
Description Logics Description Logic DL-LiteA Description Logic EL++

Lightweight Description Logics:
DL-LiteA and EL++

Elena Botoeva 1

KRDB Research Centre
Free University of Bozen-Bolzano

January 13, 2011
Departamento de Ciencias de la Computación

Universidad de Chile, Santiago, Chile

1Part of the slides is borrowed from Diego Calvanese
Botoeva Lightweight Description Logics: DL-LiteA and EL++ 1/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Outline

1 Description Logics

2 Description Logic DL-LiteA
Syntax and Semantics of DL-LiteA
Reasoning in DL-LiteA

Knowledge Base Satisfiability
Conjunctive Query Answering

3 Description Logic EL++

Syntax and Semantics of EL++

Reasoning in EL

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 2/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Outline

1 Description Logics

2 Description Logic DL-LiteA
Syntax and Semantics of DL-LiteA
Reasoning in DL-LiteA

Knowledge Base Satisfiability
Conjunctive Query Answering

3 Description Logic EL++

Syntax and Semantics of EL++

Reasoning in EL

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 3/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Description Logics

formal languages for representing knowledge bases
I TBox represents implicit knowledge (a set of axioms)
I ABox represents explicit knowledge (a set of individual assertions)

talk about
I concepts

Professor Student Course > ⊥,
I and roles

teaches attends

variable free syntax
I for describing complex concepts

Professor t Student ∃teaches.PhDCourse ∀hasChild.Male
I for asserting implicit knowledge

∃teaches− v Course Professor u Student v ⊥
I for asserting explicit knowledge

Student(john) attends(john, db)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 4/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Description Logics

formal languages for representing knowledge bases
I TBox represents implicit knowledge (a set of axioms)
I ABox represents explicit knowledge (a set of individual assertions)

talk about
I concepts

Professor Student Course > ⊥,
I and roles

teaches attends

variable free syntax
I for describing complex concepts

Professor t Student ∃teaches.PhDCourse ∀hasChild.Male
I for asserting implicit knowledge

∃teaches− v Course Professor u Student v ⊥
I for asserting explicit knowledge

Student(john) attends(john, db)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 4/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Description Logics

formal languages for representing knowledge bases
I TBox represents implicit knowledge (a set of axioms)
I ABox represents explicit knowledge (a set of individual assertions)

talk about
I concepts

Professor Student Course > ⊥,
I and roles

teaches attends

variable free syntax
I for describing complex concepts

Professor t Student ∃teaches.PhDCourse ∀hasChild.Male
I for asserting implicit knowledge

∃teaches− v Course Professor u Student v ⊥
I for asserting explicit knowledge

Student(john) attends(john, db)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 4/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Why Description Logics?

Decidable fragments of FOL (⇒ Well-defined semantics).
DLs provide sound and complete reasoning services:

I checking knowledge base consistency,
I checking logical entailment,
I answering conjunctive queries (unions of CQ).

Modelling capabilities. Description Logics (DLs) can express, e.g.:
I Taxonomy of classes of objects,
I UML class diagrams,
I ER models, etc.

DLs are widely used nowadays:
I underly OWL 2, the Semantic Web standard,
I serve as conceptual layer in Ontology Based Data Access,
I for formalizing bio-medical domain, etc.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 5/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Why Description Logics?

Decidable fragments of FOL (⇒ Well-defined semantics).
DLs provide sound and complete reasoning services:

I checking knowledge base consistency,
I checking logical entailment,
I answering conjunctive queries (unions of CQ).

Modelling capabilities. Description Logics (DLs) can express, e.g.:
I Taxonomy of classes of objects,
I UML class diagrams,
I ER models, etc.

DLs are widely used nowadays:
I underly OWL 2, the Semantic Web standard,
I serve as conceptual layer in Ontology Based Data Access,
I for formalizing bio-medical domain, etc.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 5/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Why Description Logics?

Decidable fragments of FOL (⇒ Well-defined semantics).
DLs provide sound and complete reasoning services:

I checking knowledge base consistency,
I checking logical entailment,
I answering conjunctive queries (unions of CQ).

Modelling capabilities. Description Logics (DLs) can express, e.g.:
I Taxonomy of classes of objects,
I UML class diagrams,
I ER models, etc.

DLs are widely used nowadays:
I underly OWL 2, the Semantic Web standard,
I serve as conceptual layer in Ontology Based Data Access,
I for formalizing bio-medical domain, etc.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 5/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Lightweight Description Logics

The majority of studied DLs is intractable:
I Satisfiability of the basic DL ALC is ExpTime-complete.
I Satisfiability of SROIQ, the basis of OWL 2, is

2NExpTime-complete.

Two families of DLs that provide tractable reasoning have been
developed, DL-Lite family by Calvanese et al. [5], and EL family by
Baader et al. [2].

I A common feature: no disjunction and no universal restrictions
Professor t Student ∀hasChild.Male

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 6/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Lightweight Description Logics

The majority of studied DLs is intractable:
I Satisfiability of the basic DL ALC is ExpTime-complete.
I Satisfiability of SROIQ, the basis of OWL 2, is

2NExpTime-complete.

Two families of DLs that provide tractable reasoning have been
developed, DL-Lite family by Calvanese et al. [5], and EL family by
Baader et al. [2].

I A common feature: no disjunction and no universal restrictions
Professor t Student ∀hasChild.Male

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 6/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Outline

1 Description Logics

2 Description Logic DL-LiteA
Syntax and Semantics of DL-LiteA
Reasoning in DL-LiteA

Knowledge Base Satisfiability
Conjunctive Query Answering

3 Description Logic EL++

Syntax and Semantics of EL++

Reasoning in EL

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 7/45

Description Logics Description Logic DL-LiteA Description Logic EL++

DL-Lite and DL-LiteA

DL-Lite is a family of tractable logics [5] specifically tailored to
efficiently deal with large amounts of data.

I Reasoning in DL-Lite are FOL-rewritable, i.e.,
we can reduce them to the problem of
query evaluation in relational databases.
⇒ AC0 in data complexity.

DL-LiteA is the most expressive member of this family.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 8/45

Description Logics Description Logic DL-LiteA Description Logic EL++

DL-Lite and DL-LiteA

DL-Lite is a family of tractable logics [5] specifically tailored to
efficiently deal with large amounts of data.

I Reasoning in DL-Lite are FOL-rewritable, i.e.,
we can reduce them to the problem of
query evaluation in relational databases.
⇒ AC0 in data complexity.

DL-LiteA is the most expressive member of this family.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 8/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Outline

1 Description Logics

2 Description Logic DL-LiteA
Syntax and Semantics of DL-LiteA
Reasoning in DL-LiteA

Knowledge Base Satisfiability
Conjunctive Query Answering

3 Description Logic EL++

Syntax and Semantics of EL++

Reasoning in EL

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 9/45

Description Logics Description Logic DL-LiteA Description Logic EL++

DL-LiteA Syntax
Let NA, NP , Na be sets of concept, role and individual names,
respectively. Let A ∈ NA, P ∈ NP , a ∈ Na.

Concept and role constructs:

B ::= A | ∃R basic concept
C ::= B | ¬B complex concept
R ::= P | P− basic role

TBox and ABox assertions:
B1 v B2 concept inclusion

B1 v ¬B2 disjointness of concepts
R1 v R2 role inclusion

Dis(R1,R2) disjointness of roles
Funct(R) role functionality

A(a) membership
P(a, b) assertions

A DL-LiteA Knowledge Base K is a pair 〈T ,A〉 where
I T is a finite set of TBox axioms and
I A is a finite set of membership assertions.

Note: for simplicity attributes, value-domain expressions and
identification constraints are not presented.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 10/45

Description Logics Description Logic DL-LiteA Description Logic EL++

DL-LiteA Syntax
Let NA, NP , Na be sets of concept, role and individual names,
respectively. Let A ∈ NA, P ∈ NP , a ∈ Na.

Concept and role constructs:

B ::= A | ∃R basic concept
C ::= B | ¬B complex concept
R ::= P | P− basic role

TBox and ABox assertions:
B1 v B2 concept inclusion

B1 v ¬B2 disjointness of concepts
R1 v R2 role inclusion

Dis(R1,R2) disjointness of roles
Funct(R) role functionality

A(a) membership
P(a, b) assertions

A DL-LiteA Knowledge Base K is a pair 〈T ,A〉 where
I T is a finite set of TBox axioms and
I A is a finite set of membership assertions.

