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Model Checking in one slide

Model checking: technique(s) to automatically verify that a system design S satisfies a
property P before deployment.

More formally, given

• a model MS of a system S

• a formula φP representing a property P

we check that

MS |= φP

2



Turing Award 2007
www.acm.org/press-room/news-releases-2008/turing-award-07

(a) E. Clarke (CMU,
USA)

(b) A. Emerson
(U. Texas, USA)

(c) J. Sifakis
(IMAG, F)

• Jury justification

For their roles in developing model checking into a highly effective
verification technology, widely adopted in the hardware and software
industries.
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Overview

1 Motivation: Artifact Systems as data-aware systems

2 Main task: Formal verification of infinite-state AS
I model checking is appropriate for control-intensive applications...
I ...but less suited for data-intensive applications (data typically ranges over infinite

domains) [1].

3 Key contribution: Verification of bounded and uniform AS is decidable
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Artifact Systems
Outline

• Recent paradigm for Service-Oriented Computing [2].

• Motto: let’s give data and processes the same relevance!

• Artifact: data model + lifecycle
I (nested) records equipped with actions
I actions may affect several artifacts
I evolution stemming from the interaction with other artifacts/external actors

• Artifact System: interacting artifacts, representing services, manipulated by agents.
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Artifact Systems
Order-to-Cash Scenario
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Artifact Systems
Data Model

PO

id prod code offer status

• createPO(prod code, offer)

• deletePO(id)

• addItemPO(id,itm,qty)

• . . .

MO

id prod code price status

• createMO(id,price)

• deleteMO(id)

• addLineItemMO(id,mat,qty)

• . . .
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Artifact Systems
Lifecycle

• Agents operate on artifacts.

I e.g., the Customer sends the Purchase Order to the Manufacturer.

• Actions add/remove artifacts or change artifact attributes.
I e.g., the PO status changes from created to submitted.

• The whole system can be seen as a data-aware dynamic system.
I at every step, an action yields a change in the current state.
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Research questions

1 Which syntax and semantics to specify AS?

2 Is verification of AS decidable?

3 If not, can we identify relevant fragments that are reasonably well-behaved?

4 How can we implement this?

9



Research questions

1 Which syntax and semantics to specify AS?

2 Is verification of AS decidable?

3 If not, can we identify relevant fragments that are reasonably well-behaved?

4 How can we implement this?

9



Research questions

1 Which syntax and semantics to specify AS?

2 Is verification of AS decidable?

3 If not, can we identify relevant fragments that are reasonably well-behaved?

4 How can we implement this?

9



Research questions

1 Which syntax and semantics to specify AS?

2 Is verification of AS decidable?

3 If not, can we identify relevant fragments that are reasonably well-behaved?

4 How can we implement this?

9



Challenges

Multi-agent systems, but . . .

• . . . states have a relational structure,

• data are potentially infinite,

• state space is infinite in general.

⇒ The model checking problem cannot be tackled by standard techniques.
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Artifact Systems
Results

1 Artifact-centric multi-agent systems (AC-MAS): formal model for AS.

Intuition: databases that evolve in time and are manipulated by agents.

2 FO-CTLK as a specification language:

AG ∀id , pc (∃~x MO(id , pc, ~x)→ KM ∃~y PO(id , pc, ~y))

the manufacturer M knows that each MO has to match a corresponding PO.

3 Abstraction techniques and finite interpretation to tackle model checking.

Main result: under specific conditions MC can be reduced to the finite case.

4 Modelling of declarative GSM systems, developed by IBM, as AC-MAS.
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Semantics: Databases

The data model of Artifact Systems is given as a database.

• a database schema is a finite set D = {P1/a1, . . . ,Pn/an} of predicate symbols Pi

with arity ai ∈ N.

• an instance on a domain U is a mapping D associating each predicate symbol Pi

with a finite ai -ary relation on U.

