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Abstract. Classical logics (and hence Description Logics) are
monotonic: the set of conclusions increases monotonically with the
set of premises. Instead, common-sense reasoning is characterized
as non-monotonic: new information can invalidate some of the pre-
viously made conclusions. Circumscription is one of the main non-
monotonic formalisms whose idea is to minimize (circumscribe)
the extension of given predicates. In this paper we study circum-
scribed DL-Lite knowledge bases and show how to compute cir-
cumscription of a single predicate (either a concept or a role) in a
DL-LiteHbool knowledge base. Unlike other works on circumscribed
Description Logics KBs, we are interested not only in checking en-
tailment, but actually in computing circumscription itself. We show
that circumscription of a role in DL-LiteHbool requires the language
of ALCHOIQ extended with union or roles, thus is first-order ex-
pressible.

1 Introduction
Description Logics (DLs) [2] are acknowledged as computationally
well-behaved fragments of first-order logic, and widely used in areas
such as Knowledge Representation, Semantic Web and Ontology-
Based Data Access for automated reasoning. There has been a con-
tinuous interest in non-monotonic extensions of DLs, and a consid-
erable amount of work in that field includes extensions of DLs with
default logic [28, 3, 30], with preference relation [19, 13, 7, 10], with
circumscription [23, 6, 15, 5], with defeasible logic [25, 14, 32, 16]
and with logic of Minimal Knowledge and Negation as Failure
[22, 12, 17, 24].

Motivation for non-monotonic reasoning comes from the need to
handle real life scenarios when the knowledge about the world is
incomplete or changing. One of the motivations for non-monotonic
DLs stems from the biomedical domain [26] where DLs are used
as a tool for the formalization of ontologies such as SNOMED [11]
and GALEN [27]. Another motivation comes from policy languages
based on DLs [31, 34], which require non-monotonic reasoning. Pro-
totypical properties and defeasible inheritance in DLs can also be
added to the wish list.

In our work we have chosen circumscription as the underlying
non-monotonic formalism for two main reasons. First, the semantics
of circumscription is sufficiently simple, so circumscribed DLs can
be defined in a straightforward way. Second, the existing works on
circumscribed DLs [6, 5] show that they are interesting objects to be
investigated and one could get nice results if one used a low complex-
ity DL. More precisely, the current approaches to circumscribed DL
knowledge bases (KBs) can be divided in two according to the DL
used: expressive DLs such as ALC, ALCIO and ALCQO [6], and
tractable DLs such as EL and EL++ [4, 5]. The former showed that
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reasoning in circumscribed ALC KBs is NEXPTIMENP-hard, while
some forms of reasoning in circumscribed EL KBs are tractable.

In this paper we investigate circumscription in DL-LiteHbool , which
is a sub-logic of the expressive DL ALCHI (essentially ALC with
role hierarchy and inverse roles), and a super-logic of DL-LiteR, the
basic DL-Lite logic. DL-LiteHbool is a member of the extended DL-
Lite family [1], popular for its low complexity of reasoning, notably
AC0 data complexity of answering (atomic) queries. In contrast with
the previous works on circumscribed DLs we not only want to check
entailment, but also to compute circumscription of DL-LiteHbool KBs.
We show that the circumscription of a single predicate (concept or
role) in DL-LiteHbool can be expressed in ALCHOIQ with union of
roles.

The paper is organized as follows: In Section 2 we introduce
the logic DL-LiteHbool and the notion of circumscription. Section 3
presents circumscribed DL-Lite and includes a motivating example.
In Section 4, we show how to compute circumscription of a single
predicate in DL-LiteHbool , and in Section 5, we show how to check
entailment in the circumscribed KB. Finally, in Section 6, we draw
some conclusions and outline issues for future work.

2 Preliminaries

We introduce the DLs that we adopt in this paper, and then recall the
notions about circumscription.

2.1 Description Logics

Here, we present the DL DL-LiteHbool , a member of the extended DL-
Lite family of DLs known for their nice computational properties
[8, 1]. Good computational behavior of DL-LiteHbool , which is a sub-
logic of ALCHI, is achieved by prohibiting concepts of the form
∃R.C and ∀R.C. Satisfiability checking in DL-LiteHbool can be done
in NP in combined complexity and in AC0 in data complexity [1].

LetNC ,NR, andNa be countably infinite sets of concept, role and
individual names, respectively. The language of DL-LiteHbool contains
individual names a, b ∈ Na, atomic concepts A ∈ NC , and atomic
roles P ∈ NR. Complex roles Q and concepts C of this language
are defined as follows:

R ::= P | P−

Q ::= R | ¬R
B ::= ⊥ | A | ∃R
C ::= B | ¬C | C1 u C2

The concepts of the formB are called basic concepts and roles of the
form R are called basic roles. Moreover, for a role R, we use R− to
denote P− when R = P , and P when R = P−. A predicate in DLs
is either an atomic concept or an atomic role.



A DL-LiteHbool TBox, T , is a finite set of concept and role inclusion
axioms (or simply concept and role inclusions) of the form:

C1 v C2 and R v Q,

and an ABox, A, is a finite set of membership assertions:

A(a), ¬A(a), P (a, b), and ¬P (a, b).