Note: for simplicity attributes, value-domain expressions and
identification constraints are not presented.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 10/45

Description Logics Description Logic DL-LiteA Description Logic EL++

DL-LiteA Syntax
Let NA, NP , Na be sets of concept, role and individual names,
respectively. Let A ∈ NA, P ∈ NP , a ∈ Na.

Concept and role constructs:

B ::= A | ∃R basic concept
C ::= B | ¬B complex concept
R ::= P | P− basic role

TBox and ABox assertions:
B1 v B2 concept inclusion

B1 v ¬B2 disjointness of concepts
R1 v R2 role inclusion

Dis(R1,R2) disjointness of roles
Funct(R) role functionality

A(a) membership
P(a, b) assertions

A DL-LiteA Knowledge Base K is a pair 〈T ,A〉 where
I T is a finite set of TBox axioms and
I A is a finite set of membership assertions.

Note: for simplicity attributes, value-domain expressions and
identification constraints are not presented.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 10/45

Description Logics Description Logic DL-LiteA Description Logic EL++

DL-LiteA Syntax
Let NA, NP , Na be sets of concept, role and individual names,
respectively. Let A ∈ NA, P ∈ NP , a ∈ Na.

Concept and role constructs:

B ::= A | ∃R basic concept
C ::= B | ¬B complex concept
R ::= P | P− basic role

TBox and ABox assertions:
B1 v B2 concept inclusion

B1 v ¬B2 disjointness of concepts
R1 v R2 role inclusion

Dis(R1,R2) disjointness of roles
Funct(R) role functionality

A(a) membership
P(a, b) assertions

A DL-LiteA Knowledge Base K is a pair 〈T ,A〉 where
I T is a finite set of TBox axioms and
I A is a finite set of membership assertions.

Note: for simplicity attributes, value-domain expressions and
identification constraints are not presented.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 10/45

Description Logics Description Logic DL-LiteA Description Logic EL++

DL-LiteA Syntax
Let NA, NP , Na be sets of concept, role and individual names,
respectively. Let A ∈ NA, P ∈ NP , a ∈ Na.

Concept and role constructs:

B ::= A | ∃R basic concept
C ::= B | ¬B complex concept
R ::= P | P− basic role

TBox and ABox assertions:
B1 v B2 concept inclusion

B1 v ¬B2 disjointness of concepts
R1 v R2 role inclusion

Dis(R1,R2) disjointness of roles
Funct(R) role functionality

A(a) membership
P(a, b) assertions

A DL-LiteA Knowledge Base K is a pair 〈T ,A〉 where
I T is a finite set of TBox axioms and
I A is a finite set of membership assertions.

Note: for simplicity attributes, value-domain expressions and
identification constraints are not presented.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 10/45

Description Logics Description Logic DL-LiteA Description Logic EL++

DL-LiteA Syntax

Syntactic restriction to ensure tractability:

Functional roles cannot be specialized.

I.e., it is not allowed to have things like:

R ′ v R

Funct(R)

Otherwise, the resulting logic is ExpTime-hard in the size of ontology[1].

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 11/45

Description Logics Description Logic DL-LiteA Description Logic EL++

DL-LiteA Syntax

Syntactic restriction to ensure tractability:

Functional roles cannot be specialized.

I.e., it is not allowed to have things like:

R ′ v R

Funct(R)

Otherwise, the resulting logic is ExpTime-hard in the size of ontology[1].

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 11/45

Description Logics Description Logic DL-LiteA Description Logic EL++

DL-LiteA Syntax

Syntactic restriction to ensure tractability:

Functional roles cannot be specialized.

I.e., it is not allowed to have things like:

R ′ v R

Funct(R)

Otherwise, the resulting logic is ExpTime-hard in the size of ontology[1].

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 11/45

Description Logics Description Logic DL-LiteA Description Logic EL++

DL-LiteA Semantics
An interpretation I is a pair 〈∆I , ·I〉:

I for every concept name A, AI ⊆ ∆I ;
I for every role name P, PI ⊆ ∆I ×∆I ;
I for every individual name a, aI ∈ ∆I .

Concept and role constructs

(¬B)I = ∆I \ BI

(∃R)I = {x ∈ ∆I | ∃y ∈ ∆I , (x , y) ∈ RI}
(P−)

I
= {(y , x) ∈ ∆I ×∆I | (x , y) ∈ PI}

TBox and ABox assertions

I |= B v C iff BI ⊆ CI

I |= R1 v R2 iff R1
I ⊆ R2

I

I |= Dis(R1,R2) iff R1
I ∩ R2

I = ∅
I |= Funct(R) iff (x , y1) ∈ RI ,

(x , y2) ∈ RI

⇒ y1 = y2

I |= A(a) iff aI ∈ AI

I |= P(a, b) iff (aI , bI) ∈ PI

I is a model of K = 〈T ,A〉 if it satisfies all axioms of T and A.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 12/45

Description Logics Description Logic DL-LiteA Description Logic EL++

DL-LiteA Semantics
An interpretation I is a pair 〈∆I , ·I〉:

I for every concept name A, AI ⊆ ∆I ;
I for every role name P, PI ⊆ ∆I ×∆I ;
I for every individual name a, aI ∈ ∆I .

Concept and role constructs

(¬B)I = ∆I \ BI

(∃R)I = {x ∈ ∆I | ∃y ∈ ∆I , (x , y) ∈ RI}
(P−)

I
= {(y , x) ∈ ∆I ×∆I | (x , y) ∈ PI}

TBox and ABox assertions

I |= B v C iff BI ⊆ CI

I |= R1 v R2 iff R1
I ⊆ R2

I

I |= Dis(R1,R2) iff R1
I ∩ R2

I = ∅
I |= Funct(R) iff (x , y1) ∈ RI ,

(x , y2) ∈ RI

⇒ y1 = y2

I |= A(a) iff aI ∈ AI

I |= P(a, b) iff (aI , bI) ∈ PI

I is a model of K = 〈T ,A〉 if it satisfies all axioms of T and A.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 12/45

Description Logics Description Logic DL-LiteA Description Logic EL++

DL-LiteA Semantics
An interpretation I is a pair 〈∆I , ·I〉:

I for every concept name A, AI ⊆ ∆I ;
I for every role name P, PI ⊆ ∆I ×∆I ;
I for every individual name a, aI ∈ ∆I .

Concept and role constructs

(¬B)I = ∆I \ BI

(∃R)I = {x ∈ ∆I | ∃y ∈ ∆I , (x , y) ∈ RI}
(P−)

I
= {(y , x) ∈ ∆I ×∆I | (x , y) ∈ PI}

TBox and ABox assertions

I |= B v C iff BI ⊆ CI

I |= R1 v R2 iff R1
I ⊆ R2

I

I |= Dis(R1,R2) iff R1
I ∩ R2

I = ∅
I |= Funct(R) iff (x , y1) ∈ RI ,

(x , y2) ∈ RI

⇒ y1 = y2

I |= A(a) iff aI ∈ AI

I |= P(a, b) iff (aI , bI) ∈ PI

I is a model of K = 〈T ,A〉 if it satisfies all axioms of T and A.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 12/45

Description Logics Description Logic DL-LiteA Description Logic EL++

DL-LiteA Semantics
An interpretation I is a pair 〈∆I , ·I〉:

I for every concept name A, AI ⊆ ∆I ;
I for every role name P, PI ⊆ ∆I ×∆I ;
I for every individual name a, aI ∈ ∆I .

