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Model Checking in one slide

Model checking: technique(s) to automatically verify that a system design S satisfies a
property P before deployment.

More formally, given

• a model MS of system S

• a formula φP representing property P

we check that

MS |= φP
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Turing Award 2007
www.acm.org/press-room/news-releases-2008/turing-award-07

(a) E. Clarke
(CMU, USA)

(b) A. Emerson
(U. Texas, USA)

(c) J. Sifakis
(IMAG, F)

• Jury justification

“For their roles in developing model checking into a highly effective
verification technology, widely adopted in the hardware and software
industries.”
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Overview

1 Motivation and Background:
I Artifact Systems as data-aware systems
I Parallel English (ascending bid) Auctions as Artifact Systems (eBay, etc.)

2 Main task: formal verification of infinite-state AS
I model checking is appropriate for control-intensive applications...
I ...but less suited for data-intensive applications (data typically range over infinite

domains) [1]

3 Key contribution:
I Verification of rigid, bounded and uniform AS is decidable
⇒ Verification of Parallel English Auctions is decidable
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Artifact Systems
Outline

• Recent paradigm in Service-Oriented Computing [2].

• Motto: let’s give data and processes the same relevance!

• Artifact: data model + lifecycle
I (nested) records equipped with actions
I actions may affect several artifacts
I evolution stemming from the interaction with other artifacts/external actors

• Artifact System: interacting artifacts, representing services, manipulated by agents.

• Auctions as Artifact Systems

• Logical Perspective: first-order modal (temporal epistemic) Kripke models
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Artifact Systems
Order-to-Cash Scenario
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Artifact Systems
Parallel English (ascending bid) Auctions

A single auctioneer A and a finite number of bidders B1, . . . ,B`.

1 the auctioneer puts on sale a finite number of items, starting from a base price that is
public to all bidders;

2 at each round the bidder can either choose to bid for a specific item or to skip the round;

3 at the end of the bidding process, the item is assigned to the bidder with the highest offer.

Assumptions:

• each bidder is rational;
• he has an intrinsic value for each item being auctioned;
• and he keeps this information private from other bidders and the auctioneer.
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Artifact Systems
Auction Data Model

Bidding

item base price bid1 . . . bid` status

• initA(item,base price)

• bidi (item,bid)

• time out(item)

• skipA

• skipi

• . . .

trueValuei

item true value

• initi (item,true value)

• . . .
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Artifact Systems
Auction Lifecycle

• Agents operate on artifacts.

I e.g., the bidder sends a new bid to the auctioneer.

• Actions add/remove artifacts or change artifact attributes.
I e.g., the auctioneer puts a new item on auction.

• The whole system can be seen as a data-aware dynamic system.
I at every step, an action yields a change in the current state.
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Research questions

1 Which syntax and semantics to specify AS?

2 Is verification of AS decidable?

3 If not, can we identify relevant fragments that are reasonably well-behaved?
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Challenges

Multi-agent systems, but . . .

• . . . states have a relational structure,

• data are potentially infinite,

• the state space is infinite in general.

⇒ The model checking problem cannot be tackled by standard techniques.
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Artifact Systems
Results

1 Artifact-centric multi-agent systems (AC-MAS) as a formal model for AS.

Intuition: databases (?) that evolve in time and are manipulated by agents.

2 FO-CTLK as a specification language:

AG ∀it, ~bd , s(∃!bp Bidding(it, ~bd , bp, s) ∧ ∃≤1tv trueValuei (it, tv))

for each item there is exactly one base price, while bidders associate at most one true value
to each item (possibly none).

3 Model theory of FO modal logic: abstraction and bisimulation to tackle model checking.

Main result: under specific conditions MC can be reduced to the finite case.

4 Case study: modelling and veryfing auctions as AC-MAS.

12



Artifact Systems
Results

1 Artifact-centric multi-agent systems (AC-MAS) as a formal model for AS.

Intuition: databases (?) that evolve in time and are manipulated by agents.