A DL-LiteHbool KB K is a pair 〈T ,A〉.
The semantics of DL-LiteHbool is defined as usual in DLs. An in-

terpretation I is a pair 〈∆I , ·I〉 with non-empty domain ∆I and
interpretation function ·I that assigns (i) to every concept name A a
subset AI ⊆ ∆I of the domain; (ii) to every role name P a binary
relation P I ⊆ ∆I ×∆I over the domain; (iii) to every individual a
an element aI ∈ ∆I .

Concept and role constructs are interpreted as follows

(P−)
I

= {(y, x) ∈ ∆I ×∆I | (x, y) ∈ P I}
(¬R)I = ∆I ×∆I \RI ⊥I = ∅
(∃R)I = {x ∈ ∆I | ∃y ∈ ∆I , (x, y) ∈ RI}
(¬C)I = ∆I \ CI (C1 u C2)I = C1

I ∩ C2
I

We will use standard abbreviations such as C1 t C2 for ¬(¬C1 u
¬C2), and > for ¬⊥.

The satisfaction relation is defined as follows:

I |= C1 v C2 iff C1
I ⊆ C2

I

I |= A(a) iff aI ∈ AI
I |= ¬A(a) iff aI /∈ AI

I |= R v Q iff RI ⊆ QI
I |= P (a, b) iff (aI , bI) ∈ P I
I |= ¬P (a, b) iff (aI , bI) /∈ P I

We say that I is a model of a TBox if (resp., ABox) it satisfies all
its axioms (resp., assertions). I is a model of a KB K = 〈T ,A〉 if it
is a model of both T andA.K is said to be satisfiable (or consistent)
if it has a model.

DL-LiteHbool is a super-logic of other three DL-Lite DLs that differ
in the form of allowed TBox inclusions [1]. Here we mention only
DL-LiteHcore , also known as DL-LiteR (in the original paper [8]). A
TBox T is a DL-LiteHcore TBox if its concept inclusions are of the
form

B1 v B2 or B1 v ¬B2.

A signature Σ is a set of concept and role names, that is, Σ ⊆
NC ∪ NR. Given a KB K, the signature Σ(K) of K is the alphabet
of concept and role names occurring in K (and likewise for a TBox
T , an ABox A, a concept C, and a role R).

We are going to express circumscription in the language of
ALCHOIQ, which is ALCHI extended with nominals (O) and
qualified number restrictions (Q). Here we present the missing con-
structs.

LetR be a basic role, as defined in the previous section. Then com-
plex concepts C inALCHOIQ are built according to the following
syntax:

C ::= A | ∃R.C | ¬C | C1 u C2 | {a1, . . . , an} | ≥k R.C

where k is a non-negative integer and n is a positive integer. Here
we have three new constructs: qualified existential restriction ∃R.C,
nominals {a1, . . . , an}, and qualified number restriction ≥k R.C.
Note that the construct ∃R can be seen an abbreviation for ∃R.>.

The new constructs are interpreted as follows:

(∃R.C)I = {x ∈ ∆I | ∃y ∈ CI , (x, y) ∈ RI}
{a1, . . . , an}I = {a1

I , . . . , an
I}

(≥k R.C)I = {x ∈ ∆I | ]{y ∈ CI | (x, y) ∈ RI} ≥ k}

In the following, we will use Funct(P ) to abbreviate ≥2P v ⊥.

2.2 Circumscription
Circumscription was introduced by McCarthy [23], and has been
well studied and explored by Lifschitz [20, 21] and others [18, 33].
It is an important formalism of common-sense reasoning that offers
non-monotonic reasoning abilities by circumscribing (minimizing)
the extension of specific predicates. Below we briefly present the no-
tion of circumscription and circumscribed theories.

First, for any predicate symbols P,Q of the same arity, P = Q
stands for ∀x(P (x) ≡ Q(x)), P ≤ Q stands for ∀x(P (x) →
Q(x)), and P < Q stands for (P ≤ Q) ∧ ¬(P = Q).

Let Φ(P ) be a first-order sentence containing a predicate constant
P . Then, by definition, the circumscription of P in Φ(P ), denoted
Circ(Φ;P ), is the second-order formula

Φ(P ) ∧ ∀p¬(Φ(p) ∧ p < P ),

where p is a predicate variable of the same arity as P .
More generally, we can simultaneously minimize several predi-

cates, which gives parallel and prioritized circumscription (here we
introduce only parallel circumscription). Moreover, we may allow
the extension of some predicates to vary in order to make the exten-
sion of the minimized predicates smaller. Let P be a tuple of predi-
cate constants, and Z a tuple of function and/or predicate constants
disjoint with P , and Φ(P,Z) a sentence. Then the circumscription
of P in Φ(P,Z) with variable Z, denoted Circ(Φ;P ;Z), is the sen-
tence

Φ(P,Z) ∧ ∀pz¬(Φ(p, z) ∧ p < P ),

where the notation P ∼ Q, with ∼ being one of =,≤, <, is gener-
alized to tuples of predicates: P ≤ Q stands for P1 ≤ Q1 ∧ · · · ∧
Pn ≤ Qn, similar for P = Q. Finally, P < Q stands again for
(P ≤ Q) ∧ ¬(P = Q).

