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Overview

1 Motivation: Artifact Systems as data-aware systems

2 Main task: formal verification of (infinite-state) Artifact Systems

3 Key contribution: verification of bounded AS is decidable

4 Conclusion and future directions
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Artifacts and Artifact Systems

Recent paradigm for Business Process modeling and development [CH09]

Artifact: data model + lifecycle
I (Nested) records equipped with actions
I Actions may affect several artifacts

Artifact System: set of interacting artifacts

Data and processes are given same emphasis
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Artifact Systems
Order-to-Cash Scenario
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Artifact Systems
Data Model

PO

id prod code offer status

createPO(prod code)

deletePO(id)

addLinePO(id , prod code, offer)

. . .

WO

id po id price status

createWO(po id)

deleteWO(id)

addLineWO(id , po id , price)

. . .

MO

id wo id cost status

createMO(wo id)

deleteMO(id)

addLineMO(id ,wo id , status)

. . .

Products

prod code budget

Materials

mat code cost
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Artifact Systems
Lifecycle

As the process goes on, artifact actions are executed.
I e.g., the Purchase Order is sent to the Manufacturer.

Actions add/remove artifacts or change artifact attributes.
I e.g., the PO status changes from created to submitted.

The whole system can be seen as a data-aware dynamic system.
I At every step, an action yields a change in the current state.
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Artifact Systems
Lifecycle

We can give a (partial) representation of AS as FSM.

prepared pending paid shipped
createPO submitPO pay shipPO deletePO

(a) Purchase Order lifecyle

preparation complete
createWO

addLineItemWO

doneWO deleteWO

(b) Work Order Lifecyle

empty preparation submitted accepted shipped

rejected

createMO

addLineItemMO

addLineItemMO

sendMO

accept

reject

shipMO

deleteMO

deleteMO

(c) Material Order lifecyle
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Databases and Artifact Systems

We introduce some (basic) notions on databases to formalise data models.

A database schema is a finite set D = {P1/a1, . . . ,Pn/an} of predicate symbols Pi

with their arity ai ∈ N.

In the order-to-cash scenario
D = {Products/2,PO/4,WO/4,Materials/2,MO/4}

A D-interpretation on a (possibly infinite) domain U is a mapping D associating
each predicate symbol Pi with a finite ai -ary relation on U.

PO

id prod code offer status
1 #12 $50 prepared
2 #24 $120 shipped
4 #45 $80 paid
...

...
...

...

The active domain adom(D) of each D-instance D is finite.
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Databases and Artifact Systems

Given

a D-interpretation D

an assignment σ : Var → U

an FO-formula ϕ ∈ LD
we inductively define satisfaction:

(D, σ) |= Pi (t1, . . . , t`) iff 〈σ(t1), . . . , σ(t`)〉 ∈ D(Pi )
(D, σ) |= t = t ′ iff σ(t) = σ(t ′)
(D, σ) |= ¬ϕ iff (D, σ) 6|= ϕ
(D, σ) |= ϕ→ ψ iff (D, σ) 6|= ϕ or (D, σ) |= ψ
(D, σ) |= ∀xϕ iff for every u ∈ adom(D), (D, σx

u) |= ϕ

Notice that we adopt an active domain semantics.

Composition: D ⊕ D ′ is the (D ∪D′)-interpretation s.t. D ⊕ D ′(Pi ) = D(Pi ) and
D ⊕ D ′(P ′i ) = D ′(Pi ).
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Artifact-centric Multi-agent Systems

Artifacts are manipulated by agents, e.g., customers, manufacturers,
suppliers.

We introduce an agent-based model for AS inspired to [FHMV95].

An agent is a tuple i = 〈Di , Li ,Acti ,Pri 〉 where:
I Di is the local database schema
I Li ⊆ Di (U) is the set of local states
I Acti is the set of local actions
I Pri : Li 7→ 2Acti is the local protocol function

The global database schema is such that D = D1 ∪ · · · ∪ Dn.

Agents manipulate artifacts and have (partial) access to the information
contained therein.
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Example 1: the Order-to-Cash Scenario

Agents: Customer, Manifacturer, Supplier.

Local database schemas:
I DC = {Products,PO}
I DM = {WO}
I DS = {Materials,MO}

Then D = {Products,PO,WO,Materials,MO}.
Parametric actions can introduce values from an infinite domain U:

I createPO(id , prod code, offer) in ActC

I createWO(id , po id , price) in ActM

I createMO(id ,wo id , cost) in ActS
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Artifact-centric Multi-agent Systems

Agents are modules that can be composed together to obtain AC-MAS.

An AC-MAS is a tuple P = 〈S,U,D0, τ〉 where
I S ⊆ L1 × · · · × Ln is the set of reachable global states
I U is the interpretation domain
I D0 ∈ S is the initial global state
I τ : S × Act 7→ 2S is the global transition function

Temporal transition: D → D ′ iff there is α s.t. τ(D, α(~u)) = D ′.