Concept and role constructs

(¬B)I = ∆I \ BI

(∃R)I = {x ∈ ∆I | ∃y ∈ ∆I , (x , y) ∈ RI}
(P−)

I
= {(y , x) ∈ ∆I ×∆I | (x , y) ∈ PI}

TBox and ABox assertions

I |= B v C iff BI ⊆ CI

I |= R1 v R2 iff R1
I ⊆ R2

I

I |= Dis(R1,R2) iff R1
I ∩ R2

I = ∅
I |= Funct(R) iff (x , y1) ∈ RI ,

(x , y2) ∈ RI

⇒ y1 = y2

I |= A(a) iff aI ∈ AI

I |= P(a, b) iff (aI , bI) ∈ PI

I is a model of K = 〈T ,A〉 if it satisfies all axioms of T and A.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 12/45

Description Logics Description Logic DL-LiteA Description Logic EL++

DL-LiteA – Example

empCode: Integer
salary: Integer

Employee

Manager

AreaManager

TopManager

1..*

1..1

boss

projectName: String

Project
1..*

1..1

1..1

worksFor

manages

1..*

{disjoint}

Manager v Employee
AreaManager v Manager
TopManager v Manager

AreaManager v ¬TopManager

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v ∃worksFor−

Funct(manages)
Funct(manages−)

manages v worksFor
...

Note: DL-LiteA cannot capture completeness of a
hierarchy. This would require disjunction (i.e., OR).

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 13/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Outline

1 Description Logics

2 Description Logic DL-LiteA
Syntax and Semantics of DL-LiteA
Reasoning in DL-LiteA

Knowledge Base Satisfiability
Conjunctive Query Answering

3 Description Logic EL++

Syntax and Semantics of EL++

Reasoning in EL

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 14/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Reasoning Problems
The Knowledge Base Satisfiability problem is to check,
given a DL-LiteA KB K, whether K admits at least one model.

I The Concept Satisfiability problem is to decide, given a TBox T and
a concept C , whether there exist a model I of T such CI 6= ∅.

I The Concept Subsumption problem is to decide, given a TBox T and
concepts C1 and C2, whether for every model I of T it holds that
C1
I ⊆ C2

I (T |= C1 v C2).
I The Role Subsumption problem is to decide, given a TBox T and

roles R1 and R2, whether for every model I of T it holds that
R1
I ⊆ R2

I (T |= R1 v R2).

The Query Answering problem is to compute,
given a DL-LiteA KB K and a query q (either a CQ or a UCQ)
over K, the set ans(q,K) of certain answers.

I The Concept Instance Checking problem is to decide, given an object
name a, a concept B, and a KB K = 〈T ,A〉, whether K |= C (a).

I The Role Instance Checking problem is to decide, given a pair (a, b),
a role R, and a KB K = 〈T ,A〉, whether K |= R(a, b).

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 15/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Reasoning Problems
The Knowledge Base Satisfiability problem is to check,
given a DL-LiteA KB K, whether K admits at least one model.

I The Concept Satisfiability problem is to decide, given a TBox T and
a concept C , whether there exist a model I of T such CI 6= ∅.

I The Concept Subsumption problem is to decide, given a TBox T and
concepts C1 and C2, whether for every model I of T it holds that
C1
I ⊆ C2

I (T |= C1 v C2).
I The Role Subsumption problem is to decide, given a TBox T and

roles R1 and R2, whether for every model I of T it holds that
R1
I ⊆ R2

I (T |= R1 v R2).

The Query Answering problem is to compute,
given a DL-LiteA KB K and a query q (either a CQ or a UCQ)
over K, the set ans(q,K) of certain answers.

I The Concept Instance Checking problem is to decide, given an object
name a, a concept B, and a KB K = 〈T ,A〉, whether K |= C (a).

I The Role Instance Checking problem is to decide, given a pair (a, b),
a role R, and a KB K = 〈T ,A〉, whether K |= R(a, b).

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 15/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Reasoning Problems
The Knowledge Base Satisfiability problem is to check,
given a DL-LiteA KB K, whether K admits at least one model.

I The Concept Satisfiability problem is to decide, given a TBox T and
a concept C , whether there exist a model I of T such CI 6= ∅.

I The Concept Subsumption problem is to decide, given a TBox T and
concepts C1 and C2, whether for every model I of T it holds that
C1
I ⊆ C2

I (T |= C1 v C2).
I The Role Subsumption problem is to decide, given a TBox T and

roles R1 and R2, whether for every model I of T it holds that
R1
I ⊆ R2

I (T |= R1 v R2).

The Query Answering problem is to compute,
given a DL-LiteA KB K and a query q (either a CQ or a UCQ)
over K, the set ans(q,K) of certain answers.

I The Concept Instance Checking problem is to decide, given an object
name a, a concept B, and a KB K = 〈T ,A〉, whether K |= C (a).

I The Role Instance Checking problem is to decide, given a pair (a, b),
a role R, and a KB K = 〈T ,A〉, whether K |= R(a, b).

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 15/45

Description Logics Description Logic DL-LiteA Description Logic EL++

First Order Logic Rewritability
ABox A can be stored as a relational database in a standard RDBMS as follows:

For each atomic concept A of the ontology:
I define a unary relational table tabA
I populate tabA with each 〈c〉 such that A(c) ∈ A

For each atomic role P of the ontology,
I define a binary relational table tabP
I populate tabP with each 〈c1, c2〉 such that P(c1, c2) ∈ A

We denote with DB(A) the database obtained as above.

Definition

KB satisfiability (QA) in DL-LiteA is FOL-rewritable if,
for every T (and every UCQ q) there exists a FO query q′,
such that for every nonempty A (and every tuple of constants ~a from A),
〈T ,A〉 is satisfiable iff q′() evaluates to false in DB(A)

(~a ∈ ans(q, 〈T ,A〉) iff ~aDB(A) ∈ q′
DB(A)

).

We show that KB satisfiability and QA in DL-LiteA are FOL-rewritable.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 16/45

Description Logics Description Logic DL-LiteA Description Logic EL++

First Order Logic Rewritability
ABox A can be stored as a relational database in a standard RDBMS as follows:

For each atomic concept A of the ontology:
I define a unary relational table tabA
I populate tabA with each 〈c〉 such that A(c) ∈ A

For each atomic role P of the ontology,
I define a binary relational table tabP
I populate tabP with each 〈c1, c2〉 such that P(c1, c2) ∈ A

We denote with DB(A) the database obtained as above.

Definition

KB satisfiability (QA) in DL-LiteA is FOL-rewritable if,
for every T (and every UCQ q) there exists a FO query q′,
such that for every nonempty A (and every tuple of constants ~a from A),
〈T ,A〉 is satisfiable iff q′() evaluates to false in DB(A)

(~a ∈ ans(q, 〈T ,A〉) iff ~aDB(A) ∈ q′
DB(A)

).

We show that KB satisfiability and QA in DL-LiteA are FOL-rewritable.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 16/45

Description Logics Description Logic DL-LiteA Description Logic EL++

First Order Logic Rewritability
ABox A can be stored as a relational database in a standard RDBMS as follows:

For each atomic concept A of the ontology:
I define a unary relational table tabA
I populate tabA with each 〈c〉 such that A(c) ∈ A

For each atomic role P of the ontology,
I define a binary relational table tabP
I populate tabP with each 〈c1, c2〉 such that P(c1, c2) ∈ A

We denote with DB(A) the database obtained as above.

Definition

KB satisfiability (QA) in DL-LiteA is FOL-rewritable if,
for every T (and every UCQ q) there exists a FO query q′,
such that for every nonempty A (and every tuple of constants ~a from A),
〈T ,A〉 is satisfiable iff q′() evaluates to false in DB(A)

(~a ∈ ans(q, 〈T ,A〉) iff ~aDB(A) ∈ q′
DB(A)

).

We show that KB satisfiability and QA in DL-LiteA are FOL-rewritable.
Botoeva Lightweight Description Logics: DL-LiteA and EL++ 16/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Knowledge Base Satisfiability

Problem

Given a KB K = 〈T ,A〉, check whether there exists
an interpretation I such that I |= T and I |= A

Positive Inclusions (PIs) are inclusions of the form
B1 v B2,R1 v R2

Negative Inclusions (NIs) are inclusions of the form
B1 v ¬B2, Dis(R1,R2), or Funct(R)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 17/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Knowledge Base Satisfiability

Problem

Given a KB K = 〈T ,A〉, check whether there exists
an interpretation I such that I |= T and I |= A

Positive Inclusions (PIs) are inclusions of the form
B1 v B2,R1 v R2

Negative Inclusions (NIs) are inclusions of the form
B1 v ¬B2, Dis(R1,R2), or Funct(R)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 17/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Satisfiability of KBs with only PIs

Positive inclusions cannot introduce contradicting information:

Theorem

Let K = 〈T ,A〉 be a DL-LiteA KB such that T consists only of PIs.
Then K is satisfiable.