2 FO-CTLK as a specification language:

AG ∀it, ~bd , s(∃!bp Bidding(it, ~bd , bp, s) ∧ ∃≤1tv trueValuei (it, tv))

for each item there is exactly one base price, while bidders associate at most one true value
to each item (possibly none).

3 Model theory of FO modal logic: abstraction and bisimulation to tackle model checking.

Main result: under specific conditions MC can be reduced to the finite case.

4 Case study: modelling and veryfing auctions as AC-MAS.

12



Artifact Systems
Results

1 Artifact-centric multi-agent systems (AC-MAS) as a formal model for AS.

Intuition: databases (?) that evolve in time and are manipulated by agents.

2 FO-CTLK as a specification language:

AG ∀it, ~bd , s(∃!bp Bidding(it, ~bd , bp, s) ∧ ∃≤1tv trueValuei (it, tv))

for each item there is exactly one base price, while bidders associate at most one true value
to each item (possibly none).

3 Model theory of FO modal logic: abstraction and bisimulation to tackle model checking.

Main result: under specific conditions MC can be reduced to the finite case.

4 Case study: modelling and veryfing auctions as AC-MAS.

12



Artifact Systems
Results

1 Artifact-centric multi-agent systems (AC-MAS) as a formal model for AS.

Intuition: databases (?) that evolve in time and are manipulated by agents.

2 FO-CTLK as a specification language:

AG ∀it, ~bd , s(∃!bp Bidding(it, ~bd , bp, s) ∧ ∃≤1tv trueValuei (it, tv))

for each item there is exactly one base price, while bidders associate at most one true value
to each item (possibly none).

3 Model theory of FO modal logic: abstraction and bisimulation to tackle model checking.

Main result: under specific conditions MC can be reduced to the finite case.

4 Case study: modelling and veryfing auctions as AC-MAS.

12



Semantics: Databases

The data model of AS is given as a particular kind of database.

• a database schema is a finite set D = {P1/a1, . . . ,Pn/an,Q1/b1, . . . ,Qm/bm} of relation
symbols Ri with arity ci ∈ N.

• an instance on a domain U is a mapping D associating
I each symbol Pi with a finite ai -ary relation on U
I each symbol Qi with a (possibly infinite) bi -ary relation on U

• the active domain adom(D) is the set of all u ∈ U appearing in some D(Pi ).

• the disjoint union D ⊕ D′ is the (D ∪D′)-interpretation s.t.

(i) D ⊕ D′(Ri ) = D(Ri )
(ii) D ⊕ D′(R′i ) = D′(Ri )

We consider untyped languages; the extension to types is not problematic.
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Artifact-centric Multi-agent Systems
Agents

Agents have partial access (views) to the artifact system.

• An agent is a tuple Ai = 〈Di ,Acti ,Pri 〉 where
I Di is the local database schema
I Acti is the set of local actions α(~x) with parameters ~x
I Pri : Di (U) 7→ 2Acti (U) is the local protocol function

• the setting is reminiscent of the interpreted systems semantics for MAS [3],...

• ...but here the local state of each agent is relational.

Intuitively, agents manipulate artifacts and have (partial) access to the information
contained in the global db schema D = D1 ∪ · · · ∪ D`.
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Example 1: Parallel English Auction

• Agents: Auctioneer, Bidder1, . . ., Bidder`

• local db schema DA for the auctioneer
I Bidding(item, base price, bid1, . . ., bid`, status)
I < on Q

• local db schema Di for the bidders
I Bidding(item, base price, bid1, . . ., bid`, status)
I TValuei (item, true value)
I < on Q

• then, D = {Bidding ,TValue1, . . . ,TValue`, <}

• Actions introduce values from an infinite domain U = Items ∪ Q ∪ {active, term}:
I initA(item, base price), time out(item), skipA belong to ActA
I initi (item, true value), bidi (item, bid), skipi belong to Acti

• The protocol function specifies the preconditions for actions:
I e.g., bidi (item, bid) ∈ Pri (D) whenever

F item appears in D(TValuei )
F the highest bid bidj in Bidding , j 6= i , for item is < true value for bidder Bi
F bidj < bid ≤ true value
F D(status) = active for item

I the skip actions are always enabled.

