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Abstract. We introduce the formalism of infinite-state reactive
modules to reason about the strategic behaviour of autonomous
agents in a setting where data are explicitly exhibited in the systems
description and in the specification language. Technically, we endow
reactive modules with an infinite domain of interpretation for individ-
ual variables, and introduce FO-ATL, a first-order version of alternat-
ing time temporal logic, for the specification of properties of interest.
We show that their verification is decidable for classes of data types
of interest. This result is proved by defining a first-order version of
alternating bisimulations and finite bisimilar abstractions. We illus-
trate the formal machinery by applying it to English and sealed bid
auctions. In particular, we show that strategic properties of agents in
auctions, including manipulability and collusion, can be expressed
and verified in this framework.

1 Introduction
The formalism of alternating-time temporal logic (ATL) [5] has been
widely used to reason about the strategic behaviour of agents in
multi-agent systems (MAS) [2, 13]. Specifications in ATL can ex-
press the ability of agents to bring about particular states of affairs
(represented as temporal formulas in linear-time temporal logic) in
the system. Models for ATL are traditionally given in terms of con-
current game structures, alternating transition systems, or in variants
of interpreted systems. An attractive feature of some of these seman-
tics is that models can be given via compact representations [26].
For instance, programs in the interpreted system programming lan-
guage (ISPL), supported by the MCMAS model checker [30], gener-
ate interpreted systems upon which ATL formulas can be evaluated.
Alternatively, reactive modules have been put forward as a flexible
framework to model relevant behaviours of distributed systems, in-
cluding pure and observable asynchronicity, atomic and non-atomic
synchronicity [4]. Moreover, this compact representation constitutes
the basis of the programming language for the jMOCHA model
checker [3]. Both ISPL and simple reactive modules denote finite-
state systems.

Yet, it is crucial to be able to reason about multi-agent systems
that are intrinsically associated with infinite-state models. These arise
naturally in MAS programming, when, for example, the data type of
a given variable is not finite. These requirements may appear also
in the modelling phase, when one is unable to assign a bound to a
particular modelling concept, e.g., a queue. In this paper we focus on
rational real variables [20]. Programs normally generate infinite-state
models, but their verification is prone to undecidability, at least in the
most general case.
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In this paper we introduce infinite-state reactive modules, an ex-
tension of reactive modules to reason about the strategic behaviour
of autonomous agents in a setting where data are explicitly exhib-
ited in the systems description and in the specification language. We
show that while their execution model is infinite, their model check-
ing problem is decidable. Specifically, we endow reactive modules
with an infinite domain of interpretation for individual variables, as
well as relational symbols for total orders. Then, to express strategic
behaviours of modules, we introduce FO-ATL, a first-order version
of alternating time temporal logic, suitable for representing explicitly
the data content of modules. We prove the decidability of the model
checking problem for this setting by introducing a novel, first-order
version of alternating bisimulation. We show that although reactive
modules are infinite-state systems in general, for specific classes of
data types we can construct a finite abstraction, which is bisimilar to
the concrete, infinite-state system. As a result, the verification proce-
dure can be conducted on the finite abstraction, and the result trans-
ferred to the original system. We illustrate the interest and workings
of the formal machinery through an application to two auction mech-
anisms: English ascending bid auctions and repeated sealed bid auc-
tions. In particular, we show that strategic properties of agents in
auctions, including manipulability and collusion, can be expressed
and verified in this framework.

Related Work. The area of logics for reasoning about strategies
has witness a steady growth in recent years [5, 15, 31]. Here we con-
sider only the contributions most closely related to the present set-
ting. The inspiration for this work comes from the original paper on
reactive modules [4], even though here we consider their simple ver-
sion introduced in [33], where the implicit model checking problem
is analysed, even though in a purely propositional setting.

This paper builds on a stream of results on the verification of data-
aware systems [18, 11, 7, 10, 22], i.e., systems whose execution de-
pends crucially on their data content. In these works a data model
is coupled with an update mechanism that determine the system’s
evolution. For instance, in the line of [7, 14] the data model is rep-
resented by means of description logics, while the system evolves
in response to conjunctive queries. In [22, 17] the formalism of sit-
uation calculus is exploited to represent the data model and update
mechanisms. In this line of research, including [10, 23], the model
checking problem is proved to be decidable by using two key features
of these systems: boundedness (only a bounded number of individ-
uals is active at each state in the system’s execution) and uniformity
(the system’s execution is determined only by the elements that are
named explicitly in the system’s description). These properties are
shared also by reactive modules. However, our contribution differs
from previous works in several aspects. First, we adopt a modular,
agent-based approach to data-aware systems, while in [18, 11, 7, 22]



systems are described monolithically. This feature is key to model
distributed scenario, such as auctions, where agents have only im-
perfect knowledge of the system’s global state. This is also reflected
in the specification language: here we build upon ATL, a logic for
strategies of individuals and coalitions, while previous works have
focused on CTL, LTL [19], and µ-calculus, that account only for the
system’s global behaviour. Aspects of agency and individual knowl-
edge have been analysed in [10], but protocols and actions are given
completely abstractedly therein, while here we provide a computa-
tional semantics grounded on reactive modules.