We can always build a model by adding missing tuples to satisfy PIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 18/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Satisfiability of KBs with only PIs

Positive inclusions cannot introduce contradicting information:

Theorem

Let K = 〈T ,A〉 be a DL-LiteA KB such that T consists only of PIs.
Then K is satisfiable.

We can always build a model by adding missing tuples to satisfy PIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 18/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Satisfiability of KBs with only PIs

Positive inclusions cannot introduce contradicting information:

Theorem

Let K = 〈T ,A〉 be a DL-LiteA KB such that T consists only of PIs.
Then K is satisfiable.

We can always build a model by adding missing tuples to satisfy PIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 18/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Source of Unsatisfiability

However, negative inclusions can cause a KB to be unsatisfiable:

T : Dis(teaches, attends)

A : teaches(john, db), attends(john, db)

T : Funct(teaches−)

A : teaches(john, db), teaches(david, db)

T : Student v ¬Professor, ∃teaches v Professor

A : Student(john), teaches(john, db)

I Interaction of negative and positive inclusions has to be considered.
⇒ calculate the closure of NIs w.r.t. PIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 19/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Source of Unsatisfiability

However, negative inclusions can cause a KB to be unsatisfiable:

T : Dis(teaches, attends)

A : teaches(john, db), attends(john, db)

T : Funct(teaches−)

A : teaches(john, db), teaches(david, db)

T : Student v ¬Professor, ∃teaches v Professor

A : Student(john), teaches(john, db)

I Interaction of negative and positive inclusions has to be considered.
⇒ calculate the closure of NIs w.r.t. PIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 19/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Source of Unsatisfiability

However, negative inclusions can cause a KB to be unsatisfiable:

T : Dis(teaches, attends)

A : teaches(john, db), attends(john, db)

T : Funct(teaches−)

A : teaches(john, db), teaches(david, db)

T : Student v ¬Professor, ∃teaches v Professor

A : Student(john), teaches(john, db)

I Interaction of negative and positive inclusions has to be considered.
⇒ calculate the closure of NIs w.r.t. PIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 19/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Source of Unsatisfiability

However, negative inclusions can cause a KB to be unsatisfiable:

T : Dis(teaches, attends)

A : teaches(john, db), attends(john, db)

T : Funct(teaches−)

A : teaches(john, db), teaches(david, db)

T : Student v ¬Professor, ∃teaches v Professor

A : Student(john), teaches(john, db)

I Interaction of negative and positive inclusions has to be considered.
⇒ calculate the closure of NIs w.r.t. PIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 19/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Source of Unsatisfiability

However, negative inclusions can cause a KB to be unsatisfiable:

T : Dis(teaches, attends)

A : teaches(john, db), attends(john, db)

T : Funct(teaches−)

A : teaches(john, db), teaches(david, db)

T : Student v ¬Professor, ∃teaches v Professor

A : Student(john), teaches(john, db)

I Interaction of negative and positive inclusions has to be considered.
⇒ calculate the closure of NIs w.r.t. PIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 19/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Knowledge Base Satisfiability

Given a DL-LiteA KB K = 〈T ,A〉, we check its satisfiability as follows:

Algorithm for checking KB satisfiability

1 Calculate the closure of NIs.

2 Translate the closure into a UCQ qunsat asking for violation of some NI.

3 Evaluate encoding of qunsat into SQL over DB(A).

I if Eval(SQL(qunsat),DB(A)) = ∅, then the KB is satisfiable;
I otherwise the KB is unsatisfiable.

Correctness of this procedure shows FOL-rewritability of KB satisfiability
in DL-Lite.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 20/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Knowledge Base Satisfiability

Given a DL-LiteA KB K = 〈T ,A〉, we check its satisfiability as follows:

Algorithm for checking KB satisfiability

1 Calculate the closure of NIs.

2 Translate the closure into a UCQ qunsat asking for violation of some NI.

3 Evaluate encoding of qunsat into SQL over DB(A).

I if Eval(SQL(qunsat),DB(A)) = ∅, then the KB is satisfiable;
I otherwise the KB is unsatisfiable.

Correctness of this procedure shows FOL-rewritability of KB satisfiability
in DL-Lite.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 20/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Knowledge Base Satisfiability

Given a DL-LiteA KB K = 〈T ,A〉, we check its satisfiability as follows:

Algorithm for checking KB satisfiability

1 Calculate the closure of NIs.

2 Translate the closure into a UCQ qunsat asking for violation of some NI.

3 Evaluate encoding of qunsat into SQL over DB(A).

I if Eval(SQL(qunsat),DB(A)) = ∅, then the KB is satisfiable;
I otherwise the KB is unsatisfiable.

Correctness of this procedure shows FOL-rewritability of KB satisfiability
in DL-Lite.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 20/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Closure of Negative Inclusions
Closure of NIs cln(T) w.r.t. PIs

every NI is in cln(T).

cln(T) : Student v ¬Professor

T : ∃teaches v Professor

}
⇒

add to cln(T) : Student v ¬∃teaches

cln(T) : Professor v ¬∃attends

T : registeredTo v attends

}
⇒

add to cln(T): Professor v ¬∃registeredTo

cln(T) : Dis(teaches, attends)
T : registeredTo v attends

}
⇒

add to cln(T): Dis(teaches, registeredTo)

· · ·

Note: functionality does not interact with PIs and other NIs.

Note: the closure is finite since there are polynomially many different NIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 21/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Closure of Negative Inclusions
Closure of NIs cln(T) w.r.t. PIs

every NI is in cln(T).

cln(T) : Student v ¬Professor

T : ∃teaches v Professor

}
⇒

add to cln(T) : Student v ¬∃teaches

cln(T) : Professor v ¬∃attends

T : registeredTo v attends

}
⇒

add to cln(T): Professor v ¬∃registeredTo

cln(T) : Dis(teaches, attends)
T : registeredTo v attends

}
⇒

add to cln(T): Dis(teaches, registeredTo)

· · ·

Note: functionality does not interact with PIs and other NIs.

Note: the closure is finite since there are polynomially many different NIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 21/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Closure of Negative Inclusions
Closure of NIs cln(T) w.r.t. PIs

every NI is in cln(T).

cln(T) : Student v ¬Professor

T : ∃teaches v Professor

}
⇒

add to cln(T) : Student v ¬∃teaches

cln(T) : Professor v ¬∃attends

T : registeredTo v attends

}
⇒

add to cln(T): Professor v ¬∃registeredTo

cln(T) : Dis(teaches, attends)
T : registeredTo v attends

}
⇒

add to cln(T): Dis(teaches, registeredTo)

· · ·

Note: functionality does not interact with PIs and other NIs.

Note: the closure is finite since there are polynomially many different NIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 21/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Closure of Negative Inclusions
Closure of NIs cln(T) w.r.t. PIs

every NI is in cln(T).

cln(T) : Student v ¬Professor

T : ∃teaches v Professor

}
⇒

add to cln(T) : Student v ¬∃teaches

cln(T) : Professor v ¬∃attends

T : registeredTo v attends

}
⇒

add to cln(T): Professor v ¬∃registeredTo

cln(T) : Dis(teaches, attends)
T : registeredTo v attends

}
⇒

add to cln(T): Dis(teaches, registeredTo)

· · ·

Note: functionality does not interact with PIs and other NIs.

Note: the closure is finite since there are polynomially many different NIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 21/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Closure of Negative Inclusions
Closure of NIs cln(T) w.r.t. PIs

every NI is in cln(T).

cln(T) : Student v ¬Professor

T : ∃teaches v Professor

}
⇒

add to cln(T) : Student v ¬∃teaches

cln(T) : Professor v ¬∃attends

T : registeredTo v attends

}
⇒

add to cln(T): Professor v ¬∃registeredTo

cln(T) : Dis(teaches, attends)
T : registeredTo v attends

}
⇒

add to cln(T): Dis(teaches, registeredTo)

· · ·

Note: functionality does not interact with PIs and other NIs.

