σ�, m�), � ∈ {0, 1}, m� ∈
{−1, +1}, we have

D�
trans � ∃R.(X� � ∃Sn.E B),

Bq,σ � D�
trans � (Counter0 � �

σ ′∈�\{σ�}
Cσ ′) 	 (Counterm�

��
σ ′∈�

(Cσ ′ 	 �
q′∈Q \{q�}

Cq′,σ ′)).

The position of the defect is passed/updated along the R-successor as follows:

Counter+1 � Bk � Bk−1 � · · · � B0 � ∀R.(Bk � Bk−1 � · · · � B0), for n > k ≥ 0,

Counter+1 � B � Bk � ∀R.B, for B ∈ {B j, B j | n > j > k},
Counter−1 � Bk � Bk−1 � · · · � B0 � ∀R.(Bk � Bk−1 � · · · � B0), for n > k ≥ 0,

Counter−1 � B � Bk � ∀R.B, for B ∈ {B j, B j | n > j > k},
Counter0 � B � ∀R.B, for B ∈ {Bi, Bi | 0 ≤ i ≤ n − 1}.

(26)

The defect is copied via R as follows:

Cx � ∀R.Bx, x ∈ {(q,σ), σ | q ∈ Q ,σ ∈ �}. (27)

Then the symbols Bx and Bx that have been copied via R are propagated down the S-successors, and copied at E B into the
�-symbols Ax and Ax using (25). A model of a transition defect is shown in Fig. 6(b), for n = 3 and δ1(q1, σ1) = (q2, σ2, +1).

Copying defect. Similarly to the transition defect, the copying defect concerns two consecutive configurations and encodes
errors in copying symbols that are not under the head. So it guesses a position of the head, a symbol under it, and a state
by means of the concepts posG and stateG , and a position different from the position of the head and a symbol at this
position by means of the concepts posB and symbolB :

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 27
Dcopy � posG � stateG � ∃Sn.EG � posB � symbolB � ∃Sn.E B � ∃R.∃Sn.E B � (valB �= valG).

Then it chooses a new (incorrect) symbol (possibly with a state) at the B-position in the subsequent configuration:

Bσ � Dcopy � Counter0 � �
σ ′∈�, σ ′ �=σ

(Cσ ′ 	�
q∈Q

Cq,σ ′).

Using (26) and (27), the incorrect value and its position are copied via R , and then propagated via the S-successors and
copied at E B to A-symbols using (25).

Rejecting run defect. The rejecting run defect detects when M does not accept w . It is done by checking the negation of
the accepting condition. So this defect is a tree starting at A where every node at even distance from the root (D∃

rej) has
two successors (recall that q0 ∈ Q ∃), every node at odd distance from the root (D∀

rej) has one successor, and the leaves are
‘labelled’ by rejecting states:

D∃
rej � �

�∈{0,1}
∃R.(X� � (D∀

rej 	 Drej)),

D∀
rej � ∃R.(D∃

rej 	 Drej),

Drej ��
σ∈�

∃Sn.Aqr ,σ .

A (partial) model of a rejecting defect is shown in Fig. 6(c).
Now we sketch a proof that M accepts w iff K1 does not �-UCQ-entail K2.
(⇒) Suppose M accepts w . Then there is a model I1 of K1 such that

– it has no local defects, that is, it has only valid configurations, and at each step the transition function is executed
correctly and all symbols not affected by the head are copied correctly;

– it contains a subtree representing an accepting computation of M on w .

Note that the former means that I1 is finite as we assumed that any run of M on every input stops either in qa or qr .
So the models of K2 that are infinite paths or trees not ‘realising’ any defect (such models never actually pick D or Drej
to satisfy disjunction) will not be �-homomorphically embeddable into I1 . Moreover, the latter implies that the models
of K2 encoding rejecting run defect will not be �-homomorphically embeddable into I1 either. So no model of K2 is
�-homomorphically embeddable into I1, and hence K1 does not �-UCQ entail K2.

(⇐) Suppose K1 does not �-UCQ entail K2. Then there exists a model I1 of K1 such that no model I2 of K2 is
�-homomorphically embeddable into I1. It follows that:

– parts of I1 in grey triangles (see Fig. 5) represent configurations with at most one head, because of the models I2 of
K2 that detect invalid configurations;

– for every non-final configuration in I1 as explained above and for each of its two successor configurations, there are
neither transition nor copying defects, because of the models of I2 that detect such defects;

– it is not the case that the tree of configurations represented by I1 witnesses that M does not accept w , because of the
models I2 that detect such cases.

We thus conclude that I1 contains a valid accepting computation. �
We now modify the KBs in the proof above to obtain the following:

Theorem 36. �-(r)UCQ inseparability between ALC KBs is 2ExpTime-hard.

Proof. We only deal with the non-rooted case; the rooted case follows using Lemma 26. Consider the KBs Ki , i = 1, 2, and
the signature � from the proof of Theorem 35. We construct (in LogSpace) a KB K′′

2 such that K1 �-UCQ entails K2 iff K1

and K′′
2 are �-UCQ inseparable. This provides us with the desired lower bound for �-UCQ inseparability. Let T i

i be a copy
of Ti in which all concept names X ∈ sig(Ti) \ {A} are replaced by fresh symbols Xi , and let T ′

i be the extension of T i
i with

Xi � X , for all concept names X ∈ � \ {A}. We set K′
i = (T ′

i , {A(a)}), i = 1, 2, and let K′′
2 = (T ′

1 ∪ T ′
2 , {A(a)}). Observe that

K′
i and Ki are �-UCQ inseparable, for i = 1, 2. We prove that K1 �-UCQ entails K2 iff K′

1 and K′′
2 are �-UCQ inseparable.

The implication (⇐) is straightforward.
Conversely, suppose K1 �-UCQ entails K2. Clearly, K′′

2 �-UCQ entails K′
1, and thus it remains to prove that K′

1 �-UCQ
entails K′′

2 . For i = 1, 2, we consider the class M i of models I ∈ Mbo
K′

i
such that AI = {a}, if a ∈ XI for a concept name

X , then X ∈ {D0
rej

′
, A}, and XI = ∅, for all concept names X �∈ sig(K′

i). It follows from the construction of Ki that M i is
complete for K′ . Let
i

28 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
M = {I1 � I2 | Ii ∈ M i, i = 1,2},
where I1 � I2 is the interpretation that results from merging the root a of I1 and I2. We first show that M is com-
plete for K′′

2 . The interpretations I ∈ M are models of K′′
2 since, for all axioms C � D ∈ T ′

i , either CI ⊆ �Ii \ {a} or
C ∈ {D0

rej
′
, A, ∃Sn.Aqa,σ , ∃Sn.Aqr ,σ } and D is either a concept name or of the form ∃R.C ′ or ∃S.C ′ . To see that M is com-

plete for K′′
2, let J be a model of K′′

2 and n ≥ 1. It suffices to show that there exists I ∈ M that is n-homomorphically
embeddable into J preserving {a} (Proposition 6). But since J is a model of K′

i , there are models Ii ∈ M i such that Ii

is n-homomorphically embeddable into J preserving {a}, i = 1, 2 (Proposition 6). By taking the union of the two partial
witness homomorphisms from I1 and I2, one can show that I1 � I2 is n-homomorphically embeddable into J preserving
{a}, as required.

We now use Theorem 17 (1) to prove that K′
1 �-UCQ entails K′′

2 . Let I1 ∈ M1 and n ≥ 1. It suffices to find J ∈ M that is
n�-homomorphically embeddable into I1 preserving {a}. But since K′

1 �-UCQ-entails K′
2, there exists I2 ∈ M2 such that I2

is n�-homomorphically embeddable into I1 preserving {a}. By combining n�-homomorphisms from I2 with the identity
mapping from I1, it is now straightforward to show that the model I1 � I2 ∈ M is n�-homomorphically embeddable into
I1 preserving {a}, as required. �

The following theorem summarises the results obtained so far.

Theorem 37. �-(r)UCQ inseparability and �-(r)UCQ-entailment between ALC KBs are both 2ExpTime-complete.

5.4. (r)UCQ-entailment and inseparability with full signature

We extend the 2ExpTime lower bound from �-(r)UCQ entailment and inseparability to full signature (r)UCQ entailment
and inseparability. To this end we prove a UCQ-variant of Theorem 23:

Theorem 38. Let K1 = (T1, A) and K2 = (T2, A) be ALC KBs and � a signature such that sig(A) ⊆ � and � = sig(T1 ∪ T2) \ �

contains no role names. Suppose T1 and T2 admit trivial models. Let K↑�

i = (T ↑�

i ∪T ∃
� , A), for i = 1, 2. Then the following conditions

are equivalent:

(1) K1 �-(r)UCQ entails K2;
(2) K↑�

1 full signature (r)UCQ entails K↑�
2 .

Proof. We use and modify the proof of Theorem 23. Let M i be complete for Ki , i = 1, 2. We may assume that XI = ∅
for all concept and role names X �∈ sig(Ki) and I ∈ M i , i = 1, 2. By Fact 5 of the proof of Theorem 23, {I↑� | I ∈ M i} is
complete for K↑�

i . Thus, by Theorem 17, it suffices to prove that I2 is n�-homomorphically embeddable into I1 preserving
ind(K2) iff I↑�

2 is n-homomorphically embeddable into I↑�
1 preserving ind(K2), for any n > 0, I1 ∈ M1 and I2 ∈ M2. This

can be done in the same way as in the proof of Fact 6. �
The following complexity result now follows from the observation that the KBs and signature � used in the proof of

Theorem 36 satisfy the conditions of Theorem 38: � contains the signature of the ABox and all role names of the KBs, and
the TBoxes admit trivial models.

Theorem 39. Full signature (r)UCQ inseparability and entailment between ALC KBs are both 2ExpTime-complete.

6. Query entailment and inseparability for ALC TBoxes

In this section, we introduce query entailment and inseparability between TBoxes. Two TBoxes T1 and T2 are query
inseparable for a class Q of queries if, for all ABoxes A that are consistent with T1 and T2, queries from Q have the
same certain answers over the KBs (T1, A) and (T2, A). The TBox T1 Q-entails T2 if, for any such A, the certain answers
to queries from Q over (T2, A) are contained in the certain answers over (T1, A). As in the KB case, we consider the
restriction of CQs and UCQs to a signature � of relevant symbols and their restrictions to rooted queries. In applications, it
is also natural to restrict the signature of the ABox which might be different from the signature of the relevant queries.

Definition 40. Let T1 and T2 be TBoxes, Q one of CQ, rCQ, UCQ or rUCQ, and let � = (�1, �2) be a pair of signatures. We
say that T1 �-Q entails T2 if, for every �1-ABox A that is consistent with both T1 and T2, the KB (T1, A) �2-Q entails the
KB (T2, A). T1 and T2 are �-Q inseparable if they �-Q entail each other. If �1 is the set of all concept and role names, we
say ‘full ABox signature �2-Q entails’ or ‘full ABox signature �2-Q inseparable’.

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 29
In the definition of �-Q entailment, we only consider ABoxes that are consistent with both TBoxes. The reason is that
the complexity of the problem of deciding whether every �-ABox consistent with a TBox T1 is also consistent with a TBox
T2 is already well understood and is dominated by the �-Q-entailment problem as defined above. More precisely, we
say that a TBox T1 �⊥-entails a TBox T2 if all �-ABoxes A consistent with T1 are consistent with T2. �⊥-entailment is
closely related to the containment problem between ontology-mediated queries, which we define next [61–63]. For a query
q, TBoxes T1 and T2, and a signature �, we say that (T1, q) is contained in (T2, q) for � and write (T1, q) ⊆� (T2, q) if, for
every �-ABox A, the certain answers to q over (T1, A) are contained in the certain answers to q over (T2, A). We note
that the authors of [61,63] demand that the �-ABoxes considered in the definition of containment are consistent with both
TBoxes, but the complexity results for deciding containment do not depend on this condition. The containment problem for
a description logic L relative to a class Q of queries is to decide, for TBoxes T1 and T2 in L, signature �, and query q ∈Q,
whether (T1, q) ⊆� (T2, q). Thus, in contrast to �-Q-entailment, an instance of the containment problem does not quantify
over all q ∈ Q but takes the queries q ∈ Q as inputs to the decision problem. It is known [61–63] that the containment
problem is

– NExpTime-complete for ALC TBoxes and CQs of the form ∃xA(x);
– ExpTime-complete for HornALC TBoxes and CQs of the form ∃xA(x).

It is straightforward to show that the containment problem for a DL L and CQs of the form ∃xA(x) is mutually polynomially
reducible with the problem to decide �⊥-entailment between L TBoxes. For a polynomial reduction of �⊥-entailment to
containment, observe that T1 �⊥-entails T2 iff (T2, ∃xA(x)) ⊆� (T1, ∃xA(x)) for A �∈ sig(T1 ∪T2). For a polynomial reduction
of containment to �⊥-entailment, assume that T1, T2, �, and A are given. Let T ′

i = Ti ∪ {A � ⊥}. Then (T1, ∃xA(x)) ⊆�

(T2, ∃xA(x)) iff T ′
2 �⊥-entails T ′

1 . We obtain the following result.

Theorem 41. The problem whether an ALC TBox �⊥-entails an ALC TBox is NExpTime-complete. For HornALC TBoxes T1 and T2 ,
this problem is ExpTime-complete.

It follows, in particular, that our complexity upper bounds for �-CQ-entailment still hold if one admits ABoxes that are
not consistent with the TBoxes.

As in the KB case, �-UCQ inseparability of ALC TBoxes implies all other types of inseparability, and Example 13 can
be used to show that no other implications hold in general. The situation is different for HornALC TBoxes. In fact, the
following result follows directly from Proposition 14:

Proposition 42. For any ALC TBox T1 and HornALC TBox T2 , T1 �-(r)UCQ entails T2 iff T1 �-(r)CQ entails T2 .

We now show that �-(r)CQ entailment and inseparability are undecidable for ALC TBoxes. In fact, we show that �-(r)CQ
inseparability is undecidable even if one of the TBoxes is given in EL and that �-(r)CQ entailment is undecidable even if the
entailing TBox T1 is in EL. The proofs re-use the TBoxes constructed in the undecidability proofs for KBs in Theorems 20
and 22. We also show that, for CQs, these problems are still undecidable in the full ABox signature case or if one assumes
that the signatures for the ABoxes and CQs coincide. It remains open whether rCQ-entailment or inseparability are still
undecidable in those cases.

Theorem 43. (i) The problem whether an EL TBox �-Q entails an ALC TBox is undecidable for Q ∈ {CQ, rCQ}.
(ii) �-Q inseparability between EL and ALC TBoxes is undecidable for Q ∈ {CQ, rCQ}.
(iii) For CQs, (i) and (ii) hold for full ABox signatures and for � = (�1, �2) with �1 = �2 .

Proof. Here, we focus on the CQs; the proofs for rCQs are given in the appendix. We use the KBs K1
CQ = (T 1

CQ, ACQ) and
K2

CQ = (T 2
CQ, ACQ) and the signature �CQ = sig(K1

CQ) from the proof of Theorem 20. Recall that it is undecidable whether
K1

CQ �CQ-CQ entails K2
CQ. Also recall that, for K2 = (T2, ACQ) with T2 = T 1

CQ ∪ T 2
CQ, it is undecidable whether K1

CQ and K2
are �CQ-CQ inseparable (Theorem 21).

(i) Let �1 = {A}, �2 = �CQ, and � = (�1, �2). We show that T 1
CQ �-CQ-entails T 2

CQ iff K1
CQ �CQ-CQ-entails K2

CQ. Recall
that ACQ = {A(a)}. Thus, if K1

CQ does not �CQ-CQ entail K2
CQ, then we have found a �1-ABox witnessing that T 1

CQ does not
�-CQ entail T 2

CQ. Conversely, observe that �1-ABoxes A are sets of the form {A(b) | b ∈ I}, with I a finite set of individual
names. Thus, if there exists a �1-ABox A such that (T 1

CQ, A) does not �CQ-CQ entail (T 2
CQ, A), then (T 1

CQ, ACQ) does not
�CQ-CQ entail (T 2

CQ, ACQ) either.

(ii) Set again � = (�1, �2), for �1 = {A} and �2 = �CQ. In exactly the same way as in (i) one can show that K1
CQ and

K2 are �CQ-inseparable iff T 1
CQ and T2 are �-CQ inseparable.