Furthermore, this paper contributes towards the formal verification
of auction-based mechanisms, which is a topic of growing interest in
the AI community [24, 35, 34]. However, with some notable excep-
tions, most of the research in this area has focused on the design of
auctioning mechanisms and the analysis of their formal properties,
while the automated verification of these designs has only partially
been addressed, and only for specific classes of auctions, by using
purpose-built formalisms [6]. Here we put forward a principled ap-
proach to the verification of infinite-state systems that can handle
general classes of auctions as well.

Scheme of the Paper. In Section 2 we introduce infinite-state
(agent) modules, the first-order specification language FO-ATL, de-
fine the semantics of infinite-state reactive modules systems (IRMS)
and the corresponding model checking problem. We exemplify and
motivate the technical notions in Section 3, where we briefly describe
modules for English auctions and repeated sealed bid auctions. Sec-
tion 4 is devoted to the main result of this paper: decidability through
finite bisimilar abstractions, which is then applied in Section 5 to our
auctioning mechanisms. We conclude in Section 6 with discussion
and future work.

2 Infinite-state Reactive Modules

In this section we introduce a generalisation of reactive modules [4,
33], that admits variables with an infinite domain of interpretation,
possibly totally ordered (e.g., natural, rational, and real numbers).
The specifications for these systems will be given in an expressive
first-order extension of alternating-time temporal logic [5], also de-
fined here.

In the following we assume a finite set T = {T1, . . . , Tk} of
types (e.g. booleans, integers, rationals, etc.), each endowed with a
(possibly ordered) interpretation domain DT . Also, for each type T
we consider a set VT = {v0, v1, . . .} of variables and a set PT =
{x0, x1, . . .} of parameters. We use V (resp. P ) to denote

⋃
T∈T V

(resp.
⋃
T∈T P ). Intuitively, variables are used to describe the data

model, while parameters appear in formulas.
Further, we introduce a set Ag of agent modules (or simply

agents), each comprising of a set L of local states, a set Act of ac-
tions, and a protocol function Pr, according to the formal account of
agents in the literature on interpreted systems [21]. In line with reac-
tive systems [4], we assume that each agent modulem ∈ Ag controls
a finite set cntm ⊆ V of variables. Specifically, {cnt1, . . . , cnt|Ag|}
form a partition of V , that is, every variable in V is controlled by
exactly one agent. Hence, the set V can be assumed to be finite as
well. Next, the set cntm of variables controlled by module m is
partitioned into the sets privm and intfm of private and interface
variables respectively: private variables are only accessible to owner
m, while interface variables are readable, but not writable, by any
other agent. Given private and interface variables for a set Ag of
agent modules, the variables in obsm observable by agent module m
are comprised of her controlled variables and the interface variables

of all agents, i.e., obsm = cntm ∪
⋃
j 6=m intfj , or equivalently,

obsm = privm ∪
⋃
j∈Ag intfj . Observe that by considering con-

trolled, private, and interface variables, in [4] the authors are able
to model a number of different behaviours for reactive systems, in-
cluding pure asynchronicity (interleaving), observable asynchronic-
ity, atomic and non-atomic synchronicity. For our purposes, we will
use private and interface variables to model partial observability and
imperfect information of agents in auctions.

To provide a formal account of the local state of an agent module,
we introduce local interpretations as functions θm : cntm → D,
i.e., (finite, type-consistent) interpretations of the variables in cntm
with values in D. For simplicity, in the following we often iden-
tify an interpretation θm with its range θm(cntm) ⊆ D, whenever
domain cntm is clear by the context. Then, provided interpretation
θ1, . . . , θAg for all agent modules, the local states l ∈ L of agent
module m is comprised of the values for her observed variables in
obsm, i.e., l = θm ∪

⋃
j 6=m θj(intfj) by definition. Any local state

lm is assumed to characterise the knowledge of agent module m.
Notice that l is well-defined as {cnti, . . . , cnt|Ag|} is a partition.
Moreover, since the domain D is infinite in general, the set L of lo-
cal states is infinite as well.

To define the individual actions in Act and the protocol Pr for
each agent module, we introduce a typed first-order language built
on variables, parameters and relational symbols = and ≤ when ap-
propriate.

