
Query Rewriting in DL-Lite
(HN )
horn

⋆

Elena Botoeva, Alessandro Artale, and Diego Calvanese

KRDB Research Centre

Free University of Bozen-Bolzano

I-39100 Bolzano, Italy

lastname@inf.unibz.it

Abstract. In this paper we present practical algorithms for query answering and

knowledge base satisfiability checking in DL-Lite
(HN )
horn

, a logic from the extended

DL-Lite family that contains horn concept inclusions and number restriction. This

logic is the most expressive DL that is shown to be FOL-rewritable. The algo-

rithms we present are based on the rewriting technique so that reasoning over

the TBox and over the ABox can be done independently of each other, and the

inference problems are reduced to first order query evaluation. This allows for

employing relational database technology for the final query evaluation and gives

optimal data complexity.

1 Introduction

Query answering is the main reasoning task in the setting of ontology based data ac-

cess [1,2] and data integration [3], where large amounts of data are stored in external

databases, and accessed through a conceptual layers provided by an ontology (expressed

in terms of a description logic knowledge base). Query answering in this case requires

reasoning, and to perform it efficiently in practice the underlying description logic has

to be ‘lite’ enough, to be more precise it should enjoy first-order rewritability: it should

be possible to rewrite a query q posed over the ontology in terms of a new query that

can be directly evaluated over the data, and that provides the same answers as those

provided by q.

The DL-Lite family [4] is a family of description logics that enjoy such nice compu-

tational properties, i.e., data complexity of query answering is in AC0. For DL-Litecore

and DL-LiteFcore
1, the basic logics of the DL-Lite family, a polynomial query answering

algorithm was established in [4], and later extended to DL-LiteA [1]. The idea of the

algorithm is to first rewrite the query by taking into account the assertions in the TBox

and then to evaluate the rewritten query over the ABox. Based on this approach, several

systems were implemented, notably QUONTO [6,7].

DL-Lite
(HN )
horn is a more expressive logic than DL-LiteA, which contains number

restrictions (as opposed to global functionality assertions), allows for conjunction of

basic concepts on the left-hand side of concept inclusions, and for role inclusions that

⋆ This work has been partially supported by the EU project Ontorule (ICT-231875).
1 Notice that we adopt here the naming convention for logics introduced in [5].

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

267



however cannot interact with maximum number restriction. As shown in [5], also DL-

Lite
(HN )
horn is FOL-rewritable, i.e., a similar approach to the one discussed above can be

used for query answering over ontologies. However, the algorithm presented in [5] is not

immediately implementable, since it would generate queries that would be extremely

difficult to process and optimize by a DBMS. Indeed as demonstrated by recent ex-

periments with ontology based data access systems [2], commercial relational DBMSs

are not designed and optimized to process complex queries (where, e.g., joins are per-

formed over unions), and for such kinds of queries performance degrades dramatically

when the size of the data increases.

Therefore, in this paper we address the problem of devising an algorithm for an-

swering unions of conjunctive queries in DL-Lite
(HN )
horn that is based on rewriting, and

where the rewriting step generates again a union of conjunctive queries. Such an algo-

rithm can be directly implemented in a system like QUONTO by extending the current

algorithm for DL-LiteA. Moreover, since current DBMSs are optimized for the evalu-

ation of conjunctive queries, they can process the queries generated by our rewriting

algorithm more efficiently than queries generated by an algorithm that tries to delegate

complex operations to the DBMS.

Summing up, our contributions are the following:

– We present an algorithm for answering unions of conjunctive queries posed to DL-

Lite
(HN )
horn knowledge bases that is in AC0 for data complexity. We employ the query

rewriting approach, that is, query answering is performed in two steps. First, the

initial query is rewritten using the TBox. Then, the rewritten query is evaluated

over the ABox. The main advantage of this approach is that the part of the process

requiring TBox reasoning is independent of the ABox, and the part of the process

requiring access to the ABox can be carried out by an SQL engine.

– We provide an algorithm that checks satisfiability of DL-Lite
(HN )
horn knowledge bases

by evaluating a first-order query over the ABox and that is in AC0 for data complex-

ity. Thus, the knowledge base satisfiability problem is reduced to query evaluation

and again the TBox and the ABox are processed independently of each other.

2 The Description Logic DL-Lite
(HN )
horn

In this section we present the logic DL-Lite
(HN )
horn and give other preliminary definitions.

The language of DL-Lite
(HN )
horn contains atomic concept and role names, respectively

denoted by A and P , possibly with subscripts. Basic roles and concepts, denoted re-

spectively by R and B, possibly with subscripts, are defined as R ::= P | P− and

B ::= ⊥ | A | ≥k R, where k is a positive integer.≥k R is called a number restriction.