(iii) We first show undecidability of full ABox signature �-CQ inseparability. The undecidability of full ABox signature
�-CQ entailment follows directly from our proof. We employ the abstraction technique from Theorem 23 for � = sig(T2) \
�CQ. Let T ′ = T 1 ∪ T ∃ , T ′ = T ↑� ∪ T ∃ and � = �CQ \ {P }. We aim to prove that the following conditions are equivalent:
1 CQ � 2 2 �

30 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
(1) K1
CQ and K2 are �-CQ inseparable;

(2) T ′
1 and T ′

2 are full ABox signature �-CQ inseparable.

Observe that undecidability of full ABox signature CQ-inseparability of TBoxes of the form T ′
1 and T ′

2 follows since the proof
of Theorems 20 and 21 shows that the role name P is not needed to CQ-separate the KBs K1

CQ and K2 (if they are �CQ-CQ
separable). Thus, it is undecidable whether K1

CQ and K2 are �-CQ inseparable.

The implication (2) ⇒ (1) is straightforward: if K1
CQ and K2 are not �-CQ inseparable, then the ABox ACQ witnesses that

T ′
1 and T ′

2 are not full ABox signature �-CQ inseparable. Conversely, suppose T ′
1 and T ′

2 are not full ABox signature �-CQ
inseparable. Then there exists an ABox A such that (T ′

1 , A) and (T ′
2 , A) are not �-CQ inseparable. The canonical model I1

of the EL KB (T ′
1 , A) can be constructed as follows:

– for any A(b) ∈A, take a copy of the canonical model IK1
CQ

and hook it to b by identifying a in IK1
CQ

with b;

– for any D(b) ∈A, take a copy of the subinterpretation of the canonical model IK1
CQ

rooted at the P -successor of a and
hook it to b by identifying the P -successor of a with b;

– for any E(b) ∈A, take a copy of the (unique up to isomorphism) subinterpretation of the canonical model IK1
CQ

rooted
at an E-node and hook it to b by identifying the E-node with b;

– to satisfy T ∃
� , let J be the singleton interpretation with XJ = ∅ for all concept and role names X ; we hook to any

element u of the interpretation constructed so far a copy of J ↑� by identifying the root of J ↑� with u (see the proof
of Theorem 23 for the construction and properties of J ↑�).

Let M be the class of interpretations obtained from I1 by adding to any b with A(b) ∈ A a P -successor b′ to which one
hooks the subinterpretation rooted in the P -successor of a in an interpretation from {I↑� | I ∈ MK2

CQ
}. One can show that

M is complete for the KB (T ′
2 , A). To this end, first recall from the proof of Theorem 21 that for the canonical model IK1

CQ

of K1
CQ, the set MK2 = { I � IK1

CQ
| I ∈ MK2

CQ
} (where I � IK1

CQ
is the interpretation that results from merging the roots a

of I and IK1
CQ

) is complete for K2. By Theorem 23 (Fact 5), {I↑� | I ∈ MK2 } is complete for K↑�
2 . Now completeness of M

for (T ′
2 , A) follows directly from the fact that every I ∈ M is a model of (T ′

2 , A). Next, observe that P �∈ � and that two KBs
are �-CQ inseparable iff they are �-CQ inseparable for connected �-CQs. Thus, the only �-components of interpretations
in M that could distinguish �-CQs true in M from �-CQs true in I1 are the interpretations {I↑� | I ∈ MK2

CQ
}. It follows

that if (T ′
1 , A) and (T ′

2 , A) are not �-CQ inseparable, then (K1
CQ)↑� and K↑�

2 are not �-CQ inseparable either. But then, by
the proof of Theorem 24, K1

CQ and K2 are not �-CQ inseparable, as required.
To show undecidability of �-CQ inseparability and entailment for � = (�1, �2) with �1 = �2, we re-use the unde-

cidability proof for the full ABox signature case. Set � = (�, �). Then the proof above shows that T ′
1 and T ′

2 are �-CQ
inseparable iff they are full ABox signature �-CQ inseparable since one can always choose the ABox ACQ as a witness for
CQ-inseparability if T ′

1 and T ′
2 are full ABox signature �-CQ inseparable. �

7. Model-theoretic criteria for query entailment of HornALC TBoxes by ALC TBoxes

We have seen that �-(r)CQ entailment of an ALC TBox T2 by an EL TBox T1 is undecidable. We now investigate the
converse direction, with drastically different results (which even hold if EL TBoxes are replaced by HornALC TBoxes). Thus,
in this section, we give model-theoretic criteria for �-(r)CQ entailment of a HornALC TBox T2 by an ALC TBox T1. In
the next section, we use these criteria to prove tight complexity bounds for deciding �-(r)CQ entailment and inseparability.
Recall that, by Proposition 42, our model-theoretic criteria and complexity results also apply to �-(r)UCQ entailment.

We assume that HornALC TBoxes are given in normal form where concept inclusions look as follows:

A � B, A1 � A2 � B, ∃R.A � B, A � ⊥, � � B, A � ∃R.B, A � ∀R.B

and A, B are concept names. It is standard (see, e.g., [64, Proposition 28]) to show the following reduction of �-(r)CQ
entailment for arbitrary HornALC TBoxes to HornALC TBoxes in normal form.

Proposition 44. For any HornALC TBox T2 and any pair � of signatures, one can construct in polynomial time a HornALC TBox T ′
2

in normal form such that an ALC TBox T1 �-(r)CQ entails T2 iff T1 �-(r)CQ entails T ′
2 .

Our model-theoretic criteria are based on two crucial observations. First, to characterise �-(r)CQ entailment between
HornALC TBoxes and ALC TBoxes, it suffices to consider a very restricted class of acyclic (r)CQs that corresponds exactly
to queries constructed using EL concepts. Second, it suffices to consider ABoxes that are tree-shaped rather than arbitrary
ABoxes when searching for witnesses for non-�-(r)CQ entailment. We begin by introducing the relevant classes of CQs and
rCQs. A rooted EL query takes the form C(x), where C is an EL concept. The set of rooted EL queries is denoted by rELQ.

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 31
Given a KB K, a ∈ ind(K), and an rELQ C(x) we say that a is a certain answer to C(x) over K if aI ∈ CI , for every model I
of K. Note that rELQs can be regarded as acyclic CQs with one answer variable. A Boolean EL query takes the form ∃xC(x),
where C is an EL concept. The set of rooted and Boolean EL queries is denoted by ELQ. Given a KB K and a Boolean
EL query ∃xC(x), we say that K entails ∃xC(x) if CI �= ∅, for every model I of K. Boolean EL queries can be regarded as
Boolean acyclic CQs. In what follows we use the same notation for (r)ELQs as for (r)CQs. For TBoxes T1 and T2 and a pair
� = (�1, �2) of signatures, we say that T1 �-(r)ELQ entails T2 if, for every �1 ABox A that is consistent with both T1 and
T2, and every �2-(r)ELQ q(a) with a ∈ ind(A), whenever (T2, A) |= q(a) then (T1, A) |= q(a).

Proposition 45. Let T1 be an ALC TBox, T2 a HornALC TBox, and � = (�1, �2) a pair of signatures. Then T1 �-(r)CQ entails T2 iff
T1 �-(r)ELQ entails T2 .

Proof. Suppose A is a �1-ABox and (T2, A) |= q(a) but (T1, A) �|= q(a) for a �2-CQ q. As (T2, A) |= q(a), there is a homo-
morphism h : q → I(T2,A) . Let I be the �2-reduct of the subinterpretation of I(T2,A) induced by the image of q under h.
Then I is the disjoint union of

– ditree interpretations Ia attached to a ∈ ind(A) ∩ �I such that ind(A) ∩ �Ia = {a}, and
– ditree interpretations J with ind(A) ∩ �J = ∅ (there exists no such J if q is an rCQ),

and, additionally, pairs (a, b) in RI for a, b ∈ ind(A) ∩ �I , R ∈ �1, and R(a, b) ∈A. Thus, if q is an rCQ then there exists Ia

such that the canonical CQ qIa
(x) determined by Ia is an rELQ (see the proof of Proposition 6) and (T2, A) |= qIa

(a) but
(T1, A) �|= qIa

(a), as required. If q is not an rCQ and no such Ia exists, then there exists J such that the canonical CQ qJ
determined by J is a Boolean EL query and (T2, A) |= qJ but (T1, A) �|= qJ . �

An ABox A is called a tree ABox if the undirected graph

GA = (
ind(A),

{{a,b} | R(a,b) ∈A
})

is an undirected tree and R(a, b) ∈ A implies R(b, a) �∈ A and S(a, b) /∈ A, for S �= R . The outdegree of A is defined as the
outdegree of GA .

Theorem 46. Let T1 be an ALC TBox, T2 a HornALC TBox, and � = (�1, �2). Then

(1) T1 �-rCQ-entails T2 iff, for any tree �1-ABox A of outdegree bounded by |T2| and consistent with T1 and T2 , and any model I1
of (T1, A), I(T2,A) is con-�2-homomorphically embeddable into I1 preserving ind(A).

(2) T1 �-CQ-entails T2 iff, for any tree �1-ABox A of outdegree bounded by |T2| and consistent with T1 and T2 , and any model I1
of (T1, A), I(T2,A) is �2-homomorphically embeddable into I1 preserving ind(A).

Proof. (1) The direction from left to right follows from Theorem 34 and Proposition 14. Conversely, suppose T1 does not
�-rCQ-entail T2. By Proposition 45, there are a �1-ABox A consistent with T1 and T2, a �2-rELQ C(x), and a ∈ ind(A) such
that (T2, A) |= C(a) and (T1, A) �|= C(a). It is shown in [64] (proof of Proposition 30)2 that there exist a tree �1-ABox A′
with outdegree bounded by |T2| and (T2, A′) |= C(a), and an ABox homomorphism3 h from A′ to A with h(a) = a. It follows
from Proposition 63 in the appendix that A′ is consistent with T1 and T2 and that (T1, A′) �|= C(a). Let I1 be a model of
(T1, A′) such that I1 �|= C(a). We know that I(T2,A′) |= C(a). Thus, I(T2,A′) is not con-�2-homomorphically embeddable
into I1 preserving ind(A′), as required. (2) is proved similarly using ELQs instead of rELQs and �2-homomorphisms instead
of con-�2-homomorphisms. �

The notion of (con-)�-CQ homomorphic embeddability used in Theorem 46 is slightly unwieldy to use in the subsequent
definitions and automata constructions. We therefore resort to simulations whose advantage is that they are compositional
(they can be partial and are closed under unions). Let I1, I2 be interpretations and � a signature. A relation S ⊆ �I1 ×�I2

is a �-simulation from I1 to I2 if (i) d ∈ AI1 and (d, d′) ∈ S imply d′ ∈ AI2 for all �-concept names A, and (ii) if (d, e) ∈ RI1

and (d, d′) ∈ S then there is a (d′, e′) ∈ RI2 with (e, e′) ∈ S for all �-role names R . Let di ∈ �Ii , i ∈ {1, 2}. (I1, d1) is
�-simulated by (I2, d2), in symbols (I1, d1) ≤� (I2, d2), if there exists a �-simulation S with (d1, d2) ∈ S . Observe that
every �-homomorphism from I1 to I2 is a �-simulation. Conversely, if I1 is a ditree interpretation and (I1, d1) ≤� (I2, d2),
then one can construct a �-homomorphism h from I1 to I2 with h(d1) = d2.

2 The proof of Proposition 30 in [64] shows this for ELIF⊥ TBoxes. Observe that we can regard every HornALC TBox in normal form as an ELI⊥
TBox by replacing A � ∀R.B by ∃R−.A � B .

3 ABox homomorphisms are defined before Proposition 63 in the appendix.

32 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
Lemma 47. Let �1 and �2 be signatures, A a �1-ABox, and I1 a model of (T1, A). Then

(i) IT2,A is not con-�2-homomorphically embeddable into I1 iff there is a ∈ ind(A) such that one of the following holds:

(1) there is a �2-concept name A with a ∈ AIT2,A \ AI1 ;
(2) there is an R-successor d of a in IT2,A , for some �2-role name R, such that d /∈ ind(A) and, for all R-successors e of a in I1 , we

have (IT2,A, d) �≤�2 (I1, e).

(ii) IT2,A is not �2-homomorphically embeddable into I1 if there is a ∈ ind(A) such that (1) or (2) or (3) holds, where

(3) there is an element d in the subinterpretation of IT2,A rooted at a (with possibly d = a) and d has an R0-successor d0 , for some
role name R0 /∈ �2 , such that (IT2,A, d0) �≤�2 (I1, e), for all elements e of I1 .

Proof. We only prove (ii) as (i) is a direct consequence of our proof. Clearly, if there exists a ∈ ind(A) such that (1) or (2)
or (3) holds for a, then there does not exist a �-homomorphism from I1 to IT2,A preserving {a} ⊆ ind(A).

Conversely, suppose none of (1), (2) or (3) holds for any a ∈ ind(A). Then, for any a ∈ ind(A), R-successor d of a in
IT2,A with R ∈ �2 and d /∈ ind(A), there is an R-successor d′ of a in I1 and a �2-simulation Sd from IT2,A to I1 such
that (d, d′) ∈ Sd . As the subinterpretation of IT2,A rooted at d is a ditree interpretation, we can assume that Sd is a partial
function. Also, for every d0 in IT2,A with d0 �∈ ind(A) that has an R0-predecessor in IT2,A with R0 �∈ �2, we find an e in I1
such that there is a �2-simulation Sd0 between IT2,A and I1 with (d0, e) ∈ Sd0 . As the subinterpretation of IT2,A rooted
at d0 is ditree interpretation, we can assume that Sd0 is a partial function. Now consider the function h defined by setting
h(a) = a, for all a ∈ ind(A), and then taking the union with all the simulations Sd and Sd0 . It can be verified that h is a
�2-homomorphism from IT2,A to I1. �
8. Decidability of query entailment of HornALC TBoxes by ALC TBoxes

We show that the problem whether an ALC TBox �-CQ entails a HornALC TBox is in 2ExpTime, and that the complex-
ity drops to ExpTime in the case of rooted CQs. Using the fact that satisfiability of HornALC TBoxes is ExpTime-hard, it is
straightforward to prove a matching ExpTime lower bound even for the full ABox signature case and (�, �)-rCQ entailment
and inseparability between HornALC TBoxes. Proving a matching lower bound for the non-rooted case is more involved.
Using a reduction of exponentially space bounded alternating Turing machines, we show that (�, �)-CQ inseparability be-
tween the empty TBox and HornALC TBoxes is 2ExpTime-hard. It follows that both (�, �)-CQ inseparability and (�, �)-CQ
entailment between HornALC TBoxes are 2ExpTime-hard. The problem whether the 2ExpTime upper bound is tight in the
full ABox signature case remains open.

8.1. ExpTime upper bound for �-rCQ-entailment of HornALC TBoxes by ALC TBoxes

Our aim is to establish the following:

Theorem 48. �-rCQ inseparability between HornALC TBoxes and �-rCQ entailment of a HornALC TBox by an ALC TBox are both
ExpTime-complete. The ExpTime lower bound holds already for � of the form (�, �) and the full ABox signature case.

The lower bounds can be proved in a straightforward way using the fact that satisfiability of HornALC TBoxes is Exp-

Time-hard. Note that ExpTime-hardness of (�, �)-rCQ inseparability is also inherited from [38], where this bound is shown
for EL TBoxes. It thus remains to prove the upper bound.

We use a mix of two-way alternating Büchi automata (2ABTAs) and non-deterministic top-down tree automata (NTAs),
both on finite trees (in contrast to Section 5.2). A finite tree T is m-ary if, for any x ∈ T , the set {i | x · i ∈ T } is of cardinality
zero or exactly m. 2ABTAs on finite trees are defined exactly like 2APTAs on infinite trees except that

– the acceptance condition now takes the form F ⊆ Q and a run is accepting if, for every infinite path y1 y2 · · · , the set
{i | r(yi) = (x, q) with q ∈ F } is infinite;

– we allow a special transition leaf and add to the definition of a run r the condition that, for any node y of the input
tree T , r(y) = (x, leaf) implies that x is a leaf in T .

Note that runs can still be infinite.