Note: the closure is finite since there are polynomially many different NIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 21/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Closure of Negative Inclusions
Closure of NIs cln(T) w.r.t. PIs

every NI is in cln(T).

cln(T) : Student v ¬Professor

T : ∃teaches v Professor

}
⇒

add to cln(T) : Student v ¬∃teaches

cln(T) : Professor v ¬∃attends

T : registeredTo v attends

}
⇒

add to cln(T): Professor v ¬∃registeredTo

cln(T) : Dis(teaches, attends)
T : registeredTo v attends

}
⇒

add to cln(T): Dis(teaches, registeredTo)

· · ·

Note: functionality does not interact with PIs and other NIs.

Note: the closure is finite since there are polynomially many different NIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 21/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Closure of Negative Inclusions
Closure of NIs cln(T) w.r.t. PIs

every NI is in cln(T).

cln(T) : Student v ¬Professor

T : ∃teaches v Professor

}
⇒

add to cln(T) : Student v ¬∃teaches

cln(T) : Professor v ¬∃attends

T : registeredTo v attends

}
⇒

add to cln(T): Professor v ¬∃registeredTo

cln(T) : Dis(teaches, attends)
T : registeredTo v attends

}
⇒

add to cln(T): Dis(teaches, registeredTo)

· · ·

Note: functionality does not interact with PIs and other NIs.

Note: the closure is finite since there are polynomially many different NIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 21/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Closure of Negative Inclusions
Closure of NIs cln(T) w.r.t. PIs

every NI is in cln(T).

cln(T) : Student v ¬Professor

T : ∃teaches v Professor

}
⇒

add to cln(T) : Student v ¬∃teaches

cln(T) : Professor v ¬∃attends

T : registeredTo v attends

}
⇒

add to cln(T): Professor v ¬∃registeredTo

cln(T) : Dis(teaches, attends)
T : registeredTo v attends

}
⇒

add to cln(T): Dis(teaches, registeredTo)

· · ·

Note: functionality does not interact with PIs and other NIs.

Note: the closure is finite since there are polynomially many different NIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 21/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Closure of Negative Inclusions
Closure of NIs cln(T) w.r.t. PIs

every NI is in cln(T).

cln(T) : Student v ¬Professor (or Professor v ¬Student)
T : ∃teaches v Professor

}
⇒

add to cln(T) : Student v ¬∃teaches

cln(T) : Professor v ¬∃attends (or ∃attends v ¬Professor)
T : registeredTo v attends

}
⇒

add to cln(T): Professor v ¬∃registeredTo

cln(T) : Dis(teaches, attends) (or Dis(attends, teaches))
T : registeredTo v attends

}
⇒

add to cln(T): Dis(teaches, registeredTo)

· · ·

Note: functionality does not interact with PIs and other NIs.

Note: the closure is finite since there are polynomially many different NIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 21/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Closure of Negative Inclusions
Closure of NIs cln(T) w.r.t. PIs

every NI is in cln(T).

cln(T) : Student v ¬Professor

T : ∃teaches v Professor

}
⇒

add to cln(T) : Student v ¬∃teaches

cln(T) : Professor v ¬∃attends

T : registeredTo v attends

}
⇒

add to cln(T): Professor v ¬∃registeredTo

cln(T) : Dis(teaches, attends)
T : registeredTo v attends

}
⇒

add to cln(T): Dis(teaches, registeredTo)

· · ·

Note: functionality does not interact with PIs and other NIs.

Note: the closure is finite since there are polynomially many different NIs.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 21/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Translation to FOL Queries

Having calculated cln(T) we translate it to a UCQ 6= qunsat as follows.

Each NI α correspond to a CQ, δ(α):

I Student v ¬∃teaches ⇒
∃x.Student(x) ∧ ∃y .teaches(x , y).

I Funct(teaches−) ⇒
∃x1, x2, y .teaches(x1, y) ∧ teaches(x2, y) ∧ x1 6= x2.

I Dis(attends, teaches) ⇒
∃x , y .attends(x , y) ∧ teaches(x , y).

Then
qunsat =

∨
α∈cln(T)

δ(α)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 22/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Translation to FOL Queries

Having calculated cln(T) we translate it to a UCQ 6= qunsat as follows.

Each NI α correspond to a CQ, δ(α):

I Student v ¬∃teaches ⇒
∃x.Student(x) ∧ ∃y .teaches(x , y).

I Funct(teaches−) ⇒
∃x1, x2, y .teaches(x1, y) ∧ teaches(x2, y) ∧ x1 6= x2.

I Dis(attends, teaches) ⇒
∃x , y .attends(x , y) ∧ teaches(x , y).

Then
qunsat =

∨
α∈cln(T)

δ(α)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 22/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Translation to FOL Queries

Having calculated cln(T) we translate it to a UCQ 6= qunsat as follows.

Each NI α correspond to a CQ, δ(α):

I Student v ¬∃teaches ⇒
∃x.Student(x) ∧ ∃y .teaches(x , y).

I Funct(teaches−) ⇒
∃x1, x2, y .teaches(x1, y) ∧ teaches(x2, y) ∧ x1 6= x2.

I Dis(attends, teaches) ⇒
∃x , y .attends(x , y) ∧ teaches(x , y).

Then
qunsat =

∨
α∈cln(T)

δ(α)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 22/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query evaluation

Let q be a UCQ.

We denote by SQL(q) the encoding of q into an SQL query over
DB(A).

We indicate with Eval(SQL(q),DB(A)) the evaluation of SQL(q)
over DB(A).

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 23/45

Description Logics Description Logic DL-LiteA Description Logic EL++

FOL-rewritability of satisfiability in DL-LiteA

Theorem

Let K = 〈T ,A〉 be a DL-LiteA KB. Then, K is unsatisfiable iff
Eval(SQL(qunsat ,DB(A)) returns true.

In other words, satisfiability of a DL-LiteA ontology can be reduced to
FOL-query evaluation.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 24/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query Answering

Problem

Query answering over a KB K = 〈T ,A〉 is a form of logical implication:

find all tuples ~c of constants of A s.t. K |= q(~c)

We are interested in so called certain answers, i.e., the tuples that are
answers to q in all models of K = 〈T ,A〉:

cert(q,K) = { ~c | ~c ∈ qI , for every model I of K }

Note: We have assumed that the answer qI to a query q over an
interpretation I is constituted by a set of tuples of constants of A, rather
than objects in ∆I .

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 25/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query Answering over Satisfiable KBs

Given a CQ q and a satisfiable KB K = 〈T ,A〉, we compute cert(q,K) as
follows:

Algorithm for answering CQs over KBs

1 Using T , rewrite q into a UCQ rq,T (the perfect rewriting of q w.r.t. T).

2 Encode rq,T into SQL and evaluate it over A managed in secondary
storage via a RDBMS, to return cert(q,K).

Correctness of this procedure shows FOL-rewritability of query answering in
DL-Lite.

 Query answering over DL-Lite ontologies can be done using RDBMS
technology.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 26/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query Answering over Satisfiable KBs

Given a CQ q and a satisfiable KB K = 〈T ,A〉, we compute cert(q,K) as
follows:

Algorithm for answering CQs over KBs

1 Using T , rewrite q into a UCQ rq,T (the perfect rewriting of q w.r.t. T).

2 Encode rq,T into SQL and evaluate it over A managed in secondary
storage via a RDBMS, to return cert(q,K).

Correctness of this procedure shows FOL-rewritability of query answering in
DL-Lite.

 Query answering over DL-Lite ontologies can be done using RDBMS
technology.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 26/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query Rewriting
Consider the query q(x) ← Professor(x)

Intuition: Use the PIs as basic rewriting rules:

AssistantProf v Professor
as a logic rule: Professor(z) ← AssistantProf(z)

Basic rewriting step:

when an atom in the query unifies with the head of the rule,

substitute the atom with the body of the rule.

We say that the PI inclusion applies to the atom.

In the example, the PI AssistantProf v Professor applies to the atom
Professor(x). Towards the computation of the perfect rewriting, we add to the
input query above, the query

q(x) ← AssistantProf(x)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 27/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query Rewriting
Consider the query q(x) ← Professor(x)

Intuition: Use the PIs as basic rewriting rules:

AssistantProf v Professor
as a logic rule: Professor(z) ← AssistantProf(z)

Basic rewriting step:

when an atom in the query unifies with the head of the rule,

substitute the atom with the body of the rule.