A DL-Lite
(HN )
horn TBox, T , is a finite set of concept and role inclusion axioms of the

form B1 ⊓ · · · ⊓Bn ⊑ B and R1 ⊑ R2, respectively, and role constraints Dis(R1, R2),
Asym(P ), Sym(P ), Irr(P ) and Ref(P ). The TBox T may also contain occurrences of

qualified number restrictions≥k R.B on the right-hand side of concept inclusions. The

TBox assertions must satisfy the following conditions:

268 Query Rewriting in DL-LiteHN
horn



(inter) if R has a proper sub-role in T (i.e., R′ ⊑ R, R 6⊑ R′ for some R′), then T
does not contain occurrences of number restrictions ≥k R or ≥k R− with k ≥ 2
on the left-hand side of concept inclusions.

(exists) if ≥k R.B occurs in T , then T does not contain occurrences of ≥k′ R or

≥k′ R−, for k′ ≥ 2, on the left-hand side of concept inclusions.

Note that disjointness between concepts B1 and B2 is expressed as B1 ⊓ B2 ⊑ ⊥.

Also, DL-Lite
(HN )
horn allows for expressing local cardinality constraints, e.g., the assertion

A ⊓ ≥3 R ⊑ ⊥ is equivalent to A ⊑ ≤2 R.

An ABox A is a finite set of membership assertions of the form A(a), ¬A(a),
P (a, b), and ¬P (a, b). T and A constitute the knowledge base K = 〈T ,A〉.

In the following, we use R− to denote P− if R = P and P if R = P−, R(x, y)
to denote P (x, y) if R = P , and P (y, x) if R = P−. For a TBox T , let ⊑± denote

the closure under inverses of the subrole relation: R ⊑± R′ ∈ T iff R ⊑ R′ ∈ T or

R− ⊑ R′− ∈ T .

The formal semantics relies on the standard notion of interpretation [8]. Here we

adopt the unique name assumption (UNA). In the following we assume that TBoxes do

not contain role constraints Asym(P ), Sym(P ), Irr(P ), Ref(P ) and qualified number

restrictions: we can get rid of them as described in [5].

In this work we concentrate on two reasoning tasks for DL-Lite
(HN )
horn , to which other

reasoning tasks can be reduced: knowledge base satisfiability and query answering. The

KB satisfiability problem is to check, given a KB K, whether K admits at least one

model. To define the query answering problem, we first provide some definitions.

A conjunctive query (CQ) q over a KB K is a first-order formula of the form:

q(x) = ∃y.conj(x,y), where conj(x,y) is a conjunction of atoms of the form A(t)
and P (t1, t2), and t, t1, t2 are either constants in K or variables in x and y, x are

the free variables of q, also called distinguished variables. A union of conjunctive

queries (UCQ) q is a formula of the form q(x) =
∨

i=1,...,n ∃yi.conji(x,yi), with

conji(x,yi) as before. Given a query q (either a CQ or a UCQ) and an interpretation

I, we denote by qI the set of tuples of elements of ∆I obtained by evaluating q in I.

The answer to q over a KB K is the set ans(q,K) of tuples a of constants appearing

in K such that aI ∈ qI , for every model I of K. Each such tuple is called certain an-

swer. Observe that, ifK is unsatisfiable, then ans(q,K) is trivially the set of all possible

tuples of constants in K whose arity is the one of the query. We denote such a set by

AllTup(q,K). The query answering problem is defined as follows: given a KB K and

a query q (either a CQ or a UCQ) over K, compute the set ans(q,K).

3 Knowledge Base Satisfiability

To check KB satisfiability, we exploit the notions of canonical interpretation and closure

of negative inclusions. First, we define negative and positive inclusion assertions, and

the database interpretation.

We call negative inclusions (NI) assertions of the form B1 ⊓ · · · ⊓ Bn ⊑ ⊥ and

Dis(R1, R2). Other assertions are called positive inclusions (PI). TN denotes the set

of all negative inclusions in T , and TP the set of positive inclusions in T . Obviously,

Elena Botoeva, Alessandro Artale and Diego Calvanese. 269



T = TN ∪ TP . Note that NIs include also those assertions that express functionality of

roles, e.g. ≥2 R ⊑ ⊥, and more in general maximum number restrictions.

The database interpretation db(A) = 〈∆db(A), ·db(A)〉 of an ABox A is defined

as follows: ∆db(A) is the nonempty set consisting of all constants occurring in A;

adb(A) = a, for each constant a; Adb(A) = {a | A(a) ∈ A}, for each atomic con-

cept A; P db(A) = {(a1, a2) | P (a1, a2) ∈ A}, for each atomic role P .

