# Query Inseparability for Description Logic Knowledge Bases

Elena Botoeva<sup>1</sup> Roman Kontchakov<sup>2</sup> Vladislav Ryzhikov<sup>1</sup> Frank Wolter<sup>3</sup> Michael Zakharyaschev<sup>2</sup>

<sup>1</sup>Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

<sup>2</sup>Department of Computer Science, Birkbeck, University of London, UK

<sup>3</sup>Department of Computer Science, University of Liverpool, UK

July 21 KR 2014 Vienna

## Query Answering Over Knowledge Bases



### Query Answering Over Knowledge Bases



Viewed as a knowledge base  $(\mathcal{T}, \mathcal{A})$  and a query  $\mathbf{q}$ :





## Query Answering Over Knowledge Bases



Viewed as a knowledge base  $(\mathcal{T}, \mathcal{A})$  and a query  $\mathbf{q}$ :







Give me all *B* and *D* such that . . .









Give me all B and D such that ...





Give me all B and D such that ...

 $b_1$   $d_1$   $d_2$ 

. . .

## Motivation: Knowledge Exchange





I want a translation of  $\mathcal{K}_1$  in  $\Sigma_2$  to ask queries

## Motivation: Knowledge Exchange



### $\Sigma$ -Query Entailment and Inseparability for KBs

•  $\mathcal{K}_1$   $\Sigma$ -query entails  $\mathcal{K}_2$  if

$$\label{eq:K2} \begin{split} \mathcal{K}_2 &\models \mathbf{q}(\vec{a}) \text{ implies } \mathcal{K}_1 \models \mathbf{q}(\vec{a}), \end{split}$$
 for each  $\mathbf{CQ} \ \mathbf{q}(\vec{x})$  over  $\Sigma$  and each tuple  $\vec{a} \subseteq \operatorname{ind}(\mathcal{K}_2).$ 

### Σ-Query Entailment and Inseparability for KBs

•  $\mathcal{K}_1$   $\Sigma$ -query entails  $\mathcal{K}_2$  if  $\mathcal{K}_2 \models \mathbf{q}(\vec{a}) \text{ implies } \mathcal{K}_1 \models \mathbf{q}(\vec{a}),$  for each  $\mathbf{CQ}$   $\mathbf{q}(\vec{x})$  over  $\Sigma$  and each tuple  $\vec{a} \subseteq \operatorname{ind}(\mathcal{K}_2)$ .

•  $\mathcal{K}_1$  and  $\mathcal{K}_2$  are  $\Sigma$ -query inseparable,  $\mathcal{K}_1 \equiv_{\Sigma} \mathcal{K}_2$ , if  $\mathcal{K}_1$   $\Sigma$ -query entails  $\mathcal{K}_2$  and  $\mathcal{K}_2$   $\Sigma$ -query entails  $\mathcal{K}_1$ 

## $\Sigma$ -Query Entailment and Inseparability for KBs

•  $\mathcal{K}_1$   $\Sigma$ -query entails  $\mathcal{K}_2$  if

$$\label{eq:kappa} \frac{\mathcal{K}_2}{} \models \mathbf{q}(\vec{a}) \text{ implies } \mathcal{K}_1 \models \mathbf{q}(\vec{a}),$$
 for each  $\mathbf{CQ} \ \mathbf{q}(\vec{x})$  over  $\Sigma$  and each tuple  $\vec{a} \subseteq \operatorname{ind}(\mathcal{K}_2).$ 

•  $\mathcal{K}_1$  and  $\mathcal{K}_2$  are  $\Sigma$ -query inseparable,  $\mathcal{K}_1 \equiv_{\Sigma} \mathcal{K}_2$ , if  $\mathcal{K}_1$   $\Sigma$ -query entails  $\mathcal{K}_2$  and  $\mathcal{K}_2$   $\Sigma$ -query entails  $\mathcal{K}_1$ 

#### Then,

•  $\mathcal{K}' \subseteq \mathcal{K}$  is a  $\Sigma$ -module of  $\mathcal{K}$  if

$$\mathcal{K}' \equiv_{\Sigma} \mathcal{K}$$
.

