Query Inseparability for Description Logic Knowledge Bases Elena Botoeva¹ Roman Kontchakov² Vladislav Ryzhikov¹ Frank Wolter³ Michael Zakharyaschev² ¹Faculty of Computer Science, Free University of Bozen-Bolzano, Italy ²Department of Computer Science, Birkbeck, University of London, UK ³Department of Computer Science, University of Liverpool, UK July 21 KR 2014 Vienna ## Query Answering Over Knowledge Bases ### Query Answering Over Knowledge Bases Viewed as a knowledge base $(\mathcal{T}, \mathcal{A})$ and a query \mathbf{q} : ## Query Answering Over Knowledge Bases Viewed as a knowledge base $(\mathcal{T}, \mathcal{A})$ and a query \mathbf{q} : Give me all *B* and *D* such that . . . Give me all B and D such that ... Give me all B and D such that ... b_1 d_1 d_2 . . . ## Motivation: Knowledge Exchange I want a translation of \mathcal{K}_1 in Σ_2 to ask queries ## Motivation: Knowledge Exchange ### Σ -Query Entailment and Inseparability for KBs • \mathcal{K}_1 Σ -query entails \mathcal{K}_2 if $$\label{eq:K2} \begin{split} \mathcal{K}_2 &\models \mathbf{q}(\vec{a}) \text{ implies } \mathcal{K}_1 \models \mathbf{q}(\vec{a}), \end{split}$$ for each $\mathbf{CQ} \ \mathbf{q}(\vec{x})$ over Σ and each tuple $\vec{a} \subseteq \operatorname{ind}(\mathcal{K}_2).$ ### Σ-Query Entailment and Inseparability for KBs • \mathcal{K}_1 Σ -query entails \mathcal{K}_2 if $\mathcal{K}_2 \models \mathbf{q}(\vec{a}) \text{ implies } \mathcal{K}_1 \models \mathbf{q}(\vec{a}),$ for each \mathbf{CQ} $\mathbf{q}(\vec{x})$ over Σ and each tuple $\vec{a} \subseteq \operatorname{ind}(\mathcal{K}_2)$. • \mathcal{K}_1 and \mathcal{K}_2 are Σ -query inseparable, $\mathcal{K}_1 \equiv_{\Sigma} \mathcal{K}_2$, if \mathcal{K}_1 Σ -query entails \mathcal{K}_2 and \mathcal{K}_2 Σ -query entails \mathcal{K}_1 ## Σ -Query Entailment and Inseparability for KBs • \mathcal{K}_1 Σ -query entails \mathcal{K}_2 if $$\label{eq:kappa} \frac{\mathcal{K}_2}{} \models \mathbf{q}(\vec{a}) \text{ implies } \mathcal{K}_1 \models \mathbf{q}(\vec{a}),$$ for each $\mathbf{CQ} \ \mathbf{q}(\vec{x})$ over Σ and each tuple $\vec{a} \subseteq \operatorname{ind}(\mathcal{K}_2).$ • \mathcal{K}_1 and \mathcal{K}_2 are Σ -query inseparable, $\mathcal{K}_1 \equiv_{\Sigma} \mathcal{K}_2$, if \mathcal{K}_1 Σ -query entails \mathcal{K}_2 and \mathcal{K}_2 Σ -query entails \mathcal{K}_1 #### Then, • $\mathcal{K}' \subseteq \mathcal{K}$ is a Σ -module of \mathcal{K} if $$\mathcal{K}' \equiv_{\Sigma} \mathcal{K}$$. ### Σ-Query Entailment and Inseparability for KBs • \mathcal{K}_1 Σ -query entails \mathcal{K}_2 if $$\begin{tabular}{ll} $\mathcal{K}_2 \models \mathbf{q}(\vec{a})$ implies $\mathcal{K}_1 \models \mathbf{q}(\vec{a})$, \\ for each \mathbf{CQ} $\mathbf{q}(\vec{x})$ over Σ and each tuple $\vec{a} \subseteq \operatorname{ind}(\mathcal{K}_2)$.