Query Rewriting in DL-Lite $_{horn}^{(\mathcal{HN})}$

Elena Botoeva, Alessandro Artale, and Diego Calvanese

KRDB Research Centre Free University of Bozen-Bolzano I-39100 Bolzano, Italy

Description Logics Workshop, 2010

Outline

- Motivation
- 2 The DL DL-Lite (HN)
- 3 Knowledge Base Satisfiability
- 4 Query Answering
- 6 Conclusions

Motivation: Ontology-Based Data Access

Motivation: Ontology-Based Data Access

· Ontologies are used for accessing data

- An ontology provides a high-level conceptual view of information sources
- Data sources can be queried through ontologies

Query Answering

Query Answering by Rewriting

• We want to compute certain answers to a query

Query Answering by Rewriting

- We want to compute certain answers to a query
- Rewriting approach:
 - 1 Rewrite the query using the constraints in the ontology
 - **2** Evaluate the rewritten query over the database

Query Answering by Rewriting: Example

```
Ontology: \mathcal{O} = \{PhDStudent \sqsubseteq Student\}
Database: \mathcal{DB}_{\mathcal{A}} = \{PhDStudent(john)\}
Query: q(x) \leftarrow Student(x)
```


Query Answering by Rewriting: Example

```
Ontology: \mathcal{O} = \{PhDStudent \subseteq Student\}
Database: \mathcal{DB}_{\mathcal{A}} = \{PhDStudent(john)\}
Query: q(x) \leftarrow Student(x)
```

• The rewriting of *q*:

$$q_{ucq}(x) \leftarrow Student(x)$$

 $q_{ucq}(x) \leftarrow PhDStudent(x)$

By evaluating the rewriting over the ABox viewed as a DB:

$$eval(q_{uca}, \mathcal{DB}_A) = \{ john \} = ans(q, \langle \mathcal{O}, \mathcal{DB}_A \rangle)$$

FOL Rewritable Logics

 Such a rewriting approach can be applied only to FOL rewritable logics.

FOL Rewritable Logics

- Such a rewriting approach can be applied only to FOL rewritable logics.
- DL-Lite is a family of logics that has been shown to enjoy FOL rewritability:
 - ▶ DL-Lite_R, DL-Lite_F, DL-Lite_A

FOL Rewritable Logics

- Such a rewriting approach can be applied only to FOL rewritable logics.
- DL-Lite is a family of logics that has been shown to enjoy FOL rewritability:
 - ▶ DL-Lite_R, DL-Lite_F, DL-Lite_A
- Extended DL-Lite family: additional constructs have been proposed
 - ▶ DL- $Lite_{horn}^{(\mathcal{HN})}$ is the most interesting logic

Outline

- Motivation
- 2 The DL DL-Lite (HN)
- 3 Knowledge Base Satisfiability
- 4 Query Answering
- Conclusions

The most expressive tractable variant of DL-Lite [ACKZ09].

- The most expressive tractable variant of *DL-Lite* [ACKZ09].
- Extends DL-Lite with

- The most expressive tractable variant of *DL-Lite* [ACKZ09].
- Extends DI -I ite with
 - ▶ role inclusions H

- The most expressive tractable variant of DL-Lite [ACKZ09].
- Extends DI -I ite with
 - role inclusions H
 - number restrictions N
 - PhDStudent □ > 2 hasConfPaper
 - \geq 2 teaches $^ \sqsubseteq \bot$

In this work we consider the logic DL-Lite $_{hor}^{(HN)}$:

- The most expressive tractable variant of DL-Lite [ACKZ09].
- Extends DI -I ite with
 - role inclusions H
 - number restrictions N
 - PhDStudent □ > 2 hasConfPaper
 - \geq 2 teaches $^ \sqsubseteq \bot$
 - horn inclusions horn
 - Student □ > 1 teaches □ PhDStudent

Questions Addressed by Our Work

For the logic DL-Lite $_{horn}^{(\mathcal{HN})}$:

- Can we check ontology satisfiability by relying on RDB technology?
- Can we answer queries by relying on RDB technology?
- Can we extend the practical algorithms developed for the simpler *DL-Lite* logics?
- What is the complexity of such algorithms?