The canonical interpretation is an interpretation constructed according to the notion

of chase [9]. Following [4] we can construct the chase of a KB starting from the ABox,

and applying positive inclusions to sets of membership assertions. In the definition of

chase, we concentrate here on the differences with respect to the definition of chase

given in [4]. We remark, however, that for the application of the chase rules we assume

to have a total (lexicographic) ordering on the assertions and on all the constants (in-

cluding the newly introduced ones). The chase of K is the set of membership assertions

chase(K) =
⋃

j∈N
Sj , where S0 = A, Sj+1 = Sj ∪ Snew

j , and Snew
j is the set of new

membership assertions obtained from Sj according to the chase rules cr1, cr2, cr3:

cr1 if I = B1 ⊓ · · · ⊓ Bn ⊑ A, S′ = SB1
(a) ∪ · · · ∪ SBn

(a), and A(a) /∈ Sj , then

Snew
j = {A(a)},

cr2 if I = B1⊓· · ·⊓Bn ⊑ ≥k R and S′ = SB1
(a)∪· · ·∪SBn

(a), k1 = ♯{b |R(a, b) ∈
S} < k, then Snew

j = {R(a, bk1+1), . . . , R(a, bk)}, where bk1+1, . . . , bk are k−k1

new constants in ΓN that follow lexicographically the constants introduced in the

previous steps,

cr3 if I = R1 ⊑
± R2, S′ = {R1(a, b)}, and R1(a, b) /∈ Sj then Snew

j = {R2(a, b)},

where S′ is the first (in lexicographic order) set of membership assertions in Sj s.t. there

exists a PI applicable2 to it, I is the first such PI, and we use SB(a) to denote {A(a)}
if B = A and {R(a, b1), . . . , R(a, bk)} if B = ≥k R, with b1, . . . , bk some constants.

We denote by chasei(K) the portion of the chase obtained after i applications of the

chase rules.

The canonical interpretation is the interpretation can(K) = 〈∆can(K), ·can(K)〉
where ∆can(K) is the set of constants occurring in chase(K), acan(K) = a, for each

constant a, Acan(K) = {a | A(a) ∈ chase(K)}, for each atomic concept A, and

P can(K) = {(a1, a2) | P (a1, a2) ∈ chase(K)}, for each atomic role P . The canonical

interpretation is constructed in such a way that all the positive inclusions of the TBox

are satisfied, so a knowledge base where the TBox contains only positive inclusions is

always satisfiable. The following lemma establishes a notable property of can(K).

Lemma 1. Let K = 〈T ,A〉 be a DL-Lite
(HN )
horn KB, and let TP be the set of positive

inclusion assertions in T . Then can(K) is a model of 〈TP ,A〉.

In order to check satisfiability of DL-Lite
(HN )
horn KBs, negative inclusions must be

considered. Thus, if a negative inclusion in the TBox is violated by membership asser-

tions of the ABox, then the knowledge base is inconsistent and, therefore, unsatisfiable.

Besides, an interaction of positive and negative inclusions may cause inconsistency. So

we need to consider all NIs implied by the TBox.

2 The notion of applicability of a PI suitably extends the one in [4].

270 Query Rewriting in DL-LiteHN
horn



Definition 2. Let T be a TBox. We call NI-closure of T , denoted by cln(T ), the fol-

lowing set of assertions defined inductively:

1. TN ⊆ cln(T ).
2. if B1 ⊓ · · · ⊓Bn ⊓A ⊑ ⊥ ∈ cln(T ), n ≥ 0 and B′

1 ⊓ · · · ⊓B′
m ⊑ A is in T , then

also B1 ⊓ · · · ⊓Bn ⊓B′
1 ⊓ · · · ⊓B′

m ⊑ ⊥ ∈ cln(T ).
3. if B1 ⊓ · · · ⊓Bn ⊓≥k R ⊑ ⊥ ∈ cln(T ), n ≥ 0 and B′

1 ⊓ · · · ⊓B′
m ⊑ ≥k′ R is in

T for k′ ≥ k, then also B1 ⊓ · · · ⊓Bn ⊓B′
1 ⊓ · · · ⊓B′

m ⊑ ⊥ ∈ cln(T ).
4. if B1 ⊓ · · · ⊓ Bn ⊓ ≥1 R ⊑ ⊥ ∈ cln(T ), n ≥ 0 and R′ ⊑± R is in T , then also

B1 ⊓ · · · ⊓Bn ⊓ ≥1 R′ ⊑ ⊥ ∈ cln(T ).
5. if Dis(R,R1) or Dis(R1, R) ∈ cln(T ) and R′ ⊑± R is in T , then also

Dis(R′, R1) ∈ cln(T ).
6. if either ≥1 R ⊑ ⊥, or ≥1 R− ⊑ ⊥, or Dis(R,R) is in cln(T ), then all three

assertions are in cln(T ).

Note, that in rule 4 it is enough to consider k = 1 because the condition (inter)

ensures that concepts of the form ≥k R, for k ≥ 2, do not occur in the left-hand side

of concept inclusions when R appears in the right-hand side of a role inclusion. Also

we don’t need to add both inclusions Dis(R,R1) and Dis(R1, R) to cln(T ), since to

trigger rule 5 one of them is sufficient.

The canonical interpretation can also be exploited for checking satisfiability of a KB

containing negative inclusions. To establish that they are satisfied by can(K), it suffices

to verify that the interpretation db(A) satisfies cln(T ).