### Σ-Query Entailment and Inseparability for KBs

•  $\mathcal{K}_1$   $\Sigma$ -query entails  $\mathcal{K}_2$  if

$$\begin{tabular}{ll} $\mathcal{K}_2 \models \mathbf{q}(\vec{a})$ implies $\mathcal{K}_1 \models \mathbf{q}(\vec{a})$, \\ for each $\mathbf{CQ}$ $\mathbf{q}(\vec{x})$ over $\Sigma$ and each tuple $\vec{a} \subseteq \operatorname{ind}(\mathcal{K}_2)$.} \end{tabular}$$

•  $\mathcal{K}_1$  and  $\mathcal{K}_2$  are  $\Sigma$ -query inseparable,  $\mathcal{K}_1 \equiv_{\Sigma} \mathcal{K}_2$ , if  $\mathcal{K}_1$   $\Sigma$ -query entails  $\mathcal{K}_2$  and  $\mathcal{K}_2$   $\Sigma$ -query entails  $\mathcal{K}_1$ 

#### Then,

•  $\mathcal{K}' \subseteq \mathcal{K}$  is a  $\Sigma$ -module of  $\mathcal{K}$  if

$$\mathcal{K}' \equiv_{\Sigma} \mathcal{K}$$
.

•  $\mathcal{K}_2$  is a universal UCQ-solution for  $\mathcal{K}_1$  under  $\mathcal{M}$  if

$$\mathcal{K}_2 \equiv_{\Sigma_2} \mathcal{K}_1 \cup \mathcal{M}$$
.

### Horn Description Logics

**Description Logics (DLs)** represent knowledge in terms of **concepts** (unary predicates) and **roles** (binary predicates).



### Horn Description Logics

**Description Logics (DLs)** represent knowledge in terms of **concepts** (unary predicates) and **roles** (binary predicates).



Data complexity of CQ-answering

### How We Tackle Σ-Query Entailment

We rely on two fundamental instruments:

Materialisation, as an abstract way to characterize all answers to CQs over a KB.

A materialisation of a KB  ${\mathcal K}$  is an interpretation  ${\mathcal M}$  such that

$$\mathcal{K} \models \mathbf{q}(\vec{a})$$
 iff  $\mathcal{M} \models \mathbf{q}(\vec{a})$ ,

for each CQ  $\mathbf{q}(\vec{x})$  and each tuple  $\vec{a} \subseteq \operatorname{ind}(\mathcal{K})$ .

Reachability Games, as a technique for obtaining upper-bounds.

Horn DLs enjoy materialisations (chase, canonical models).

Let 
$$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$

$$\mathcal{A}=\{B(a)\}$$



Materialisation  ${\mathcal M}$  of  ${\mathcal K}$ 

Horn DLs enjoy materialisations (chase, canonical models).

Let 
$$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$

$$\mathcal{A} = \{B(a)\}\$$

$$\mathcal{T} = \{B \sqsubseteq \exists P. \exists R. (\exists S \sqcap \exists Q)\}\$$

$$\forall x. \ \left(B(x) \to \exists y, z, u, v. \ P(x, y), R(y, z), \atop S(z, u), Q(z, v)\right)$$



Materialisation  ${\mathcal M}$  of  ${\mathcal K}$ 

Let 
$$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$
  
 $\mathcal{A} = \{B(a)\}$   
 $\mathcal{T} = \{B \sqsubseteq \exists P. \exists R. (\exists S \sqcap \exists Q)\}$   
 $\exists S^- \sqsubseteq \exists T. \exists S$ 

$$\forall x. \ (B(x) \to \exists y, z, u, v. \ P(x, y), R(y, z), \\ S(z, u), Q(z, v))$$
$$\forall x. \ (\exists u. \ S(u, x) \to \exists y, z. \ T(x, y), S(y, z))$$



Let 
$$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$
  
 $\mathcal{A} = \{B(a)\}$   
 $\mathcal{T} = \{B \sqsubseteq \exists P. \exists R. (\exists S \sqcap \exists Q)\}$   
 $\exists S^- \sqsubseteq \exists T. \exists S$ 

$$\begin{split} \forall x. \ \left( \mathcal{B}(x) \to \exists y, z, u, v. \ \mathcal{P}(x,y), \mathcal{R}(y,z), \\ \mathcal{S}(z,u), \mathcal{Q}(z,v) \right) \\ \forall x. \ \left( \exists u. \ \mathcal{S}(u,x) \to \exists y, z. \ \mathcal{T}(x,y), \mathcal{S}(y,z) \right) \end{split}$$