15



Artifact-centric Multi-agent Systems
AC-MAS

Agents are modules that can be composed together to obtain AC-MAS.

• Global states are tuples s = 〈D0, . . . ,D`〉 ∈ D(U).

• An AC-MAS is a tuple P = 〈Ag , s0,→〉 where
I Ag = {A0, . . . ,A`} is a finite set of agents
I s0 ∈ D(U) is the initial global state

I s
α(~u)−−−→ s′ is the transition relation

• Epistemic relation: s ∼i s′ iff Di = D′i

• An AC-MAS P is rigid iff for all states s, s′, symbols Q, and agents Ai , Aj ∈ Ag ,
Di (Q) = D′j (Q).

• AC-MAS are infinite-state systems in general

AC-MAS are first-order temporal epistemic structures.
⇒ FO-CTLK can be used as a specification language.
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Example 2: the Auction AC-MAS

The Auction AC-MAS A = 〈Ag , s0,→〉 is defined as

• Ag = {A,B1, . . . ,B`}
• s0 is the empty interpretation of D = {Bidding ,TValue1, . . . ,TValue`, <} but for <

• → is the transition relation s.t. s
α(~u)−−−→ s′ whenever

I αi = bidi (item, bid ′) and s′ modifies s by replacing any tuple
(item, . . . , bidi , . . . , status) in Ds (Bidding) with (item, . . . , bid ′i , . . . , status)

I αA = timeout(item) and the value of status in Ds′ (Bidding) for item is term
I . . .

Notice: the auction AC-MAS A is rigid

17



Syntax: FO-CTLK

• Data call for First-order Logic.

• Evolution calls for Temporal Logic.

• Agents (operating on artifacts) call for Epistemic Logic.

The specification language FO-CTLK:

ϕ ::= R(t1, . . . , tc ) | t = t′ | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ | EϕUϕ | Kiϕ

Alternation of free variables and modal operators is enabled.

18



Semantics of FO-CTLK
Formal definition

An AC-MAS P satisfies an FO-CTLK-formula ϕ in a state s for an assignment σ, iff

(P, s, σ) |= R(~t) iff 〈σ(t1), . . . , σ(tc )〉 ∈ Ds (R)
(P, s, σ) |= t = t′ iff σ(t) = σ(t′)
(P, s, σ) |= ¬ϕ iff (P, s, σ) 6|= ϕ
(P, s, σ) |= ϕ→ ψ iff (P, s, σ) 6|= ϕ or (P, s, σ) |= ψ
(P, s, σ) |= ∀xϕ iff for all u ∈ adom(s), (P, s, σx

u ) |= ϕ
(P, s, σ) |= AXϕ iff for all runs r , r(0) = s implies (P, r(1), σ) |= ϕ
(P, s, σ) |= AϕUϕ′ iff for all runs r , r(0) = s implies (P, r(k), σ) |= ϕ′ for some k ≥ 0,

and (P, r(k ′), σ) |= ϕ for all 0 ≤ k ′ < k
(P, s, σ) |= EϕUϕ′ iff there exists r s.t. r(0) = s, (P, r(k), σ) |= ϕ′ for some k ≥ 0,

and (P, r(k ′), σ) |= ϕ for all 0 ≤ k ′ < k
(P, s, σ) |= Kiϕ iff for all states s′, s ∼i s′ implies (P, s′, σ) |= ϕ

• Active-domain semantics, but...
I ...we can refer to individuals that no longer exist
I the number of states is infinite in general

19



Semantics of FO-CTLK
Intuition

(d) AXϕ (e) AϕUψ (f) EϕUψ

20



Verification of AC-MAS

How do we check FO-CTLK specifications on auctions?