Lemma 3. LetK = 〈T ,A〉 be a DL-Lite
(HN )
horn KB. Then can(K) is a model ofK if and

only if db(A) is a model of 〈cln(T ),A〉.

The proof follows the line of that of Lemma 12 in [4], but we need to take into

account the modified definition of chase, and hence of can(K). Now we can show

that to check satisfiability of a KB it is is sufficient (and necessary) to look at db(A)
(provided we have computed cln(T )). More precisely, the next theorem shows that a

contradiction on a DL-Lite
(HN )
horn KB may hold only if a membership assertion in the

ABox contradicts a negative inclusion in the closure cln(T ).

Theorem 4. Let K = 〈T ,A〉 be a DL-Lite
(HN )
horn KB. Then K is satisfiable if and only if

db(A) is a model of 〈cln(T ),A〉.

Having these results, we can formulate the satisfiability problem in terms of evalua-

tion of a first order query over the database (interpretation). In order to do so we define

a translation δ from assertions in cln(T ) to FOL formulas encoding their violation:

δ(B1 ⊓ · · · ⊓Bn ⊑ ⊥) = ∃x(γB1
(x) ∧ · · · ∧ γBn

(x))
δ(Dis(R1, R2)) = ∃x, y(ρR1

(x, y) ∧ ρR2
(x, y))

where:

γBi
(x) = A(x), if Bi = A;

γBi
(x) = ∃y1, . . . , yk(P (x, y1) ∧ · · · ∧ P (x, yk) ∧

∧
j<l yj 6= yl), if Bi = ≥k P ;

γBi
(x) = ∃y1, . . . , yk(P (y1, x) ∧ · · · ∧ P (yk, x) ∧

∧
j<l yj 6= yl), if Bi = ≥k P−;

ρRi
(x, y) = P (x, y), if Ri = P ; ρRi

(x, y) = P (y, x), if Ri = P−.

Elena Botoeva, Alessandro Artale and Diego Calvanese. 271



Algorithm Consistent(K)

Input: DL-Lite
(HN )
horn

KB K = 〈T ,A〉
Output: true if K is satisfiable, false otherwise

qunsat = ⊥;

for each I ∈ cln(T ) do qunsat = qunsat ∨ δ(I);

if qunsat
db(A) = ∅ then return true; else return false;

Fig. 1. The algorithm Consistent

The algorithm Consistent, depicted in Fig. 1, takes as input a DL-Lite
(HN )
horn KB,

computes db(A) and cln(T ), and evaluates over db(A) the Boolean FOL query ob-

tained by taking the union of all FOL formulas returned by the application of the above

function δ to every assertion in cln(T ). In the algorithm, the symbol⊥ indicates a pred-

icate whose evaluation is false in every interpretation. Therefore, when K contains no

negative inclusions, qunsat
db(A) = ⊥db(A), and Consistent(K) returns true.

One can show that the algorithm Consistent terminates and a KB K is satisfiable

if and only if Consistent(K) = true. As a direct consequence, we get the following

theorem, which provides an alternative proof of an analogous result shown in [5].

Theorem 5. In DL-Lite
(HN )
horn , knowledge base satisfiability is FOL-rewritable.

Now we can characterize the computational complexity of the algorithm Consistent.

Theorem 6. The algorithm Consistent is AC0 in the size of the ABox and runs in ex-

ponential time in the size of the TBox.

The following example demonstrates the worst case behaviour of the algorithm,

where the size of cln(T ) is exponential in the size of T .

Example 7. Let us consider the TBox T consisting of the assertions: A′
1 ⊑ A1, . . . ,

A′
n ⊑ An, A1 ⊓ · · · ⊓An ⊑ ⊥. Then cln(T ) contains 2n negative inclusion assertions

of the form B1⊓· · ·⊓Bn ⊑ ⊥, where each Bi is either Ai or A′
i. Moreover, none of the

assertions can be omitted: for every negative inclusion I = B1 ⊓ · · · ⊓ Bn ⊑ ⊥ there

is an ABox A such that δ(I)
db(A)

= ∅. It is enough to take A = {B1(a), . . . , Bn(a)}
with a a fresh object name. Therefore, in order to ensure that the algorithm detects

unsatisfiability of 〈T ,A〉, all the possible negative inclusions must be present in cln(T )
and its size is exponential in the size of T .

Note that the algorithm Consistent can be turned into a non-deterministic PTIME

algorithm for checking unsatisfiability of DL-Lite
(HN )
horn KBs.

4 Query Answering

The aim of this section is to devise an algorithm for answering unions of CQs in DL-

Lite
(HN )
horn that is based on query reformulation, and hence can be easily implemented:

in the rewriting step the assertions of the TBox are compiled into the query, then the

resulting query is evaluated over the ABox without considering the TBox.