} \end{tabular}$$ • \mathcal{K}_1 and \mathcal{K}_2 are Σ -query inseparable, $\mathcal{K}_1 \equiv_{\Sigma} \mathcal{K}_2$, if \mathcal{K}_1 Σ -query entails \mathcal{K}_2 and \mathcal{K}_2 Σ -query entails \mathcal{K}_1 #### Then, • $\mathcal{K}' \subseteq \mathcal{K}$ is a Σ -module of \mathcal{K} if $$\mathcal{K}' \equiv_{\Sigma} \mathcal{K}$$. • \mathcal{K}_2 is a universal UCQ-solution for \mathcal{K}_1 under \mathcal{M} if $$\mathcal{K}_2 \equiv_{\Sigma_2} \mathcal{K}_1 \cup \mathcal{M}$$. ### Horn Description Logics **Description Logics (DLs)** represent knowledge in terms of **concepts** (unary predicates) and **roles** (binary predicates). ### Horn Description Logics **Description Logics (DLs)** represent knowledge in terms of **concepts** (unary predicates) and **roles** (binary predicates). Data complexity of CQ-answering ### How We Tackle Σ-Query Entailment We rely on two fundamental instruments: Materialisation, as an abstract way to characterize all answers to CQs over a KB. A materialisation of a KB ${\mathcal K}$ is an interpretation ${\mathcal M}$ such that $$\mathcal{K} \models \mathbf{q}(\vec{a})$$ iff $\mathcal{M} \models \mathbf{q}(\vec{a})$, for each CQ $\mathbf{q}(\vec{x})$ and each tuple $\vec{a} \subseteq \operatorname{ind}(\mathcal{K})$. Reachability Games, as a technique for obtaining upper-bounds. Horn DLs enjoy materialisations (chase, canonical models). Let $$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$ $$\mathcal{A}=\{B(a)\}$$ Materialisation ${\mathcal M}$ of ${\mathcal K}$ Horn DLs enjoy materialisations (chase, canonical models). Let $$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$ $$\mathcal{A} = \{B(a)\}\$$ $$\mathcal{T} = \{B \sqsubseteq \exists P. \exists R. (\exists S \sqcap \exists Q)\}\$$ $$\forall x. \ \left(B(x) \to \exists y, z, u, v. \ P(x, y), R(y, z), \atop S(z, u), Q(z, v)\right)$$ Materialisation ${\mathcal M}$ of ${\mathcal K}$ Let $$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$ $\mathcal{A} = \{B(a)\}$ $\mathcal{T} = \{B \sqsubseteq \exists P. \exists R. (\exists S \sqcap \exists Q)\}$ $\exists S^- \sqsubseteq \exists T. \exists S$ $$\forall x. \ (B(x) \to \exists y, z, u, v. \ P(x, y), R(y, z), \\ S(z, u), Q(z, v))$$ $$\forall x. \ (\exists u. \ S(u, x) \to \exists y, z. \ T(x, y), S(y, z))$$ Let $$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$ $\mathcal{A} = \{B(a)\}$ $\mathcal{T} = \{B \sqsubseteq \exists P. \exists R. (\exists S \sqcap \exists Q)\}$ $\exists S^- \sqsubseteq \exists T. \exists S$ $$\begin{split} \forall x. \ \left(\mathcal{B}(x) \to \exists y, z, u, v. \ \mathcal{P}(x,y), \mathcal{R}(y,z), \\ \mathcal{S}(z,u), \mathcal{Q}(z,v) \right) \\ \forall x. \ \left(\exists u. \ \mathcal{S}(u,x) \to \exists y, z. \ \mathcal{T}(x,y), \mathcal{S}(y,z) \right) \end{split}$$ Let $$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$ $$\mathcal{A} = \{B(a)\}$$ $$\mathcal{T} = \{B \sqsubseteq \exists P. \exists R. (\exists S \sqcap \exists Q)\}$$ $$\exists S^{-} \sqsubseteq \exists T. \exists S$$ $$\exists Q^{-} \sqsubseteq \exists Q\}$$ $$\forall x. \ (B(x) \to \exists y, z, u, v. \ P(x, y), R(y, z), \\ S(z, u), Q(z, v))$$ $$\forall x. \ (\exists u. \ S(u, x) \to \exists y, z. \ T(x, y), S(y, z))$$ $$\forall x. \ (\exists y. \ Q(y, x) \to \exists z. \ Q(x, z))$$ Let $$K = \langle T, A \rangle$$ $$A = \{B(a)\}$$ $$T = \{B \sqsubseteq \exists