The models of Circ(Φ;P ;Z) are the models of Φ such that the
extension of P cannot be made smaller without losing the property
Φ, even at the price of changing the interpretations of Z. In order to
define a model formally, we need to define an order on interpreta-
tions.

Let I and J be two classical interpretations of Φ. Then we write
I ≤P ;Z J if
• ∆I = ∆J ,
• XI = XJ for every X that does not belong to P , nor to Z,
• XI ⊆ XJ for every X ∈ P .
We write I <P ;Z J if I ≤P ;Z J but not J ≤P ;Z I.

An interpretation I is a model of Circ(Φ;P ;Z) if it is a model of
Φ and it is minimal relative to ≤P ;Z , i.e., there is no other model J
of Φ such that J <P ;Z I.

To ensure the existence of a model of Circ(Φ;P ;Z) we need Φ
to be well-founded w.r.t. (P ;Z). Φ is said to be well-founded w.r.t.
(P ;Z) if for every model J of Φ there exists a model I of Φ mini-
mal relative to ≤P ;Z and such that I ≤P ;Z J .

A lot of effort has been made to understand in which cases circum-
scription is first-order expressible, and what its computational prop-
erties are [21, 18, 33]. A simple case when circumscription is not
first-order expressible is circumscribing a transitive binary predicate.
Then circumscription of that predicate is equivalent to the transitive
closure, and it cannot be reduced to a first-order sentence.

Below we present some results that help to compute circumscrip-
tion:

• [21] if Ψ does not contain P,Z, then

Circ(Φ(P,Z) ∧Ψ;P ;Z) ≡ Circ(Φ(P,Z);P ;Z) ∧Ψ



• [21] if Ψ(P ) contains only negative occurrences of P , then

Circ(Φ(P ) ∧Ψ(P );P ) ≡ Circ(Φ(P );P ) ∧Ψ(P ),

where an occurrence of P in Ψ(P ) is said to be negative if P
appears negated in the negation normal form (NNF) of Ψ(P ).

• [21] if Ψ does not contain P , then

Circ(∀x
(
Ψ(x)→ P (x)

)
;P ) = ∀x

(
Ψ(x) ≡ P (x)

)
,

and it is called predicate completion.
• [21] if a sentence Φ is satisfiable and well-founded w.r.t. (P ;Z),

then Circ(Φ;P ;Z) is satisfiable.
• [33] the finite model property of a first-order fragment implies its

decidability under the circumscriptive semantics.

3 Circumscribed DL-Lite
Let K = 〈T ,A〉 be a DL-LiteHbool KB. Let M and V be sets of
predicates from the signature of K, such that M ∩ V = ∅. Then K
circumscribed w.r.t. minimized predicates M and varied predicates
V is an expression:

Circ(K;M ;V ).

If V is empty, we write Circ(K;M). The rest of the predicates are
assumed to be fixed and predicates from M are assumed to be min-
imized in parallel. If the ABox is empty, then we circumscribe only
T and write Circ(T ;M ;V ).

We rely on the notion of a model as defined for the classical cir-
cumscription. An interpretation I is a model of Circ(K;M ;V ) if it
is a model of Circ(ΦK;M ;V ), where ΦK is the standard translation
of K to first-order logic.

Theorem 1. Let K = 〈T ,A〉 be a DL-LiteHbool KB, M,V sets
of predicates from the signature of K, such that M ∩ V = ∅.
Then K is well-founded w.r.t. (M ;V ), and if K is satisfiable, then
Circ(K;M ;V ) is satisfiable.

Proof. Well-foundedness follows from the finite model property of
DL-LiteHbool and the last claim follows from Proposition 11 in [21].

The typical example for non-monotonic reasoning is the Tweety
example. It can be encoded in circumscribed DL-LiteHbool as follows:

Example 1. Assume an ontology about birds. We want to express
the following commonsense facts: typically birds fly, penguins are
birds, and they cannot fly. Let Bird , Abnormal , Penguin , Flier be
concept names and T the following TBox

Bird u ¬Abnormal v Flier
Penguin v Bird
Penguin v Abnormal

Abnormal v ¬Flier

Moreover, we assume that birds are considered normal if there is no
evidence to the contrary. Therefore, we minimize the set of abnormal
birds.

Suppose we know that Tweety is a bird, which is encoded in the
ABox A = {Bird(tweety)}. Then, we obtain that

Circ(〈T ,A〉;Abnormal) |= Flier(tweety).

Now, assume we learn that Tweety is not just a bird, but a penguin,
A′ = A ∪ {Penguin(tweety)}. Then

Circ(〈T ,A′〉;Abnormal) |= ¬Flier(tweety).

Thus, we have invalidated the previous conclusion that Tweety flies.

4 Computing Circumscription in DL-LiteHbool
In this section we show how to compute circumscription of a DL-
LiteHbool KB with respect to a single predicate, that is, for M = {X}.