Epistemic relation: D ∼i D ′ iff Di = D ′i for agent i .

AC-MAS are FO temporal epistemic structures, so a flavour of FO temporal
epistemic logic can be used as specification language for AC-MAS.
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Artifact-centric Multi-agent Systems
Intuition

A transition system where each state is a D-instance.

As actions are executed, new states are generated.

Action parameters can introduce new values.

An infinite domain U yields potentially infinitely many distinct states.

In general, infinite branching and infinite run-length.
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The Problem
Intuition

Does the system satisfy a (branching-time) temporal epistemic specification?
E.g.:

I It is always the case that every artifact can be deleted
I There exists a way to create a certain number of artifacts
I The manufacturer knows that a product can be shipped only after assemblage

Flavour of Model Checking, but:
I relational states (database instances)
I infinite interpretation domain
I infinite state space
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Verification Formalism: FO-CTLK

How to specify system properties?

Definition (Syntax of FO-CTLK)

ϕ ::= P(~t) | t = t ′ | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ | EϕUϕ | Kiϕ

We want to check FO-CTLK properties, e.g.:

the manufacturer M knows that each WO has to match a corresponding PO:

AG ∀po id(∃id , p, s WO(id , po id , p, s)→ KM ∃p, o, s PO(po id , p, o, s))

Difficulty: the infinite domain U gives raise to infinitely many states!

Investigated solution: can we simulate the concrete values with a finite set of
abstract symbols?
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Verification Formalism: FO-CTLK
Semantics

A run r is an infinite sequence D0 → D1 → . . . of states; r(i) = D i .

Definition (Semantics of FO-CTLK)

(P,D, σ) |= ϕ iff (D, σ) |= ϕ, if ϕ is an FO-formula
(P,D, σ) |= ¬ϕ iff (P,D, σ) 6|= ϕ
(P,D, σ) |= ϕ→ ψ iff (P,D, σ) 6|= ϕ or (P,D, σ) |= ψ
(P,D, σ) |= ∀xϕ iff for all u ∈ adom(D), (P,D, σx

u) |= ϕ
(P,D, σ) |= AXϕ iff for all runs r , if r(0) = D then (P, r(1), σ) |= ϕ
(P,D, σ) |= AϕUψ iff for all runs r , if r(0) = D then there is k ≥ 0 s.t. (P, r(k), σ) |= ψ,

and for all j , 0 ≤ j < k implies (P, r(j), σ) |= ϕ
(P,D, σ) |= EϕUψ iff for some run r , r(0) = D and there is k ≥ 0 s.t. (P, r(k), σ) |= ψ,

and for all j , 0 ≤ j < k implies (P, r(j), σ) |= ϕ
(P,D, σ) |= Kiϕ iff for all D′, D ∼i D′ implies (P,D′, σ) |= ϕ

A formula ϕ is true in D, or (P,D) |= ϕ, if (P,D, σ) |= ϕ for all σ.
A formula ϕ is true in P, or P |= ϕ, if (P,D0) |= ϕ.
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FO-CTL Semantics
Intuition

AXϕ:

AϕUψ:

EϕUψ:
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Verification of AC-MAS
The General Problem

Model Checking for AC-MAS:

Given P and ϕ, does (P,D0, σ) |= ϕ for some σ?

Similar to Model Checking but technically more challenging:
I Relational states
I Infinite state-space

Theorem
The MC problem for AC-MAS is undecidable.

BUT decidable over finite interpretation domains:
I by reduction to standard propositional case (propositionalise FO facts).
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Verification of Bounded AC-MAS

Here we devise a notable case of decidability

If all D-instances of the AC-MAS are bounded, then, though infinite-state,
model-checking is decidable.

Definition (b-bounded (Artifact) System)

Given a bound b ∈ N s.t. b ≥ |adom(D0)|, an AC-MAS P is b-bounded if for
every D ∈ P, |adom(D)| ≤ b.

Practical approach: verify implementation, rather than design.

Idea: actual machines have bounded memory.
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Verification of Bounded AC-MAS
As a consequence of the domain U being infinite, we still have:

infinite branching;

infinite state-space.

E.g., with at most 2 tuples:

QUESTION:

+ Can we model-check a bounded system?

Non-trivial! we cannot construct the (infinite) model.
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Abstraction
Idea

The concrete AC-MAS is abstracted by replacing the infinite interpretation
domain N with a finite one ({a, b, c , d , e, f , g , h}).
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Abstraction
Results

The cardinality of the new domain U ′ depends on
I the (memory) bound b
I the AC-MAS P
I the specification ϕ to check

The resulting finite-state system can be model-checked by
standard techniques

BUT how did we get rid of an infinite number of elements and transitions?