Concept and role expressions

$$B ::= \bot \mid A \mid \ge k R$$
$$R ::= P \mid P^{-}$$

TBox assertions

$$B_1 \sqcap \cdots \sqcap B_n \sqsubseteq B$$

 $R_1 \sqsubseteq R_2$
 $\mathsf{Dis}(R_1, R_2)$

Concept and role expressions

$$B ::= \bot \mid A \mid \ge k R$$
$$R ::= P \mid P^{-}$$

TBox assertions

$$B_1 \sqcap \cdots \sqcap B_n \sqsubseteq B$$

 $R_1 \sqsubseteq R_2$
 $\mathsf{Dis}(R_1, R_2)$

Restriction to ensure FOL rewritability:

if R has a proper sub-role, then $\geq k R$ with $k \geq 2$ does not occur in the lhs of concept inclusions.

• basic concept inclusion

 $\geq 1 \ hasPublication^- \sqsubseteq Publication$

• basic concept inclusion

$$\geq 1$$
 hasPublication $^- \sqsubseteq$ Publication

role inclusion

 $hasConfPaper \sqsubseteq hasPublication$

A DL-Lite $_{horn}^{(\mathcal{HN})}$ TBox

basic concept inclusion

$$\geq 1$$
 hasPublication $^- \sqsubseteq$ Publication

role inclusion

number restrictions

 $PhDStudent \sqsubseteq \geq 2 hasConfPaper$

basic concept inclusion

$$\geq 1$$
 hasPublication $^- \sqsubseteq$ Publication

role inclusion

number restrictions

$$PhDStudent \sqsubseteq \geq 2 hasConfPaper$$

horn inclusion

Student □ > 1 teaches <math>□ PhDStudent

basic concept inclusion

$$\geq 1$$
 hasPublication $^- \sqsubseteq$ Publication

role inclusion

number restrictions

$$PhDStudent \sqsubseteq \geq 2 \ hasConfPaper$$

horn inclusion

$$Student$$
 $□ ≥ 1 teaches $\sqsubseteq PhDStudent$$

local functionality assertion

PhDStudent
$$\sqcap$$
 > 2 *teaches* \sqsubseteq \bot

A *DL-Lite* $_{horn}^{(\mathcal{HN})}$ TBox

basic concept inclusion

$$\geq 1$$
 hasPublication $^- \sqsubseteq$ Publication

role inclusion

$$hasConfPaper \sqsubseteq hasPublication$$

number restrictions

$$PhDStudent \sqsubseteq \geq 2 \ hasConfPaper$$

horn inclusion

$$Student$$
 $□ ≥ 1 teaches $\sqsubseteq PhDStudent$$

local functionality assertion

PhDStudent
$$\sqcap$$
 > 2 *teaches* \sqsubseteq \bot

global functionality assertion

$$>$$
 2 teaches $^ \Box$ \bot

Outline

- 2 The DL DL-Lite (HN)
- 3 Knowledge Base Satisfiability

 $\label{lem:lemma} \mbox{Negative inclusions may lead to unsatisfiability:}$

Negative inclusions may lead to unsatisfiability:

• \mathcal{T} : Student \sqcap Professor $\sqsubseteq \bot$, PhDStudent \sqsubseteq Student

A: PhDStudent(john), Professor(john)

13/25

Negative inclusions may lead to unsatisfiability:

T : Student □ Professor □ ⊥, PhDStudent □ Student

A: PhDStudent(john), Professor(john)

• T : Dis(teaches, attends)

A: teaches(john, cl), attends(john, cl)

Negative inclusions may lead to unsatisfiability:

- \mathcal{T} : Student \sqcap Professor $\sqsubseteq \bot$, PhDStudent \sqsubseteq Student
 - A: PhDStudent(john), Professor(john)
- T : Dis(teaches, attends)
 - A: teaches(john, cl), attends(john, cl)
- T : PhDStudent □ ≥ 2 teaches □ ⊥
 - A: PhDStudent(john), teaches(john, cl), teaches(john, db)

Negative inclusions may lead to unsatisfiability:

- \mathcal{T} : Student \sqcap Professor $\sqsubseteq \bot$, PhDStudent \sqsubseteq Student
 - A: PhDStudent(john), Professor(john)
- T : Dis(teaches, attends)
 - \mathcal{A} : teaches(john, cl), attends(john, cl)
- \mathcal{T} : PhDStudent $\sqcap \geq$ 2 teaches $\sqsubseteq \bot$
 - A: PhDStudent(john), teaches(john, cl), teaches(john, db)
- ⇒ We need to calculate closure of NIs w.r.t. PIs

Knowledge Base Satisfiability Algorithm

We reduce the problem to FOL query evaluation.