It is easy to compute circumscription of an atomic concept A in
a DL-LiteHbool TBox T . We start by observing that we can assume
w.l.o.g. that each concept inclusion axiom in T has the ‘normal’
form > v L1 t · · · t Ln, where each Li is either a basic concept
or a negated basic concept, and no basic concept appears both posi-
tively and negatively in the same axiom. Indeed, the transformation
of an arbitrary set of concept inclusions into this form is analogous
to the conversion of a propositional formula into an equivalent set
of clauses.2 Hence, for a concept inclusion α of the above form, we
say that α is positive (resp., negative) w.r.t. A if A appears positively
(resp., negatively) in α. Let PosT (A) be the set of all inclusions in T
positive w.r.t.A, and NegT (A) the set of all inclusions in T negative
w.r.t. A. Moreover, again w.l.o.g., we may consider that each axiom
in PosT (A) has the formC v A, for some conceptC not containing
A.

Proposition 2. Let T be a DL-LiteHbool TBox and A an atomic con-
cept of T . Then

Circ(T ; {A}) = T ∪ {C1 t · · · t Cn ≡ A},

where PosT (A) = {Ci v A}ni=1.

Proof. Since T is a DL-LiteHbool TBox, we have that

T = PosT (A) ∪ NegT (A) ∪ T ′,

where T ′ is the set of inclusions in T that do not contain A. There-
fore, A does not appear in the concept C1 t · · · t Cn, and the result
follows directly from the properties of circumscription.

Notice that in DL-LiteHbool , circumscribing an atomic concept cor-
responds to predicate completion. Also notice, that if T is a DL-
LiteHcore TBox, Circ(T ; {A}) is a DL-LiteHbool KB.

Computing circumscription is not so trivial when X is an atomic
role P . In the following we compute circumscription of P in DL-
LiteHcore and DL-LiteHbool TBoxes.

4.1 Circumscribing a DL-LiteHcore TBox
We start by circumscribing DL-LiteHcore TBoxes. In DL-LiteHcore a role
P can appear positively in the assertions of the form:

R v P, B v ∃P, B v ∃P−,

whereR is a basic role andB is an atomic concept. First, we compute
circumscription of P for several easy cases.

Let P be a role name, R a role, and C1, C2 concepts such that
P /∈ Σ({R,C1, C2}). For an interpretation I and a tuple of domain
elements (a, b), we denote by I \ P (a, b) the interpretation I′ that
agrees with I on all predicates except P and P I

′
= P I \ {(a, b)}).

1. Circ({R v P};P ) ≡ {R ≡ P}
Proof. Follows from predicate completion.

2. Circ({C1 v ∃P};P ) ≡ {C1 ≡ ∃P,Funct(P )}
Proof. Let I be a model of Circ({C1 v ∃P};P ). Then I |= C1 v
∃P and I is minimal relative to P . Assume that I 6|= ∃P v C1,
hence there exists a tuple (a, b) ∈ P I s.t. a 6∈ C1

I . Then I can be

2 Note that such transformation might be exponential.



improved by removing (a, b) from P I : let I′ = I \ P (a, b). Then
I′ |= C1 v ∃P and I′ <P I, which contradicts with I being
a model of Circ({C1 v ∃P};P ). Hence, I |= ∃P v C1. Now,
assume I 6|= Funct(P ), that is, there exist two tuples (a, b) ∈ P I ,
(a, b′) ∈ P I , b 6= b′. Again, I can be improved by removing one
of these tuples from P I , which contradicts with I being a model of
Circ({C1 v ∃P};P ). Thus, I |= Funct(P ).

Let I be a model of {C1 ≡ ∃P,Funct(P )}. Then it is a model
of C1 v ∃P . Let us show it is minimal relative to P : no tuple
can be removed from P I without violating the axiom C1 v ∃P .
By contradiction, assume that (a, b) ∈ P I can be removed while
still satisfying the axiom C1 v ∃P . Then, there must exist an-
other tuple (a, b′) ∈ P I such that b 6= b′, which contradicts that
I |= Funct(P ). Hence, I is minimal relative to P .

3. Circ({C2 v ∃P−};P ) ≡ {C2 ≡ ∃P−,Funct(P−)}
Proof. Similar to 1.

Conversely, if we combine case 1 and case 2, circumscription does
not entail equivalences for the domain and the range of P :

Circ({C1 v ∃P,C2 v ∃P−};P ) 6|= C1 ≡ ∃P
Circ({C1 v ∃P,C2 v ∃P−};P ) 6|= C2 ≡ ∃P−

as an interpretation I that for each element c1 ∈ C1
I contains a tuple

(c1, f(c1)) ∈ P I and for each element c2 ∈ C2
I contains a tuple

(f(c2), c2) ∈ P I , where f is a bijection and P I contains nothing
else, is a model of Circ({C1 v ∃P,C2 v ∃P−};P ).

However, we can entail a weaker statement. Below we actually
compute circumscription of P in the TBox {C1 v ∃P,C2 v ∃P−}.

Proposition 3. Let P be a role name, C1, C2 arbitrary DL concepts
(not necessarily DL-LiteHcore ) such that P /∈ Σ({C1, C2}).