• Disjoint union: D ⊕ D ′ is the (D ∪D′)-interpretation s.t.
(i) D ⊕ D′(Pi ) = D(Pi )

(ii) D ⊕ D′(P′i ) = D′(Pi )
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Artifact-centric Multi-agent Systems
Agents

Agents have partial access (views) to the artifact system.

• An agent is a tuple i = 〈Di ,Acti ,Pri 〉 where
I Di is the local database schema
I Acti is the set of local actions α(~x) with parameters ~x
I Pri : Di (U) 7→ 2Acti (U) is the local protocol function

• the setting is reminiscent of the interpreted systems semantics for MAS [3],...

• ...but here the local state of each agent is relational.

Intuitively, agents manipulate artifacts and have (partial) access to the information
contained in the global db schema D = D1 ∪ · · · ∪ Dn.
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Example 1: the Order-to-Cash Scenario

• Agents: Customer, Manifacturer, Supplier.

• Local db schema DC

I Products(prod code, budget)
I PO(id, prod code, offer, status)

• Local db schema DM

I PO(id, prod code, offer, status)
I MO(id, prod code, price, status)

• Local db schema DS

I Materials(mat code, cost)
I MO(id, prod code, price, status)

• Then, D = {Materials,Products,PO,MO}.
• Parametric actions can introduce values from an infinite domain U.

I createPO(prod code, offer) belongs to ActC .
I createMO(prod code, price) belongs to ActM .
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Artifact-centric Multi-agent Systems
AC-MAS

Agents are modules that can be composed together to obtain AC-MAS.

• Global states are tuples s = 〈D0, . . . ,Dn〉 ∈ D(U).

• An AC-MAS is a tuple P = 〈Ag , s0, τ〉 where:
I Ag = {0, . . . , n} is a finite set of agents
I s0 ∈ D(U) is the initial global state
I τ : D(U)× Act(U) 7→ 2D(U) is the transition function

• Temporal transition: s → s ′ iff there is α(~u) s.t. s ′ ∈ τ(s, α(~u)).

• Epistemic relation: s ∼i s ′ iff Di = D ′i .

• AC-MAS are infinite-state systems in general.

AC-MAS are first-order temporal epistemic structures.
Hence, FO-CTLK can be used as a specification language.
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Syntax: FO-CTLK

• Data call for First-order Logic.

• Evolution calls for Temporal Logic.

• Agents (operating on artifacts) call for Epistemic Logic.

The specification language FO-CTLK:

ϕ ::= P(~t) | t = t′ | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ | EϕUϕ | Kiϕ

Alternation of free variables and modal operators is enabled.
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Semantics of FO-CTLK
Formal definition

An AC-MAS P satisfies an FO-CTLK-formula ϕ in a state s for an assignment σ, iff

(P, s, σ) |= Pi (~t) iff 〈σ(t1), . . . , σ(tai )〉 ∈ Ds (Pi )
(P, s, σ) |= t = t′ iff σ(t) = σ(t′)
(P, s, σ) |= ¬ϕ iff (P, s, σ) 6|= ϕ
(P, s, σ) |= ϕ→ ψ iff (P, s, σ) 6|= ϕ or (P, s, σ) |= ψ
(P, s, σ) |= ∀xϕ iff for all u ∈ adom(s), (P, s, σx

u ) |= ϕ
(P, s, σ) |= AXϕ iff for all runs r , r0 = s implies (P, r1, σ) |= ϕ
(P, s, σ) |= AϕUϕ′ iff for all runs r , r0 = s implies (P, rk , σ) |= ϕ′ for some k ≥ 0,

and (P, rk′
, σ) |= ϕ for all 0 ≤ k ′ < k

(P, s, σ) |= EϕUϕ′ iff there exists r s.t. r0 = s, (P, rk , σ) |= ϕ′ for some k ≥ 0,

and (P, rk′
, σ) |= ϕ for all 0 ≤ k ′ < k

(P, s, σ) |= Kiϕ iff for all states s′, s ∼i s′ implies (P, s′, σ) |= ϕ

• Active-domain semantics: adom(D) is the set of all u ∈ U appearing in D
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Semantics of FO-CTLK
Intuition

(d) AXϕ (e) AϕUψ (f) EϕUψ
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Verification of AC-MAS

How do we verify FO-CTLK specifications on AC-MAS?