Knowledge Base Satisfiability Algorithm

We reduce the problem to FOL query evaluation.

Algorithm for checking KB satisfiability

- 1 Calculate the closure of NIs.
- 2 Translate the closure into a UCQ q_{unsat} asking for violation of some NI.
- 3 Evaluate q_{unsat} over the ABox (viewed as a DB).
 - if $eval(q_{unsat}, \mathcal{DB}_{\mathcal{A}}) = \emptyset$, then the KB is satisfiable;
 - otherwise the KB is unsatisfiable.

Closure of Negative Inclusions

Closure of NIs $cln(\mathcal{T})$ w.r.t. PIs

• every NI is in $cln(\mathcal{T})$.

Closure of Negative Inclusions

Closure of NIs $cln(\mathcal{T})$ w.r.t. PIs

• every NI is in $cln(\mathcal{T})$.

```
 \begin{array}{ll} \bullet & \textit{cln}(\mathcal{T}): & \textit{Professor} \sqcap \textit{PhDStudent} \sqsubseteq \bot \\ \mathcal{T}: & \textit{Student} \sqcap \geq 1 \, \textit{teaches} \sqsubseteq \textit{PhDStudent} \end{array} \right\} \Rightarrow
```


Closure of NIs $cln(\mathcal{T})$ w.r.t. PIs

every NI is in cln(T).

```
 \begin{array}{ccc} \bullet & \textit{cln}(\mathcal{T}): & \textit{Professor} \sqcap \textit{PhDStudent} \sqsubseteq \bot \\ \mathcal{T}: & \textit{Student} \sqcap \geq 1 \, \textit{teaches} \sqsubseteq \textit{PhDStudent} \end{array} \right\} \Rightarrow \\ & \text{add to } \textit{cln}(\mathcal{T}): \, \textit{Professor} \sqcap \textit{Student} \sqcap \geq 1 \, \textit{teaches} \sqsubseteq \bot \\ \end{array}
```


Closure of NIs $cln(\mathcal{T})$ w.r.t. PIs

• every NI is in $cln(\mathcal{T})$.

```
• cln(\mathcal{T}): Professor \sqcap PhDStudent \sqsubseteq \bot

\mathcal{T}: Student \sqcap \ge 1 \ teaches \sqsubseteq PhDStudent \Rightarrow add to cln(\mathcal{T}): Professor \sqcap Student \sqcap \ge 1 \ teaches \sqsubseteq \bot
```

```
• cln(\mathcal{T}): PhDStudent \sqcap \geq 2 \ teaches \sqsubseteq \bot \mathcal{T}: FullProfessor \sqsubseteq \geq 3 \ teaches \Rightarrow
```


Closure of NIs $cln(\mathcal{T})$ w.r.t. PIs

• every NI is in $cln(\mathcal{T})$.

```
• cln(\mathcal{T}): Professor \sqcap PhDStudent \sqsubseteq \bot

\mathcal{T}: Student \sqcap \ge 1 \ teaches \sqsubseteq PhDStudent \Rightarrow add to cln(\mathcal{T}): Professor \sqcap Student \sqcap \ge 1 \ teaches \sqsubseteq \bot
```

```
• cln(\mathcal{T}): PhDStudent \sqcap \geq 2 \ teaches \sqsubseteq \bot \mathcal{T}: FullProfessor \sqsubseteq \geq 3 \ teaches \Rightarrow
```

```
add to cln(\mathcal{T}): PhDStudent \sqcap FullProfessor \sqsubseteq \bot
```