Then Circ({C1 v ∃P,C2 v ∃P−};P ) is equivalent to the fol-
lowing TBox Π:

C1 v ∃P
C2 v ∃P−

∃P .¬C2 v C1 (DRC)
≥2P .¬C2 v ⊥ (F1a)
≥2P−.¬C1 v ⊥ (F1b)

∃P .C2 u ∃P .¬C2 v ⊥ (F2a)
∃P−.C1 u ∃P−.¬C1 v ⊥ (F2b)
≥2P u ∃P .(≥2P−) v ⊥ (NZa)

Before proving the above result, we provide an intuitive explana-
tion of the axioms in Π (cf. Figure 1). Axioms (DRC), (F1a-b), (F2a-
b), and (NZa) encode minimality of P . Intuitively, axiom (DRC)
closes the domain and the range of P by saying that P cannot con-
nect an object lying outside C1 with an object lying outside C2. Ax-
iom (F1a) asserts local functionality of P : an object cannot have two
successors that are not in C2. Axiom (F1b) says the same about the
inverse P− and C1. Axioms (F2a) and (F2b) can also be seen as a
sort of functionality restrictions: axiom (F2a) states that if an object
has a P -successor in C2, then it cannot have a second P -successor
not in C2; axiom (F2b) states the same about P− and C1. Finally,
axiom (NZa) assures that P does not form a zigzag: it says that there
cannot exist an object that has at least two P successors, and one of
its successors has at least two P -predecessors.

Interpretations forbidden by axioms (DRC), (F1a), (F2a), and
(NZa) are depicted in Figure 1. Dots denote objects, edges denote
P connections and ovals denote the extensions of classes C1 and C2.

Proof. (⇒) Let I be a model of Circ({C1 v ∃P,C2 v ∃P−};P ).
It means that I is a model of {C1 v ∃P,C2 v ∃P−} and it is

C1 C2
P

(DRC)

C2P
P

(F1a)

C2

P

P

(F2a)

P

P

P

(NZa)

Figure 1. Interpretations forbidden by axioms (DRC), (F1a), (F2a) and
(NZa). White objects denote elements whose existence is ruled out by the
axioms. Crossed out edges can be deleted to improve the interpretations.

minimal relative to P . We show that I is a model of Π, i.e., satisfies
axioms (DRC), (F1a-b), (F2a-b), and (NZa).

First, assume by contradiction that I does not satisfy ax-
iom (DRC): I 6|= ∃P .¬C2 v C1. Then, there should exist a tu-
ple (a, b) ∈ P I such that b ∈ (¬C2)I and a /∈ (C1)I . Hence,
b /∈ C2

I and I can be improved: I′ = I \ P (a, b) is a model of
{C1 v ∃P,C2 v ∃P−} and I′ <P I. Contradiction with I being
minimal relative to P .

Next, assume that I does not satisfy axiom (F1a), i.e., I 6|=
≥2P .¬C2 v ⊥. That means there exist elements a, b, and b′

such that b 6= b′, (a, b) ∈ P I , (a, b′) ∈ P I , and b ∈ (¬C2)I ,
b′ ∈ (¬C2)I . Again, we can improve I by removing one of the tu-
ples (a, b) or (a, b′) from P I , which contradicts that I is minimal
relative to P . Hence, I is a model of axiom (F1a). It can be shown
similarly that I is a model of axiom (F1b).

Now, we prove that I satisfies axiom (F2a), i.e., I |= ∃P .C2 u
∃P .¬C2 v ⊥. Assume the contrary, i.e., for some elements a, b, and
b′, (a, b) ∈ P I , (a, b′) ∈ P I , b ∈ C2

I , and b′ 6∈ C2
I . Then it is

easy to see that I is not minimal relative to P : I′ = I \ P (a, b′) is
a model of {C1 v ∃P,C2 v ∃P−} and I′ <P I. Contradiction,
therefore I is a model of axiom (F2a). Satisfaction of axiom (F2b)
can be proved analogously.

Finally, we show that I satisfies axiom (NZa), that is I |=
≥2P u ∃P .(≥2P−) v ⊥. Assume the contrary, that is for some
elements a, a′, b, and b′, b 6= b′, (a, b) ∈ P I , (a, b′) ∈ P I

(a ∈ (≥2P )I), and a 6= a′, (a′, b) ∈ P I (b ∈ (≥2P−)
I). Obvi-

ously, I is not minimal relative to P : I′ = I \ P (a, b) is a model of
{C1 v ∃P,C2 v ∃P−} and I′ <P I. Contradiction with I being
minimal relative to P . Therefore, axiom (NZa) is satisfied by I.

(⇐) Let I be a model of Π. Then I is a model of {C1 v ∃P,C2 v
∃P−}. Hence, to prove that I is a model of Circ({C1 v ∃P,C2 v
∃P−};P ) it remains to show that it is minimal relative to P .

By contradiction, assume that I is not minimal, that is, there exists
a tuple (a, b) ∈ P I such that the interpretation I′ = I \ P (a, b) is
a model of {C1 v ∃P,C2 v ∃P−} and I′ <P I. There are four
cases:

1. a /∈ C1
I , b /∈ C2

I . Contradiction with axiom (DRC), ∃P .¬C2 v
C1.

2. a /∈ C1
I , b ∈ C2

I . By the assumption that (a, b) can be removed
from the interpretation of P while satisfying C2 v ∃P−, there



must exist a tuple (a′, b) ∈ P I with a′ 6= a. Now, if a′ /∈ C1
I ,

then it contradicts I |= ≥2P−.¬C1 v ⊥, and if a′ ∈ C1
I , it

contradicts I |= ∃P−.C1 u ∃P−.¬C1 v ⊥.
3. a ∈ C1

I , b /∈ C2
I . Symmetric to the previous case.