Definition 49. A nondeterministic top-down tree automaton (NTA) on finite m-ary trees is a tuple A = (Q , �, Q 0, δ, F) where
Q is a finite set of states, � a finite alphabet, Q 0 ⊆ Q a set of initial states, δ : Q ×� → 2Q m

a transition function, and F ⊆ Q
is a set of final states. Let (T , L) be a �-labelled m-ary tree. A run of A on (T , L) is a Q -labelled m-ary tree (T , r) such that
r(ε) ∈ Q 0 and 〈r(x · 1), . . . , r(x · m)〉 ∈ δ(r(x), L(x)), for each node x ∈ T . The run is accepting if r(x) ∈ F , for every leaf x of T .
The set of trees accepted by A is denoted by L(A).

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 33
We use the following results from automata theory [59,65,66].

Theorem 50.

1. Every 2ABTA A = (Q , �, δ, q0, F) can be converted into an equivalent NTA A′ whose number of states is (single) exponential in
|Q |; the conversion needs time polynomial in the size of A′;

2. Given a constant number of 2ABTAs (respectively, NTAs) A1, . . . , Ac , one can construct in polynomial time a 2ABTA (respectively,
an NTA) A such that L(A) = L(A1) ∩ · · · ∩ L(Ac);

3. Emptiness of NTAs A = (Q , �, Q 0, δ, F) can be decided in polynomial time.

Before proceeding further, we give a concrete definition of the canonical model for HornALC KBs that was mentioned in
Proposition 8, tailored towards the constructions used in the rest of this section. Let K = (T , A) be a HornALC KB with T
in normal form. We use CN(T) to denote the set of concept names in T . For any a ∈ ind(A), we use tpK(a) to denote the
set {A ∈ CN(T) | K |= A(a)}. For t ⊆ CN(T), set clT (t) = {A ∈ CN(T) | T |=� t � A}. A set S = {∃R.A, ∀R.B1, . . . , ∀R.Bn} is
a successor set for t if there is a concept name A′ ∈ t such that A′ � ∃R.A ∈ T and ∀R.B1, . . . , ∀R.Bn is the set of all concepts
of this form such that, for some B ∈ t , we have B � ∀R.Bi ∈ T . Later on, we shall call S a �2-successor set if R ∈ �2. We
use S↓ to denote the set {A, B1, . . . , Bn}. A path for K is a sequence aS1 · · · Sn such that a ∈ ind(A), S1 is a successor set for
tpK(a), and Si+1 is a successor set for clT (S↓

i), for 1 ≤ i < n. Now, the canonical model IK of K is defined as follows:

�IK = ind(A) ∪ {aS1 · · · Sn | aS1 · · · Sn path for K},
AIK = {a | A ∈ tpK(a)} ∪ {aS1 · · · Sn | n ≥ 1 and A ∈ clT (S↓

n)},
RIK = {(a,b) | R(a,b) ∈A} ∪ {(aS1 · · · Sn−1,aS1 · · · Sn) | R is the role name in Sn}.

The following result is standard:

Lemma 51. Let K = (T , A) be a HornALC KB in normal form. Then IK is a model of K iff K is consistent iff there is no a ∈ ind(A)

with T |= tpK(a) � ⊥.

We now establish the upper bound in Theorem 48. Let T1 be an ALC TBox, T2 a HornALC TBox, and �1, �2 signatures.
Set m = |T2|. We aim to construct an NTA A such that a tree is accepted by A iff this tree encodes a tree �1-ABox A of
outdegree at most m that is consistent with both T1 and T2 and a (part of a) model I1 of (T1, A) such that the canonical
model IT2,A of (T2, A) is not con-�2-homomorphically embeddable into I1. By Theorem 46, this means that A accepts the
empty language iff T2 is (�1, �2)-rCQ entailed by T1. To ensure that IT2,A is not con-�2-homomorphically embeddable
into I1, we use the characterisation provided by Lemma 47. We first make precise which trees should be accepted by the
NTA A and then show how to construct A.

We assume that T1 takes the form � � CT1 with CT1 in NNF and use cl(CT1) to denote the set of subconcepts of CT1 ,
closed under single negation. We also assume that T2 is in normal form and use sub(T2) for the set of subconcepts of
(concepts in) T2. Let �0 denote the set of all subsets of �1 ∪ {R− | R ∈ �1} that contain at most one role, where a role is a
role name R or its inverse R− . Automata will run on m-ary �-labelled trees where

� = �0 × 2cl(T1) × 2CN(T2) × {0,1} × 2sub(T2).

For a �-labelled tree (T , L) and a node x from T , we write Li(x) to denote the i + 1st component of L(x), for each i ∈
{0, . . . , 4}. Informally, the projection of a �-labelled tree to the

– L0-components represents the tree �1-ABox A that witnesses non-�2-query entailment of T2 by T1;
– L1-components (partially) represents a model I1 of (T1, A);
– L2-components (partially) represents the canonical model IT2,A of (T2, A);
– L3-components mark the individual a in A from Lemma 47;
– L4-components contains bookkeeping information that helps to ensure that the individual marked by the L3-component

indeed satisfies one of the two conditions from Lemma 47.

By ‘partial’ we mean that the restriction of the respective model to individuals in A is represented whereas its ‘anonymous’
part is not. We now make these intuitions more precise by defining certain properness conditions for �-labelled trees,
one for each component in the labels, which make sure that each component can indeed be meaningfully interpreted to
represent what it is supposed to. A �-labelled tree (T , L) is 0-proper if it satisfies the following conditions:

1. for the root ε of T , L0(ε) contains no role;
2. for every non-root node x of T , L0(x) contains a role.

34 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
Every 0-proper �-labelled tree (T , L) represents the tree �1-ABox

A(T ,L) = {A(x) | A ∈ L0(x)} ∪ {R(x, y) | R ∈ L0(y), y is a child of x} ∪ {R(y, x) | R− ∈ L0(y), y is a child of x}.
A �-labelled tree (T , L) is 1-proper if it satisfies the following conditions, for all x, y ∈ T :

1. there is a model I of T1 and a d ∈ �I such that d ∈ CI iff C ∈ L1(x) for all C ∈ cl(T1);
2. A ∈ L0(x) implies A ∈ L1(x);
3. if y is a child of x and R ∈ L0(y), then ∀R.C ∈ L1(x) implies C ∈ L1(y) for all ∀R.C ∈ cl(T1);
4. if y is a child of x and R− ∈ L0(y), then ∀R.C ∈ L1(y) implies C ∈ L1(x) for all ∀R.C ∈ cl(T1).

A �-labelled tree (T , L) is 2-proper if, for every node x ∈ T ,

1. L2(x) = tpT2,A(T ,L)
(x);

2. T2 �|=� L2(x) � ⊥.

It is 3-proper if there is exactly one node x with L3(x) = 1.
The canonical model IT2,S of T2 and a finite set S ⊆ sub(T2) is the interpretation obtained from the canonical model

of the KB that consists of the TBox T2 ∪ {AC � C | C ∈ S} and the ABox {AC (aε) | C ∈ S}, with all fresh concept names AC

removed. A �-labelled tree (T , L) is 4-proper if the following conditions hold, for x1, x2 ∈ T :

1. if L3(x1) = 1, then there is a �2-concept name in L2(x1) \ L1(x1) or L4(x1) is a �2-successor set for L2(x1);
2. if L4(x1) = {∃R.A, ∀R.B1, . . . , ∀R.Bn}, then there is a model I of T1 and a d ∈ �I such that d ∈ CI iff C ∈ L1(x1) for all

C ∈ cl(T1) and (IT2,{A,B1,...,Bn}, aε) �≤�2 (I, e) for all (d, e) ∈ RI ;
3. if x2 is a child of x1, L0(x2) contains the role name R , and L4(x1) = {∃R.A, ∀R.B1, . . . , ∀R.Bn}, then there is a �2-concept

name in clT2 ({A, B1, . . . , Bn}) \ L1(x2) or L4(x2) is a �2-successor set for clT2 ({A, B1, . . . , Bn});
4. if x2 is a child of x1, L0(x2) contains the role R− , and L4(x2) = {∃R.A, ∀R.B1, . . . , ∀R.Bn}, then there is a �2-concept

name in clT2 ({A, B1, . . . , Bn}) \ L1(x1) or L4(x1) is a �2-successor set for clT2 ({A, B1, . . . , Bn}).

For L4(x) = {∃R.A, ∀R.B1, . . . , ∀R.Bn}, this expresses the obligation that (IT2,{A,B1,...,Bn}, aε) �≤�2 (I, e), for (d, e) ∈ RI , where
I is the interpretation that is (partly) represented by the L1-components of the labels in (T , L); see the proof of Lemma 52
for a precise definition of I . With this in mind, note how 4-properness addresses (1) and (2) of Lemma 47. In fact, Condi-
tion 1 of 4-properness decides whether (1) or (2) is satisfied. If (2) is satisfied, which says that there is an R-successor
d of x1 in IT2,A , for some �2-role name R , such that d /∈ ind(A) and, for all R-successors e of x1 in I , we have
(IT2,A, d) �≤�2 (I, e), then the role name R and the element d are represented by the successor set stored in L4(x1). In
fact, that element is d = x1L4(x1), see the definition of canonical models. The remaining conditions of 4-properness imple-
ment the obligations represented by the L4-components of node labels.

Lemma 52. There is an m-ary �-labelled tree that is i-proper for all i ∈ {0, . . . , 4} iff there are a tree �1-ABox A of outdegree
at most m that is consistent with T1 and T2 and a model I1 of (T1, A) such that the canonical model IT2,A of (T2, A) is not
con-�2-homomorphically embeddable into I1 .

Proof. (⇒) Let (T , L) be an m-ary �-labelled tree that is i-proper for all i ∈ {0, . . . , 4}. Then A(T ,L) is a tree �1-ABox of
outdegree at most m. Moreover, A(T ,L) is consistent with T2, by 2-properness and Lemma 51.

Since (T , L) is 3-proper, there is exactly one x0 ∈ T with L3(x0) = 1. By construction, x0 is also an individual name in
A(T ,L) . To finish this direction of the proof, it suffices to construct a model I1 of (T1, A(T ,L)) such that (IT2,A, x0) �≤�2

(I1, x0). In fact, such an I1 witnesses consistency of A(T ,L) with T1 and, moreover, by the definition of simulations,
I1 must satisfy one of (1) or (2) of Lemma 47 with a replaced by x0. Consequently, by that lemma, IT2,A is not
con-�2-homomorphically embeddable into I1.

We start with the interpretation I0 defined as follows:

�I0 = T ,

AI0 = {x ∈ T | A ∈ L1(x)},
RI0 = {(x1, x2) | x2 child of x1 and R ∈ L0(x2)} ∪ {(x2, x1) | x2 child of x1 and R− ∈ L0(x2)}.

Then take, for each x ∈ T , a model Ix of T1 such that x ∈ CIx iff C ∈ L1(x) for all C ∈ cl(T1), which exists by Condition 1
of 1-properness. Moreover, if L4(x) = {∃R.A, ∀R.B1, . . . , ∀R.Bn}, then choose Ix such that (IT2,{A,B1,...,Bn}, aε) �≤�2 (Ix, y) for
all (x, y) ∈ RIx , which is possible by Condition 2 of 4-properness. Further, suppose �I0 and �Ix share only the element x.

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 35
Then I1 is the union of I0 and all chosen interpretations Ix . It is straightforward to prove that I1 is indeed a model of
(T1, A(T ,L)).

We show that (IT2,A(T ,L)
, x0) �≤�2 (I1, x0). By Condition 1 of 4-properness, there is a �2-concept name A in L2(x0) \

L1(x0) or L4(x0) is a �2-successor set for L2(x0). In the former case, x0 ∈ AIT2,A(T ,L) \ AI1 , and so we are done. In the latter
case, it suffices to show the following.

Claim. For all x ∈ T , if L4(x) = {∃R.A, ∀R.B1, . . . , ∀R.Bn}, then (IT2,{A,B1,...,Bn}, aε) �≤�2 (I1, y) for all (x, y) ∈ RI1 .

The proof of the claim is by induction on the co-depth of x in A(T ,L) , which is the length n of the longest sequence of
role assertions R1(x, x1), . . . , Rn(xn−1, xn) in A(T ,L) . It uses Conditions 2 to 4 of 4-properness.

(⇐) Let A be a tree �1-ABox of outdegree at most m that is consistent with T1 and T2, and I1 a model of (T1, A) such
that IT2,A is not con-�2-homomorphically embeddable into I1. By duplicating successors, we can make sure that every
non-leaf in A has exactly m successors. We can further assume without loss of generality that ind(A) is a prefix-closed
subset of N∗ that reflects the tree-shape of A, that is, R(a, b) ∈A implies b = a ·c or a = b ·c, for some c ∈N. By Lemma 47,
there is an a0 ∈ ind(A) such that one of the following holds:

(1) there is a �2-concept name A with a0 ∈ AIT2,A \ AI1 ;
(2) there is an R0-successor d0 of a0 in IT2,A , for some �2-role name R0, such that d0 /∈ ind(A) and, for all R0-successors

d of a0 in I1, we have (IT2,A, d0) �≤�2 (I1, d).

We now show how to construct from A a �-labelled tree (T , L) that is i-proper for all i ∈ {0, . . . , 4}. For each a ∈ ind(A), set
R(a) = ∅ if a = ε, and otherwise set R(a) = {R} if R(b, a) ∈ A and a = b · c, for some c ∈N, and R(a) = {R−} if R(a, b) ∈ A
and a = b · c, for some c ∈N. Now set

T = ind(A),

L0(x) = {A | A(x) ∈A} ∪ {R(x)},
L1(x) = {C ∈ cl(T1) | x ∈ CI1},
L2(x) = tpT2,A(x),

L3(x) =
{

1 if x = a0,

0 otherwise.

It remains to define L4. Start with setting L4(x) = ∅ for all x. If (1) above holds, we are done. If (2) holds, then there is a
�2-successor set S = {∃R0.A, ∀R0.B1, . . . , ∀R0.Bn} for L2(a0) such that the restriction of IT2,A to the subtree-interpretation
rooted at d0 is the canonical model IT2,{A,B1,...,Bn} . Set L4(a0) = S . We continue to modify L4, proceeding in rounds. To keep
track of the modifications that we have already done, we use a set

� ⊆ ind(A) × (NR ∩ �2) × �
IT2,A

such that the following conditions are satisfied:

(i) if (a, R, d) ∈ �, then L4(a) has the form {∃R.A, ∀R.B1, . . . , ∀R.Bn} and the restriction of IT2,A to the subtree-
interpretation rooted at d is the canonical model IT2,{A,B1,...,Bn};

(ii) if (a, R, d) ∈ � and d′ is an R-successor of a in I1, then (IT2,A, d) �≤�2 (I1, d′).

Initially, set � = {(a0, R0, d0)}. In each round of the modification of L4, iterate over all elements (a, R, d) ∈ � that have not
been processed in previous rounds. Let L4(a) = {∃R.A, ∀R.B1, . . . , ∀R.Bn} and iterate over all R-successors b of a in A. By
(ii), (IT2,A, d) �≤�2 (I1, b). By (i), there is thus a top-level �2-concept name A′ in clT2 ({A, B1, . . . , Bn}) such that b /∈ A′I1 or
there is an R ′-successor d′ of d in IT2,A , R ′ a �2-role name, such that for all R ′-successors d′′ of b in I1, (IT2,A, d′) �≤�2

(I1, d′′). In the former case, we do nothing. In the latter case, there is a �2-successor set S ′ = {∃R ′.A′, ∀R ′.B ′
1, . . . , ∀R ′.B ′

n′ }
for clT2 ({A, B1, . . . , Bn}) such that the restriction of IT2,A to the subtree-interpretation rooted at d′ is the canonical model
IT2,{A′,B ′

1,...,B ′
n′ } . Set L4(b) = S ′ and add (b, R ′, d′) to �.

Since we are only following role names (but not inverse roles) during the modification of L4 and since A is tree-shaped,
we shall never process tuples (a1, R1, d1), (a2, R2, d2) from � such that a1 = a2. For any x, we might thus only redefine
L4(x) from the empty set to a non-empty set, but never from one non-empty set to another. For the same reason, the
definition of L4 finishes after finitely many rounds.