We apply an abstraction process based on two formal notions:
1 Isomorphism between D-instances;
2 Bisimulation between AC-MAS.
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Data Abstraction
Isomorphic instances

Definition (Isomorphism)

Two D-instances D and D ′ are C -isomorphic, or D 'C D ′, iff there is a bijection
ι : adom(D) ∪ C 7→ adom(D ′) ∪ C s.t.

(i) ι is the identity on C

(ii) for every ~u ∈ U∗, ~u ∈ D(Pi ) iff ι(~u) ∈ D ′(Pi )

In words: instances obtained by uniformly renaming the elements not in C .
E.g., for C = {1}, ι(1) = 1, ι(2) = a, ι(3) = b, ι(4) = c .
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Data Abstraction
Isomorphic instances (cont.)

Isomorphic instances have a notable (well-known) property:

Lemma

If D ' D ′ then for every FO-formula ϕ s.t. con(ϕ) ⊆ C ,

D |= ϕ⇔ D ′ |= ϕ

The coloured instance satisfies ϕ iff all the instances isomorphic to it do

The coloured instance stands for infinitely many isomorphic instances (isomorphism type):
same values iff same colours

Observation: for a given bound b, there are only finitely many isomorphism types
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Data Abstraction
Bisimilar AC-MAS

Definition (Bisimilarity)

Two AC-MAS P1 and P2 are C -bisimilar, or P1 ≈C P2, iff there exists a
bisimulation relation ≈C s.t. D10 ≈C D20, and if D1 ≈C D2 then

(i) D1 'C D2

(ii) if D1 → D ′1 then there is D ′2 s.t. D2 → D ′2 and D ′1 ≈C D ′2
(iii) if D2 → D ′2 then there is D ′1 s.t. D1 → D ′1 and D ′1 ≈C D ′2
(iv) Similarly, (ii) and (iii) hold for the epistemic relation ∼i for every agent i

Intuitively, the following diagrams commute:

D1
//

�O
�O
�O

D ′1

�O
�O
�O

D1

�O
�O
�O

∼i D ′1

�O
�O
�O

D2
// D ′2 D2 ∼i D ′2

However, bisimulation alone is not sufficient to preserve FO-CTLK formulas.
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(iii) if D2 → D ′2 then there is D ′1 s.t. D1 → D ′1 and D ′1 ≈C D ′2
(iv) Similarly, (ii) and (iii) hold for the epistemic relation ∼i for every agent i

Intuitively, the following diagrams commute:

D1
//

�O
�O
�O

D ′1

�O
�O
�O

D1

�O
�O
�O

∼i D ′1

�O
�O
�O

D2
// D ′2 D2 ∼i D ′2

However, bisimulation alone is not sufficient to preserve FO-CTLK formulas.
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Uniform AC-MAS

Definition (Uniformity)

An AC-MAS P is C-uniform iff for D,D ′,D ′′ ∈ S and D ′′′ ∈ D(U):

1 D → D ′ and D ⊕ D ′ 'C D ′′ ⊕ D ′′′ imply D ′′ → D ′′′;

2 D ∼i D ′ and D ⊕ D ′ 'C D ′′ ⊕ D ′′′ imply D ′′ ∼i D ′′′.

Intuitively, the behaviour of uniform AC-MAS is independent from data not
explicitly named.

I Suppose that P(a)→ P(b)
I Further, P(a)⊕ P ′(b) ' P(c)⊕ P ′(d)
I Hence, P(c)→ P(d)

Uniform AC-MAS cover a vast number of interesting cases.
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Bisimulation Results

Bisimilarity together with uniformity is sufficient to preserve FO-CTLK formulas.

Theorem

Consider two bisimilar uniform AC-MAS P1 and P2, and an FO-CTLK formula ϕ.
If

1 |U2| ≥ maxD∈P1 |adom(D)|+ |C |+ |var(ϕ)|
2 |U1| ≥ maxD∈P2 |adom(D)|+ |C |+ |var(ϕ)|

then

P1 |= ϕ iff P2 |= ϕ
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Bounded Models and Finite Abstractions

We verify the actual, bounded implementations of AC-MAS.

Consider

an AC-MAS P1 on a domain U1 s.t.
1 U1 is infinite
2 P1 is b-bounded, i.e., for all D ∈ P1, |adom(D)| ≤ b

an FO-CTLK formula ϕ.

Then, there exists a finite abstraction P2 of P1 s.t.
1 P2 is uniform and bisimilar to P1

2 |U2| ≥ 2b + |C |+ |var(ϕ)|
In particular,

P1 |= ϕ iff P2 |= ϕ
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Bounded Models and Finite Abstractions
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Bounded Models and Finite Abstractions

Problem: the result in the previous slide assumes that P1 is given and then
builds P2.

