Query Inseparability for Description Logic Knowledge Bases

Elena Botoeva¹ Roman Kontchakov² Vladislav Ryzhikov¹ Frank Wolter³ Michael Zakharyaschev²

¹Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

²Department of Computer Science, Birkbeck, University of London, UK

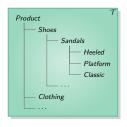
³Department of Computer Science, University of Liverpool, UK

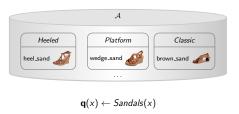
July 21 KR 2014 Vienna

Query Answering Over Knowledge Bases

Query Answering Over Knowledge Bases

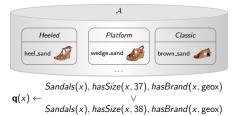
Viewed as a knowledge base $(\mathcal{T}, \mathcal{A})$ and a query \mathbf{q} :

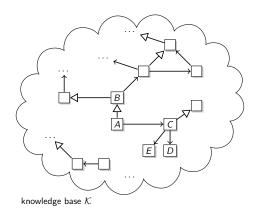




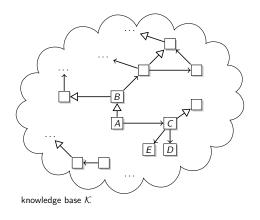
Query Answering Over Knowledge Bases

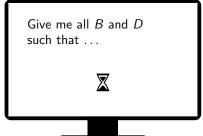
Viewed as a knowledge base $(\mathcal{T}, \mathcal{A})$ and a query \mathbf{q} :

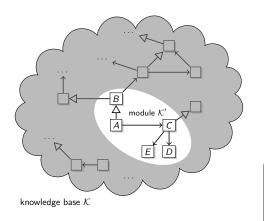




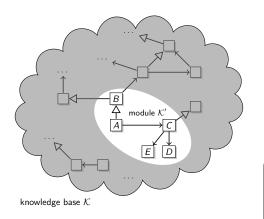
Give me all *B* and *D* such that . . .







Give me all B and D such that ...

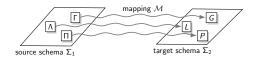


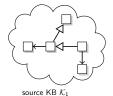
Give me all B and D such that ...

 b_1 d_1 d_2

. . .

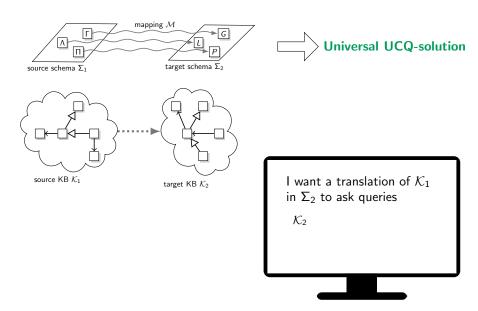
Motivation: Knowledge Exchange





I want a translation of \mathcal{K}_1 in Σ_2 to ask queries

Motivation: Knowledge Exchange



Σ -Query Entailment and Inseparability for KBs

• \mathcal{K}_1 Σ -query entails \mathcal{K}_2 if

$$\label{eq:K2} \begin{split} \mathcal{K}_2 &\models \mathbf{q}(\vec{a}) \text{ implies } \mathcal{K}_1 \models \mathbf{q}(\vec{a}), \end{split}$$
 for each $\mathbf{CQ} \ \mathbf{q}(\vec{x})$ over Σ and each tuple $\vec{a} \subseteq \operatorname{ind}(\mathcal{K}_2).$

Σ-Query Entailment and Inseparability for KBs

• \mathcal{K}_1 Σ -query entails \mathcal{K}_2 if $\mathcal{K}_2 \models \mathbf{q}(\vec{a}) \text{ implies } \mathcal{K}_1 \models \mathbf{q}(\vec{a}),$ for each \mathbf{CQ} $\mathbf{q}(\vec{x})$ over Σ and each tuple $\vec{a} \subseteq \operatorname{ind}(\mathcal{K}_2)$.