It can be verified that the �-labelled tree (T , L) just constructed is i-proper for all i ∈ {0, . . . , 4}. The most interesting
point is 4-properness, which consists of four conditions. Condition 1 is satisfied by the construction of L4. Condition 2 is
satisfied by (ii), and Conditions 3 and 4 again by the construction of L4. �

36 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
By Theorem 46 and Lemma 52, we can decide whether T1 does (�1, �2)-rCQ entail T2 by checking whether there is
no �-labelled tree that is i-proper for each i ∈ {0, . . . , 4}. We do this by constructing automata A0, . . . , A4 such that each
Ai accepts exactly the �-labelled trees that are i-proper, then intersecting the automata and finally testing for emptiness.
Some of the constructed automata are 2ABTAs while others are NTAs. Before intersecting, all 2ABTAs are converted into
equivalent NTAs (which involves an exponential blowup). To achieve ExpTime overall complexity, the constructed 2ABTAs
should thus have at most polynomially many states, while the NTAs can have at most (single) exponentially many states. It
is straightforward to construct

– an NTA A0 that checks 0-properness and has constantly many states;
– a 2ABTA A1 that checks 1-properness and whose number of states is polynomial in |T1| (note that Conditions 1 and 2

of 1-properness are in a sense trivial as they could also be guaranteed by removing undesired symbols from the alpha-
bet �;

– an NTA A3 that checks 3-properness and has constantly many states.

It thus remains to construct

– a 2ABTA A2 that checks 2-properness and whose number of states is polynomial in |T2|;
– an NTA A4 that checks 4-properness and whose number of states is (single) exponential in |T2|.

In fact, the reason for mixing 2ABTAs and NTAs is that while A2 is easier to construct as a 2ABTA, there is no obvious way
to construct A4 as a 2ABTA with only polynomially many states: it seems that one state is needed for every possible value
of the L4-components in �-labels. The 2ABTA A2 is actually the intersection of two 2ABTAs A2,1 and A2,2. The 2ABTA A2,1

ensures one direction of Condition 1 of 2-properness as well as Condition 2, that is:

(i) (T2, A(T ,L)) |= A(x) implies A ∈ L2(x) for all x ∈ T and A ∈ CN(T2);
(ii) T2 �|=� L2(x) � ⊥.

Note that, by Lemma 51, (i) and (ii) imply that A(T ,L) is consistent with T2. It is easy for a 2ABTA to verify (ii), alternatively
one can simply refine �. To achieve (i), it suffices to guarantee the following conditions, for x1, x2 ∈ T :

– A ∈ L0(x1) implies A ∈ L2(x1);
– if A1, . . . , An ∈ L2(x1) and T2 |= A1 � · · · � An � A, then A ∈ L2(x1);
– if A ∈ L2(x1), x2 is a successor of x1, R ∈ L0(x2), and A � ∀R.B ∈ T2, then B ∈ L2(x2);
– if A ∈ L2(x2), x2 is a successor of x1, R− ∈ L0(x2), and A � ∀R.B ∈ T2, then B ∈ L2(x1);
– if A ∈ L2(x2), x2 is a successor of x1, R ∈ L0(x2), and ∃R.A � B ∈ T2, then B ∈ L2(x1);
– if A ∈ L2(x1), x2 is a successor of x1, R− ∈ L0(x2), and ∃R.A � B ∈ T2, then B ∈ L2(x2),

all of which are easily verified with a 2ABTA. Note that Conditions 1 and 2 can again be ensured by refining �.
The purpose of A2,2 is to ensure the converse of (i). Before constructing it, it is convenient to characterise the entailment

of concept names at ABox individuals in terms of derivation trees. A T2-derivation tree for an assertion A0(a0) in A with
A0 ∈ CN(T2) is a finite ind(A) × CN(T2)-labelled tree (T , V) that satisfies the following conditions:

– V (ε) = (a0, A0);
– if V (x) = (a, A) and neither A(a) ∈A nor � � A ∈ T2, then one of the following holds:

– x has successors y1, . . . , yn with V (yi) = (a, Ai), for 1 ≤ i ≤ n, and T2 |= A1 � · · · � An � A;
– x has a single successor y with V (y) = (b, B) and there is an ∃R.B � A ∈ T2 such that R(a, b) ∈A;
– x has a single successor y with V (y) = (b, B) and there is a B � ∀R.A ∈ T2 such that R(b, a) ∈A.

Lemma 53. If (T2, A) |= A(a) and A is consistent with T2, then there is a derivation tree for A(a) in A, for all assertions A(a) with
A ∈ CN(T2) and a ∈ ind(A).

(A proof of Lemma 53 is based on the chase procedure, details can be found in [67].) We are now ready to construct the
2ABTA A2,2. Since A2,1 ensures that A(T ,L) is consistent with T2, by Lemma 53 it is enough for A2,2 to verify that, for each
node x ∈ T and each concept name A ∈ L2(x), there is a T2-derivation tree for A(x) in A(T ,L) .

For readability, we use �− = �0 × CN(T2) as the alphabet instead of � since transitions of A2,2 only depend on the
L0- and L2-components of �-labels. Let rol(T2) be the set of all roles R, R− such that the role name R occurs in T2. Set
A2 = (Q , �−, δ, q0, F), where Q = {q0} � {qA | A ∈ CN(T2)} � {qA,R , qR | A ∈ CN(T2), R ∈ rol(T2)} and F = ∅ (i.e., exactly the
finite runs are accepting). For all (σ0, σ2) ∈ �− , set

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 37
δ(q0, (σ0,σ2)) =
∧

A∈σ2

(0,qA) ∧ (leaf ∨
∧

i∈1..m

(i,q0)),

δ(qA, (σ0,σ2)) = true, whenever A ∈ σ0 or � � A ∈ T2,

δ(qA, (σ0,σ2)) =
∨

T2|=A1�···�An�A

((0,qA1) ∧ · · · ∧ (0,qAn)) ∨ whenever A /∈ σ0 and � � A /∈ T2,∨
∃R.B�A∈T , R∈�1

(((0,qR−) ∧ (−1,qB)) ∨
∨

i∈1..m

(i,qB,R)) ∨
∨

B�∀R.A∈T , R∈�1

((0,qR) ∧ (−1,qB)) ∨
∨

i∈1..m

(i,qB,R−)),

δ(qA,R , (σ0,σ2)) = (0,qA), whenever R ∈ σ0,

δ(qA,R , (σ0,σ2)) = false, whenever R /∈ σ0,

δ(qR , (σ0,σ2)) = true, whenever R ∈ σ0,

δ(qR , (σ0,σ2)) = false, whenever R /∈ σ0.

Note that the finiteness of runs ensures that T2-derivation trees are also finite, as required.
We next discuss the construction of the NTA A4, omitting most of the details because the construction is not difficult.

Conditions 1 and 2 of 4-properness can be enforced by making sure that certain symbols from � do not occur. However,
in the case of Condition 2, we have to decide during the automaton construction whether, for given sets S1 ⊆ cl(T1) and
S2 = {∃R0.A, ∀R0.B1, . . . , ∀R0.Bn} ⊆ sub(T2), there is a model I of T1 and a d ∈ �I such that

(a) d ∈ CI iff C ∈ S1 for all C ∈ cl(T1) and
(b) (IT2,S↓

2
, aε) �≤�2 (I, e) for all (d, e) ∈ RI

0 .

We have to show that this check can be done in ExpTime. We give a sketch of a decision procedure based on nondetermin-
istic Büchi automata on infinite trees that borrows ideas from the above constructions, but is much simpler.

Definition 54. A nondeterministic Büchi tree automaton (NBA) on infinite m-ary trees is a tuple A = (Q , �, Q 0, δ, F) where Q
is a finite set of states, � a finite alphabet, Q 0 ⊆ Q a set of initial states, δ : Q × � → 2Q m

a transition function, and F ⊆ Q
is an acceptance condition. Let (T , L) be a �-labelled m-ary tree. A run of A on (T , L) is a Q -labelled m-ary tree (T , r) such
that r(ε) ∈ Q 0 and 〈r(x · 1), . . . , r(x · m)〉 ∈ δ(r(x), L(x)), for each x ∈ T . We say that (T , r) is accepting if in all infinite paths
y1 y2 · · · of T , the set {i | r(yi) ∈ F } is infinite. An infinite �-labelled tree (T , L) is accepted by A if there is an accepting run
of A on (T , L). We use L(A) to denote the set of all infinite �-labelled trees accepted by A.

The emptiness problem for NBAs can be solved in polynomial time. Our aim is to build an NBA B such that the labelled
trees accepted by B represent tree interpretations I that satisfy Conditions (a) and (b). We make precise which trees should
be accepted by B. Let �′

0 be the set of all subsets of cl(T1) ∪ {R ∈ NR | R occurs in T1} that contain at most one role name
and let �′ = (�′

0 × 2sub(T2)) ∪ {empty}. For a �′-labelled tree (T , L) and a node x in T with L(x) �= empty, we write Li(x) to
denote the i + 1st component of L(x), for i ∈ {0, 1}. Informally, the projection of a �′-labelled tree to the L0-components
represents I and the projection to the L1-components contains bookkeeping information that helps to ensure Condition (b).
A �′-labelled tree is proper if the following conditions hold, for x1, x2 ∈ T :

– L(ε) = (S1, S2);
– if L(x1) �= empty, then L0(x1) is satisfiable with T1;
– if x2 is a child of x1 and R ∈ L0(x2), then ∀R.C ∈ L0(x1) implies C ∈ L0(x2) for all ∀R.C ∈ cl(T1);
– if ∃R.C ∈ L0(x1), then there is a child x2 of x1 such that {R, C} ⊆ L0(x2);
– if x2 is a child of x1 and L(x1) = empty, then L(x2) = empty;
– if x2 is a child of x1, L0(x2) contains the role name R , and L1(x1) = {∃R.A, ∀R.B1, . . . , ∀R.Bn}, then there is a �2-concept

name in clT2 ({A, B1, . . . , Bn}) \ L0(x2) or L1(x2) is a �2-successor set for clT2 ({A, B1, . . . , Bn});
– there are only finitely many nodes x with L1(x) �= ∅.

In the conditions above, we assume that whenever a condition is posed on a component of the label of a node x, then L(x) �=
empty. Note that the L1-component of a node label plays the same role as the L4-component in the previous construction.
Every proper �′-labelled tree (T , L) represents the following tree interpretation I(T ,L):

�I(T ,L) = {x ∈ T | L(x) �= empty},
AI(T ,L) = {x | A ∈ L0(x)},
RI(T ,L) = {(x1, x2) | x2 child of x1 and R ∈ L0(x2)}.

Set m′ = |T1|. The proof of the following lemma is similar to that of Lemma 52, but simpler.

38 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
Lemma 55. There is an m′-ary proper �′-labelled tree (T , L) iff there is a model I of T1 and a d ∈ �I that satisfy Conditions (a)

and (b) from before Definition 54; in fact, I(T ,L) is such a model.

It is now straightforward to construct an NBA B whose number of states is polynomial in |T1| and exponential in |T2|
and which accepts exactly the m′-ary proper �′-labelled trees. Details are left to the reader.

8.2. 2ExpTime upper bound for �-CQ-entailment of HornALC TBoxes by ALC TBoxes

We now consider the case of non-rooted CQs. Our aim is to prove the following 2ExpTime upper bound:

Theorem 56. �-CQ entailment of HornALC TBoxes by ALC TBoxes is in 2ExpTime.

The proof again builds on the characterisations provided by Theorem 46. Since we are now working with CQs rather
than rCQs, we have to consider �2-homomorphic embeddability instead of con-�2-homomorphic embeddability. Note that
Lemma 47 also provides a characterisation in terms of simulations in that case, adding a third condition. We modify the
previous construction to accommodate this additional condition.

Condition (2) of Lemma 47 tells us to avoid certain simulations. In the previous construction, we were able to do that by
storing a single successor set in the L4-component of each �-label, that is, it was sufficient to avoid at most one simulation
into each individual of the ABox A(T ,L) . In the current construction, this is no longer the case. We thus let the L4-component
of �-labels range over 22sub(T2)

rather than 2sub(T2) and use it to store sets of successor sets. To address (3) in Lemma 47, we
add an L5-component to �-labels, which also ranges over 22sub(T2)

. The purpose of this component is to represent elements
of the canonical model IT2,A from which we have to avoid a simulation into any individual in A(T ,L) and, in fact, into
any element of the interpretation (partially) represented by the L2-components of node labels. The notion of i-properness
remains the same for i ∈ {0, 1, 2, 3}. We adapt the notion of 4-properness and add a notion of 5-properness.

As a preliminary, we define a notion of �2-descendant set. While a �2-successor set for t ⊆ CN(T2) represents a
�2-successor of an element d in a canonical model IT2,A that satisfies d ∈ AIT2,A for all A ∈ t , a �2-descendent set
represents a descendent of such a d that is attached to its predecessor via a role name that is not in �2, as in (3) of
Lemma 47. Formally, for t ⊆ CN(T2), we define �t to be the smallest set such that t ∈ �t and if t′ ∈ �t and S is a suc-
cessor set for clT2 (t

′), then S↓ ∈ �t . A set s ⊆ CN(T2) is a �2-descendant set for t if there is a t′ ∈ �t and successor set
S = {∃R.A, ∀R.B1, . . . , ∀R.Bn} for clT2 (t

′) with R �∈ �2 such that s = S↓ .
A �-labelled tree (T , L) is 4-proper if the following conditions are satisfied for all x1, x2 ∈ T :

– if L3(x1) = 1, then one of the following holds:
– there is a �2-concept name in L2(x1) \ L1(x1);
– L4(x1) contains a �2-successor set for L2(x1);
– L5(x1) contains a �2-descendant set for L2(x1);

– there is a model I of T1 and a d ∈ �I such that the following hold:
– d ∈ CI iff C ∈ L1(x1), for all C ∈ cl(T1);
– if {∃R.A, ∀R.B1, . . . , ∀R.Bn} ∈ L4(x1) and (d, e) ∈ RI , then (IT2,{A,B1,...,Bn}, aε) �≤�2 (I, e);
– if s ∈ L5(x1) and e ∈ �I , then (IT2,s, aε) �≤�2 (I, e);

– if x2 is a child of x1, L0(x2) contains the role name R , and L4(x1) " {∃R.A, ∀R.B1, . . . , ∀R.Bn}, then there is a �2-concept
name in clT2 ({A, B1, . . . , Bn}) \ L1(x2) or L4(x2) contains a �2-successor set for clT2 ({A, B1, . . . , Bn});

– if x2 is a child of x1, L0(x2) contains the role R− , and L4(x2) " {∃R.A, ∀R.B1, . . . , ∀R.Bn}, then there is a �2-concept
name in clT2 ({A, B1, . . . , Bn}) \ L1(x1) or L4(x1) contains a �2-successor set for clT2 ({A, B1, . . . , Bn}).

A �-labelled tree (T , L) is 5-proper if the following conditions are satisfied for all x1 ∈ T :

– all x ∈ T agree regarding their L5-label;
– if s ∈ L5(x1), then one of the following holds:

– there is a �2-concept name in s \ L1(x1);
– L4(x1) contains a �2-successor set for s.

Note that 4-properness and 5-properness together implement (2) and (3) of Lemma 47; in particular, Point (3) from
Lemma 47 requires that (IT2,A, d0) �≤�2 (I1, e) for any element e of I1 which can be broken down into the two cases
above.

The proof of the following lemma is similar to that of Lemma 53:

Lemma 57. There is an m-ary �-labelled tree that is i-proper for all i ∈ {0, . . . , 5} iff there is a tree �1-ABox A of outdegree at most m
that is consistent with T1 and T2 and a model I1 of (T1, A) such that the canonical model IT2,A of (T2, A) is not �2-homomorphically
embeddable into I1 .

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 39
We can now adapt the automata construction presented in the previous section. It is straightforward to construct an
NTA A5 with double exponentially many states that verifies 5-properness. Also, the NTA A4 for 4-properness will now have
double exponentially many states because L4- and L5-components are sets of sets of concepts rather than sets of concepts.
In fact, we could dispense with NTAs altogether and use a 2ABTA that has exponentially many states, both for A4 and A5.
The construction of A4 needs to decide whether, for given sets S1 ⊆ cl(T1) and S2, S3 ⊆ 2CN(T2) , there is a model I of T1
and a d ∈ �I such that

(a) d ∈ CI iff C ∈ S1, for all C ∈ cl(T1);
(b) (IT2,S , aε) �≤�2 (I, d) for all S ∈ S2;
(c) (IT2,S , aε) �≤�2 (I, e) for all S ∈ S3 and e ∈ �I ;

This check can be implemented in 2ExpTime using a decision procedure based on NBAs, mixing ideas from the corresponding
construction in the previous section and the construction above. Overall, we obtain the 2ExpTime upper bound stated in
Theorem 56.