Let 
$$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$

$$\mathcal{A} = \{B(a)\}$$

$$\mathcal{T} = \{B \sqsubseteq \exists P. \exists R. (\exists S \sqcap \exists Q)\}$$

$$\exists S^{-} \sqsubseteq \exists T. \exists S$$

$$\exists Q^{-} \sqsubseteq \exists Q\}$$

$$\forall x. \ (B(x) \to \exists y, z, u, v. \ P(x, y), R(y, z), \\ S(z, u), Q(z, v))$$

$$\forall x. \ (\exists u. \ S(u, x) \to \exists y, z. \ T(x, y), S(y, z))$$

$$\forall x. \ (\exists y. \ Q(y, x) \to \exists z. \ Q(x, z))$$



Let 
$$K = \langle T, A \rangle$$

$$A = \{B(a)\}$$

$$T = \{B \sqsubseteq \exists P. \exists R. (\exists S \sqcap \exists Q)\}$$

$$\exists S^- \sqsubseteq \exists T. \exists S$$

$$\exists Q^- \sqsubseteq \exists Q\}$$

$$\forall x. (B(x) \to \exists y, z, u, v. P(x, y), R(y, z), S(z, u), Q(z, v))$$

$$\forall x. (\exists u. S(u, x) \to \exists y, z. T(x, y), S(y, z))$$

$$\forall x. (\exists y. Q(y, x) \to \exists z. Q(x, z))$$



## Semantic Characterization of $\Sigma$ -Query Entailment

Assume KBs  $\mathcal{K}_1$  and  $\mathcal{K}_2$  with materialisations  $\mathcal{M}_1$  and  $\mathcal{M}_2$ .

Theorem

 $\mathcal{K}_1$   $\Sigma$ -query entails  $\mathcal{K}_2$  iff

 $\mathcal{M}_2$  is finitely  $\Sigma$ -homomorphically embeddable into  $\mathcal{M}_1$ .













































The problem of finding a homomorphism can be seen as a game.





The problem of finding a homomorphism can be seen as a game.





The problem of finding a homomorphism can be seen as a game.



This game can be straightforwardly encoded as a Reachability Game (G, F).

The problem of finding a homomorphism can be seen as a game.



This game can be straightforwardly encoded as a Reachability Game (G, F).

The problem of finding a homomorphism can be seen as a game.



This game can be straightforwardly encoded as a Reachability Game (G, F).

However such encoding is impossible in practice:

- Materialisations are infinite, in general;
- Or of exponential size, even for DL-Lite<sub>core</sub>.

 $\mathcal{M}_2$  is finitely  $\Sigma$ -homomorphically embeddable into  $\mathcal{M}_1$ .

 $\mathcal{M}_2^{\Sigma}$ 





 $\mathcal{M}_2$  is finitely  $\Sigma$ -homomorphically embeddable into  $\mathcal{M}_1$ .









 $\mathcal{M}_2$  is finitely  $\Sigma$ -homomorphically embeddable into  $\mathcal{M}_1$ .

 $\mathcal{M}_2^{\Sigma}$ 



 $\mathcal{M}_1^{\Sigma}$ 

 $\mathcal{M}_2$  is finitely  $\Sigma$ -homomorphically embeddable into  $\mathcal{M}_1$ .



 $\mathcal{M}_2$  is finitely  $\Sigma$ -homomorphically embeddable into  $\mathcal{M}_1$ .



Instead of materialisations, we play on **finite generating structures**.

# Finite Generating Structures





# Finite Generating Structures



 $[\mathcal{EL},\ \mathcal{ELH}],\ [DL\text{-}Lite_{core},\ DL\text{-}Lite_{horn}^{\mathcal{H}}]:$  generating structures of **polynomial** size  $[Horn\text{-}\mathcal{ALC},\ Horn\text{-}\mathcal{ALCHI}]:$  generating structures **exponential** size

# The Upper Bound

For KBs  $\mathcal{K}_1$ ,  $\mathcal{K}_2$ , and a signature  $\Sigma$ , we construct a reachability game  $G_{\Sigma}(\mathcal{G}_2,\mathcal{G}_1)=(\mathsf{G},F)$  such that

Player 1 has a winning strategy against Player 2 in  $G_{\Sigma}(\mathcal{G}_2, \mathcal{G}_1)$  iff  $\mathcal{M}_2$  is finitely  $\Sigma$ -homomorphically embeddable into  $\mathcal{M}_1$ .

#### where the size of G is

- Polynomial in the size of G<sub>2</sub> and G<sub>1</sub>,
   if the logic admits only forward strategies (without inverses)
- Polynomial in the size of  $\mathcal{G}_2$  and  $\mathcal{G}_1$ , if the logic admits only backward+forward strategies (*DL-Lite* without  $\mathcal{H}$ )
- Exponential in the size of G<sub>2</sub>, if the logic admits arbitrary strategies.

# The Summary of the Results



#### The Summary of the Results



#### The Summary of the Results



#### Future Work

- approximate module extraction using forward strategies
- KB Inseparability for more expressive DLs: Horn-SHIQ and ALC
- TBox Inseparability

# Thank you for your attention!