• \mathcal{K}_1 and \mathcal{K}_2 are Σ -query inseparable, $\mathcal{K}_1 \equiv_{\Sigma} \mathcal{K}_2$, if \mathcal{K}_1 Σ -query entails \mathcal{K}_2 and \mathcal{K}_2 Σ -query entails \mathcal{K}_1

Σ -Query Entailment and Inseparability for KBs

• \mathcal{K}_1 Σ -query entails \mathcal{K}_2 if

$$\label{eq:kappa} \frac{\mathcal{K}_2}{} \models \mathbf{q}(\vec{a}) \text{ implies } \mathcal{K}_1 \models \mathbf{q}(\vec{a}),$$
 for each $\mathbf{CQ} \ \mathbf{q}(\vec{x})$ over Σ and each tuple $\vec{a} \subseteq \operatorname{ind}(\mathcal{K}_2).$

• \mathcal{K}_1 and \mathcal{K}_2 are Σ -query inseparable, $\mathcal{K}_1 \equiv_{\Sigma} \mathcal{K}_2$, if \mathcal{K}_1 Σ -query entails \mathcal{K}_2 and \mathcal{K}_2 Σ -query entails \mathcal{K}_1

Then,

• $\mathcal{K}' \subseteq \mathcal{K}$ is a Σ -module of \mathcal{K} if

$$\mathcal{K}' \equiv_{\Sigma} \mathcal{K}$$
.

Σ-Query Entailment and Inseparability for KBs

• \mathcal{K}_1 Σ -query entails \mathcal{K}_2 if

$$\begin{tabular}{ll} $\mathcal{K}_2 \models \mathbf{q}(\vec{a})$ implies $\mathcal{K}_1 \models \mathbf{q}(\vec{a})$, \\ for each \mathbf{CQ} $\mathbf{q}(\vec{x})$ over Σ and each tuple $\vec{a} \subseteq \operatorname{ind}(\mathcal{K}_2)$.} \end{tabular}$$

• \mathcal{K}_1 and \mathcal{K}_2 are Σ -query inseparable, $\mathcal{K}_1 \equiv_{\Sigma} \mathcal{K}_2$, if \mathcal{K}_1 Σ -query entails \mathcal{K}_2 and \mathcal{K}_2 Σ -query entails \mathcal{K}_1

Then,

• $\mathcal{K}' \subseteq \mathcal{K}$ is a Σ -module of \mathcal{K} if

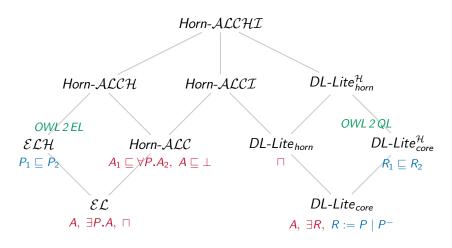
$$\mathcal{K}' \equiv_{\Sigma} \mathcal{K}$$
.

• \mathcal{K}_2 is a universal UCQ-solution for \mathcal{K}_1 under \mathcal{M} if

$$\mathcal{K}_2 \equiv_{\Sigma_2} \mathcal{K}_1 \cup \mathcal{M}$$
.

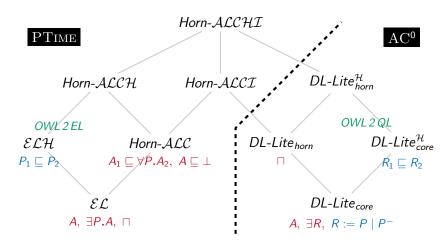
Horn Description Logics

Description Logics (DLs) represent knowledge in terms of **concepts** (unary predicates) and **roles** (binary predicates).



Horn Description Logics

Description Logics (DLs) represent knowledge in terms of **concepts** (unary predicates) and **roles** (binary predicates).



Data complexity of CQ-answering

How We Tackle Σ-Query Entailment

We rely on two fundamental instruments:

Materialisation, as an abstract way to characterize all answers to CQs over a KB.

A materialisation of a KB ${\mathcal K}$ is an interpretation ${\mathcal M}$ such that

$$\mathcal{K} \models \mathbf{q}(\vec{a})$$
 iff $\mathcal{M} \models \mathbf{q}(\vec{a})$,

for each CQ $\mathbf{q}(\vec{x})$ and each tuple $\vec{a} \subseteq \operatorname{ind}(\mathcal{K})$.

Reachability Games, as a technique for obtaining upper-bounds.

Horn DLs enjoy materialisations (chase, canonical models).

Let
$$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$

$$\mathcal{A}=\{B(a)\}$$

Materialisation ${\mathcal M}$ of ${\mathcal K}$

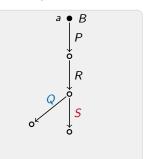
Horn DLs enjoy materialisations (chase, canonical models).