8.3. 2ExpTime lower bound for �-CQ-inseparability between HornALC TBoxes

We prove a matching lower bound for the 2ExpTime upper bound established in Theorem 56 using a reduction of the
word problem of exponentially space bounded ATMs (see Section 5.3). More precisely, we show the following:

Theorem 58. (�, �)-CQ inseparability between the empty TBox and HornALC TBoxes is 2ExpTime-hard.

Note that we obtain a 2ExpTime lower bound for �-CQ entailment as well since, clearly, the empty TBox (�, �)-CQ-
entails a TBox T iff the empty TBox and T are (�, �)-CQ-inseparable. Let M = (Q , �I , �, q0, �) be an exponentially space
bounded ATM whose word problem is 2ExpTime-hard, where Q is the finite set of states, �I the input alphabet, � ⊇ �I the
tape alphabet with blank symbol � ∈ � \ �I , q0 ∈ Q the initial state, and � ⊆ Q × � × Q × � × {L, R} the transition relation.
We use �(q, σ) to denote the set of transitions (q′, σ ′, D) ∈ Q × � × {L, R} possible when M is in state q and reads σ , that
is, (q, σ , q′, σ ′, D) ∈ �. We may assume that the length of every computation path of M on w ∈ �n is bounded by 22n

, and
all the configurations wqw ′ in such computation paths satisfy |w w ′| ≤ 2n (see [60]). To simplify the reduction, we may also
assume without loss of generality that M makes at least one step on every input, that it never reaches the last tape cell,
and that every universal configuration has exactly two successor configurations.

Note that when M accepts an input w , this is witnessed by an accepting computation tree whose nodes are labelled with
configurations such that the root is labelled with the initial configuration of M on w , the descendants of any non-leaf
labelled with a universal (respectively, existential) configuration include all (respectively, one) of the successors of that
configuration, and all leafs are labelled with accepting configurations.

Let w be an input to M . We aim to construct a HornALC TBox T and a signature � such that M accepts w iff there is
a tree �-ABox A such that

(a) A is consistent with T and
(b) IT ,A is not �-homomorphically embeddable into IT∅,A ,

where T∅ = ∅. Note that this is equivalent to (�, �)-CQ-entailment of T by T∅ due to Theorem 46 (2); that theorem
additionally imposes a restriction on the outdegree of A, but it is easy to go through the proofs and verify that the char-
acterisation holds also without that restriction. We are going to construct T and � such that A represents an accepting
computation tree of M on w .

When dealing with an input w of length n, in A we represent configurations of M by a sequence of 2n elements linked
by the role name R , from now on called configuration sequences. These sequences are then interconnected to form a rep-
resentation of the computation tree of M on w . This is illustrated in Fig. 7, which shows three configuration sequences,
enclosed by dashed boxes. The topmost configuration is universal, and it has two successor configurations. All solid ar-
rows denote R-edges. We shall see at the very end of the reduction why successor configurations are separated by two
consecutive edges instead of a single one.

The above description is an oversimplification. In fact, every configuration sequence stores two configurations instead of
only one: the current configuration and the previous configuration in the computation. We will later use the homomorphism
condition (b) above to ensure that

(∗) the previous configuration stored in a configuration sequence is identical to the current configuration stored in its
predecessor configuration sequence.

The actual transitions of M are then enforced locally inside configuration sequences.

40 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
Fig. 7. Configuration tree (partial).

The signature � consists of the following symbols:

– the concept names A0, . . . , An−1, A0, . . . , An−1 that serve as bits in the binary representation of a number between 0
and 2n − 1, identifying the position of tape cells inside configuration sequences (A0, A0 are the lowest bit);

– the concept names A′
0, . . . , A

′
m−1 and A

′
0, . . . , A

′
m−1, where m = #log(2n + 2)$, that serve as bits of another counter

which is able to count from 0 to 2n + 2 and whose purpose will be explained later;
– the concept names Aσ , A′

σ , Aσ , for each σ ∈ �;
– the concept names Aq,σ , A′

q,σ , Aq,σ , for each σ ∈ � and q ∈ Q ;
– the concept names X1, X2 that mark the first and second successor configuration;
– the role name R .

From the above list, the concept names Aσ and Aq,σ are used to represent the current configuration and A′
σ and A′

q,σ for
the previous configuration. The role of the concept names Aσ and Aq,σ will be explained later.

It thus remains to construct the TBox T , which is the most laborious part of the reduction. We use T to verify the
existence of a computation tree of M on input w in the ABox. For the time being, we are going to assume that (∗) holds
and, in a second step, we will demonstrate how to actually achieve that. We start with verifying halting configurations,
which must all be accepting in an accepting computation tree, in a bottom-up manner:

A0 � · · · � An−1 � Aσ � A′
σ � V , (1)

Ai � ∃R.Ai ��
j<i

∃R.A j � oki, (2)

Ai � ∃R.Ai ��
j<i

∃R.A j � oki, (3)

Ai � ∃R.Ai ��
j<i

∃R.A j � oki, (4)

Ai � ∃R.Ai ��
j<i

∃R.A j � oki, (5)

ok0 � · · · � okn−1 � Ai � ∃R.V � Aσ � A′
σ � V , (6)

ok0 � · · · � okn−1 � Ai � ∃R.V � Aσ � A′
q,σ ′ � V L,σ , (7)

ok0 � · · · � okn−1 � Ai � ∃R.V � Aqa,σ � A′
σ � V R,qa , (8)

ok0 � · · · � okn−1 � Ai � ∃R.V L,σ � Aqa,σ ′ � A′
σ ′ � V L,qa,σ , (9)

ok0 � · · · � okn−1 � Ai � ∃R.V R,qa � Aσ � A′
q,σ ′ � V R,qa,σ , (10)

ok0 � · · · � okn−1 � Ai � ∃R.V D,qa,σ � Aσ ′ � A′
σ ′ � V D,qa,σ , (11)

∃R.Ai � ∃R.Ai � ⊥, (12)

where σ , σ ′ range over �, q over Q , i over 0, . . . , n − 1, and D over {L, R}. The first line starts the verification at the last
tape cell, ensuring that at least one concept name Aσ and one concept name A′

σ is true (it also verifies that the symbol
is identical in the current and previous configuration, assuming (∗); it is here that the assumption that M never reaches
the last tape cell makes the construction easier). The following lines implement the verification of the remaining tape cells

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 41
of the configuration. Lines (2)–(5) implement decrementation of a binary counter and the conjunct Ai in lines (6)–(11)
prevents the counter from wrapping around once it has reached 0. We use several kinds of verification markers:

– with V , we indicate that we have not yet seen the head of the ATM;
– V L,σ indicates that the ATM made a step to the left to reach the current configuration, writing σ ;
– V R,q indicates that the ATM made a step to the right to reach the current configuration, switching to state q;
– V D,q,σ indicates that the ATM moved in direction D to reach the current configuration, switching to state q and writ-

ing σ .

In the remaining reduction, we expect that a marker V D,q,σ has been derived at the first (thus top-most) cell of the
configuration. This makes sure that there is exactly one head in the current and previous configuration, and that the head
moved exactly one step between the previous and current position. Also note that the above CIs ensure that the tape
content does not change for cells that were not under the head in the previous configuration, assuming (∗). Note that it is
not immediately clear that lines (2)–(11) work as intended since they can speak about different R-successors for different
bits. The last line fixes this problem. We also ensure that relevant concept names are mutually exclusive:

Ai � Ai � ⊥, (13)

Aσ1 � Aσ2 � ⊥, if σ1 �= σ2, (14)

Aσ1 � Aq2,σ2 � ⊥, (15)

Aq1,σ1 � Aq2,σ2 � ⊥, if (q1,σ1) �= (q2,σ2), (16)

where i ranges over 0, . . . , n − 1, σ1, σ2 over �, and q1, q2 over Q . We also add the same CIs for the primed versions of
these concept names. The next step is to verify non-halting configurations:

∃R.∃R.(X1 � A0 � · · · � An−1 � (V D,q,σ 	 V ′
D,q,σ)) � Lok, (17)

∃R.∃R.(X2 � A0 � · · · � An−1 � (V D,q,σ 	 V ′
D,q,σ)) � Rok, (18)

A0 � · · · � An−1 � Aσ � A′
σ � Lok � Rok � V ′, (19)

ok0 � · · · � okn−1 � Ai � ∃R.V ′ � Aσ � A′
σ � V ′, (20)

ok0 � · · · � okn−1 � Ai � ∃R.V ′ � Aσ � A′
q,σ ′ � V ′

L,σ , (21)

ok0 � · · · � okn−1 � Ai � ∃R.V ′
R,q � Aσ � A′

q′,σ ′ � V ′
R,q,σ , (22)

ok0 � · · · � okn−1 � Ai � ∃R.V ′
D,q,σ � Aσ ′ � A′

σ ′ � V ′
D,q,σ , (23)

where σ , σ ′, σ ′′ range over �, q and q′ over Q , i over 0, . . . , n − 1, and D over {L, R}. We switch to different verification
markers V ′ , V ′

L,σ , V ′
R,q , V ′

D,q,σ to distinguish between halting and non-halting configurations. Note that the first verification
step is different for non-halting configurations: we expect to see one successor marked with X1 and one with X2, both
the first cell of an already verified (halting or non-halting) configuration. For easier construction, we require two succes-
sors also for existential configurations; they can simply be identical. The above CIs do not yet deal with cells where the
head is currently located. We need some prerequisites because when verifying these cells, we want to (locally) verify the
transition relation. For this purpose, we carry the transitions implemented locally at a configuration up to its predecessor
configuration:

∃R.∃R.(Xt � A0 � · · · � An−1 � Vq,σ ,D ′) � St
q,σ ,D ′ , (24)

∃R.∃R.(Xt � A0 � · · · � An−1 � V ′
q,σ ,D ′) � St

q,σ ,D ′ , (25)

∃R.(Aσ � St
q,σ ′,D) � St

q,σ ′,D , (26)

where q ranges over Q , σ and σ ′ over �, t over {1, 2}, and i over 0, . . . , n − 1. Note that markers are propagated up exactly
to the head position. One issue with the above is that additional St

q,σ ,D -markers could be propagated up not from the
successors that we have verified, but from surplus (unverified) successors. To prevent such undesired markers, we add the
CIs

St
q1,σ1,D1

� St
q2,σ2,D2

� ⊥ (27)

for all t ∈ {1, 2} and all distinct (q1, σ1, D1), (q2, σ2, D2) ∈ Q × � × {L, R}. We can now implement the verification of the
cells under the head in non-halting configurations. We take

42 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
ok0 � · · · � okn−1 � Ai � ∃R.V ′ � Aq1,σ1 � A′
σ1

� S1
q2,σ2,D2

� S2
q3,σ3,D3

� V ′
R,q1

, (28)

ok0 � · · · � okn−1 � Ai � ∃R.V ′
L,σ � Aq1,σ1 � A′

σ1
� S1

q2,σ2,D2
� S2

q3,σ3,D3
� V ′

L,q1,σ , (29)

for all (q1, σ1) ∈ Q ×� with q1 a universal state and �(q1, σ1) = {(q2, σ2, D2), (q3, σ3, D3)}, i from 0, . . . , n − 1, and σ from
�; moreover, we take

ok0 � · · · � okn−1 � Ai � ∃R.V ′ � Aq1,σ1 � A′
σ1

� S1
q2,σ2,D2

� S2
q2,σ2,D2

� V ′
R,q1

, (30)

ok0 � · · · � okn−1 � Ai � ∃R.V ′
L,σ � Aq1,σ1 � A′

σ1
� S1

q2,σ2,D2
� S2

q2,σ2,D2
� V ′

L,q1,σ , (31)

for all (q1, σ1) ∈ Q ×� with q1 an existential state, for all (q2, σ2, D2) ∈ �(q1, σ1), all i from 0, . . . , n − 1, and all σ from �.
It remains to verify the initial configuration. Let w = σ0 · · ·σn−1, let (C = j) be the conjunction over the concept names
Ai , Ai that expresses j in binary, for 0 ≤ j < n, and let (C ≥ n) be the Boolean concept over the concept names Ai , Ai

expressing that the counter value is at least n. Then we take

A0 � · · · � An−1 � A� � Lok � Rok � V I , (32)

ok0 � · · · � okn−1 � (C ≥ n) � ∃R.V I � A� � V I , (33)

ok0 � · · · � okn−1 � (C = i) � ∃R.V I � Aσi � V I , (34)

where i ranges over 1, . . . , n − 1 and σ , σ ′ over �. This verifies the initial conditions except for the left-most cell, where
the head must be located (in initial state q0) and where we must verify the transition, as in all other configurations. Recall
that we assume q0 to be an existential state. We can thus add

ok0 � · · · � okn−1 � (C = 0) � ∃R.V I � Aq0,σ0 � S1
q,σ ,D � S2

q,σ ,D � I (35)

for all (q, σ , D) ∈ �(q0, σ0).
At this point, we have finished the verification of the computation tree, except that we have assumed but not yet

established (∗). Achieving (∗) consists of two parts. In the first part, we use the concept names Bi , Bi , i < m (recall that
m = #log(2n + 2)$) to implement an additional counter that serves the purpose of generating a path whose length is 2n + 2,
the distance between two corresponding tape cells in consecutive configurations. Let α0, . . . , αk−1 be the elements of Q ∪
(Q × �). We add the following to T :

∃R.I � ∃S. �
�<k

∃R.(Aα�
� Bα�

� (C B = 0)) (36)

Bα�
� ∃R.�, (37)

Bi ��
j<i

B j � ∀R.Bi, (38)

Bi ��
j<i

B j � ∀R.Bi, (39)

Bi ��
j<i

B j � ∀R.Bi, (40)

Bi ��
j<i

B j � ∀R.Bi, (41)

(C B < 2n + 1) � Bα�
� ∀R.Bα�

, (42)

(C B = 2n + 1) � Bα�
� ∀R.Aα�

, (43)

where � ranges over 0, . . . , k − 1, i ranges over 0, . . . , m, and (C B = j) (respectively, (C B < j)) denotes a Boolean concept
expressing that the value of the Bi/Bi -counter is j (respectively, smaller than j). We will explain shortly why we need to
travel one more R-step (in the first line) after seeing I .

The above CIs generate, after the verification of the computation tree has ended successfully, a tree in the canonical
model of the input ABox and of T as shown in Fig. 8. Note that the topmost edge is labelled with the role name S , which
is not in �. To satisfy Condition (b) above, we must thus not (homomorphically) find the subtree rooted at the node with
the incoming S-edge anywhere in the canonical model of the ABox and T∅ (which is just a different presentation of A). We
use this effect to ensure that (∗) is satisfied everywhere. Note that the R-paths in Fig. 8 have length 2n + 2 and that we do
not display the labelling with the concept names Bi , Bi , Bα . These concept names are not in � and only serve the purpose
of achieving the intended path length and of memorising α. Informally, every R-path in the tree represents one possible
copying defect. The concept names of the form Aα stand for the disjunction over all A′

β with β �= α. Although we have not
done it so far, we can easily modify T to achieve that they are indeed used this way in the input ABox. For example, we
can add the conjunct �σ ′∈�\{σ } Aσ ′ to the left-hand side of the concept inclusion in (1), and likewise for (6), (7), and so
on.

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 43
Fig. 8. Tree gadget.

Fig. 9. Additional paths attached to computation tree. In the sequence of paths on the left, the path for Aαi is missing.

If there is a copying defect somewhere in the ABox, then one of the R-paths in Fig. 8 can be homomorphically embedded.
We have to ensure that the other paths can be embedded, too. The first step is to add the following CIs:

(C ′ = 2n + 2) � Aα�
� V ′

�, (44)

A′
i � ∃R.A′

i ��j<i
∃R.A′

j � ok′
i, (45)

A
′
i � ∃R.A

′
i ��

j<i
∃R.A′

j � ok′
i, (46)

A′
i � ∃R.A

′
i ��

j<i
∃R.A

′
j � ok′

i, (47)

A
′
i � ∃R.A′

i ��j<i
∃R.A

′
j � ok′

i, (48)

ok′
0 � · · · � ok′

n−1 � A
′
i � ∃R.V ′

� � Aσ � A′
σ � V ′

�, (49)

∃R.((C ′ = 0) � V ′
� � Aα�

) � V�, (50)

where � ranges over 0, . . . , k − 1, i ranges over 0, . . . , m, and (C ′ = j) denotes a Boolean concept which expresses that the
value of the A′

i/A
′
i -counter is j; recall that the concept names implementing this counter are in �. The purpose of the

above CIs is to set the verification marker V� at an individual a whenever we find in the ABox an R-path with root a that
is isomorphic to the R-path labelled with Aα�

/Aα�
in Fig. 8 (and additionally is decorated in an appropriate way with the

concept names used by the A′
i/A

′
i -counter).