• the manufacturer M knows that each MO has to match a corresponding PO:

AG ∀id , pc (∃pr , s MO(id , pc, pr , s)→ KM ∃o, s′ PO(id , pc, o, s′))

• the client C knows that every PO will eventually be discharged (by M):

AG ∀id , pc (∃pr , s MO(id , pc, pr , s)→ EF KC ∃o PO(id , ps, o, shipped))

Problem: the infinite domain U may generate infinitely many states!

Investigated solution: can we simulate the concrete values from U with a finite set of
abstract symbols?
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Abstraction: Isomorphism and Bisimulation

• Two states s, s ′ are isomorphic, or s ' s ′, if there is a bijection

ι : adom(s) ∪ C 7→ adom(s ′) ∪ C

such that
I ι is the identity on C
I for every ~u ∈ adom(s)ai , i ∈ Ag , ~u ∈ Di (Pj )⇔ ι(~u) ∈ D′i (Pj )

D
a b
b c
d e

'

D ′

1 2
2 c
4 5

I ι : a 7→ 1
b 7→ 2
c 7→ c
d 7→ 4
e 7→ 5
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Abstraction: Isomorphism and Bisimulation

• Two states s, s ′ are bisimilar, or s ≈ s ′, if
I s ' s′

I if s → t then there is t′ s.t. s′→ t′, s ⊕ t ' s′ ⊕ t′, and t ≈ t′

s t

≈

s ′

≈

t ′

I the other direction holds as well
I similarly for the epistemic relation ∼i
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Abstraction: Isomorphism and Bisimulation

However, bisimulation is not sufficient to preserve FO-CTLK formulas:

1 2 3 4 5 6

P

a b

P ′

φ = AG ∀x (P(x)→ AX AG ¬P(x))
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Uniformity

• Intuitively, the behaviour of uniform AC-MAS is independent from data not explicitly
named in the system description.

• More formally, an AC-MAS P is uniform iff for s, t, s ′ ∈ S and t′ ∈ D(U):

I s → t and s ⊕ t ' s′ ⊕ t′ imply s′ → t′

s
a b
b c
d e

t
a f
f c

s ′

1 2
2 c
4 5

t′

1 6
6 c

• Uniform AC-MAS cover a vast number of interesting cases [2, 4].
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Bisimulation and Equivalence w.r.t. FO-CTLK

Theorem

Consider

• bisimilar and uniform AC-MAS P1 and P2

• an FO-CTLK formula ϕ

If

1 |U2| ≥ 2 · sups∈P1
|adom(s)|+ |C |+ |vars(ϕ)|

2 |U1| ≥ 2 · sups′∈P2
|adom(s ′)|+ |C |+ |vars(ϕ)|

then

P1 |= ϕ iff P2 |= ϕ

Can we apply this result to finite abstraction?
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Abstractions

• Abstractions are defined in an agent-based, modular way.

• Let A = 〈D,Act,Pr〉 be an agent defined on the domain U.
Given a domain U ′, the abstract agent A′ = 〈D′,Act′,Pr ′〉 on U ′ is s.t.

I D′ = D
I Act′ = Act
I Pr ′ is the smallest function s.t. if α(~u) ∈ Pr(D), D′ ∈ D′(U′) and D′ ' D for some

witness ι, then α(~u′) ∈ Pr ′(D′) where ~u′ = ι′(~u) for some constant-preserving
bijection ι′ extending ι to ~u.

• Let Ag ′ be the set of abstract agents on U ′.

• Let P = 〈Ag , s0, τ〉 be an AC-MAS. The AC-MAS P ′ = 〈Ag ′, s ′0, τ
′〉 is an

abstraction of P iff
I s′0 ' s0;
I τ ′ is the smallest function s.t. if t ∈ τ(s, α(~u)), s′, t′ ∈ D′(U′) and s ⊕ t ' s′ ⊕ t′ for

some witness ι, then t′ ∈ τ ′(s′, α(~u′)) where ~u′ = ι′(~u) for some constant-preserving
bijection ι′ extending ι to ~u.
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Bounded Models and Finite Abstractions

• An AC-MAS P is b-bounded iff for all s ∈ P, |adom(s)| ≤ b.