4. a ∈ C1
I , b ∈ C2

I . By the assumption, (a, b) can be removed
from P I . To satisfy C1 v ∃P , C2 v ∃P−, there must exist two
tuples (a′, b) ∈ P I and (a, b′) ∈ P I with a 6= a′ and b 6= b′.
Then a ∈ (≥2P )I and b ∈ (≥2P−)

I . Contradiction with I |=
≥2P u ∃P .(≥2P−) v ⊥.

In every case we derive a contradiction. Therefore, I is minimal, and
hence, is a model of Circ({C1 v ∃P,C2 v ∃P−};P ).

Notice that the resulting TBox Π is no longer a DL-LiteHcore TBox.
The minimal language required is that of ALCIQ.

Let us denote by mincore(P,C1, C2) the set formed by ax-
ioms (DRC), (F1a-b), (F2a-b), and (NZa) as a function of role P
and concepts C1 and C2. Now, we can add to the TBox a role inclu-
sion R v P and compute circumscription of P in a similar fashion.
To address the additional role inclusion we make sure that the part
of P disjoint from R is minimal. Note also that R does not have to
satisfy axioms (DRC), (F1a-b), (F2a-b), and (NZa).

Proposition 4. Let P be a role name, C1, C2 arbitrary DL concepts
(not necessarily DL-LiteHcore ) and R an arbitrary DL role such that
P /∈ Σ({C1, C2, R}).

Then Circ({C1 v ∃P,C2 v ∃P−, R v P};P ) is equivalent to
the following TBox Π:

C1 v ∃P
C2 v ∃P−

mincore(P ′, C1 u ¬∃R,C2 u ¬∃R−)
P ≡ P ′ tR

where P ′ is a fresh role name and the Boolean constructors on roles
are defined similarly to the Boolean constructors on concepts.

Note that though the axiom P ′ v ¬R is not explicitly asserted in
Π, it is implied by Π. So, in fact it is not necessary to use a new name
P ′ and we can replace each occurrence of P ′ by P u ¬R. Note also
that in this case Π is an ALCHIQ plus union of roles TBox.

For the general case, it remains to consider inclusions of the form
∃P− v ∃P , ∃P v ∃P−, and P− v P . Interestingly, the for-
mer two inclusions act as inclusions positive w.r.t. P , i.e., inclu-
sions where P occurs positively as ∃P , ∃P−, P , or P− (recall the
normal form of concept inclusion axioms), whereas the latter inclu-
sion acts as an inclusion negative w.r.t. P , i.e., inclusions where P
occurs negatively as ¬∃P , ¬∃P−, ¬P , or ¬P−. Therefore, for a
DL-LiteHcore TBox T , define Pos∗T (P ) to be the set of all inclusions
implied by T and positive w.r.t. P , or inclusions in T of the form
∃P− v ∃P , ∃P v ∃P− if T 6|= P− v P , and Neg∗T (P ) to be
the set of inclusions in T negative w.r.t. P , or inclusion P− v P if
T |= P− v P . Finally, circumscription of an atomic role P in an
arbitrary DL-LiteHcore TBox can be computed as follows.

Theorem 5. Let T be a DL-LiteHcore TBox and P an atomic role.
Further, let Pos∗T (P ) be the set of the form

{Ri v P}mi=0 ∪ {Bi v ∃P}ni=0 ∪ {B′i v ∃P−}li=0,

(without loss of generality we can assume that P− does not appear
on the right-hand side of role inclusions in Pos∗T (P ) and it does not
contain inclusions of the form X v X , where X is the domain or
the range of P , or P itself). Then Circ(T ;P ) can be computed as

the union of T and the TBox Π:

C1 ≡ (B1 t · · · tBn) u ¬(∃R1 t · · · t ∃Rm)
C2 ≡ (B′1 t · · · tB′l) u ¬(∃R−1 t · · · t ∃R−m)
mincore(P ′, C1, C2)
P ≡ P ′ tR1 t · · · tRm

with P ′ a fresh atomic role, and C1 and C2 fresh atomic concepts.
Note that here the empty union of concepts is equivalent to the bottom
concept ⊥.

Proof. By the properties of circumscription it holds that
Circ(T ;P ) = Circ(TP ;P ) ∧ T ′, where T ′ is the set of in-
clusions in T ∗ that do not contain P and TP = T \ T ′.

Let T ∗P be the deductive closure of TP . Clearly, Circ(TP ;P ) ≡
Circ(T ∗P ;P ). Next, T ∗P can be partitioned in the following way:

T ∗P = Pos∗TP (P ) ∪ Neg∗TP (P ),

and similarly to Propositions 3 and 4 it can be shown that
Neg∗TP (P ) ∪ Π is equivalent to Circ(T ∗P ;P ). It follows that T ∪ Π
is equivalent to Circ(T ;P ).