As the second step, it remains to add the verification markers V� to the left-hand side of the CIs in T in such a way that

(∗∗) whenever an ABox individual a that is part of the computation tree has an R-successor in that tree which is labelled
with Aα�

, then all verification markers V j with j ∈ {0, . . . , � − 1, � + 1, . . . , k − 1} must be present at a.

Informally, (∗∗) achieves the presence of additional paths attached to nodes of the computation tree, as displayed in Fig. 9.
There, a and b are nodes in the computation tree proper and since Aαi holds at b, we attach to a all paths from Fig. 8
except the one for Aαi . By what was achieved in the first step, we can thus homomorphically embed the R-tree in Fig. 8 at
a iff there is a copying defect at the successor of a.

44 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
We next describe the modifications required to achieve (∗∗). Line (20) needs to be extended by adding to the left-hand
side the conjunct � j∈{0,...,�−1,�+1,...,k−1} V j � ∃R.α� where � ranges over 0, . . . , k − 1. Here, we want ∃R.α� to refer to the
same R-successor whose existence is verified by the existing concept ∃R.V ′ on the left-hand side of (20), or at least to a
successor that has the same α�-label. This can be achieved by adding the CIs

∃R.α� � ∃R.α�′ � ⊥ (51)

where � and �′ are distinct, ranging over 0, . . . , k − 1.
The same conjunct needs to be added to the left-hand sides of Lines (21)–(23), (28)–(31), and (33)–(35). We also need

to add the conjunct into the scope of the outermost (but not innermost!) existential quantifier in (17) and (18) and to
(36), outside the scope of the existential quantifier. Note that we indeed need to travel one more R-step after seeing I (the
explanation of this was deferred until now): we always consider copying defects at R-successor of some individual name
and thus also the root of our configuration tree should be the R-successor of some individual. Also note that we indeed
need to separate successor configurations by two R-steps (the remaining deferred explanation). If we used only one R-step,
then the branching ABox individual would always allow the R-tree from Fig. 8 to be homomorphically embedded, no matter
whether there is a copying defect or not.

Lemma 59. The following conditions are equivalent:

(1) there is a tree �-ABox A such that (a) A is consistent with T and (b) IT ,A is not �-homomorphically embeddable into IT∅,A;
(2) M accepts w.

Proof. (sketch) For (2) ⇒ (1), suppose M accepts w . The accepting computation tree of M on w can be represented as
a �-ABox as detailed above alongside the construction of the TBox T . The representation only uses the role name R and
the concept names Ai , Ai ,A′

i , A
′
i , Aσ , Aq,σ , A′

σ , A′
q,σ , Aσ , Aq,σ , X1, and X2. As explained above, we need to duplicate

the successor configurations of existential configurations to ensure that there is binary branching after each configuration.
Also, we need to add one additional incoming R-edge to the root of the tree. The resulting ABox A is consistent with T .
Moreover, since there are no copying defects, there is no homomorphism from IT ,A to IT∅,A .

For (1) ⇒ (2), suppose there is a tree �-ABox A that satisfies (a) and (b). Because of (b), I must be true somewhere
in IT ,A: otherwise, IT ,A does not contain anonymous elements and the identity is a homomorphism from IT ,A to
IT∅,A , contradicting (b). Since I is true somewhere in IT ,A and by the construction of T , the ABox must contain the
representation of an accepting computation tree of M on w , except satisfaction of (∗). For the same reason, IT ,A must
contain a tree as shown in Fig. 8. As already been argued during the construction of T , however, condition (∗) follows from
the existence of such a tree in IT ,A together with (b). �

We remark that the above reduction also yields 2ExpTime hardness for (�, �)-CQ entailment in the DL ELI extending
EL with inverse roles. In fact, CIs D � ∀r.C can be replaced by ∃r−.D � C and disjunctions on the left-hand side can be
removed with only a polynomial blowup. It thus remains to eliminate ⊥, which only occurs non-nested on the right-hand
side of CIs. With the exception of the CIs in (27), this can be done as follows: replace T∅ with a non-empty TBox T1 and
rename T to T2 for uniformity; include all CIs with ⊥ on the right-hand side in T1 instead of in T2; then replace ⊥ with a
fresh concept name D and further extend T1 with CIs which make sure that IT1,A contains an R-tree as in Fig. 8 whenever
D is non-empty, which is straightforward. As a consequence, any ABox that satisfies the left-hand side of a ⊥-CI in the
original TBox T cannot satisfy (b) from Lemma 59 and does not have to be considered.

For the excluded CIs, a different approach needs to be taken since these CIs rely on many CIs in T2 that are not in-
cluded in T1. We only sketch the required modification: instead of introducing the concept names St

q1,σ1,D1
, one would

propagate transitions inside the V ′-markers. Thus, S1
q1,σ1,D1

, S2
q2,σ2,D2

, and V ′ would be integrated into a single marker
V ′

q1,σ1,D1,q2,σ2,D2
, and likewise for V L,q . The excluded CIs can then simply be dropped.

Theorem 60. It is 2ExpTime-hard to decide whether an ELI TBox (�, �)-CQ entails an ELI TBox.

A corresponding upper bound has recently been established in [68].

9. Related work

The comparison of logical theories has been an active research area almost since the invention of formal logic. Important
concepts include Tarski’s notion of interpretability [69] of one theory into another and the notion of conservative extension,
which has been employed extensively in mathematical logic, in particular to compare theories of sets and numbers [70].
Conservative extensions have also been used to formalise modular software specification [71–73] and to enable modular
ontology development [42,16,17]. Query entailment can be regarded as a generalisation of conservative extension where we
do not require that one of the theories under consideration is included in the other and where conservativity depends on

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 45
Table 4
KB query inseparability [34].

DL Complexity DL Complexity

EL(Hdr⊥) P – –
DL-Litecore P DL-LiteHcore ExpTime

HornALC(H) ExpTime HornALC(H)I 2ExpTime

Table 5
TBox query inseparability.

DL Complexity DL Complexity

EL ExpTime [38] HornALC(H)I 2ExpTime [68]
DL-Litecore in P [41] DL-LiteHcore ExpTime [34]

database queries in a signature of interest instead of formulas in the signature of the smaller theory. In an independent but
closely related research field, various notions of equivalence between (extended) datalog programs have been proposed and
investigated [74], often focusing on answer set programming [74–77].

The state of the art in the research of inseparability between description logic ontologies has recently been presented in
great detail in [41]. This survey contains, in particular, a discussion of the relationships between concept-based, model-
based, and query-based inseparability. In the first approach, one compares the concept inclusions entailed by the two
versions of an ontology. In the second approach, one compares the models of the two versions. In contrast, in the query-
based approach underpinning the present investigation, one compares the certain answers to database queries. It turns
out that the three approaches exhibit rather different properties and require different model-theoretic and algorithmic
techniques. While various forms of bisimulations and corresponding bisimulation-invariant tree automata are required to
investigate concept-based inseparability, query-based inseparability relies on understanding homomorphisms between in-
terpretations and products, which are then reflected in the games or automata required to design algorithms; we refer
the reader to [41] for an in-depth discussion. Important notions that are closely related to query inseparability, such as
knowledge exchange and entailment between OBDA specifications, are discussed in [34].

In what follows, we focus on summarising what is known about query inseparability between description logic ontolo-
gies, discussing both the KB and the TBox cases. All existing results are about Horn-DLs as the present paper is the first
one to study query-based inseparability for expressive non Horn-DLs. As discussed in this paper, for Horn-DLs, there is no
difference between CQ- and UCQ-inseparability, so we do not explicitly distinguish between them below.

We start with the KB case. In [34], CQ-inseparability between KBs is investigated for Horn-DLs ranging from the
lightweight EL and DL-Litecore to HornALCHI . The authors develop model-theoretic and game-theoretic characterisations
of query inseparability. In contrast to the present investigation, the main complexity results, summarised in Table 4, are
then obtained using the game-theoretic characterisations instead of reductions to the emptiness problem of tree-automata.
It is also proved that rootedness does not affect the worst-case complexity of query entailment. Observe that the addition
of the inverse role constructor leads to an exponential increase of the complexity of checking query inseparability.

CQ-inseparability between TBoxes has been investigated for EL terminologies (a restricted form of TBox) extended with
role inclusions and domain and range restrictions [15,78], for (unrestricted TBoxes in) the description logic EL [38], and for
variants of DL-Lite [41,34]. The algorithms presented in [15] are based on both model-theoretic and proof-theoretic methods.
The authors focus not only on deciding inseparability but also on presenting the logical difference between TBoxes to the
user. A versioning and modularisation system for acyclic EL TBoxes based on CQ-inseparability is presented and evaluated
in [78]. The system makes intense use of the fact that, in this case, query inseparability can be decided in polynomial time.
This is in contrast to general EL TBoxes for which ExpTime completeness of deciding CQ-inseparability is shown in [38].
The method is purely model-theoretic and based on the close relationship between concept and query inseparability for
EL. More recently, CQ inseparability has been investigated for HornALCHI and shown to be 2ExpTime-complete, using a
subtle approach that combines a mosaic technique with automata [68]. The mentioned results are summarised in Table 5.

10. Conclusion and future work

We have made significant steps towards understanding query entailment and inseparability for KBs and TBoxes in ex-
pressive DLs. Our main—and rather unexpected—results are as follows:

– for ALC-KBs, �-(r)UCQ inseparability is decidable and (r)CQ-inseparability is undecidable (even without restrictions on
the signature);

– for HornALC-TBoxes, �-rCQ inseparability is ExpTime complete and �-CQ inseparability is 2ExpTime complete.

The first result reflects a fundamental difference between the model-theoretic characterisations of inseparability for CQs
and UCQs: while UCQ-inseparability can be characterised using (partial) homomorphisms between models of the respective
KBs, CQ-inseparability requires the construction of products of the models of the respective KBs, a result which is at the

46 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
core of our undecidability proof. The second result reflects a fundamental difference between homomorphisms whose do-
main is connected to ABox individuals (as required for rooted CQs) and those whose domain is not necessarily reachable
from the ABox. Searching for the latter turns out to be much harder. Both results have important practical implications.
The first one indicates that one should approximate CQ-inseparability using UCQ-inseparability when designing practical
algorithms. Observe that this is a sound approximation as no two ontologies that are UCQ-inseparable can be separated by
CQs. The second one indicates that it is worth focusing on rooted (U)CQs rather than all (U)CQs when designing practical
algorithms for inseparability. The latter are likely to cover the vast majority of queries used in practice. We believe that our
model-theoretic characterisations provide a good foundation for developing practical (approximation) algorithms.

Many problems remain open. The main one, which can be directly inferred from the tables presenting our results, is the
decidability of UCQ-inseparability for ALC TBoxes. We conjecture that this problem is undecidable but have found no way
of proving this. Another family of interesting open problems concerns the role of the signatures � and � in our investigation
of the decidability/complexity of inseparability between KBs and TBoxes, respectively. Observe that admitting more symbols
in � or � leads to sound approximations of the original inseparability problem: for example, if TBoxes are �′-CQ insepa-
rable for a pair of signatures �′ ⊇ �, then they are �-CQ inseparable as well. It would, therefore, be of great interest to
understand the complexity of inseparability if � and � consist of all concept and role names (the ‘full signature’ case). We
have been able to prove undecidability of full signature (r)CQ-inseparability for ALC KBs, but the complexity of full signa-
ture (r)UCQ-inseparability between ALC KBs remains open. Similarly, the decidability of full signature (r)CQ-inseparability
and (r)UCQ-inseparability between ALC TBoxes remains open. The ‘hiding technique’ discussed in this paper might be a
good starting point to attack those problems. Finally, it would be of interest to consider extensions of ALC with inverse
roles, qualified number restrictions, nominals, and role inclusions. We conjecture that extensions of our results to DLs with
qualified number restrictions and role inclusions are rather straightforward (though proofs might become significantly less
transparent). The addition of inverse roles, however, might lead to non-trivial modifications of the model-theoretic criteria,
see also [68].

Acknowledgements

We thank the anonymous reviewers for their very thorough and useful comments. This research was supported by the
DFG grant LU 1417/2-1 (C. Lutz), the ERC consolidator grant CODA 647289, and the EPSRC joint grants EP/M012646/1 and
EP/M012670/1 ‘iTract: Islands of Tractability in Ontology-Based Data Access’ (F. Wolter and M. Zakharyaschev).

Appendix A. Proof of Theorem 22

For the proof of Theorem 22 (i), suppose that an instance T of the rectangle tiling problem is given. Consider the KBs
K1

rCQ = (T 1
rCQ, ArCQ) and K2

rCQ = (T 2
rCQ, ArCQ) given in the proof sketch for Theorem 22 (i). It suffices to prove Lemmas 18

and 19 for the new KBs, the rCQs qr
n(y), and the signature �rCQ.

Lemma 61. The instance T admits a rectangle tiling iff there exists qr
n(a) such that K2

rCQ |= qr
n(a).

Proof. (⇒) Suppose T tiles the N × M grid so that a tile of type T ij ∈ T covers (i, j). Let

block j = (T̂ 1, j
k , . . . , T̂ N, j

k ,Row),

for j = 1, . . . , M − 1 and k = (j − 1) mod 3. Let qr
n be the CQ in which the Bi follow the pattern

Row, block1, block1, block2, . . . , blockM−1

(thus, n = (N + 1) × M + 1). In view of Lemma 11, we only need to prove I |= qr
n(a) for each minimal model I ∈ MK2

rCQ
.

Take such an I . We have to show that there is an R-path a, x0, . . . , xn+1 in I such that xi ∈ BI
i and xn+1 ∈ EndI .

First, we construct an auxiliary R-path y0, . . . , yn−N−1. We take y0 ∈ RowI , the successor of a in I , and y1 ∈ I0
I , the

successor of y0 in I , by (21) (I0 = T 1,1). Then we take y2 ∈ (T 2,1)I , . . . , yN ∈ (T N,1)I by (6). We now have right(T N,1) = W .
By (7), we obtain yN+1 ∈ Row1

I . By (9), yN+1 ∈ Row1
I ⊆ RowI . We proceed in this way, starting with (5), till the moment

we construct yn−1 ∈ (T N,M−1)I , for which we use (8) and (15) to obtain yn ∈ (Rowhalt
k)I ⊆ RowI , for some k. Note that

TI ⊆ T̂I by (10).
By (12), two cases are possible now.
Case 1: there is y such that (yn, y) ∈ RI and y ∈ EndI . Then we take x0 = · · · = xN = a, xN+1 = y0, . . . , xn =

yn−N−1, xn+1 = y.
Case 2: there is z1 such that (yn, z1) ∈ RI and z1 ∈ (T halt

k)I , where T = T 1,M and up(T) = C . We then use (13) and
find z2, . . . , zN , u, v such that zi ∈ (T halt

k)I , where T = T i,M , u ∈ RowI and v ∈ EndI . We take x0 = y0, . . . , xn−N−1 =
yn−N−1, xn−N = z1, . . . , xn−1 = zN , xn = u, xn+1 = v . Note that, by (11) and (16), we have (T i, j)I ⊆ (T̂ i, j−1)I .

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 47
Fig. A.1. Two homomorphisms to minimal models.

(⇐) Suppose K2
rCQ |= qr

n(a) for some n > 0. Consider all the pairwise distinct pairs (I, h) such that I ∈ MK2
rCQ

and h is a

homomorphism from qr
n(a) to I . Note that h(qr

n) contains an or-node σh (which is an instance of Rowhalt
k , for some k). We

call (I, h) and h left if h(xn+1) = σh · w∃R.End , and right otherwise. It is not hard to see that there exist a left (Il, hl) and a
right (Ir, hr) with σhl = σhr (if this is not the case, we can construct I ∈ MK2

rCQ
such that I �|= qr

n(a)).

Take (Il, hl) and (Ir, hr) such that σhl = σhr = σ and use them to construct the required tiling. Let σ = aw0 · · · wn′ . We
have hl(xn) = σ , hl(xn+1) = σ · w∃R.End . Let hr(xn+1) = σ v1 . . . vm+2, which is an instance of End. Then hr(xn) = σ v1 . . . vm+1,
which is an instance of Row.