Let
$$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$

$$\mathcal{A} = \{B(a)\}\$$

$$\mathcal{T} = \{B \sqsubseteq \exists P. \exists R. (\exists S \sqcap \exists Q)\}\$$

$$\forall x. \ \left(B(x) \to \exists y, z, u, v. \ P(x, y), R(y, z), \atop S(z, u), Q(z, v)\right)$$

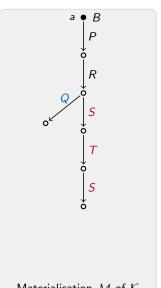


Materialisation ${\mathcal M}$ of ${\mathcal K}$

Let
$$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$

 $\mathcal{A} = \{B(a)\}$
 $\mathcal{T} = \{B \sqsubseteq \exists P. \exists R. (\exists S \sqcap \exists Q)\}$
 $\exists S^- \sqsubseteq \exists T. \exists S$

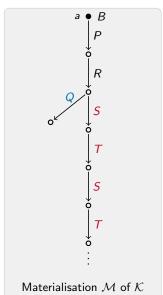
$$\forall x. \ (B(x) \to \exists y, z, u, v. \ P(x, y), R(y, z), \\ S(z, u), Q(z, v))$$
$$\forall x. \ (\exists u. \ S(u, x) \to \exists y, z. \ T(x, y), S(y, z))$$



Let
$$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$

 $\mathcal{A} = \{B(a)\}$
 $\mathcal{T} = \{B \sqsubseteq \exists P. \exists R. (\exists S \sqcap \exists Q)\}$
 $\exists S^- \sqsubseteq \exists T. \exists S$

$$\begin{split} \forall x. \ \left(\mathcal{B}(x) \to \exists y, z, u, v. \ \mathcal{P}(x,y), \mathcal{R}(y,z), \\ \mathcal{S}(z,u), \mathcal{Q}(z,v) \right) \\ \forall x. \ \left(\exists u. \ \mathcal{S}(u,x) \to \exists y, z. \ \mathcal{T}(x,y), \mathcal{S}(y,z) \right) \end{split}$$



Let
$$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$

$$\mathcal{A} = \{B(a)\}$$

$$\mathcal{T} = \{B \sqsubseteq \exists P. \exists R. (\exists S \sqcap \exists Q)\}$$

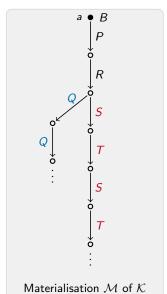
$$\exists S^{-} \sqsubseteq \exists T. \exists S$$

$$\exists Q^{-} \sqsubseteq \exists Q\}$$

$$\forall x. \ (B(x) \to \exists y, z, u, v. \ P(x, y), R(y, z), \\ S(z, u), Q(z, v))$$

$$\forall x. \ (\exists u. \ S(u, x) \to \exists y, z. \ T(x, y), S(y, z))$$

$$\forall x. \ (\exists y. \ Q(y, x) \to \exists z. \ Q(x, z))$$



Let
$$K = \langle T, A \rangle$$

$$A = \{B(a)\}$$

$$T = \{B \sqsubseteq \exists P. \exists R. (\exists S \sqcap \exists Q)\}$$

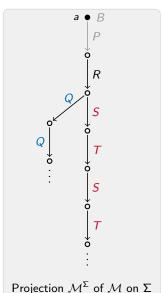
$$\exists S^- \sqsubseteq \exists T. \exists S$$

$$\exists Q^- \sqsubseteq \exists Q\}$$

$$\forall x. (B(x) \to \exists y, z, u, v. P(x, y), R(y, z), S(z, u), Q(z, v))$$

$$\forall x. (\exists u. S(u, x) \to \exists y, z. T(x, y), S(y, z))$$

$$\forall x. (\exists y. Q(y, x) \to \exists z. Q(x, z))$$



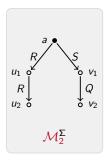
Semantic Characterization of Σ -Query Entailment

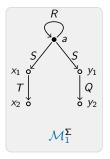
Assume KBs \mathcal{K}_1 and \mathcal{K}_2 with materialisations \mathcal{M}_1 and \mathcal{M}_2 .

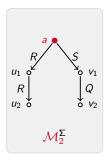
Theorem

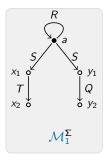
 \mathcal{K}_1 Σ -query entails \mathcal{K}_2 iff

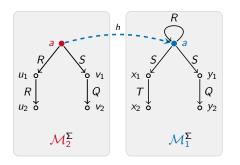
 \mathcal{M}_2 is finitely Σ -homomorphically embeddable into \mathcal{M}_1 .