272 Query Rewriting in DL-LiteHN
horn



Let Q =
⋃

i qi be a UCQ. We say that an argument of an atom in a query is bound if

it corresponds either to a constant, or to a distinguished variable, or to a shared variable,

that is, a variable occurring at least twice in the query body. Instead, an argument of an

atom in a query is unbound if it corresponds to a nondistinguished nonshared variable.

The symbol ‘ ’ is used to represent unbound variables.

Let QR
T denote the set of natural numbers containing 1 and all the numerical param-

eters k for which the concept ≥k R occurs in T . The extension ext(T ) of T contains

– ≥k′ R ⊑ ≥k R, for all k, k′ ∈ QR
T such that k′ > k and k′ > k′′ > k for no

k′′ ∈ QR
T and R is either a direct or inverse role in T , and

– ≥k R ⊑ ≥k R′, for all k ∈ QR
T and R ⊑± R′ ∈ T .

A positive concept inclusion I is applicable to an atom B(x) if I has B on the

right-hand side, where B(x) = A(x) if B = A, B(x) = EkP (x) if B = ≥k P , and

B(x) = EkP−(x) if B = ≥k P−. A positive role inclusion I is applicable to an atom

P (x1, x2) if I has either P or P− on the right-hand side. We indicate with gr(g, I) the

atom obtained from the atom g by applying the applicable inclusion I . Formally:

Definition 8. Let I ∈ ext(T ) be a positive inclusion assertion that is applicable to the

atom g. Then, gr(g, I) is the formula defined as follows:

1. if g = A(x) and I = B1 ⊓ · · · ⊓Bn ⊑ A, then gr(g, I) = B1(x) ∧ · · · ∧Bn(x),
2. if g = EkR(x) and I = B1 ⊓ · · · ⊓ Bn ⊑ ≥k′ R, k′ ≥ k, then gr(g, I) =

B1(x) ∧ · · · ∧Bn(x),
3. if g = E1R( ) and I = B1 ⊓ · · · ⊓ Bn ⊑ ≥k R, then gr(g, I) = B1(x) ∧ · · · ∧

Bn(x), for a fresh variable x,

4. if g = EkR(x) and I = P1 ⊑
± R, then gr(g, I) = EkP1(x),

5. if g = EkR(x) and I = P1 ⊑
± R−, then gr(g, I) = EkP−

1 (x),
6. if g = P (x1, x2) and I = P1 ⊑

± P , then gr(g, I) = P1(x1, x2),
7. if g = P (x1, x2) and I = P1 ⊑

± P−, then gr(g, I) = P1(x2, x1).

We also define the most general unifier, mgu, between two atoms g1, g2 of a query

q that unify. In the case where g1 and g2 are respectively of the form A(x) and A(z),
or P (x, y) and P (z, w), the mgu is defined as usual (see [4]), taking also into account

the possible presence of inequalities x 6= z (and y 6= w). However, we allow also an

atom P (x, y) to unify with E1P (z) and E1P
−(w). Moreover, when one of the atoms

is of the form EkR(x), then the mgu is defined as follows: let g1 = Ek1
R(x) and

g2 = Ek2
R(z), k = max(k1, k2), and x 6= z does not occur in q; or g1 = EkR(x) and

g2 = E1R
−( ), then mgu = EkR(x).

In Fig. 2 we provide the algorithm PerfectRef, which reformulates a UCQ taking

into account the PIs of a TBox T . In the algorithm, q[g/g′] denotes the CQ obtained

from a CQ q by replacing the atom g with a new atom g′. The function remdup removes

from the body of a CQ duplicated atoms, or if a query contains two atoms of the form

Ek1
R(x) and Ek2

R(x), then it removes the atom with the smaller ki. Furthermore, τ is

a function that takes as input a CQ q and returns a new CQ obtained by replacing each

occurrence of an unbound variable in q with the symbol , whereby P (x, ) becomes

E1P (x), P ( , x) becomes E1P
−(x) (and P ( , ) becomes E1P ( )). Finally, reduce

is a function that takes as input a CQ q and two atoms g1 and g2 that unify and occur

Elena Botoeva, Alessandro Artale and Diego Calvanese. 273



Algorithm PerfectRef(Q, T )

Input: union of conjunctive queries Q, DL-Lite
(HN )
horn

TBox T
Output: union of conjunctive queries PR

PR := {remdup(τ(q)) | q is a CQ in Q};

repeat (1)

PR′ := PR;

for each q ∈ PR′

(a) for each g in q
for each PI I in ext(T )

if I is applicable to g
then PR := PR ∪ {remdup(q[g/gr(g, I)])};

(b) for each g1, g2 in q
if g1 and g2 unify

then PR := PR ∪ {remdup(τ(reduce(q, g1, g2)))};

until PR′ = PR;

for each q ∈ PR (2)

for each g in q
if g is of the form EkR(x), k ≥ 2, then replace g with γ≥k R(x);

if g is of the form E1R(x) then replace g with R(x, );

return PR.

Fig. 2. The algorithm PerfectRef

in the body of q, and returns a CQ q′ obtained by applying to q the most general unifier

between g1 and g2.