We say that the PI inclusion applies to the atom.

In the example, the PI AssistantProf v Professor applies to the atom
Professor(x). Towards the computation of the perfect rewriting, we add to the
input query above, the query

q(x) ← AssistantProf(x)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 27/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query Rewriting
Consider the query q(x) ← Professor(x)

Intuition: Use the PIs as basic rewriting rules:

AssistantProf v Professor
as a logic rule: Professor(z) ← AssistantProf(z)

Basic rewriting step:

when an atom in the query unifies with the head of the rule,

substitute the atom with the body of the rule.

We say that the PI inclusion applies to the atom.

In the example, the PI AssistantProf v Professor applies to the atom
Professor(x). Towards the computation of the perfect rewriting, we add to the
input query above, the query

q(x) ← AssistantProf(x)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 27/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query Rewriting (cont’d)

Consider the query q(x) ← teaches(x , y),Course(y)

and the PI ∃teaches− v Course
as a logic rule: Course(z2) ← teaches(z1, z2)

The PI applies to the atom Course(y), and we add to the perfect rewriting the
query

q(x) ← teaches(x , y), teaches(z1, y)

Consider now the query q(x) ← teaches(x , y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z , f (z)) ← Professor(z)

The PI applies to the atom teaches(x , y), and we add to the perfect rewriting
the query

q(x) ← Professor(x)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 28/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query Rewriting (cont’d)

Consider the query q(x) ← teaches(x , y),Course(y)

and the PI ∃teaches− v Course
as a logic rule: Course(z2) ← teaches(z1, z2)

The PI applies to the atom Course(y), and we add to the perfect rewriting the
query

q(x) ← teaches(x , y), teaches(z1, y)

Consider now the query q(x) ← teaches(x , y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z , f (z)) ← Professor(z)

The PI applies to the atom teaches(x , y), and we add to the perfect rewriting
the query

q(x) ← Professor(x)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 28/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query Rewriting – Constants

Conversely, for the query q(x) ← teaches(x , databases)

and the same PI as before Professor v ∃teaches
as a logic rule: teaches(z , f (z)) ← Professor(z)

teaches(x , databases) does not unify with teaches(z , f (z)), since the skolem
term f (z) in the head of the rule does not unify with the constant databases.

In this case, the PI does not apply to the atom teaches(x , databases).

The same holds for the following query, where y is distinguished, since unifying
f (z) with y would correspond to returning a skolem term as answer to the query:

q(x , y) ← teaches(x , y)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 29/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query Rewriting – Constants

Conversely, for the query q(x) ← teaches(x , databases)

and the same PI as before Professor v ∃teaches
as a logic rule: teaches(z , f (z)) ← Professor(z)

teaches(x , databases) does not unify with teaches(z , f (z)), since the skolem
term f (z) in the head of the rule does not unify with the constant databases.

In this case, the PI does not apply to the atom teaches(x , databases).

The same holds for the following query, where y is distinguished, since unifying
f (z) with y would correspond to returning a skolem term as answer to the query:

q(x , y) ← teaches(x , y)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 29/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query Rewriting – Constants

Conversely, for the query q(x) ← teaches(x , databases)

and the same PI as before Professor v ∃teaches
as a logic rule: teaches(z , f (z)) ← Professor(z)

teaches(x , databases) does not unify with teaches(z , f (z)), since the skolem
term f (z) in the head of the rule does not unify with the constant databases.

In this case, the PI does not apply to the atom teaches(x , databases).

The same holds for the following query, where y is distinguished, since unifying
f (z) with y would correspond to returning a skolem term as answer to the query:

q(x , y) ← teaches(x , y)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 29/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query Rewriting – Join variables

An analogous behavior to the one with constants and with distinguished
variables holds when the atom contains join variables that would have to be
unified with skolem terms.

Consider the query q(x) ← teaches(x , y),Course(y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z , f (z)) ← Professor(z)

The PI above does not apply to the atom teaches(x , y).

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 30/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query Rewriting – Reduce step

Consider now the query q(x) ← teaches(x , y), teaches(z , y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z , f (z)) ← Professor(z)

This PI does not apply to teaches(x , y) or teaches(z , y), since y is in join, and
we would again introduce the skolem term in the rewritten query.

However, we can transform the above query by unifying the atoms teaches(x , y)
and teaches(z , y). This rewriting step is called reduce, and produces the query

q(x) ← teaches(x , y)

Now, we can apply the PI above, and add to the rewriting the query

q(x) ← Professor(x)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 31/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query Rewriting – Reduce step

Consider now the query q(x) ← teaches(x , y), teaches(z , y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z , f (z)) ← Professor(z)

This PI does not apply to teaches(x , y) or teaches(z , y), since y is in join, and
we would again introduce the skolem term in the rewritten query.

However, we can transform the above query by unifying the atoms teaches(x , y)
and teaches(z , y). This rewriting step is called reduce, and produces the query

q(x) ← teaches(x , y)

Now, we can apply the PI above, and add to the rewriting the query

q(x) ← Professor(x)

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 31/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query Rewriting Algorithm
Algorithm PerfectRef(Q, TP)
Input: union of conjunctive queries Q, set of DL-LiteA PIs TP
Output: union of conjunctive queries PR
PR := Q;
repeat

PR ′ := PR;
for each q ∈ PR ′ do

for each g in q do
for each PI I in TP do

if I is applicable to g then PR := PR ∪ {ApplyPI(q, g , I) };
for each g1, g2 in q do

if g1 and g2 unify then PR := PR ∪ {τ(Reduce(q, g1, g2))};
until PR ′ = PR;
return PR

Observations:

Termination follows from having only finitely many different rewritings.

NIs or functionalities do not play any role in the rewriting of the query.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 32/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query answering in DL-Lite – Example

TBox: Professor v ∃teaches
∃teaches− v Course

Query: q(x)← teaches(x , y),Course(y)

Perfect Rewriting: q(x)← teaches(x , y),Course(y)
q(x)← teaches(x , y), teaches(, y)
q(x)← teaches(x ,)
q(x)← Professor(x)

ABox: teaches(john, databases)
Professor(mary)

It is easy to see that evaluating the perfect rewriting over the ABox
viewed as a database produces as answer {john, mary}.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 33/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query answering in DL-Lite

Theorem

Let T be a DL-Lite TBox, TP the set of PIs in T , q a CQ over T , and
let rq,T = PerfectRef(q, TP). Then, for each ABox A such that 〈T ,A〉 is
satisfiable, we have that

cert(q, 〈T ,A〉) = Eval(SQL(rq,T),DB(A)).

In other words, query answering over a satisfiable DL-Lite ontology is
FOL-rewritable.

Notice that we did not mention NIs or functionality assertions of T in the
result above. Indeed, when the ontology is satisfiable, we can ignore NIs
and functionalities and answer queries as if they were not specified in T .

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 34/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Query answering in DL-Lite

Theorem

Let T be a DL-Lite TBox, TP the set of PIs in T , q a CQ over T , and
let rq,T = PerfectRef(q, TP). Then, for each ABox A such that 〈T ,A〉 is
satisfiable, we have that

cert(q, 〈T ,A〉) = Eval(SQL(rq,T),DB(A)).

In other words, query answering over a satisfiable DL-Lite ontology is
FOL-rewritable.

Notice that we did not mention NIs or functionality assertions of T in the
result above. Indeed, when the ontology is satisfiable, we can ignore NIs
and functionalities and answer queries as if they were not specified in T .