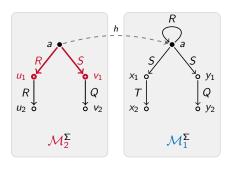


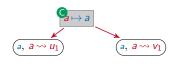


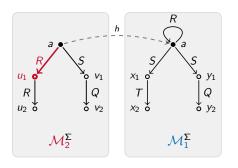


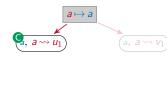


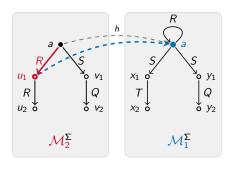


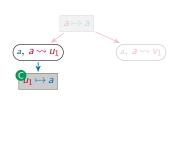


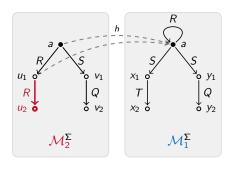


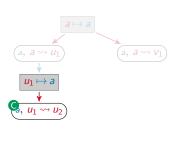


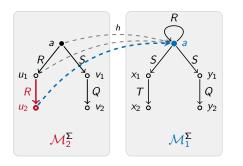


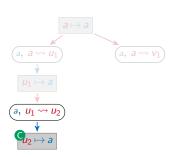


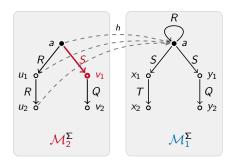


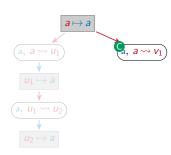


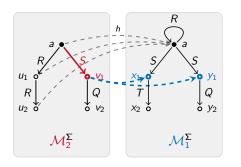


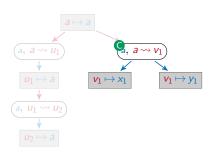


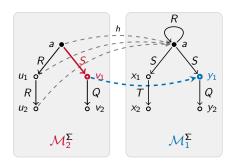


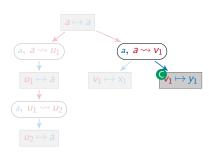




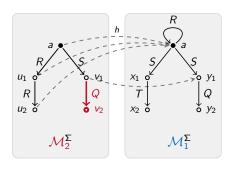


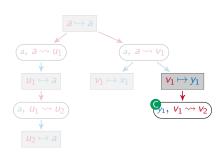




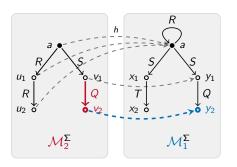


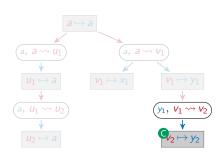
The problem of finding a homomorphism can be seen as a game.



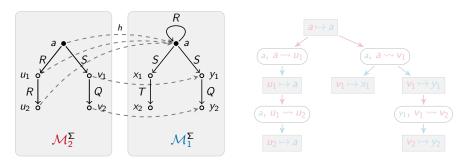


The problem of finding a homomorphism can be seen as a game.



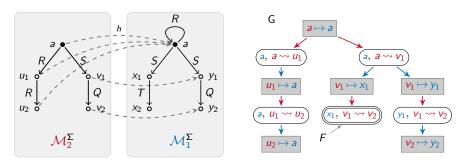


The problem of finding a homomorphism can be seen as a game.



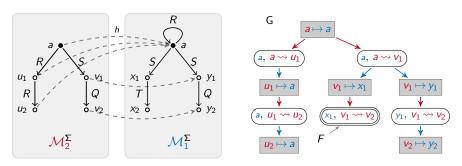
This game can be straightforwardly encoded as a Reachability Game (G, F).

The problem of finding a homomorphism can be seen as a game.



This game can be straightforwardly encoded as a Reachability Game (G, F).

The problem of finding a homomorphism can be seen as a game.



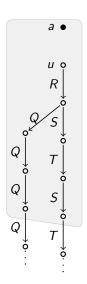
This game can be straightforwardly encoded as a Reachability Game (G, F).

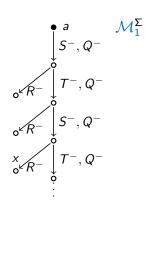
However such encoding is impossible in practice:

- Materialisations are infinite, in general;
- Or of exponential size, even for DL-Lite_{core}.

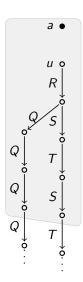
 \mathcal{M}_2 is finitely Σ -homomorphically embeddable into \mathcal{M}_1 .

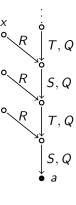
 \mathcal{M}_2^{Σ}





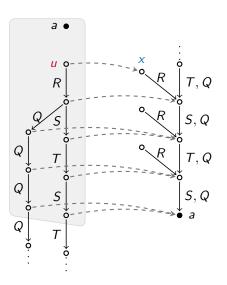
 \mathcal{M}_2 is finitely Σ -homomorphically embeddable into \mathcal{M}_1 .