Informally, part (1) of the algorithm reformulates the query by replacing and unify-

ing atoms, and accumulates the new queries. In this part all possible applications of the

PIs, according to Definition 8, are exhausted. Part (2) performs unfolding of the atoms

EkR(x). Notice that it is sufficient to perform unfolding of the atoms EkR(x) in the

very end for the following reasons: first, if k ≥ 2, then only role inclusions could be

applied to the atoms of the form R(x, y); however condition (inter) ensures that in this

case there are no such inclusions. If k = 1, then such role inclusions have already been

aplied in step (1). Second, one could reduce some of the atoms R(x, y), but it would

not produce new answers, since all variables in the new R-atoms are bound.

This algorithm is an extension of the PerfectRef algorithm devised for the logic DL-

LiteA [4]. The extended version has to deal with inequality atoms and with atoms of the

form EkR(x) that later need to be unfolded. In contrast with the algorithm for DL-LiteA
the query may grow, so one also needs to take care of redundant atoms. Notice also that

the number of CQs in PR may be exponential in the size of the TBox (and not only in

the length of q), due to the fact that horn inclusions may cause a single CQ to become

of length linear in the size of the TBox. Here, we assume that numbers in the TBox are

coded in unary.

Now, to compute the answers to Q over the KB K = 〈T ,A〉, we need to evaluate

the set of conjunctive queries PR produced by the algorithm PerfectRef over the ABox

A considered as a relational database. The algorithm computing ans(Q,K) is exactly

the same as in [4], so we do not present it here. Correctness of the above described

query-answering technique is established in the following. We start by observing that,

274 Query Rewriting in DL-LiteHN
horn



as in [4], query answering can in principle be done by evaluating the query over the

model can(K).

Theorem 9. Let K be a satisfiable DL-Lite
(HN )
horn KB, and let Q be a union of conjunc-

tive queries over K. Then, ans(Q,K) = Qcan(K).

Since can(K) is in general infinite, we cannot compute it and evaluate Q over it.

Instead, we compile the TBox into the query, thus simulating the evaluation of the query

over can(K) by evaluating a finite reformulation of the query over the ABox considered

as a database. The proof of the following lemma is inspired by the one for DL-LiteR in

[4], but needs to take into account number restrictions and horn inclusion assertions.

Lemma 10. Let T be a DL-Lite
(HN )
horn TBox, Q a UCQ over T , and PR the UCQ re-

turned by PerfectRef(Q, T ). For every DL-Lite
(HN )
horn ABoxA such that 〈T ,A〉 is satis-

fiable, ans(Q, 〈T ,A〉) = PRdb(A).

Proof. We first introduce the preliminary notion of witness of a tuple of constants with

respect to a CQ q in Q. Given a DL-Lite
(HN )
horn knowledge base K = 〈T ,A〉, a CQ

q(x) ← conj(x,y) over K, and a tuple t of constants occurring in K, a set of mem-

bership assertions G is a witness of t w.r.t. q if there exists a substitution σ from the

variables y in conj(t,y) to constants in G such that the set of atoms in σ(conj(t,y))
is equal to G. Then t ∈ qcan(K) iff there exists a witness G of t w.r.t. q such that

G ⊆ chase(K). The cardinality of a witness G, denoted by |G|, is the number of mem-

bership assertions in G.

Let us prove first the statement for a modified version of PerfectRef, where at the

end of the algorithm we perform an additional step of unifications as in step (b) of

part (1). Let us call PerfectRefu this extended version of PerfectRef.

We have that ans(Q, 〈T ,A〉) = Qcan(K) =
⋃

q∈Q qcan(K), and PRdb(A) =⋃
q̂∈PR

q̂db(A), where PR is the UCQ returned by PerfectRefu(Q, T ). Hence, we need

to show that
⋃

q̂∈PR
q̂db(A) = Qcan(K). For simplicity, we consider the case where Q

consists of a single CQ q.

“⇐” We have to prove that q̂db(A) ⊆ qcan(K), for each q̂ ∈ PR. Let qi+1 be ob-

tained from qi by some step of the algorithm PerfectRefu. We can show that q
can(K)
i+1 ⊆

q
can(K)
i at any step. Since each query of PR is either q or a query obtained from q by

repeatedly applying steps (a) and (b) of the algorithm PerfectRefu, then by the rewrit-

ing in part (2), and the unification step in the end, it follows that for each q̂ ∈ PR,

q̂can(K) ⊆ qcan(K), by repeatedly applying the property q
can(K)
i+1 ⊆ q

can(K)
i . Since

db(A) ⊆ can(K) and CQs are monotonic queries, we get q̂db(A) ⊆ q̂can(K) ⊆ qcan(K)

for each CQ q̂ ∈ PR.