Closure of NIs $cln(\mathcal{T})$ w.r.t. PIs

- every NI is in cln(T).
- $cln(\mathcal{T})$: $Professor \sqcap PhDStudent \sqsubseteq \bot$ \mathcal{T} : $Student \sqcap \ge 1 \ teaches \sqsubseteq PhDStudent$ \Rightarrow add to $cln(\mathcal{T})$: $Professor \sqcap Student \sqcap \ge 1 \ teaches \sqsubseteq \bot$
- $cln(\mathcal{T})$: $PhDStudent \sqcap \geq 2 \text{ teaches } \sqsubseteq \bot$ \mathcal{T} : $FullProfessor \sqsubseteq \geq 3 \text{ teaches}$ \Rightarrow
 - add to $cln(\mathcal{T})$: $PhDStudent \sqcap FullProfessor \sqsubseteq \bot$
- $cln(\mathcal{T})$: $Professor \sqcap \geq 1$ $attends \sqsubseteq \bot$ \mathcal{T} : $registeredTo \sqsubseteq attends$ \Rightarrow

Closure of NIs $cln(\mathcal{T})$ w.r.t. PIs

- every NI is in cln(T).
- $cln(\mathcal{T})$: $Professor \sqcap PhDStudent \sqsubseteq \bot$ \mathcal{T} : $Student \sqcap \ge 1 \text{ teaches } \sqsubseteq PhDStudent$ \Rightarrow add to $cln(\mathcal{T})$: Professor \sqcap Student $\sqcap \geq 1$ teaches $\sqsubseteq \bot$
- $cln(\mathcal{T})$: $PhDStudent \sqcap \geq 2 \ teaches \sqsubseteq \bot$ \mathcal{T} : $FullProfessor \sqsubseteq \geq 3 \ teaches$ \Rightarrow
 - add to $cln(\mathcal{T})$: PhDStudent \sqcap FullProfessor $\sqsubseteq \bot$
- $cln(\mathcal{T})$: $Professor \sqcap \geq 1 \ attends \sqsubseteq \bot$ \mathcal{T} : $registered To \sqsubseteq attends$ \Rightarrow
 - add to $cln(\mathcal{T})$: Professor $\square \ge 1$ registered $\square \subseteq \bot$

Closure of NIs $cln(\mathcal{T})$ w.r.t. PIs

- every NI is in cln(T).
- $cln(\mathcal{T})$: $Professor \sqcap PhDStudent \sqsubseteq \bot$ \mathcal{T} : $Student \sqcap \ge 1 \text{ teaches } \sqsubseteq PhDStudent$ \Rightarrow add to $cln(\mathcal{T})$: Professor \sqcap Student $\sqcap \geq 1$ teaches $\sqsubseteq \bot$
- $cln(\mathcal{T})$: $PhDStudent \sqcap \geq 2 \ teaches \sqsubseteq \bot$ \mathcal{T} : $FullProfessor \sqsubseteq \geq 3 \ teaches$ \Rightarrow
 - add to $cln(\mathcal{T})$: PhDStudent \sqcap FullProfessor $\sqsubseteq \bot$
- $cln(\mathcal{T})$: $Professor \sqcap \geq 1 \ attends \sqsubseteq \bot$ \mathcal{T} : $registered To \sqsubseteq attends$ \Rightarrow
 - add to $cln(\mathcal{T})$: Professor $\square \ge 1$ registered $\square \subseteq \bot$

Translation to FOL Queries

• Professor \sqcap Student $\sqsubseteq \bot \Rightarrow$ $\exists x. Professor(x) \land Student(x).$

Translation to FOL Queries

- Professor \sqcap Student $\sqsubseteq \bot \Rightarrow \exists x. Professor(x) \land Student(x).$
- $\geq 2 \text{ teaches}^- \sqsubseteq \bot \Rightarrow \exists x_1, x_2, y. \text{teaches}(x_1, y) \land \text{teaches}(x_2, y) \land x_1 \neq x_2.$