4.2 Circumscribing a DL-LiteHbool TBox
In DL-LiteHbool inclusions positive w.r.t. a role P have the form:

R v P,
C v ∃P t ∃P−,

C v ∃P,
C v ∃P−,

where R is a basic role and C is a complex concept.
In order to be able to compute circumscription of a DL-LiteHbool

TBox it remains to address positive occurrences of P in inclusions
of the form C v ∃P t ∃P−. It turns out that circumscription of P
in the TBox {C v ∃P t ∃P−} is very similar to that in the TBox
{C1 v ∃P,C2 v ∃P−} (see Proposition 3), with the difference that
variations of axioms (F1a-b), (F2a-b), and (NZa) need to be added.
More precisely, it is equivalent to the TBox:

C v ∃P t ∃P−
mincore(P,C,C)

∃P .¬C2 u ∃P−.¬C1 v ⊥ (F1c)
∃P .C2 u ∃P−.¬C1 v ⊥ (F2c)
∃P .¬C2 u ∃P−.C1 v ⊥ (F2d)
∃P− u ∃P .(≥2P−) v ⊥ (NZb)
≥2P u ∃P .(∃P ) v ⊥ (NZc)
∃P− u ∃P .(∃P ) v ⊥ (NZd)

where C1 and C2 denote C. Let us denote by minbool(P,C1, C2) the
set formed by axioms (F1c), (F2c-d), and (NZb-d) as a function of
role P and concepts C1 and C2. It will become clear later why we
need to distinguish between C1 and C2 here.

Interpretations forbidden by the new axioms (F1c), (F2c), and
(NZb-d) are depicted in Figure 2.

Now, when circumscribing an arbitrary DL-LiteHbool TBox, some
of these new axioms, e.g. (NZd), can contradict other TBox ax-
ioms, such as ∃P− v ∃P , therefore we cannot simply augment the
theory with the new axioms to compute circumscription of a DL-
LiteHbool TBox. To this purpose, we first transform the given TBox
into an equivalent TBox, and then provide an algorithm to compute
circumscription in the new TBox. This transformation exploits the
fact that the following two TBoxes are equivalent to each other:
{C v ∃P t ∃P−, ∃P− v ∃P} and {C v ∃P,∃P− v ∃P}.
More precisely, for a DL-LiteHbool TBox T and a role P , denote by
T P,t the TBox equivalent to T constructed as follows: if T implies
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Figure 2. Interpretations forbidden by axioms (F1c), (F2c), and (NZb-d).
White objects and crossed out edges are as in Figure 1.

∃P− v ∃P then replace axioms of the form C v ∃P t ∃P− with
C v ∃P , and if T implies ∃P v ∃P− then replace axioms of the
form C v ∃P t ∃P− with C v ∃P−. Next, define Pos∗T (P ) to be
the set of all DL-LiteHcore inclusions implied by T and positive w.r.t.
P , or inclusions in T of the form C v ∃P t ∃P−, or inclusions
in T of the form ∃P− v ∃P , ∃P v ∃P− if T 6|= P− v P , and
define Neg∗T (P ) to be the set of inclusions in T negative w.r.t. P , or
inclusion P− v P if T |= P− v P .

In the following theorem we compute circumscription of an atomic
role in a DL-LiteHbool TBox.

Theorem 6. Let T be a DL-LiteHbool TBox, P an atomic role,
and T P,t the transformation of T defined as above. Further, let
Pos∗T P,t(P ) be the set of the form

{Ri v P}mi=0 ∪ {C∗i v ∃P t ∃P−}ki=0 ∪
{Ci v ∃P}ni=0 ∪ {C′i v ∃P−}li=0

Then Circ(T ;P ) can be computed as the union of T and the follow-
ing TBox Π:

D1 ≡ (C1 t · · · t Cn) u ¬(∃R1 t · · · t ∃Rm)
D2 ≡ (C′1 t · · · t C′l) u ¬(∃R−1 t · · · t ∃R−m)
D ≡ (C∗1 t · · · t C∗k) u ¬(∃R1 t · · · t ∃Rm) u

¬(D1 tD2) u ¬(∃R−1 t · · · t ∃R−m)
P ′ ≡ P u ¬(R1 t · · · tRm)
mincore(P ′, D1 tD,D2 tD)
minbool(P

′, D1 tD,D2 tD) uD

where P ′ is a fresh atomic role, D1, D2, and D are fresh atomic
concepts, and minbool(P

′, D1 t D,D2 t D) u D denotes the set
of axioms of the form D u Cl v Cr for each axiom Cl v Cr in
minbool(P

′, D1 tD,D2 tD).

4.3 Adding an ABox
To fully address the problem of computing circumscription w.r.t. a
single predicate in DL-LiteHbool , it remains to add an ABox to the
theory.

First, we show how to compute circumscription of a role or a con-
cept in an ABox.

Proposition 7. Let A be a DL-LiteHbool ABox. Then circumscription
of a predicate X in A is equivalent to the KB 〈TX̄ ,A〉, where

• if X is an atomic concept A and {a1, . . . , an} = {a | A(a) ∈
A}, then TĀ = {A v {a1, . . . , an}}.

