Query-Based Entailment and Inseparability for ALC Ontologies

Elena Botoeva, Carsten Lutz, Vladislav Ryzhikov, Frank Wolter and Michael Zakharyaschev

Modularisation

 $\mathcal{O}' \subseteq \mathcal{O}$ is a Θ -module of $\mathcal O$ if $\mathcal{O}'\equiv_{\scriptscriptstyle{\Theta}}^{\mathsf{(U)CQ}}\mathcal{O}$

Are two ontologies (knowledge bases or TBoxes) distinguishable by means of conjunctive queries (CQs) or unions of CQs (UCQs)?

Versioning

 \mathcal{O}_2 is a Θ -version of \mathcal{O}_1 $\mathcal{O}_2 \equiv_{\Theta}^{\mathsf{(U)CQ}} \mathcal{O}_1$

Query

 $\mathcal{K}_1 = (\{A \sqsubseteq B \sqcup C\}, \{A(a)\})$ $\mathcal{K}_2 = (\emptyset, \{A(a)\})$

> $\mathcal{K}_1
> ot\equiv_{\{A,B,C\}}^{\mathsf{UCQ}} \mathcal{K}_2$ $\mathcal{K}_1 \equiv^{\mathsf{CQ}}_{\{A,B,C\}} \mathcal{K}_2$ $\mathcal{K}_1 \equiv^{\mathsf{UCQ}}_{\{A\}} \mathcal{K}_2$

Given a signature Σ and $Q \in \{CQ, UCQ\},\$

KBs $\mathcal{K}_1=(\mathcal{T}_1,\mathcal{A}_1)$ and $\mathcal{K}_2=(\mathcal{T}_2,\mathcal{A}_2)$ are Σ -Q-inseparable, $\mathcal{K}_1 \equiv_{\Sigma}^{\mathcal{Q}} \mathcal{K}_2$,

 $\mathcal{K}_2 \models \boldsymbol{q}(\boldsymbol{a}) \Longleftrightarrow \mathcal{K}_1 \models \boldsymbol{q}(\boldsymbol{a})$

for all Σ -queries $q \in \mathcal{Q}$ and all individuals \boldsymbol{a} in \mathcal{K}_1 , \mathcal{K}_2

Inseparability

Given signatures Σ_1 and Σ_2 ,

TBoxes \mathcal{T}_1 and \mathcal{T}_2 are (Σ_1,Σ_2) -Q-inseparable, $\mathcal{T}_1\equiv_{(\Sigma_1,\Sigma_2)}^\mathcal{Q}$ \mathcal{T}_2 ,

> $(\mathcal{T}_1,\mathcal{A})\equiv_{\Sigma_2}^\mathcal{Q}(\mathcal{T}_2,\mathcal{A})$ for all Σ_1 -ABoxes \mathcal{A} .

 $\mathcal{T}_1 = \{A \sqsubseteq B \sqcup C\}, \mathcal{T}_2 = \emptyset$ $\Sigma = \{R, A, B, C\}$ $\mathcal{T}_1 \not\equiv^{\mathsf{CQ}}_{(\Sigma,\Sigma)} \mathcal{T}_2$, for:

Knowledge Exchange

 \mathcal{K}_2 in Σ_2 is a universal (U)CQ-solution for \mathcal{K}_1 in Σ_1 under a mapping \mathcal{T}_{12} from Σ_1 to Σ_2 if $\mathcal{K}_2 \equiv^{\mathsf{(U)CQ}}_{\Sigma_2} \mathcal{K}_1 \cup \mathcal{T}_{12}$

Forgetting

 \mathcal{O}' is the result of forgetting Σ in \mathcal{O} if $\mathsf{sig}(\mathcal{O}')\subseteq\mathsf{sig}(\mathcal{O})\setminus\Sigma$ and $\mathcal{O}' \equiv^{\mathsf{(U)CQ}}_{\mathsf{sig}(\mathcal{O}) \setminus \Sigma} \mathcal{O}$

signature $\Sigma = \{\text{spots, tail, whiskers}\}$

Criteria for KBs

Complexity of inseparability

Horn DLs and (U)CQs

 \mathcal{EL} : PTime

DL-Lite $_{core}^{\mathcal{H}}$: ExpTime Horn-ALC: ExpTime Horn-ALCHI: 2ExpTime

 \mathcal{K}_1 Σ -UCQ entails \mathcal{K}_2

 $\forall \mathcal{I}_1 \models \mathcal{K}_1 \ \exists \mathcal{I}_2 \models \mathcal{K}_2 \ \mathcal{I}_2 \xrightarrow{\mathsf{fin}}_{\mathsf{hom}}_{\Sigma} \mathcal{I}_1$

 \mathcal{K}_1 Σ -CQ entails \mathcal{K}_2

For Horn-TBoxes

If there exist Σ_1 -ABox $\mathcal A$ and Σ_2 -CQ $\boldsymbol q$ with

 $(\mathcal{T}_2, \mathcal{A}) \models \boldsymbol{q}$ and $(\mathcal{T}_1, \mathcal{A}) \not\models \boldsymbol{q}$

then there exist tree-shaped Σ_1 -ABox \mathcal{A}' and

tree-shaped Σ_2 -CQ $oldsymbol{q}'$ with

 $(\mathcal{T}_2, \mathcal{A}') \models \boldsymbol{q}' \quad \text{and} \quad (\mathcal{T}_1, \mathcal{A}') \not\models \boldsymbol{q}'$

Complexity of inseparability

OWL 2 profiles and (U)CQs

 \mathcal{EL} : ExpTime DL-Lite $_{core}^{\mathcal{H}}$: ExpTime

 \mathcal{ALC} and (rooted) UCQs 2ExpTime

using two-way alternating automata

 \mathcal{ALC} and (rooted) CQs undecidable

Horn-ALC and (U)CQs 2ExpTime ExpTime for rooted queries using tree automata