P. \exists R. (\exists S \sqcap \exists Q)\}$$ $$\exists S^- \sqsubseteq \exists T. \exists S$$ $$\exists Q^- \sqsubseteq \exists Q\}$$ $$\forall x. (B(x) \to \exists y, z, u, v. P(x, y), R(y, z), S(z, u), Q(z, v))$$ $$\forall x. (\exists u. S(u, x) \to \exists y, z. T(x, y), S(y, z))$$ $$\forall x. (\exists y. Q(y, x) \to \exists z. Q(x, z))$$ ## Semantic Characterization of Σ -Query Entailment Assume KBs \mathcal{K}_1 and \mathcal{K}_2 with materialisations \mathcal{M}_1 and \mathcal{M}_2 . Theorem \mathcal{K}_1 Σ -query entails \mathcal{K}_2 iff \mathcal{M}_2 is finitely Σ -homomorphically embeddable into \mathcal{M}_1 . The problem of finding a homomorphism can be seen as a game. The problem of finding a homomorphism can be seen as a game. The problem of finding a homomorphism can be seen as a game. This game can be straightforwardly encoded as a Reachability Game (G, F). The problem of finding a homomorphism can be seen as a game. This game can be straightforwardly encoded as a Reachability Game (G, F). The problem of finding a homomorphism can be seen as a game. This game can be straightforwardly encoded as a Reachability Game (G, F). However such encoding is impossible in practice: - Materialisations are infinite, in general; - Or of exponential size, even for DL-Lite_{core}. \mathcal{M}_2 is finitely Σ -homomorphically embeddable into \mathcal{M}_1 . \mathcal{M}_2^{Σ} \mathcal{M}_2 is finitely Σ -homomorphically embeddable into \mathcal{M}_1 . \mathcal{M}_2 is finitely Σ -homomorphically embeddable into \mathcal{M}_1 . \mathcal{M}_2^{Σ} \mathcal{M}_1^{Σ} \mathcal{M}_2 is finitely Σ -homomorphically embeddable into \mathcal{M}_1 . \mathcal{M}_2 is finitely Σ -homomorphically embeddable into \mathcal{M}_1 . Instead of materialisations, we play on **finite generating structures**. # Finite Generating Structures # Finite Generating Structures $[\mathcal{EL},\ \mathcal{ELH}],\ [DL\text{-}Lite_{core},\ DL\text{-}Lite_{horn}^{\mathcal{H}}]:$ generating structures of **polynomial** size $[Horn\text{-}\mathcal{ALC},\ Horn\text{-}\mathcal{ALCHI}]:$ generating structures **exponential** size # The Upper Bound For KBs \mathcal{K}_1 , \mathcal{K}_2 , and a signature Σ , we construct a reachability game $G_{\Sigma}(\mathcal{G}_2,\mathcal{G}_1)=(\mathsf{G},F)$ such that Player 1 has a winning strategy against Player 2 in $G_{\Sigma}(\mathcal{G}_2, \mathcal{G}_1)$ iff \mathcal{M}_2 is finitely Σ -homomorphically embeddable into \mathcal{M}_1 . #### where the size of G is - Polynomial in the size of G₂ and G₁, if the logic admits only forward strategies (without inverses) - Polynomial in the size of \mathcal{G}_2 and \mathcal{G}_1 , if the logic admits only backward+forward strategies (*DL-Lite* without \mathcal{H}) - Exponential in the size of G₂, if the logic admits arbitrary strategies. # The Summary of the Results #### The Summary of the Results #### The Summary of the Results #### Future Work - approximate module extraction using forward strategies - KB Inseparability for more expressive DLs: Horn-SHIQ and ALC - TBox Inseparability # Thank you for your attention!