Translation to FOL Queries

- Professor \sqcap Student $\sqsubseteq \bot \Rightarrow \exists x. Professor(x) \land Student(x).$
- \geq 2 teaches $^- \sqsubseteq \bot \Rightarrow$ $\exists x_1, x_2, y.$ teaches $(x_1, y) \land$ teaches $(x_2, y) \land x_1 \neq x_2.$
- Dis(attends, teaches) \Rightarrow $\exists x, y. attends(x, y) \land teaches(x, y).$

KB Satisfiability: Complexity of the Algorithm

• Optimal data complexity: in AC⁰ (follows from FOL rewritability)

KB Satisfiability: Complexity of the Algorithm

- ullet Optimal data complexity: in AC^0 (follows from FOL rewritability)
- · Combined complexity: exponential
 - Worst case: the size of $cln(\mathcal{T})$ is exponential in the size of the TBox $\mathcal{T} = \{ A'_1 \sqsubseteq A_1, \ldots, A'_n \sqsubseteq A_n, A_1 \sqcap \cdots \sqcap A_n \sqsubseteq \bot \}.$

KB Satisfiability: Complexity of the Algorithm

- Optimal data complexity: in AC⁰ (follows from FOL rewritability)
- · Combined complexity: exponential
 - ▶ Worst case: the size of $cln(\mathcal{T})$ is exponential in the size of the TBox $\mathcal{T} = \{ A'_1 \sqsubseteq A_1, \ldots, A'_n \sqsubseteq A_n, A_1 \sqcap \cdots \sqcap A_n \sqsubseteq \bot \}.$

Notice, that the problem is PTIME [ACKZ09].

Outline

- Motivation
- 2 The DL DL-Lite (HN)
- 3 Knowledge Base Satisfiability
- 4 Query Answering
- Conclusions


```
q(x) \leftarrow hasPublication(x,y) \land Publication(y)
\mathsf{TBox} \ \mathcal{T} = \{ \\ \geq 1 \ hasPublication^- \sqsubseteq Publication \\ hasConfPaper \sqsubseteq hasPublication \\ PhDStudent \sqsubseteq \geq 2 \ hasConfPaper \\ Student \sqcap \geq 1 \ teaches \sqsubseteq PhDStudent \}
```