Suppose vm = w∃R.T halt
2

(any k other than 2 is treated analogously). By (14), right(T) = W ; by (13), up(T) = C . Suppose
wn′−1 = w∃R.Sk . Now, we know that k = 1. By (8), right(S) = W . Consider the atom Bn−1(xn−1) from qr

n . Both aw0 · · · wn′−1
and σ v1 · · · vm are instances of Bn−1. By (10) and (16), Bn−1 = Ŝ1 and down(T) = up(S). Suppose vm−1 = w∃R.U halt

2
. By

(13), right(U) = left(T) and up(U) = C . Suppose wn′−2 = w∃R.Q 1 . By (6), right(Q) = left(S). Consider the atom Bn−2(xn−2)

from qr
n . Both aw0 · · · wn′−2 and σ · · · vm−1 are instances of Bn−2. By (10) and (16), Bn−2 = Q̂ 1 and down(U) = up(Q). We

proceed in the same way until we reach σ and aw0 · · · wn′−N−1, for N = m, both of which are instances of Bn−N−1 = Row.
Thus, we have tiled the last two rows of the grid.

We proceed in this way until we have reached some variable xt , for t ≥ 0, of qr
n that is mapped by hl to aw0 w1 (see

Fig. A.1). Note that this situation is guaranteed to occur. Indeed, hl(a) = a, hl(x0) ∈ {a, aw0}, hl(x1) ∈ {a, aw0, aw0 w1}, etc.
Clearly, the assumption that hl(xi) ∈ {a, aw0} for all i (0 ≤ i ≤ n + 1) leads to a contradiction. Let hr(xt) = aw0 · · · ws , for
some s > 1. Note that s = N + 2. By (21), it follows that aw0 w1 is an instance of I0. Therefore, Bt = Î0 and, by (11),
aw0 · · · ws is an instance of V 1, for some tile V such that down(V) = up(I).

Thus, we have a tiling as required since the vertical and horizontal compatibility of the tiles is ensured by the construc-
tion above and by the fact that the tile I occurs in it as the initial tile. �

Lemma 62.
∏

MK2
rCQ

is con-n�rCQ-homomorphically embeddable into IK1
rCQ

preserving {a} for all n ≥ 1 iff there does not exist an
rCQ qr

m(y) such that
∏

MK2
rCQ

|= qr
m(a).

48 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
Proof. (⇒) Suppose otherwise, that is,
∏

MK2
rCQ

|= qr
m(a) for some m. By the assumption,

∏
MK2

rCQ
is con-n�rCQ-homo-

morphically embeddable into IK1
rCQ

for n = m + 3 (the length of qr
m). So we have IK1

rCQ
|= qr

m(a), which is clearly impossible
because none of the paths of IK1

rCQ
contains the full sequence of symbols mentioned in qr

m(y).

(⇐) Suppose
∏

MK2
rCQ

�|= qr
m(a) for all m. Take any subinterpretation of

∏
MK2

rCQ
whose domain contains n ele-

ments connected to a. Recall from the proof of Theorem 6 that we can regard the �rCQ-reduct of this subinterpretation
as a �rCQ-rCQ, and so denote it by q(y). Clearly, q is tree shaped plus the atom R(y, y). We know that there is no
�rCQ-homomorphism from qr

m(y) into q(y) for any m; in particular, q(y) does not have a subquery of the form qr
m(y).

We have to show that IK1
rCQ

|= q(a). We show how to map q(y) starting from a.

We call a variable x in q(y) a gap if there exists no B ∈ �rCQ such that B(x) is in q(y). Since q(y) does not contain a
subquery of the form qr

m(y), we know that every path ρ starting from y in q(y) either:

(a) does not contain End(x), or
(b) contains End(x) and contains a gap x′ that occurs between the y and x.

If all paths ρ starting from y in q(y) are of type (a) we map q(y) on the path πω:

Otherwise, let y be the current variable and a the current image. Let x1, . . . , xk be all successor gaps and z1, . . . , zl all
successor non-gaps of the current variable in q(y). We map all xi to the vertical successor and all zi to the horizontal
successor of the current image. All the rest of the paths starting from xi can then be mapped to an appropriate πi . We
then consider each zi as the current variable, and the point where it has been mapped as the current image, and continue
analogously. Thus, the paths ρ not containing gaps and End(x) atoms would result in being mapped to πω , while the paths
with gaps would each result in being mapped to an appropriate πi . �

We now prove Theorem 22 (ii). We set K2 =K2
rCQ ∪K1

rCQ and show that the following are equivalent:

(1) K1
rCQ �rCQ-rCQ entails K2

rCQ;

(2) K1
rCQ and K2 are �rCQ-rCQ inseparable.

Let IK1
rCQ

be the canonical model of K1
rCQ and MK2

rCQ
the set of minimal models of K2

rCQ. Again, one can easily show that
the following set MK2 is complete for K2:

MK2 = {I � IK1
rCQ

| I ∈ MK2
rCQ

},
where I � IK1

rCQ
is the interpretation that results from merging the roots a of I and IK1

rCQ
. Now (2) ⇒ (1) is trivial. For the

converse, suppose K1
rCQ �rCQ-rCQ entails K2

rCQ. It directly follows that K2 �rCQ-rCQ entails K1
rCQ. So it remains to show that

K1
rCQ �rCQ-rCQ entails K2. Suppose this is not the case. Without loss of generality, we may assume that there is a �rCQ-rCQ

q(y), a ditree with one answer variable y not mentioning D and E , such that K2 |= q(a) and K1
rCQ �|= q(a). We can assume

q to be a smallest rCQ with this property. Consider the various cases of q(y):

– q(y) does not contain End atoms: but then K1
rCQ |= q(a) (see the proof of Lemma 62), contrary to our assumption.

– q(y) contains End atoms and, on each path from y to an End atom, there is a variable x that does not appear in q(y)

in any atom of the form B(x), for a concept name B ∈ �. But then K1
rCQ |= q(a) (see the proof of Lemma 62), contrary

to our assumption.
– q(y) contains End atoms and a path from y to an End atom such that each variable x on this path appears in an atom

of the form B(x), for a concept name B ∈ �. Denote this path by q′(y), and observe that q′(y) is a query of the form
qr

n(y). Then K1
rCQ �|= q′(a) by the construction of K1

rCQ, moreover there is no subquery q′′ of q′(y) such that there is a
model I ∈ MK2

rCQ
and I � IK1

rCQ
|= q′(a) by mapping q′′ entirely into IK1

rCQ
. So it must be that K2

rCQ |= q′(a). But now,

as K1 |=K2 , we know that K2 �|= qr
n(a) for each n, which is again a contradiction.
rCQ rCQ rCQ

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 49
The contradictions arise from the assumption that K1
rCQ does not �rCQ-rCQ entail K2.

Appendix B. Proof of Theorem 43 for rooted CQs

We show that it is undecidable whether an EL TBox is �-rCQ inseparable from an ALC TBox. For the proof we require
homomorphisms between ABoxes and the observation that they preserve certain answers. Let A1 and A2 be ABoxes. A map
h from ind(A1) to ind(A2) is called an ABox-homomorphism if A(a) ∈A1 implies A(h(a)) ∈A2 for all concept names A, and
R(a, b) ∈A1 implies R(h(a), h(b)) ∈A2 for all role names R . The following is shown in [64].

Proposition 63. Let T be an ALC TBox, A, A′ be ABoxes, and h : A →A′ an ABox homomorphism. Then

• A is consistent with T if A′ is consistent with T , and
• (T , A) |= q(a) implies (T , A′) |= q(h(a)) for all CQs q(x).

To prove the undecidability of the problem whether an EL TBox is �-rCQ inseparable from an ALC TBox, we use the
TBoxes constructed in the proof of Theorem 22. Recall the KBs K1

rCQ = (T 1
rCQ, ArCQ), K2

rCQ = (T 2
rCQ, ArCQ) and K2 = (T2, ArCQ),

where T2 = T 1
rCQ ∪ T 2

rCQ. Set � = (�1, �2), where �1 = sig(ArCQ) and �2 = �rCQ. We aim to show that the following
conditions are equivalent:

(1) K1
rCQ and K2 are �rCQ-rCQ inseparable;

(2) T 1
rCQ and T2 are �-rCQ inseparable.

The implication (2) ⇒ (1) is straightforward: if K1
rCQ and K2 are not �rCQ-CQ inseparable then the ABox ArCQ witnesses

that T 1
rCQ and T2 are not �-rCQ inseparable. Conversely, suppose T 1

rCQ and T2 are not �-rCQ inseparable. Take a �1-ABox A
such that (T 1

rCQ, A) and (T2, A) are not �2-rCQ inseparable. Clearly, (T2, A) �2-rCQ entails (T 1
rCQ, A). Thus, (T 1

rCQ, A) does
not �2-rCQ entail (T2, A). The canonical model I1 of the EL KB (T 1

rCQ, A) can be constructed by taking, for every A(b) ∈A,
a copy of the canonical model IK1

rCQ
and hooking the two R-successors of a in IK1

rCQ
(together with the subinterpretations

they root) as fresh R-successors to b. On the other hand, the class M of minimal models of (T2, A) is obtained from I1 by
hooking to every b with A(b) ∈A a copy of a minimal model Ib ∈ MK2

rCQ
by identifying the root a of Ib with b.

Now consider a �2-rCQ q(a) with (T 1
rCQ, A) �|= q(a) and (T2, A) |= q(a). Suppose q(a) is the smallest rCQ with this

property. Using the description of the canonical model I1 of (T 1
rCQ, A) and the class M of minimal models of (T2, A), one

can show in the same way as in the proof of Theorem 22 (ii) given in the appendix above that there must be a path in q
from an answer variable to an End atom such that each variable x on this path appears in an atom of the form B(x) with
B ∈ �rCQ. But then q contains a query of the form qr

n(x) (see again the proof of Theorem 22 (ii)) such that (T2, A) |= qr
n(a)

for some individual a and n > 0. Observe that the map h : ind(A) → {a} is an ABox-homomorphism from the ABox A
onto the ABox ArCQ. It follows from Proposition 63 that (T2, ArCQ) |= qr

n(h(a)), for some n. We know from the proof of
Theorem 22 that K1

rCQ �|= qr
n(a). Thus, K1

rCQ and K2 are not �rCQ-rCQ inseparable, as required.

Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .artint .2018 .09 .003.

References

[1] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, Linking data to ontologies, J. Data Semant. 10 (2008) 133–173.
[2] M. Bienvenu, M. Ortiz, Ontology-mediated query answering with data-tractable description logics, in: 11th Reasoning Web International Summer

School Tutorial Lectures (RW 2015), 2015, pp. 218–307.
[3] R. Kontchakov, M. Rodriguez-Muro, M. Zakharyaschev, Ontology-based data access with databases: a short course, in: 9th Reasoning Web International

Summer School Tutorial Lectures (RW 2013), 2013, pp. 194–229.
[4] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient query answering in description logics: the DL-Lite

family, J. Autom. Reason. 39 (2007) 385–429.
[5] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro, R. Rosati, M. Ruzzi, D.F. Savo, The MASTRO system for ontology-

based data access, Semant. Web 2 (2011) 43–53.
[6] M. Rodriguez-Muro, R. Kontchakov, M. Zakharyaschev, Ontology-based data access: Ontop of databases, in: Proceedings of the 12th International

Semantic Web Conference (ISWC 2013), Springer, 2013, pp. 558–573.
[7] T. Eiter, M. Ortiz, M. Simkus, T. Tran, G. Xiao, Query rewriting for Horn-SHIQ plus rules, in: Proceedings of the 26th National Conference on Artificial

Intelligence (AAAI 2012), AAAI Press, 2012, pp. 726–733.
[8] D. Trivela, G. Stoilos, A. Chortaras, G.B. Stamou, Optimising resolution-based rewriting algorithms for OWL ontologies, J. Web Semant. 33 (2015) 30–49.
[9] I. Kollia, B. Glimm, Optimizing SPARQL query answering over OWL ontologies, J. Artif. Intell. Res. 48 (2013) 253–303.

[10] Y. Zhou, B.C. Grau, Y. Nenov, M. Kaminski, I. Horrocks, Pagoda: pay-as-you-go ontology query answering using a datalog reasoner, J. Artif. Intell. Res.
54 (2015) 309–367.

https://doi.org/10.1016/j.artint.2018.09.003
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib504C43442A3038s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4269656E76656E754F3135s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4269656E76656E754F3135s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B6F6E746368616B6F76525A3133s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B6F6E746368616B6F76525A3133s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib43444C4C523037s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib43444C4C523037s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib43616C76616E657365474C4C50525252533131s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib43616C76616E657365474C4C50525252533131s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib526F6472696775657A2D4D75726F4B5A3133s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib526F6472696775657A2D4D75726F4B5A3133s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib45697465724F5354583132s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib45697465724F5354583132s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib54726976656C615343533135s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B6F6C6C6961473133s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib5A686F75474E4B483135s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib5A686F75474E4B483135s1

50 E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51
[11] N.F. Noy, M.A. Musen, PromptDiff: a fixed-point algorithm for comparing ontology versions, in: Proceedings of the 18th National Conference on Artificial
Intelligence (AAAI 2002), AAAI Press, Menlo Park, CA, USA, 2002, pp. 744–750.

[12] M.C.A. Klein, D. Fensel, A. Kiryakov, D. Ognyanov, Ontology versioning and change detection on the Web, in: Knowledge Engineering and Knowledge
Management: Ontologies and the Semantic Web, in: Lecture Notes in Computer Science, vol. 2473, Springer Verlag, Berlin/Heidelberg, Germany, 2002,
pp. 247–259.

[13] T. Redmond, M. Smith, N. Drummond, T. Tudorache, Managing change: an ontology version control system, in: Proceedings of the 5th International
Workshop on OWL: Experiences and Directions (OWLED 2008), in: CEUR Workshop Proceedings, vol. 432, 2008.

[14] E. Jimenez-Ruiz, B. Cuenca Grau, I. Horrocks, R.B. Llavori, Supporting concurrent ontology development: framework, algorithms and tool, Data Knowl.
Eng. 70 (2011) 146–164.

[15] B. Konev, M. Ludwig, D. Walther, F. Wolter, The logical difference for the lightweight description logic EL, J. Artif. Intell. Res. 44 (2012) 633–708.
[16] H. Stuckenschmidt, C. Parent, S. Spaccapietra (Eds.), Modular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization, Lecture

Notes in Computer Science, vol. 5445, Springer, 2009.
[17] O. Kutz, T. Mossakowski, D. Lücke, Carnap, Goguen, and the hyperontologies: logical pluralism and heterogeneous structuring in ontology design, Log.

Univers. 4 (2010) 255–333.
[18] B. Cuenca Grau, I. Horrocks, Y. Kazakov, U. Sattler, Modular reuse of ontologies: theory and practice, J. Artif. Intell. Res. 31 (2008) 273–318.
[19] R. Kontchakov, F. Wolter, M. Zakharyaschev, Logic-based ontology comparison and module extraction, with an application to DL-Lite, Artif. Intell. 174

(2010) 1093–1141.
[20] A.A. Romero, M. Kaminski, B.C. Grau, I. Horrocks, Module extraction in expressive ontology languages via datalog reasoning, J. Artif. Intell. Res. 55

(2016) 499–564.
[21] G. De Giacomo, M. Lenzerini, A. Poggi, R. Rosati, On instance-level update and erasure in description logic ontologies, J. Log. Comput. 19 (2009)

745–770.
[22] H. Liu, C. Lutz, M. Milicic, F. Wolter, Foundations of instance level updates in expressive description logics, Artif. Intell. 175 (2011) 2170–2197.
[23] Z. Wang, K. Wang, R.W. Topor, Revising general knowledge bases in description logics, in: Proceedings of the 12th International Conference on the

Principles of Knowledge Representation and Reasoning (KR 2010), AAAI Press, 2010.
[24] Z. Wang, K. Wang, R.W. Topor, DL-Lite ontology revision based on an alternative semantic characterization, ACM Trans. Comput. Log. 16 (2015)

31:1–31:37.
[25] B. Konev, D. Walther, F. Wolter, Forgetting and uniform interpolation in large-scale description logic terminologies, in: Proceedings of the 21st Interna-

tional Joint Conference on Artificial Intelligence (IJCAI 2009), 2009, pp. 830–835.
[26] Z. Wang, K. Wang, R.W. Topor, J.Z. Pan, Forgetting for knowledge bases in DL-Lite, Ann. Math. Artif. Intell. 58 (2010) 117–151.
[27] C. Lutz, F. Wolter, Foundations for uniform interpolation and forgetting in expressive description logics, in: Proceedings of the 22nd International Joint

Conference on Artificial Intelligence (IJCAI 2011), IJCAI/AAAI, 2011, pp. 989–995.
[28] K. Wang, Z. Wang, R.W. Topor, J.Z. Pan, G. Antoniou, Eliminating concepts and roles from ontologies in expressive descriptive logics, Comput. Intell. 30

(2014) 205–232.
[29] P. Koopmann, R.A. Schmidt, Forgetting and uniform interpolation for ALC-ontologies with ABoxes, in: DL-14, vol. 1193, 2014, pp. 245–257.
[30] N. Nikitina, S. Rudolph, (Non-)succinctness of uniform interpolants of general terminologies in the description logic EL, Artif. Intell. 215 (2014) 120–140.
[31] P. Koopmann, R.A. Schmidt, Uniform interpolation and forgetting for ALC ontologies with ABoxes, in: Proceedings of the 29th National Conference on

Artificial Intelligence (AAAI 2015), AAAI Press, 2015, pp. 175–181.
[32] M. Arenas, E. Botoeva, D. Calvanese, V. Ryzhikov, Exchanging OWL 2 QL knowledge bases, in: Proceedings of the 23rd International Joint Conference

on Artificial Intelligence (IJCAI 2013), AAAI Press, 2013, pp. 703–710.
[33] M. Arenas, E. Botoeva, D. Calvanese, V. Ryzhikov, Knowledge base exchange: the case of OWL 2 QL, Artif. Intell. 238 (2016) 11–62.
[34] E. Botoeva, R. Kontchakov, V. Ryzhikov, F. Wolter, M. Zakharyaschev, Games for query inseparability of description logic knowledge bases, Artif. Intell.