“⇒” We have to show that for each tuple t ∈ qcan(K), there exists q̂ ∈ PR such

that t ∈ q̂db(A). First, since t ∈ qcan(K), it follows that there exists a finite number h
such that there is a witness Gh of t w.r.t. q contained in chaseh(K). Moreover, w.l.o.g.

we can assume that every rule cr1, cr2 and cr3 used in the construction of chase(K) is

necessary in order to generate such a witness Gh. In the following, we say that a set S of

membership assertions is an ancestor of a set S′ of membership assertions in a set S of

Elena Botoeva, Alessandro Artale and Diego Calvanese. 275



membership assertions, if there exist S1, . . . , Sn in S, where S1 = S and Sn = S′, such

that, for each j ∈ {2, . . . , n}, Sj can be generated by applying a chase rule to a subset

of Sj−1. We also say that S′ is a successor of S. Furthermore, for each i ∈ {0, . . . , h},
we denote with Gi the pre-witness of t w.r.t. q in chaseh(K), defined as follows:

Gi =
⋃

S′⊆Gh

{ S ⊆ chasei(K) | S is an ancestor of S′ in chaseh(K) and

there exists no successor of S in chasei(K)
that is an ancestor of S′ in chaseh(K) }.

Now we prove by induction on i that, starting from Gh, we can “go back” through

the rule applications and find a query q̂ in PR such that the pre-witness Gh−i of t w.r.t.

q in chaseh−i(K) is also a witness of t w.r.t. q̂. To this aim, we prove that there exists

q̂ ∈ PR such that Gh−i is a witness of t w.r.t. q̂ and |q̂| = |Gh−i|, where |q̂| indicates

the number of atoms in the CQ q̂ except inequality atoms. The claim then follows for

i = h, since chase0(K) = A.

Base step: There exists q̂ ∈ PR such that Gh is a witness of t w.r.t. q̂ and |q̂| = |Gh|.
This is an immediate consequence of the fact that (1) q ∈ PR and (2) PR is closed with

respect to step (b) of the algorithm PerfectRefu.

Inductive step: Suppose there exists q̂ ∈ PR such that Gh−i+1 is a witness of t w.r.t.

q̂ in chaseh−i+1(K) and |q̂| = |Gh−i+1|. Let us assume that chaseh−i+1(K) is obtained

by applying chase rule cr2 to chaseh−i(K) (the proof for rules cr1 and cr3 is analo-

gous). Hence, a PI of the form B1 ⊓ · · · ⊓Bn ⊑ ≥k R, where Bj , 1 ≤ j ≤ n, are basic

concepts and R is a basic role, is applied in chaseh−i(K) to a set of membership asser-

tions S′ = SB1
(a)∪ · · · ∪ SBn

(a), such that k1 = ♯{b | R(a, b) ∈ chaseh−i(K)} < k.

Therefore, chaseh−i+1(K) = chaseh−i(K) ∪ {R(a, bk1+1), . . . , R(a, bk)}, where

bk1+1, . . . , bk ∈ ΓN follow lexicographically all constants occurring in chaseh−i(K).
Since every rule used in the construction of chase(K) is necessary for generating

Gh−i+1 and the set of membership assertions {R(a, bk1+1), . . . , R(a, bk)} does not

have successors in chaseh−i+1(K), so {R(a, bk1+1), . . . , R(a, bk)} ⊆ Gh−i+1.

Let {R(a, b1), . . . , R(a, bk2
)}, 0 ≤ k2 ≤ k1, be the minimal set of membership

assertions that has successors in chaseh−i+1(K). Then, according to the definition

of Gi, the set {R(a, bk2+1), . . . , R(a, bk1
)} ⊆ Gh−i+1. By the inductive assumption,

|q̂| = |Gh−i+1|, and {R(a, bk2+1), . . . , R(a, bk)} ⊆ Gh−i+1, hence, q̂ has to contain

the atoms R(x, yk2+1), . . . , R(x, yk), where yk2+1, . . . , yk appear only in the men-

tioned predicate atoms and possibly inequalities. We show that in q̂ there must be all

the possible inequalities yj1 6= yj2 , for k2 + 1 ≤ j1 < j2 ≤ k.

By contradiction, assume that not all variables are related to each other by inequal-

ities, i.e. there are m ≥ 2 sets of variables yk2+1, . . . , yk such that the variables within

one set are mutually unequal and variables from different sets are not constrained to be

different. It means that the part of q̂ with yk2+1, . . . , yk looks as follows:

R(x, y11), . . . , R(x, y1l1), y11 6= y12, . . . , y1l1−1 6= y1l1 ,
R(x, y21), . . . , R(x, y2l2), y21 6= y22, . . . , y2l2−1 6= y2l2 ,

. . .
R(x, ym1), . . . , R(x, ymlm), ym1 6= ym2, . . . , ymlm−1 6= ymlm ,

where lj ≥ 1, j ∈ {1, . . . ,m},
∑

lj = k − k2. Therefore, q̂ has to be the result of

unfolding by part (2) of the algorithm PerfectRefu of a query q1 with the corresponding

276 Query Rewriting in DL-LiteHN
horn



part El1R(x), . . . , ElmR(x). However, the algorithm cannot produce such a query: the

function remdup would keep in q1 only one such atom Elmax
R(x) with lmax < k−k2,

lmax = maxj{lj}, which unfolded would contain less than k − k2 atoms of the form

R(x, yj). The contradiction rises from the assumption m ≥ 2. So, m has to be equal to

1 and all variables yk2+1, . . . , yk appear in pairwise inequalities in q̂.