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 34/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Complexity of Reasoning in DL-Lite

Theorem

Checking satisfiability of DL-LiteA KBs is

1 PTime in the size of the KB (combined complexity).

2 AC0 in the size of the ABox (data complexity).

Theorem

Query answering over DL-LiteA KBs is

1 NP-complete in the size of query and KB (combined comp.).

2 PTime in the size of the KB.

3 AC0 in the size of the ABox (data complexity).

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 35/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Outline

1 Description Logics

2 Description Logic DL-LiteA
Syntax and Semantics of DL-LiteA
Reasoning in DL-LiteA

Knowledge Base Satisfiability
Conjunctive Query Answering

3 Description Logic EL++

Syntax and Semantics of EL++

Reasoning in EL

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 36/45

Description Logics Description Logic DL-LiteA Description Logic EL++

EL and EL++

EL is another family of tractable logics [2, 3].

it is expressive enough to model bio-medical ontologies
like SNOMED;

allows for horn inclusions and qualified existential restrictions:
Heartdisease u ∃has-loc.HeartValve v CriticalDisease

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 37/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Outline

1 Description Logics

2 Description Logic DL-LiteA
Syntax and Semantics of DL-LiteA
Reasoning in DL-LiteA

Knowledge Base Satisfiability
Conjunctive Query Answering

3 Description Logic EL++

Syntax and Semantics of EL++

Reasoning in EL

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 38/45

Description Logics Description Logic DL-LiteA Description Logic EL++

EL++ Syntax

Let NA, NP , Na be sets of concept, role and individual names,
respectively. Let A ∈ NA, P ∈ NP , a ∈ Na.

Concept constructs:

C ,D ::= > | ⊥ | A | {a} | C u D | ∃P.C

TBox and ABox assertions:
C v D concept inclusion

P1 ◦ · · · ◦ Pn v P complex role inclusion
A(a) membership

P(a, b) assertions

An EL++ Knowledge Base K is a pair 〈T ,A〉 where
I T is a finite set of TBox axioms and
I A is a finite set of membership assertions.

Note: the concrete domain constructor, which is a part of EL++, is not
presented here.
Note: complex role inclusions allow expressing transitivity of roles
(P ◦ P v P) and role hierarchy (P1 v P2).

EL concept constructs and assertions.
blabla
blabla
blabla

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 39/45

Description Logics Description Logic DL-LiteA Description Logic EL++

EL++ Syntax

Let NA, NP , Na be sets of concept, role and individual names,
respectively. Let A ∈ NA, P ∈ NP , a ∈ Na.

Concept constructs:

C ,D ::= > | ⊥ | A | {a} | C u D | ∃P.C

TBox and ABox assertions:
C v D concept inclusion

P1 ◦ · · · ◦ Pn v P complex role inclusion
A(a) membership

P(a, b) assertions

An EL++ Knowledge Base K is a pair 〈T ,A〉 where
I T is a finite set of TBox axioms and
I A is a finite set of membership assertions.

Note: the concrete domain constructor, which is a part of EL++, is not
presented here.
Note: complex role inclusions allow expressing transitivity of roles
(P ◦ P v P) and role hierarchy (P1 v P2).

EL concept constructs and assertions.
blabla
blabla
blabla

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 39/45

Description Logics Description Logic DL-LiteA Description Logic EL++

EL++ Syntax

Let NA, NP , Na be sets of concept, role and individual names,
respectively. Let A ∈ NA, P ∈ NP , a ∈ Na.

Concept constructs:

C ,D ::= > | ⊥ | A | {a} | C u D | ∃P.C

TBox and ABox assertions:
C v D concept inclusion

P1 ◦ · · · ◦ Pn v P complex role inclusion
A(a) membership

P(a, b) assertions

An EL++ Knowledge Base K is a pair 〈T ,A〉 where
I T is a finite set of TBox axioms and
I A is a finite set of membership assertions.

Note: the concrete domain constructor, which is a part of EL++, is not
presented here.
Note: complex role inclusions allow expressing transitivity of roles
(P ◦ P v P) and role hierarchy (P1 v P2).

EL concept constructs and assertions.
blabla
blabla
blabla

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 39/45

Description Logics Description Logic DL-LiteA Description Logic EL++

EL++ Syntax

Let NA, NP , Na be sets of concept, role and individual names,
respectively. Let A ∈ NA, P ∈ NP , a ∈ Na.

Concept constructs:

C ,D ::= > | ⊥ | A | {a} | C u D | ∃P.C

TBox and ABox assertions:
C v D concept inclusion

P1 ◦ · · · ◦ Pn v P complex role inclusion
A(a) membership

P(a, b) assertions

An EL++ Knowledge Base K is a pair 〈T ,A〉 where
I T is a finite set of TBox axioms and
I A is a finite set of membership assertions.

Note: the concrete domain constructor, which is a part of EL++, is not
presented here.
Note: complex role inclusions allow expressing transitivity of roles
(P ◦ P v P) and role hierarchy (P1 v P2).

EL concept constructs and assertions.
blabla
blabla
blabla

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 39/45

Description Logics Description Logic DL-LiteA Description Logic EL++

EL++ Syntax

Let NA, NP , Na be sets of concept, role and individual names,
respectively. Let A ∈ NA, P ∈ NP , a ∈ Na.

Concept constructs:

C ,D ::= > | ⊥ | A | {a} | C u D | ∃P.C

TBox and ABox assertions:
C v D concept inclusion

P1 ◦ · · · ◦ Pn v P complex role inclusion
A(a) membership

P(a, b) assertions

An EL++ Knowledge Base K is a pair 〈T ,A〉 where
I T is a finite set of TBox axioms and
I A is a finite set of membership assertions.

Note: the concrete domain constructor, which is a part of EL++, is not
presented here.
Note: complex role inclusions allow expressing transitivity of roles
(P ◦ P v P) and role hierarchy (P1 v P2).

EL concept constructs and assertions.
blabla
blabla
blabla

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 39/45

Description Logics Description Logic DL-LiteA Description Logic EL++

EL++ Syntax

Let NA, NP , Na be sets of concept, role and individual names,
respectively. Let A ∈ NA, P ∈ NP , a ∈ Na.

Concept constructs:

C ,D ::= > | ⊥ | A | {a} | C u D | ∃P.C

TBox and ABox assertions:
C v D concept inclusion

P1 ◦ · · · ◦ Pn v P complex role inclusion
A(a) membership

P(a, b) assertions

An EL++ Knowledge Base K is a pair 〈T ,A〉 where
I T is a finite set of TBox axioms and
I A is a finite set of membership assertions.

Note: the concrete domain constructor, which is a part of EL++, is not
presented here.
Note: complex role inclusions allow expressing transitivity of roles
(P ◦ P v P) and role hierarchy (P1 v P2).

EL concept constructs and assertions.
blabla
blabla
blabla

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 39/45

Description Logics Description Logic DL-LiteA Description Logic EL++

EL++ Semantics

An interpretation I is a pair 〈∆I , ·I〉:
I for every concept name A, AI ⊆ ∆I ;
I for every role name P, PI ⊆ ∆I ×∆I ;
I for every individual name a, aI ∈ ∆I .

Concept constructs

(>)I = ∆I

(⊥)I = ∅
({a})I = {aI}

(C u D)I = CI ∩ DI

(∃P.C)I = {x ∈ ∆I | ∃y ∈ CI , (x , y) ∈ PI}

TBox and ABox assertions

I |= C v D iff CI ⊆ DI

I |= P1 ◦ · · · ◦ Pn v P iff P1
I ◦ · · · ◦ Pn

I ⊆ PI

I |= A(a) iff aI ∈ AI

I |= P(a, b) iff (aI , bI) ∈ PI

I is a model of K = 〈T ,A〉 if it satisfies all axioms of T and A.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 40/45

Description Logics Description Logic DL-LiteA Description Logic EL++

EL++ Semantics

An interpretation I is a pair 〈∆I , ·I〉:
I for every concept name A, AI ⊆ ∆I ;
I for every role name P, PI ⊆ ∆I ×∆I ;
I for every individual name a, aI ∈ ∆I .

Concept constructs

(>)I = ∆I

(⊥)I = ∅
({a})I = {aI}

(C u D)I = CI ∩ DI

(∃P.C)I = {x ∈ ∆I | ∃y ∈ CI , (x , y) ∈ PI}

TBox and ABox assertions

I |= C v D iff CI ⊆ DI

I |= P1 ◦ · · · ◦ Pn v P iff P1
I ◦ · · · ◦ Pn

I ⊆ PI

I |= A(a) iff aI ∈ AI

I |= P(a, b) iff (aI , bI) ∈ PI

I is a model of K = 〈T ,A〉 if it satisfies all axioms of T and A.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 40/45

Description Logics Description Logic DL-LiteA Description Logic EL++

EL++ Semantics

An interpretation I is a pair 〈∆I , ·I〉:
I for every concept name A, AI ⊆ ∆I ;
I for every role name P, PI ⊆ ∆I ×∆I ;
I for every individual name a, aI ∈ ∆I .