234 (2016) 78–119.
[35] P. Shvaiko, J. Euzenat, Ontology matching: state of the art and future challenges, IEEE Trans. Knowl. Data Eng. 25 (2013) 158–176.
[36] A. Schaerf, Query Answering in Concept-Based Knowledge Representation Systems: Algorithms, Complexity, and Semantic Issues, Ph.D. thesis, Diparti-

mento di Informatica e Sistemistica, Università di Roma “La Sapienza”, 1994.
[37] E. Botoeva, R. Kontchakov, V. Ryzhikov, F. Wolter, M. Zakharyaschev, Query inseparability for description logic knowledge bases, in: Proceedings of the

14th International Conference on the Principles of Knowledge Representation and Reasoning (KR 2014), 2014, pp. 238–247.
[38] C. Lutz, F. Wolter, Deciding inseparability and conservative extensions in the description logic EL, J. Symb. Comput. 45 (2010) 194–228.
[39] R. Kontchakov, L. Pulina, U. Sattler, T. Schneider, P. Seimer, F. Wolter, M. Zakharyaschev, Minimal module extraction from DL-Lite ontologies using QBF

solvers, in: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), 2009, pp. 836–840.
[40] M. Bienvenu, R. Rosati, Query-based comparison of mappings in ontology-based data access, in: Proceedings of the 15th International Conference on

the Principles of Knowledge Representation and Reasoning (KR 2016), 2016, pp. 197–206.
[41] E. Botoeva, B. Konev, C. Lutz, V. Ryzhikov, F. Wolter, M. Zakharyaschev, Inseparability and conservative extensions of description logic ontologies: a

survey, in: 12th Reasoning Web International Summer School Tutorial Lectures (RW 2016), 2016, pp. 27–89.
[42] S. Ghilardi, C. Lutz, F. Wolter, Did I damage my ontology? A case for conservative extensions in description logics, in: P. Doherty, J. Mylopoulos, C. Welty

(Eds.), Proceedings of the 10th International Conference on the Principles of Knowledge Representation and Reasoning (KR 2006), 2006, pp. 187–197.
[43] J.C. Jung, C. Lutz, M. Martel, T. Schneider, F. Wolter, Conservative extensions in guarded and two-variable fragments, in: Proceedings of the 39th

International Coll. on Automata, Languages and Programming (ICALP), 2017, pp. 108:1–108:14.
[44] E. Botoeva, C. Lutz, V. Ryzhikov, F. Wolter, M. Zakharyaschev, Query-based entailment and inseparability for ALC ontologies, in: Proceedings of the 25th

International Joint Conference on Artificial Intelligence (IJCAI 2016), 2016, pp. 1001–1007.
[45] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.), The Description Logic Handbook: Theory, Implementation and Applications,

Cambridge University Press, 2003.
[46] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope, in: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005),

2005, pp. 364–369.
[47] U. Hustadt, B. Motik, U. Sattler, Reasoning in description logics by a reduction to disjunctive Datalog, J. Autom. Reason. 39 (2007) 351–384.
[48] Y. Kazakov, Consequence-driven reasoning for Horn SHIQ ontologies, in: Proceedings of the 21st International Joint Conference on Artificial Intelligence

(IJCAI 2009), 2009, pp. 2040–2045.
[49] B. Glimm, C. Lutz, I. Horrocks, U. Sattler, Answering conjunctive queries in the SHIQ description logic, J. Artif. Intell. Res. 31 (2008) 150–197.
[50] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Data complexity of query answering in description logics, in: Proceedings of the 10th

International Conference on the Principles of Knowledge Representation and Reasoning (KR 2006), 2006, pp. 260–270.
[51] D. Calvanese, T. Eiter, M. Ortiz, Answering regular path queries in expressive description logics: an automata-theoretic approach, in: Proceedings of the

22nd National Conference on Artificial Intelligence (AAAI), 2007, pp. 391–396.
[52] A.K. Chandra, P.M. Merlin, Optimal implementation of conjunctive queries in relational data bases, in: Proceedings of the 9th ACM Symposium on

Theory of Computing (STOC’77), 1977, pp. 77–90.

http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4E6F794D30322D70726F6D707464696666s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4E6F794D30322D70726F6D707464696666s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4F6E746F56696577s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4F6E746F56696577s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4F6E746F56696577s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib525344543038s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib525344543038s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib484F52524F434B53s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib484F52524F434B53s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B6F6E65764C30573132s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib44424C503A7365726965732F6C6E63732F35343435s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib44424C503A7365726965732F6C6E63732F35343435s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B75747A4D4C3130s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B75747A4D4C3130s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib47726175484B533038s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B575A3130s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B575A3130s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib526F6D65726F4B47483136s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib526F6D65726F4B47483136s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib476961636F6D6F4C50523039s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib476961636F6D6F4C50523039s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4C69754C4D573131s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib57616E6757543130s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib57616E6757543130s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib57616E6757543135s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib57616E6757543135s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B6F6E657657573039s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B6F6E657657573039s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib57616E675754503130s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4C75747A573131s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4C75747A573131s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib57616E67575450413134s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib57616E67575450413134s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B6F6F706D616E6E533134s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4E696B6974696E61523134s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B6F6F706D616E6E533135s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B6F6F706D616E6E533135s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4172656E61734243523133s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4172656E61734243523133s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4172656E61734243523136s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib426F746F6576614B52575A3136s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib426F746F6576614B52575A3136s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib53687661696B6F453133s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib53636861393462s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib53636861393462s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib426F746F6576614B52575A3134s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib426F746F6576614B52575A3134s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4C75747A573130s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B6F6E746368616B6F7650535353575A3039s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B6F6E746368616B6F7650535353575A3039s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4269656E76656E75523136s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4269656E76656E75523136s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib426F746F6576614B4C52575A3136s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib426F746F6576614B4C52575A3136s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4768694C75576F2D3036s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4768694C75576F2D3036s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4A756E674C4D30573137s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4A756E674C4D30573137s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib426F746F6576614C52575A3136s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib426F746F6576614C52575A3136s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib42434D4E503033s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib42434D4E503033s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4261424C3035s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4261424C3035s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib48754D533037s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B617A613039s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B617A613039s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib476C69486F4C7553612D4A4149523038s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib43616C76616E657365474C4C523036s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib43616C76616E657365474C4C523036s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib43616C76616E657365454F3037s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib43616C76616E657365454F3037s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4368616E6472614D3737s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4368616E6472614D3737s1

E. Botoeva et al. / Artificial Intelligence 272 (2019) 1–51 51
[53] C. Lutz, The complexity of conjunctive query answering in expressive description logics, in: A. Armando, P. Baumgartner, G. Dowek (Eds.), Proceedings
of the 4th International Joint Conference on Automated Reasoning (IJCAR 2008), in: LNAI, vol. 5195, Springer, 2008, pp. 179–193.

[54] C.C. Chang, H.J. Keisler, Model Theory, Studies in Logic and the Foundations of Mathematics, vol. 73, Elsevier, 1990.
[55] B.C. Grau, I. Horrocks, M. Krötzsch, C. Kupke, D. Magka, B. Motik, Z. Wang, Acyclicity notions for existential rules and their application to query

answering in ontologies, J. Artif. Intell. Res. 47 (2013) 741–808.
[56] P. van Emde Boas, The convenience of tiling, in: A. Sorbi (Ed.), Complexity, Logic and Recursion Theory, in: Lecture Notes in Pure and Applied Mathe-

matics, vol. 187, Marcel Dekker Inc., 1997, pp. 331–363.
[57] C. Lutz, F. Wolter, Non-uniform data complexity of query answering in description logics, in: Proceedings of the 13th International Conference on the

Principles of Knowledge Representation and Reasoning (KR 2012), 2012, pp. 297–307.
[58] M.O. Rabin, Automata on Infinite Objects and Church’s Problem, American Mathematical Society, Boston, MA, USA, 1972.
[59] M.Y. Vardi, Reasoning about the past with two-way automata, in: Proceedings of the 25th International Coll. on Automata, Languages and Programming

(ICALP), in: Lecture Notes in Computer Science, vol. 1443, Springer, 1998, pp. 628–641.
[60] A.K. Chandra, D. Kozen, L.J. Stockmeyer, Alternation, J. ACM 28 (1981) 114–133.
[61] M. Bienvenu, C. Lutz, F. Wolter, Query containment in description logics reconsidered, in: Proceedings of the 13th International Conference on the

Principles of Knowledge Representation and Reasoning (KR 2012), 2012, pp. 221–231.
[62] M. Bienvenu, B. ten Cate, C. Lutz, F. Wolter, Ontology-based data access: a study through Disjunctive Datalog, CSP, and MMSNP, ACM Trans. Database

Syst. 39 (2014) 33:1–33:44.
[63] M. Bienvenu, P. Hansen, C. Lutz, F. Wolter, First-order rewritability and containment of conjunctive queries in Horn description logics, in: Proceedings

of the 25th International Joint Conference on Artificial Intelligence (IJCAI 2016), 2016.
[64] F. Baader, M. Bienvenu, C. Lutz, F. Wolter, Query and predicate emptiness in ontology-based data access, J. Artif. Intell. Res. 56 (2016) 1–59.
[65] D.E. Muller, P.E. Schupp, Alternating automata on infinite trees, Theor. Comput. Sci. 54 (1987) 267–276.
[66] W. Thomas, Languages, automata, and logic, in: Handbook of Formal Language Theory, III, 1997, pp. 389–455.
[67] M. Bienvenu, C. Lutz, F. Wolter, First-order rewritability of atomic queries in Horn description logics, in: Proceedings of the 23rd International Joint

Conference on Artificial Intelligence (IJCAI 2013), 2013, pp. 754–760.
[68] J.C. Jung, C. Lutz, M. Martel, T. Schneider, Query conservative extensions in horn description logics with inverse roles, in: Proceedings of the 26th

International Joint Conference on Artificial Intelligence (IJCAI 2017), 2017, pp. 1116–1122.
[69] A. Tarski, A. Mostowski, R. Robinson, Undecidable Theories, North-Holland, 1953.
[70] W. Rautenberg, A Concise Introduction to Mathematical Logic, Springer, 2010.
[71] J.A. Goguen, R.M. Burstall, Institutions: abstract model theory for specification and programming, J. ACM 39 (1992) 95–146.
[72] T. Maibaum, Conservative extensions, interpretations between theories and all that!, in: Proceedings of the 7th International Conference on Theory and

Practice of Software Development (TAPSOFT), in: LNCS, Springer Verlag, 1997.
[73] J.G.R. Diaconescu, P. Stefaneas, Logical support for modularisation, in: G. Huet, G. Plotkin (Eds.), Logical Environments, 1993.
[74] S. Woltran, Equivalence between extended datalog programs – a brief survey, in: Datalog Reloaded, 2010, pp. 106–119.
[75] V. Lifschitz, D. Pearce, A. Valverde, Strongly equivalent logic programs, ACM Trans. Comput. Log. 2 (2001) 526–541.
[76] T. Eiter, M. Fink, S. Woltran, Semantical characterizations and complexity of equivalences in answer set programming, ACM Trans. Comput. Log. 8

(2007) 17.
[77] A. Harrison, V. Lifschitz, D. Pearce, A. Valverde, Infinitary equilibrium logic and strongly equivalent logic programs, Artif. Intell. 246 (2017) 22–33.
[78] B. Konev, M. Ludwig, F. Wolter, Logical difference computation with CEX2.5, in: Proceedings of the 6th International Joint Conference on Automated

Reasoning (IJCAR 2012), in: Lecture Notes in Computer Science, Springer, Berlin/Heidelberg, Germany, 2012, pp. 371–377.

http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4C75747A2D494A4341523038s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4C75747A2D494A4341523038s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4368616E674B6569736C65723930s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib47726175484B4B4D4D573133s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib47726175484B4B4D4D573133s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib6C6E70616D3138372D456D64s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib6C6E70616D3138372D456D64s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4C75747A323031326E6F6Es1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4C75747A323031326E6F6Es1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib526162696E31393732s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib56617264693938s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib56617264693938s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4368616E6472614B533831s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4269656E76656E754C573132s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4269656E76656E754C573132s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4269656E76656E75434C573134s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4269656E76656E75434C573134s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib484C53572D494A4341493136s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib484C53572D494A4341493136s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib426161646572424C3136s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4D756C6C6572533837s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib54686F6D617348616E64626F6F6B3937s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4269656E76656E754C572D696A6361692D3133s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4269656E76656E754C572D696A6361692D3133s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4A756E674C4D533137s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4A756E674C4D533137s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib416C66726564s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib52617574656E62657267s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib476F6775656E423932s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4D61696261756D31s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4D61696261756D31s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib476F6775656E3933s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib576F6C7472616E3130s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4C696673636869747A50563031s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib456974657246573037s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib456974657246573037s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4861727269736F6E4C50563137s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B6F6E65764C5731322D6365783235s1
http://refhub.elsevier.com/S0004-3702(19)30018-9/bib4B6F6E65764C5731322D6365783235s1

	Query inseparability for ALC ontologies
	1 Introduction
	2 Preliminaries
	3 Model-theoretic criteria for query entailment and inseparability between knowledge bases
	4 Undecidability of (r)CQ-entailment and inseparability for ALC KBs
	4.1 Undecidability of CQ-entailment and inseparability with respect to a signature Σ
	4.2 Undecidability of rCQ-entailment and inseparability with respect to a signature Σ
	4.3 Undecidability of (r)CQ-entailment and inseparability for full signature

	5 Decidability of (r)UCQ-entailment and inseparability for ALC KBs
	5.1 Model-theoretic characterisation of (r)UCQ-entailment based on regular models
	5.2 2ExpTime upper bound for (r)UCQ-entailment with respect to signature Σ
	5.3 2ExpTime lower bound for (r)UCQ-entailment and inseparability with respect to a signature
	5.4 (r)UCQ-entailment and inseparability with full signature

	6 Query entailment and inseparability for ALC TBoxes
	7 Model-theoretic criteria for query entailment of HornALC TBoxes by ALC TBoxes
	8 Decidability of query entailment of HornALC TBoxes by ALC TBoxes
	8.1 ExpTime upper bound for Θ-rCQ-entailment of HornALC TBoxes by ALC TBoxes
	8.2 2ExpTime upper bound for Θ-CQ-entailment of HornALC TBoxes by ALC TBoxes
	8.3 2ExpTime lower bound for Θ-CQ-inseparability between HornALC TBoxes

	9 Related work
	10 Conclusion and future work
	Acknowledgements
	Appendix A Proof of Theorem 22
	Appendix B Proof of Theorem 43 for rooted CQs
	Appendix C Supplementary material
	References