• the true value of items for each bidder is secret to all other bidders and to the auctioneer:

AG ∀item ¬∃true value
_

j 6=i∨j=A

Kj TValuei (item, true value)

• for each bidder, each bid is less or equal to her true value:

AG ∀it, ~x , bdi , ~y , tv(Bidding(it, ~x , bdi , ~y) ∧ TValuei (it, tv)→ bdi ≤ tv)

• each bidder can raise her bid unless she has already hit her true value:

AG ∀it, ~x , bdi , ~y(Bidding(it, ~x , bdi , ~y)→
→ (TValuei (it, bdi ) ∨ EF ∃~x ′, bd ′i , ~y

′(bd ′i > bdi ∧ Bidding(it, ~x ′, bd ′i , ~y
′))))

Problem: the infinite domain U may generate infinitely many states!

Investigated solution: can we simulate the concrete values in U with a finite set of abstract
symbols?

21



Abstraction: Isomorphism and Bisimulation

• two states s, s′ are isomorphic, or s ' s′, if there is a bijection

ι : adom(s) ∪ C 7→ adom(s′) ∪ C

such that
I ι is the identity on C
I for every ~u in adom(s), Ai ∈ Ag , ~u ∈ Di (R)⇔ ι(~u) ∈ D′i (R)

D(R)
A1 a b
A2 b c
A3 d e

'

D ′(R)
A1 1 2
A2 2 c
A3 4 5

I ι : a 7→ 1
b 7→ 2
c 7→ c
d 7→ 4
e 7→ 5

22



Abstraction: Isomorphism and Bisimulation

• two states s, s ′ are bisimilar, or s ≈ s ′, if
1 s ' s′

2 if s → t then there is t′ s.t. s′→ t′, s ⊕ t ' s′ ⊕ t′, and t ≈ t′

s t

≈

s ′

≈

t ′

3 the other direction holds as well
4 similar conditions for the epistemic relation ∼i
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Abstraction: Isomorphism and Bisimulation

However, bisimulation is not sufficient to preserve FO-CTLK formulas:

0 1 2 3 4 5

P

0 1

P ′

φ = AG ∀x (P(x)→ AX AG ¬P(x))
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Uniformity

• Intuitively, the behaviour of uniform AC-MAS is independent from data not explicitly named
in the system description.

• More formally, an AC-MAS P is uniform iff for s, t, s′ ∈ S and t′ ∈ D(U):

1 s → t and s ⊕ t ' s′ ⊕ t′ imply s′→t′

s
a b
b c
d e

t
a f
f c

s′

1 2
2 c
4 5

t′

1 6
6 c

2 Also, rigid AC-MAS must satisfy a condition akin to density of < on Q.

• Uniform AC-MAS cover many interesting cases [2, 4], including the auction AC-MAS A.
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Bisimulation and Equivalence w.r.t. FO-CTLK

Theorem

Consider
• bisimilar and uniform AC-MAS P and P ′
• an FO-CTLK formula ϕ

If
1 |U′| ≥ 2 · sups∈P{|adom(s)|}+ |C |+ |vars(ϕ)|
2 |U| ≥ 2 · sups′∈P′{|adom(s′)|}+ |C |+ |vars(ϕ)|

then

P |= ϕ iff P ′ |= ϕ

Can we apply this result to finite abstraction?
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Abstraction

Abstractions are defined in an agent-based, modular way.

• Let A = 〈D,Act,Pr〉 be an agent defined on the domain U.

Given a domain U′, the abstract agent A′ = 〈D,Act,Pr ′〉 on U′ is s.t.

I Pr ′ is the smallest function s.t. if α(~u) ∈ Pr(D), D′ ∈ D′(U′) and D′ ' D for some
witness ι, then α(ι(~u)) ∈ Pr ′(D′).

• Let P = 〈Ag , s0,→〉 be an AC-MAS.

The abstraction P ′ = 〈Ag ′, s′0,→′〉 of P is an AC-MAS s.t.

I Ag ′ be the set of abstract agents on U′

I s′0 ' s0

I →′ is the smallest function s.t. if s
α(~u)−−−→ t, and s ⊕ t ' s′ ⊕ t′ for some witness ι,

then s′
α(ι(~u))−−−−→ t′.

Notice: the abstraction of a rigid AC-MAS is not necessarily rigid!