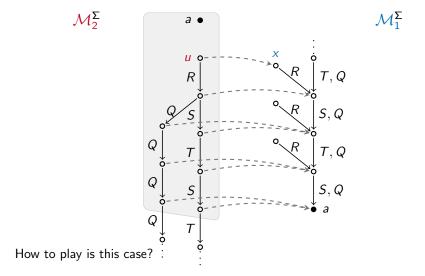
 \mathcal{M}_2 is finitely Σ -homomorphically embeddable into \mathcal{M}_1 .

 \mathcal{M}_2^{Σ}

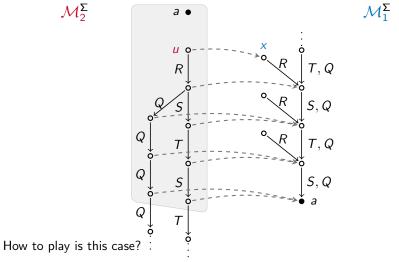


 \mathcal{M}_1^{Σ}

 \mathcal{M}_2 is finitely Σ -homomorphically embeddable into \mathcal{M}_1 .

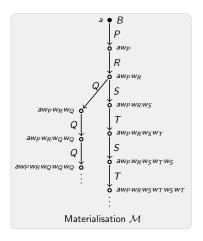


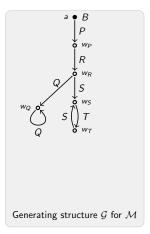
 \mathcal{M}_2 is finitely Σ -homomorphically embeddable into \mathcal{M}_1 .



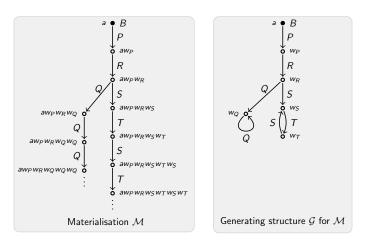
Instead of materialisations, we play on **finite generating structures**.

Finite Generating Structures





Finite Generating Structures



 $[\mathcal{EL},\ \mathcal{ELH}],\ [DL\text{-}Lite_{core},\ DL\text{-}Lite_{horn}^{\mathcal{H}}]:$ generating structures of **polynomial** size $[Horn\text{-}\mathcal{ALC},\ Horn\text{-}\mathcal{ALCHI}]:$ generating structures **exponential** size

The Upper Bound

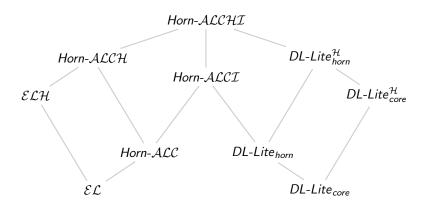
For KBs \mathcal{K}_1 , \mathcal{K}_2 , and a signature Σ , we construct a reachability game $G_{\Sigma}(\mathcal{G}_2,\mathcal{G}_1)=(\mathsf{G},F)$ such that

Player 1 has a winning strategy against Player 2 in $G_{\Sigma}(\mathcal{G}_2, \mathcal{G}_1)$ iff \mathcal{M}_2 is finitely Σ -homomorphically embeddable into \mathcal{M}_1 .

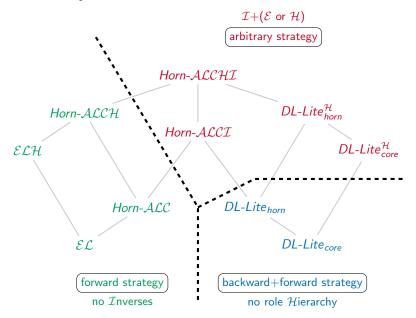
where the size of G is

- Polynomial in the size of G₂ and G₁,
 if the logic admits only forward strategies (without inverses)
- Polynomial in the size of \mathcal{G}_2 and \mathcal{G}_1 , if the logic admits only backward+forward strategies (*DL-Lite* without \mathcal{H})
- Exponential in the size of G₂, if the logic admits arbitrary strategies.

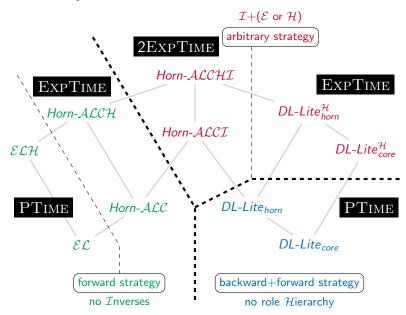
The Summary of the Results



The Summary of the Results



The Summary of the Results



Future Work

- approximate module extraction using forward strategies
- KB Inseparability for more expressive DLs: Horn-SHIQ and ALC
- TBox Inseparability

Thank you for your attention!