Thus, there exists a query q1 in PR1 that contains the atom Ek−k2
R(x), k−k2 ≤ k,

and q̂ is obtained from q1 by part (2) of the algorithm. Then, by step (a) it follows that

there exists a query q2 = remdup(q̂1[Ek−k2
R(x)/B1(x)∧ · · · ∧Bn(x)]) in PR1 such

that Gh−i is a witness of t w.r.t. q2. Let q̂1 be the result of unfolding q2 by part (2) of

the algorithm, then Gh−i is a witness of t w.r.t. q̂1 as well and |q̂1| ≥ |Gh−i|.
If |q̂1| > |Gh−i| it implies that there exists at least one membership assertion f in

Gh−i such that there exist at least two atoms g1, g2 in q̂1 that both unify with f . Hence

g1 and g2 unify, and by step (b) of the algorithm it follows that in PR there exists

q3 = remdup(τ(reduce(q̂1, g1, g2))), |q3| < |q̂1| and Gh−i is a witness of t w.r.t. q3. If

|q3| > |Gh−i| then by applying the argument consecutively there is a query q̂2 such that

|q̂2| = |Gh−i| and Gh−i is a witness of t w.r.t. q̂2, which proves the claim.

Finally, we observe that unification of atoms of the query at the end of PerfectRefu

does not add new answers to the set ans(Q, 〈T ,A〉) since all variables in the new

R atoms introduced in part (2) are bound. Therefore, the theorem holds also for the

algorithm PerfectRef. ⊓⊔

Based on the above property, we are finally able to establish correctness of the

algorithm Answer and its computational complexity.

Theorem 11. Let K = 〈T ,A〉 be a DL-Lite
(HN )
horn KB, Q a UCQ over T , and t a tuple

of constants in K. Then, t ∈ ans(Q,K) if and only if t ∈ Answer(Q,K).

Theorem 12. The algorithm Answer is exponential in the size of the TBox, and AC0 in

the size of the ABox (data complexity).

Note that we can modify PerfectRef to get an algorithm for the decision problem

associated with the query answering problem that runs in nondeterministic polynomial

time in combined complexity: it nondeterministically returns one of the CQs from the

reformulation of the input query (polynomially many rewriting steps) and in polynomial

time checks whether a tuple is in the answer to this CQ. The corresponding version of

Answer also runs in nondeterministic polynomial time.

5 Conclusions

This paper presents practical algorithms for query answering and knowledge base sat-

isfiability in DL-Lite
(HN )
horn . They are based on the same idea as those devised for the

original DL-Lite logics. The distinguishing feature of these algorithms is a separation

between TBox and ABox reasoning, which enables an interesting modularization of

query answering: the part of the process requiring TBox reasoning is independent of

the ABox, and the part of the process requiring access to the ABox can be carried out

by an SQL engine. We showed that the algorithms are sound and complete.

The complexity of the developed algorithms is AC0 w.r.t. data complexity, NP in

the size of the TBox and NP w.r.t. combined complexity.

Elena Botoeva, Alessandro Artale and Diego Calvanese. 277



References

1. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking

data to ontologies. J. on Data Semantics X (2008) 133–173

2. Rodrı́guez-Muro, M.: Tools and Techniques for Ontology Based Data Access in Lightweight

Description Logics. PhD thesis, KRDB Research Centre for Knowledge and Data, Free Uni-

versity of Bozen-Bolzano (2010)

3. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of the 21st ACM SIGACT

SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2002). (2002) 233–246

4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning

and efficient query answering in description logics: The DL-Lite family. J. of Automated

Reasoning 39(3) (2007) 385–429

5. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and rela-

tions. J. of Artificial Intelligence Research 36 (2009) 1–69

6. Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri, M., Rosati,

R.: QUONTO: QUerying ONTOlogies. In: Proc. of the 20th Nat. Conf. on Artificial Intelligence

(AAAI 2005). (2005) 1670–1671

7. Poggi, A., Rodrı́guez-Muro, M., Ruzzi, M.: Ontology-based database access with DIG-Mastro

and the OBDA Plugin for Protégé. In Clark, K., Patel-Schneider, P.F., eds.: Proc. of the 4th

Int. Workshop on OWL: Experiences and Directions (OWLED 2008 DC). (2008)

8. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.: The De-

scription Logic Handbook: Theory, Implementation and Applications. Cambridge University

Press (2003)

9. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ. Co.

(1995)

278 Query Rewriting in DL-LiteHN
horn