27



Abstraction

• Let NAg =
P

Ai∈Ag max{α(~x)∈Acti} |~x | be the sum of the maximum numbers of
parameters contained in the action types of each agent

Lemma

Consider
I a rigid and uniform AC-MAS P
I a set U′ ⊇ C s.t. |U′| ≥ 2 sups∈P |adom(s)|+ |C |+ NAg

Then, there exists an abstraction P ′ of P that is uniform and bisimilar to P.

How can we define finite abstractions?

28



Bounded Models and Finite Abstractions

• An AC-MAS P is b-bounded iff for all s ∈ P, |adom(s)| ≤ b.

• Bounded systems can still be infinite!

Theorem

Consider

I a b-bounded, rigid and uniform AC-MAS P on an infinite domain U

I an FO-CTLK formula ϕ

Given a finite U′ ⊇ C s.t.

|U′| ≥ 2b + |C |+ max{|vars(ϕ)|,NAg}

there exists a finite abstraction P ′ of P s.t.

I P ′ is uniform and bisimilar to P
Moreover,

P |= ϕ iff P ′ |= ϕ

⇒ Under specific circumstances, we can model check an infinite-state system by verifying its
finite abstraction.

29



Finite Abstract Auction I

• Notice: the auction AC-MAS A is bounded by b = |Items|(2|Ag | − 1) + 2

• Consider a finite U′ ≥ 2b + vars(φ)

• Abstract agents Auctioneer A′ and Bidders B′i
I the local db schemas D′A and D′i are the same as for A and Bi

I the sets of actions Act′A and Act′i are the same as for A and Bi

I the protocol function Pr ′A is the same as for A

I as to Pr ′i , bidi (item, bid) ∈ Pr ′i (D′) whenever
F . . .
F bid is an abstract value that does not represent any bid in D′
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Finite Abstract Auction II

The abstract auction AC-MAS A′ = 〈Ag ′, s′0, τ
′〉 is defined as

• Ag ′ = {A′,B′1, . . . ,B′`}

• s′0 is the empty interpretation of D

• →′ mimics →
I e.g., if αi = bidi (item, bid), then s

α(~u)−−−→
′

t whenever t modifies s by replacing any
tuple (item, . . . , bidi , . . . , status) in Ds (Bidding) with (item, . . . , bid ′i , . . . , status),
where the value bid ′ ∈ U′ has been found as above.
In particular, bid < bid ′ ≤ true value in t.

• By the assumption that U′ ≥ 2b + vars(φ) and Theorem 3 we have that A′ is a finite
abstraction of A.

• In particular, A′ is uniform and bisimilar to A (but not rigid) and

A |= ϕ iff A′ |= ϕ
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Extensions

1 Non-uniform AC-MAS: for sentence-atomic FO-CTL the results above still hold.

AG ∀it, ~bd , s(∃!bp Bidding(it, ~bd , bp, s) ∧ ∃≤1tv TValuei (it, tv))

2 Non-uniform and unbounded AC-MAS: one-way preservation result for FO-ACTLK−.

Theorem

For every AC-MAS P and ϕ ∈ FO-ACTLK−, there exists a finite abstraction P ′ s.t.

P ′ |= ϕ ⇒ P |= ϕ

3 Model checking bounded AC-MAS w.r.t. FO-CTL is undecidable.

4 Complexity result:

Theorem

The model checking problem for finite AC-MAS w.r.t. FO-CTLK is EXPSPACE-complete in the
size of the formula and data.
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Results
and main limitations

• Bisimulation and finite abstraction for first-order Kripke models.

• We are able to model check AC-MAS w.r.t. full FO-CTLK...

• ...however, our results hold only for rigid, uniform and bounded systems.

• This class includes many interesting systems (AS programs, [2, 4],

• including parallel English auctions.
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Next Steps

• Constructive techniques for finite abstraction.

• Model checking techniques for finite-state systems are effective on AC-MAS?

• How to perfom the boundedness check?

• What if the system is unbounded/not uniform?
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Thank you!
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