• Bounded systems can still be infinite!

Theorem

Consider

• a b-bounded and uniform AC-MAS P on an infinite domain U

• an FO-CTLK formula ϕ

Given U ′ ⊇ C s.t.
|U ′| ≥ 2b + |C |+ max{|vars(ϕ)|,NAg}

there exists a finite abstraction P ′ of P s.t.

• P ′ is uniform and bisimilar to P
In particular,

P |= ϕ iff P ′ |= ϕ

How can we define finite abstractions constructively?
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Compact descriptions: AS Programs

Example of uniform AC-MAS written in a FO language.

• for each agent i , Acti is the set of of local (parametric) actions of the form
ω(~x) = 〈π(~y), ψ(~z)〉 s.t.

I ω(~x) is the operation signature and ~x = ~y ∪ ~z is the set of operation parameters
I π(~y) is the operation precondition, i.e., an FO-formula over Di
I ψ(~z) is the operation postcondition, i.e., an FO-formula over D ∪D′

We call the AC-MAS specified in this way Artifact System Programs.
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Example 2: the Order-to-Cash Scenario

Specification of actions affecting the MO in the order-to-cash scenario:

• createMO(po id , price) = 〈π(po id , price), ψ(po id , price)〉, where:

- π(po id , price) ≡
∃p, o (PO(po id , p, o, prepared) ∧ ∃cost Materials(p, cost) ∧ φb−1

- ψ(po id , price) ≡
∃id (MO ′(id , po id , price, preparation)∧

∀id ′, c, p, s (MO(id ′, c, p, s)→ id 6= id ′)) ∧ φb

where φk is the FO-formula saying that there are at most k objects in the active domain.

The specification of createMO guarantees that the bound b is not violated by action
execution.
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Verification of Artifact System Programs

Lemma

AS programs generate uniform AC-MAS.

Theorem

Consider

• a b-bounded AS program PAct,U on an infinite domain U

• an FO-CTLK formula ϕ.

Given U ′ ⊇ C s.t.
|U2| ≥ 2b + |C |+ max{NAS , |vars(ϕ)|}

then PAct,U′ is a finite abstraction of PAct,U s.t.

• PAct,U′ is uniform and bisimilar to PAct,U

In particular,

PAct,U |= ϕ iff PAct,U′ |= ϕ

• The abstraction is finite and the procedure is constructive.

• Thus, we can apply standard techniques in model checking.
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Extensions

1 Non-uniform AC-MAS: for sentence-atomic FO-CTL the results above still hold.

AG ∀c (shippedPO(c)→ ∀m(related(c,m)→ shippedMO(m))) 4

2 Non-uniform AC-MAS: one-way preservation result for FO-ACTL.

Theorem

If an AC-MAS P is bounded, and ϕ ∈ FO-ACTL, then there exists a finite abstraction P ′
such that if P ′ |= ϕ then P |= ϕ.

3 Model checking bounded AC-MAS w.r.t. FO-CTL is undecidable.

4 Complexity result:

Theorem

The model checking problem for finite AC-MAS w.r.t. FO-CTLK is EXPSPACE-complete
in the size of the formula and data.

5 The finite abstraction result can be extended to typed FO-CTLK including
predicates with an infinite interpretation (< on rationals)
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Results
and main limitations

• We are able to model check AC-MAS w.r.t. full FO-CTLK...

• ...however, our results hold only for uniform and bounded systems.

• This class includes many interesting systems (AS programs, [2, 4]).

• The model checking problem is EXPSPACE-complete.
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Next Steps

• Techniques for finite abstraction.

• Model checking techniques for finite-state systems are effective on the abstract
system?

• How to perfom the boundedness check.
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