$$q(x) \leftarrow hasPublication(x, y) \land Publication(y)$$


```
q(x) \leftarrow \textit{hasPublication}(x,y) \land \textit{Publication}(y) \\ \qquad \qquad \downarrow \geq 1 \, \textit{hasPublication}^- \sqsubseteq \textit{Publication} \\ q_2(x) \leftarrow \textit{hasPublication}(x,y) \land E_1 \, \textit{hasPublication}^- (y) \\ \qquad \qquad \downarrow \text{unify the atoms} \\ \textit{hasPublication}(x,y) \land E_1 \, \textit{hasPublication}^- (y)
```



```
\begin{array}{c} q(x) \leftarrow \textit{hasPublication}(x,y) \land \textit{Publication}(y) \\ & \Downarrow \geq 1 \, \textit{hasPublication} - \sqsubseteq \textit{Publication} \\ q_2(x) \leftarrow \textit{hasPublication}(x,y) \land E_1 \, \textit{hasPublication} \\ & \Downarrow \text{ unify the atoms} \\ & \textit{hasPublication}(x,y) \land E_1 \, \textit{hasPublication} - (y) \\ & \Downarrow \text{ unify the atoms} \\ & \textit{hasPublication}(x,y) \\ & \Downarrow \text{ remove unbound variables} \\ q_3(x) \leftarrow E_1 \, \textit{hasPublication}(x) \\ & \Downarrow \text{ hasConfPaper} \sqsubseteq \textit{hasPublication} \\ q_4(x) \leftarrow E_1 \, \textit{hasConfPaper}(x) \end{array}
```



```
> 1 hasPublication ☐ Publication
q(x) \leftarrow hasPublication(x, y) \land Publication(y)
                                                              hasConfPaper 

□ hasPublication
                                                               PhDStudent □ > 2 hasConfPaper
                  \downarrow > 1 hasPublication^- \sqsubseteq Publication
                                                              Student \sqcap > 1 teaches \sqsubseteq PhDStudent
q_2(x) \leftarrow hasPublication(x, y) \land E_1 hasPublication^-(y)

    unify the atoms

           hasPublication(x, y)
                  q_3(x) \leftarrow E_1 hasPublication(x)
                  q_4(x) \leftarrow E_1 hasConfPaper(x)
                  \Downarrow \geq 2 hasConfPaper \sqsubseteq \geq 1 hasConfPaper
q_5(x) \leftarrow E_2 hasConfPaper(x)
```



```
> 1 hasPublication ☐ Publication
q(x) \leftarrow hasPublication(x, y) \land Publication(y)
                                                                   hasConfPaper 

□ hasPublication
                                                                   PhDStudent □ > 2 hasConfPaper
                   \downarrow > 1 hasPublication \Box Publication
                                                                   Student \sqcap > 1 teaches \sqsubseteq PhDStudent
q_2(x) \leftarrow hasPublication(x, y) \land E_1 hasPublication^-(y)

    unify the atoms

            hasPublication(x, y)
                   q_3(x) \leftarrow E_1 hasPublication(x)
                   ↓ hasConfPaper □ hasPublication
q_4(x) \leftarrow E_1 hasConfPaper(x)
                   \downarrow > 2 hasConfPaper \square > 1 hasConfPaper
q_5(x) \leftarrow E_2 hasConfPaper(x)
                   \downarrow \hspace{-3pt} \downarrow PhDStudent \square > 2 hasConfPaper
q_6(x) \leftarrow PhDStudent(x)
```



```
> 1 hasPublication □ Publication
q(x) \leftarrow hasPublication(x, y) \land Publication(y)
                                                                  hasConfPaper 

□ hasPublication
                                                                  PhDStudent □ > 2 hasConfPaper
                   \downarrow > 1 hasPublication \Box Publication
                                                                  Student \sqcap > 1 teaches \sqsubseteq PhDStudent
q_2(x) \leftarrow hasPublication(x, y) \land E_1 hasPublication^-(y)

    unify the atoms

            hasPublication(x, y)
                   q_3(x) \leftarrow E_1 hasPublication(x)
                   q_4(x) \leftarrow E_1 hasConfPaper(x)
                   \downarrow > 2 hasConfPaper \square > 1 hasConfPaper
q_5(x) \leftarrow E_2 hasConfPaper(x)
                   \downarrow \hspace{-3pt} \downarrow PhDStudent \square > 2 hasConfPaper
q_6(x) \leftarrow PhDStudent(x)
                   \downarrow \downarrow Student \sqcap > 1 teaches \sqcap PhDStudent
q_7(x) \leftarrow Student(x) \land E_1 teaches(x)
```


Query Answering Algorithm

- 1 Compute the rewriting of the initial query, a UCQ.
 - Application of PIs to query atoms.

```
q(x) \leftarrow hasPublication(x, y) \land Publication(y)

\Downarrow \geq 1 \ hasPublication^- \sqsubseteq Publication

q'(x) \leftarrow hasPublication(x, y) \land E_1 hasPublication^-(y)
```

Unification of query atoms.

```
q(x) \leftarrow hasPublication(x, y) \land E_1 hasPublication^-(y)
\downarrow unify
q'(x) \leftarrow hasPublication(x, y)
```

2 Evaluate the obtained UCQ over the ABox viewed as a DB.

Differences w.r.t. the algorithm for simpler variants of *DL-Lite*

• Number restrictions imply new inclusions:

- Number restrictions imply new inclusions: extend the TBox
 - $ightharpoonup \ge k R \sqsubseteq \ge k' R$, where k > k'
 - ▶ $\geq k R \sqsubseteq \geq k R'$ for each subrole R of R'

- Number restrictions imply new inclusions: extend the TBox
 - $ightharpoonup \ge k R \sqsubseteq \ge k' R$, where k > k'
 - ▶ $\geq k R \sqsubseteq \geq k R'$ for each subrole R of R'
- Introduce new predicates $E_k R(x)$ to handle inequalities implied by number restrictions $\geq k R$