Concept constructs

(>)I = ∆I

(⊥)I = ∅
({a})I = {aI}

(C u D)I = CI ∩ DI

(∃P.C)I = {x ∈ ∆I | ∃y ∈ CI , (x , y) ∈ PI}

TBox and ABox assertions

I |= C v D iff CI ⊆ DI

I |= P1 ◦ · · · ◦ Pn v P iff P1
I ◦ · · · ◦ Pn

I ⊆ PI

I |= A(a) iff aI ∈ AI

I |= P(a, b) iff (aI , bI) ∈ PI

I is a model of K = 〈T ,A〉 if it satisfies all axioms of T and A.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 40/45

Description Logics Description Logic DL-LiteA Description Logic EL++

EL++ Semantics

An interpretation I is a pair 〈∆I , ·I〉:
I for every concept name A, AI ⊆ ∆I ;
I for every role name P, PI ⊆ ∆I ×∆I ;
I for every individual name a, aI ∈ ∆I .

Concept constructs

(>)I = ∆I

(⊥)I = ∅
({a})I = {aI}

(C u D)I = CI ∩ DI

(∃P.C)I = {x ∈ ∆I | ∃y ∈ CI , (x , y) ∈ PI}

TBox and ABox assertions

I |= C v D iff CI ⊆ DI

I |= P1 ◦ · · · ◦ Pn v P iff P1
I ◦ · · · ◦ Pn

I ⊆ PI

I |= A(a) iff aI ∈ AI

I |= P(a, b) iff (aI , bI) ∈ PI

I is a model of K = 〈T ,A〉 if it satisfies all axioms of T and A.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 40/45

Description Logics Description Logic DL-LiteA Description Logic EL++

EL++: Example 2

Endocardium v Tissue u ∃cont-in.HeartWall u ∃cont-in.HeartValve
HeartWall v BodyWall u ∃part-of.Heart

HeartValve v BodyValve u ∃part-of.Heart
Endocarditis v Inflammation u ∃has-loc.Endocardium

Inflammation v Disease u ∃acts-on.Tissue
Heartdisease u
∃has-loc.HeartValve v CriticalDisease

Heartdisease ≡ Disease u ∃has-loc.Heart
part-of ◦ part-of v part-of

part-of v cont-in
has-loc ◦ cont-in v has-loc

2taken from [4]
Botoeva Lightweight Description Logics: DL-LiteA and EL++ 41/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Outline

1 Description Logics

2 Description Logic DL-LiteA
Syntax and Semantics of DL-LiteA
Reasoning in DL-LiteA

Knowledge Base Satisfiability
Conjunctive Query Answering

3 Description Logic EL++

Syntax and Semantics of EL++

Reasoning in EL

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 42/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Reasoning Problems

The Concept Subsumption problem is to decide, given a TBox T
and concepts C and D, whether for every model I of T it holds
that CI ⊆ DI .

I The Concept Satisfiability problem is to decide, given a TBox T and
a concept C , whether there exist a model I of T such CI 6= ∅.

I The Knowledge Base satisfiability problem is to check,
given a DL-LiteA KB K, whether K admits at least one model.

The Conjunctive Query Entailment problem is to decide,
given a DL-LiteA KB K and a boolean query q over K,
whether K |= q.

I The Instance Checking problem is to decide, given an object name a,
a concept B, and a KB K = 〈T ,A〉, whether K |= B(a).

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 43/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Reasoning Problems

The Concept Subsumption problem is to decide, given a TBox T
and concepts C and D, whether for every model I of T it holds
that CI ⊆ DI .

I The Concept Satisfiability problem is to decide, given a TBox T and
a concept C , whether there exist a model I of T such CI 6= ∅.

I The Knowledge Base satisfiability problem is to check,
given a DL-LiteA KB K, whether K admits at least one model.

The Conjunctive Query Entailment problem is to decide,
given a DL-LiteA KB K and a boolean query q over K,
whether K |= q.

I The Instance Checking problem is to decide, given an object name a,
a concept B, and a KB K = 〈T ,A〉, whether K |= B(a).

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 43/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Reasoning Problems

The Concept Subsumption problem is to decide, given a TBox T
and concepts C and D, whether for every model I of T it holds
that CI ⊆ DI .

I The Concept Satisfiability problem is to decide, given a TBox T and
a concept C , whether there exist a model I of T such CI 6= ∅.

I The Knowledge Base satisfiability problem is to check,
given a DL-LiteA KB K, whether K admits at least one model.

The Conjunctive Query Entailment problem is to decide,
given a DL-LiteA KB K and a boolean query q over K,
whether K |= q.

I The Instance Checking problem is to decide, given an object name a,
a concept B, and a KB K = 〈T ,A〉, whether K |= B(a).

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 43/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Complexity of Reasoning in EL
Theorem

Subsumption in EL++ can be decided in polynomial time (a polytime
tableax for deciding subsumption).

Theorem

Entailment of conjunctive queries in EL++ (already in EL+) is
undecidable. ([7],[6]).

Theorem

Entailment of unions of conjunctive queris in EL is:

1 PTime-complete with respect to data complexity;

2 PTime-complete with respect to KB complexity;

3 NP-complete with respect to combined complexity.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 44/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Complexity of Reasoning in EL
Theorem

Subsumption in EL++ can be decided in polynomial time (a polytime
tableax for deciding subsumption).

Theorem

Entailment of conjunctive queries in EL++ (already in EL+) is
undecidable. ([7],[6]).

Theorem

Entailment of unions of conjunctive queris in EL is:

1 PTime-complete with respect to data complexity;

2 PTime-complete with respect to KB complexity;

3 NP-complete with respect to combined complexity.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 44/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Complexity of Reasoning in EL
Theorem

Subsumption in EL++ can be decided in polynomial time (a polytime
tableax for deciding subsumption).

Theorem

Entailment of conjunctive queries in EL++ (already in EL+) is
undecidable. ([7],[6]).

Theorem

Entailment of unions of conjunctive queris in EL is:

1 PTime-complete with respect to data complexity;

2 PTime-complete with respect to KB complexity;

3 NP-complete with respect to combined complexity.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 44/45

Description Logics Description Logic DL-LiteA Description Logic EL++

Thank you
for your attention!

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 45/45

Description Logics Description Logic DL-LiteA Description Logic EL++

A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev.
The DL-Lite family and relations.
J. of Artificial Intelligence Research, 36:1–69, 2009.

F. Baader, S. Brandt, and C. Lutz.
Pushing the EL envelope.
In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2005), pages 364–369, 2005.

F. Baader, C. Lutz, and B. Suntisrivaraporn.
CEL—a polynomial-time reasoner for life science ontologies.
In Proc. of the 3rd Int. Joint Conf. on Automated Reasoning
(IJCAR 2006), volume 4130 of Lecture Notes in Artificial
Intelligence, pages 287–291. Springer, 2006.

F. Baader, C. Lutz, and B. Suntisrivaraporn.
Efficient reasoning in EL+.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 45/45

Description Logics Description Logic DL-LiteA Description Logic EL++

In Proc. of the 19th Int. Workshop on Description Logic (DL 2006),
volume 189 of CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/, 2006.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati.
Tractable reasoning and efficient query answering in description
logics: The DL-Lite family.
J. of Automated Reasoning, 39(3):385–429, 2007.

A. Krisnadhi and C. Lutz.
Data complexity in the EL family of description logics.
In Proc. of the 14th Int. Conf. on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR 2007), pages 333–347, 2007.

R. Rosati.
On conjunctive query answering in EL.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 45/45

Description Logics Description Logic DL-LiteA Description Logic EL++

In Proc. of the 20th Int. Workshop on Description Logic (DL 2007),
volume 250 of CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/, 2007.

Botoeva Lightweight Description Logics: DL-LiteA and EL++ 45/45

	Description Logics
	Description Logic DL-LiteA
	Syntax and Semantics of DL-LiteA
	Reasoning in DL-LiteA

	Description Logic EL++
	Syntax and Semantics of EL++
	Reasoning in EL