BUT P1 is infinite, so we may not be able to construct P2.

We need a methodology to obtain the abstract P2 without going through the
concrete P1.

To do so, we need to specify the form of actions.
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Verification of Artifact System Programs

We give an example of uniform AC-MAS consistent with GSM [HDD+11].

For each agent i we define Acti as the set of of local (parametric) actions of the
form ω(~x)

.
= 〈π(~y), ψ(~z)〉 s.t.

ω(~x) is the operation signature and ~x = ~y ∪ ~z is the set of operation
parameters

π(~y) is the operation precondition, i.e., an FO-formula over Di

ψ(~z) is the operation postcondition, i.e., an FO-formula over D ∪D′

We call the AC-MAS specified in this way Artifact System Programs.

66 / 78



Artifact Systems: Semantics

Now, D → D ′ iff for some α(~x) ∈ Act there is an execution α(~u) = 〈π(~v), ψ(~w)〉
and

adom(D ′) ⊆ adom(D) ∪ ~w ∪ con(ψ)

D |= π(~v), i.e., the action is enabled

D ⊕ D ′ |= ψ(~w)
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Example 2: the Order-to-Cash Scenario

Specification of actions affecting the MO in the order-to-cash scenario:

createMO(id ,wo id , cost) = 〈π(wo id , cost), ψ(id ,wo id , cost)〉 where:
I π(wo id , cost) ≡
∃po id , p(WO(wo id , po id , p, completed)∧
∃pr , o (PO(po id , pr , o, pending)∧
Materials(pr , cost)))∧
φb−1

I ψ(id ,wo id , cost) ≡
MO ′(id ,wo id , cost, preparation)∧
∀id ′,w , c, s (MO(id ′,w , c, s)→ id 6= id ′))∧
φb

where φk ::= ∀x1, . . . , xk+1

∨
i 6=j(xi = xj) says that there are at most k objects in

the active domain.

The specification of createMO guarantees that the bound b is not violated by
action execution.
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Finite Abstraction of AS Programs

AS programs are uniform.

If
I the AS program PAct,U1 is b-bounded
I the finite domain U2 is s.t. |U2| ≥ 2b + |CAS |+ NAS

then
I the induced AS program PAct,U2 is a finite abstraction of PAct,U1

Lemma

If D 'C D̂ then every concrete transition D → D ′ has an abstract counterpart D̂ → D̂ ′

s.t. D ′ 'C D̂ ′.
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Finite Abstraction of AS Programs
If-Part (Intuition)

Given a concrete execution α(~u) = 〈π(~v), ψ(~w)〉, there exist ~̂v , ~̂w , D̂ ′ s.t.

(i) D̂ |= π(~̂v)

(ii) D̂ ⊕ D̂ ′ |= ψ(~̂w)

(iii) D ′ ∼C D̂ ′

there exist D̂ ′ and ~̂u, and a C -isomorphism between

{D,D ′, ~u} and {D̂, D̂ ′, ~̂u}

This is enough, as π and ϕ are invariant w.r.t. C -isomorphic instances.
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Finite Abstraction of AS Programs
If-Part (Intuition) Cont.

How to define an C -isomorphism between {D,D ′, ~u} and {D̂, D̂ ′, ~̂u}:

1 obtain ~̂u by renaming the elements in ~u according to ι, k, and preserving
(in)equalities – Û contains enough elements to do so;

2 obtain D̂ ′ by renaming the elements in D ′ according to ι and j .

72 / 78



Verification of Artifact System Programs

If
I the AS program PAct,U1 is b-bounded
I the finite domain U2 is s.t. |U2| ≥ 2b + |CAS |+ NAS ,

then
I the induced AS program PAct,U2 is a finite abstraction of PAct,U1 .

In particular, if |U2| ≥ 2b + |CAS |+ max{NAS , |var(ϕ)|}, then

PAct,U1 |= ϕ iff PAct,U2 |= ϕ
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Application to the General Case
Preservation Theorem

What if P is unbounded? (apart from undecidability)

Observation: for fixed b ∈ N, the b-abstraction P̂b corresponds to an (infinite)
fragment of P

Preservation theorem for the existential fragment FO∃-ECTLK.

ϕ ::= φ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | EXϕ | EϕUϕ | K iϕ

Theorem

Given an AS program P, b ≥ |adom(D0)|, and an FO∃-ECTLK formula ϕ,

P̂b |= ϕ ⇒ P |= ϕ

Observe we can iterate on b.
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To conclude

Results...

We are able to model check AC-MAS wrt full FO-CTLK...

...however, our results hold only for uniform systems.

This class includes many interesting systems (AS programs).

... and Future Work

Techniques for finite abstraction.

Abstraction techniques for finite-state systems are effective on the abstract
system?

How to perfom the boundedness check.
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