- Number restrictions imply new inclusions: extend the TBox
 - \triangleright > $k R \square$ > k' R, where k > k'
 - $ightharpoonup > k R \square > k R'$ for each subrole R of R'
- Introduce new predicates $E_k R(x)$ to handle inequalities implied by number restrictions > k R
- Unification for newly introduced predicates
 - \triangleright P(x,y) unifies with P(z,w), $E_1P(z)$, or $E_1P^-(w)$
 - \triangleright $E_k R(x)$ unifies with $E_1 R^-(-)$ Notice that $E_1R^-(_)$ stands for $R(_,_)$

- Number restrictions imply new inclusions: extend the TBox
 - \triangleright > $k R \square$ > k' R, where k > k'
 - $ightharpoonup > k R \sqsubseteq \geq k R'$ for each subrole R of R'
- Introduce new predicates $E_k R(x)$ to handle inequalities implied by number restrictions > k R
- Unification for newly introduced predicates
 - \triangleright P(x,y) unifies with P(z,w), $E_1P(z)$, or $E_1P^-(w)$
 - \triangleright $E_k R(x)$ unifies with $E_1 R^-(-)$ Notice that $E_1R^-(_)$ stands for $R(_,_)$
- Horn inclusions increase the length of the query

- Number restrictions imply new inclusions: extend the TBox
 - \triangleright > $k R \square$ > k' R, where k > k'
 - ▶ $\geq k R \sqsubseteq \geq k R'$ for each subrole R of R'
- Introduce new predicates $E_k R(x)$ to handle inequalities implied by number restrictions $\geq k R$
- · Unification for newly introduced predicates
 - ▶ P(x,y) unifies with P(z,w), $E_1P(z)$, or $E_1P^-(w)$
 - ► $E_k R(x)$ unifies with $E_1 R^-(_)$ Notice that $E_1 R^-(_)$ stands for $R(_,_)$
- Horn inclusions increase the length of the query
 - remove duplicated atoms

- Number restrictions imply new inclusions: extend the TBox
 - \triangleright > $k R \square$ > k' R, where k > k'
 - ▶ $\geq k R \sqsubseteq \geq k R'$ for each subrole R of R'
- Introduce new predicates $E_k R(x)$ to handle inequalities implied by number restrictions $\geq k R$
- · Unification for newly introduced predicates
 - ▶ P(x,y) unifies with P(z,w), $E_1P(z)$, or $E_1P^-(w)$
 - ► $E_k R(x)$ unifies with $E_1 R^-(_)$ Notice that $E_1 R^-(_)$ stands for $R(_,_)$
- Horn inclusions increase the length of the query
 - remove duplicated atoms
 - remove $E_{k'}R(z)$, if $E_kR(x)$ occurs in the guery and k>k'

Query Answering: Complexity of the Algorithm

• Optimal data complexity: in AC⁰

Query Answering: Complexity of the Algorithm

- Optimal data complexity: in AC⁰
- Combined complexity: in NP

Note that the size of the rewriting is exponential already w.r.t. the size of the TBox.

Outline

- 2 The DL DL-Lite^(HN)_{horn}
- Knowledge Base Satisfiability
- 6 Conclusions

Conclusion

- We reduced knowledge satisfiability and query answering in $DL\text{-}Lite_{horn}^{(\mathcal{HN})}$ to FOL evaluation.
 - Practically implementable algorithms.
 - We can rely on relational database technology for managing the data and query evaluation.

Conclusion

- We reduced knowledge satisfiability and query answering in $DL\text{-}Lite_{horn}^{(\mathcal{HN})}$ to FOL evaluation.
 - Practically implementable algorithms.
 - We can rely on relational database technology for managing the data and query evaluation.
- The computational complexity of the algorithms is optimal w.r.t. data complexity:
 - ightharpoonup in AC 0 .

Conclusion

- We reduced knowledge satisfiability and query answering in $DL\text{-}Lite_{horn}^{(\mathcal{HN})}$ to FOL evaluation.
 - Practically implementable algorithms.
 - We can rely on relational database technology for managing the data and query evaluation.
- The computational complexity of the algorithms is optimal w.r.t. data complexity:
 - ightharpoonup in AC 0 .
- Future work:
 - ▶ Implement the developed algorithms.
 - Study optimization techniques for the algorithm.
 - Extend the practical algorithm to positive existential queries.