• if X is an atomic role P , for individuals a and b, ka denotes the
number of P -successors of a in A, kb denotes the number of P -
predecessors of b in A, {a1, . . . , an} = {a | A |= ∃P (a)} and
{b1, . . . , bm} = {b | A |= ∃P−(b)}, then TP̄ is the following
TBox: {

{a} v ≤ka P | A |= ∃P (a)
}
∪{

{b} v ≤kb P− | A |= ∃P−(b)
}
∪{

∃P v {a1, · · · , an} , ∃P− v {b1, · · · , bm}
}

Intuitively, the TBox TX̄ encodes the closure of the predicate X .
It does so by using nominals and number restrictions for the case of
a role name.

Finally, we are ready to compute circumscription in a DL-LiteHbool
KB.

Theorem 8. Let K = 〈T ,A〉 be a DL-LiteHbool KB and X a concept
or role name. LetA′ be the ABox obtained fromA by renaming each
occurrence ofX to a fresh predicateX ′,A′ = A[X/X ′], and T ′ =
T ∪ {X ′ v X}.

Then Circ(〈T ,A〉;X) is equivalent to 〈Circ(T ′;X) ∪ TX̄′ ,A′〉.

5 Checking Entailment in Circumscribed
DL-LiteHbool

In the previous section we showed that for a DL-LiteHbool KB K
and a role P , Circ(K;P ) is not a DL-LiteHbool KB anymore. It re-
quires the language of ALCHOIQ with union of roles. Reason-
ing inALCHOIQ extended with Boolean constructors on roles can
be reduced to reasoning in SHOIQBs, which is an extension of
SHOIQ with arbitrary Boolean constructors on simple roles and
has been shown to be NEXPTIME-complete in [29].

On the other hand, if we only want to check concept or role sub-
sumption in a circumscribed DL-LiteHbool TBox T , then the check can
be done by encoding the problem in ALCQIbreg , which has been
shown to be EXPTIME-complete (see [9]). However, in most of the
cases, the complexity of checking whether Circ(T ;P ) |= X1 v X2

for DL-LiteHbool concepts or roles X1, X2 is in NP, i.e., is does not
exceed the complexity of DL-LiteHbool :

a) if P /∈ Σ(X1, X2), Circ(T ;P ) |= X1 v X2 iff T |= X1 v X2,
b) if P ∈ Σ(X2), Circ(T ;P ) |= X1 v X2 iff T |= X1 v X2,
c) if P ∈ Σ(X1)

1) if T does not contain inclusions of the form C1 v ∃P , C2 v
∃P−, and C v ∃P t ∃P−, then Circ(T ;P ) is a DL-LiteHbool
with union of roles KB and the entailment can be checked
using, e.g., the algorithm for ALCQIbreg (see [9]),

2) if T contains inclusions of the form C1 v ∃P but not C2 v
∃P− and C v ∃P t ∃P−, then

• Circ(T ;P ) |= X1 v X2 iff T |= X1 v X2 ifX1 = ∃P−
or X1 = P , and

• Circ(T ;P ) |= ∃P v X2 iff T |= ∃P v X2 or T |= D v
X2, where D =

⊔n
i=1 Di, T |= Di v ∃P and n is the

maximal such number.

3) if T contains inclusions of the form C2 v ∃P− but not C1 v
∃P andC v ∃Pt∃P−, then this is symmetric to the previous
case.



4) if T contains both inclusions of the form C1 v ∃P and C2 v
∃P−, or C v ∃P t ∃P−, then Circ(T ;P ) |= X1 v X2 iff
T |= X1 v X2.

For an atomic concept A, Circ(K;A) is a DL-LiteHbool KB and the
entailment check can be done in NP.

In most of the cases the complexity of checking entailment does
not exceed that of DL-LiteHbool (i.e., in NP). As for the case c)-1), the
complexity of checking entailment inALCQIbreg is EXPTIME. The
exact complexity of DL-LiteHbool with union of roles is unknown and
lies between NP and EXPTIME.

6 Conclusions
We have studied circumscribed DL-Lite and addressed the prob-
lem of computing circumscription in DL-LiteHbool KBs. We com-
puted circumscription of a single predicate (a concept or a role) in
a DL-LiteHbool KB, which turned out to be first-order expressible. We
showed that circumscription of a concept in a DL-LiteHbool TBox is
a DL-LiteHbool TBox, whereas circumscription of a role a DL-LiteHbool
TBox is an ALCHIQ plus union of roles TBox. Moreover adding
an ABox to the circumscribed theory requires nominals in the lan-
guage. We also showed that checking entailment of concept or role
inclusions in a circumscribed KB can be done in EXPTIME.

To fully address the problem of circumscribing DL-LiteHbool , we
need to consider multiple minimized predicates and varying predi-
cates. It is quite straightforward to compute prioritized circumscrip-
tion of a set of concepts with strict priority as follows: first, circum-
scribe the concept with the highest priority; then, circumscribe the
concept with the second priority in the result of the first circumscrip-
tion; and continue by analogy. Conversely, parallel circumscription
and varied predicates require more investigation.

Another interesting point is to study the exact complexity of
checking entailment in DL-LiteHbool with Boolean constructors on
roles. In the existing literature on complex role constructors only ex-
pressive DLs starting from ALC are considered. Therefore, analysis
of the exact complexity of a low complexity logic such as DL-LiteHbool
combined with Boolean constructors on roles could result in a better
bound than EXPTIME.
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