Definition 1 (FO-formulas) First-order formulas over types T are
defined according to the following BNF:

φ ::= z = z′ | z ≤ z′ | ¬φ | φ→ φ | ∀xφ

where z, z′ ∈ V ∪ P have the same type, and x ∈ P .

The symbols 6=, <, ≥, >, ⊥, connectives ∧, ∨, quantifier ∃, and
free and bound variables and parameters are defined as standard [25].
Notice that quantification applies to parameters only, this is in accor-
dance with the intuition above on the use of variables and parameters.
Throughout the paper we assume that types are manipulated consis-
tently, without explicitly mentioning this fact each time.

Following [33], we now introduce a particular notion of action.

Definition 2 (Guarded Command) A guarded command γ over V
and P is an expression

g(x1, . . . , xk) ; v1 := x1; . . . ; vk := xk

where (i) guard g is an FO-formula with free parameters among
x1, . . . , xk; (ii) all vi are variables in V ; and (iii) in each assign-
ment vi := xi, vi and xi have the same type.

As customary [33], we require that no variable vi appears on the
left-hand-side of two assignments in the same guarded command
(hence no issue on the ordering of updates arises). Also, the sets
of parameters appearing in the various commands are assumed to
be disjoint. The intuitive meaning of a guarded command is that if
guard g evaluates to true for some interpretation σ : P → D of
parameters, then the command is enabled for execution. By execut-
ing the command we set each variable vi to value σ(xi) ∈ D. We
say that v1, . . . , vk are the variables controlled by γ, and denote this
set by ctr(γ), while the variables in g are the observable variables
obs(γ). A set of guarded commands is disjoint if their controlled
variables are mutually disjoint. In particular, the skip command can
be represented as >; ε, where ε is the empty sequence.

We now have all preliminary notions necessary to introduce agent
modules.



Definition 3 (Agent Module) An agent module is a tuple m =
〈ctr, init, update〉 where

• ctr ⊆ V is the (finite) set of variables controlled bym, partitioned
into sets priv and intf ;

• init is a (finite) set of initialisation guarded commands s.t. for all
γ ∈ init, ctr(γ) ⊆ ctr and obs(γ) ⊆ obs;

• update is a (finite) set of update guarded commands s.t. for all
γ ∈ update, ctr(γ) ⊆ ctr and obs(γ) ⊆ obs.

According to Def. 3, an agent module initialises the variables she
controls according to her guarded commands in init, then the same
variables are updated following the commands in update. In partic-
ular, controllability and observability of variables in guards and as-
signments has to be respected. Given an agent module m, we denote
the initialisation and update commands ofm by initm and updatem
respectively.

Next, we define the global state of a reactive system as a tuple
s = 〈θ1, . . . , θ|Ag|〉, where each θm is an interpretation for agent
m. Equivalently, global states can be represented as functions s :
V → D, i.e., (finite, type-consistent) interpretations of the variables
in V with values in D such that for every v ∈ V , s(v) = θm(v),
where m is the agent controlling v. As anticipated above, any state s
is well-defined as V is partitioned among the agents in Ag. Further,
given a global state s, we denote as l1, . . . , l|Ag| the corresponding
local states for all agents in Ag. Observe that 〈θ1, . . . , θ|Ag|〉 and
〈l1, . . . , l|Ag|〉 are equivalent representation of a global state s, in
terms of controlled, respectively observable, variables. So, we will
use the two notations interchangeably. We remarked that agent mod-
ules have only partial observability of the global state of the system.
Specifically, two states s and s′ are indistinguishable for agent mod-
ule m, or s ∼m s′, iff lm = l′m, that is, iff s and s′ coincide on the
interpretation of obsm. We denote the set of all global states as G.

To introduce the semantics of guarded commands formally, we de-
fine the satisfaction relation |= for FO-formulas. An FO-formula φ is
given meaning by a finite interpretation σ : fr(φ) → D that assigns
values in D to the free parameters in φ. A reinterpretation σxu coin-
cides with σ, but assigns value u ∈ D to parameter x ∈ fr(φ). By
Σ we denote the set of all interpretations σ for parameters. Further,
given z ∈ V ∪P , (s, σ)(z) = s(z) for z ∈ V , and (s, σ)(z) = σ(z)
for z ∈ P , that is, variables are interpreted according to s, while pa-
rameters according to σ.

Definition 4 (Satisfaction) A state s satisfies an FO-formula φ for
a finite interpretation σ, or (s, σ) |= φ, iff (clauses for propositional
connectives are immediate and thus omitted)

(s, σ) |= z = z′ iff (s, σ)(z) = (s, σ)(z′)
(s, σ) |= z ≤ z′ iff (s, σ)(z) ≤ (s, σ)(z′)
(s, σ) |= ∀xφ iff for all u ∈ s(V ), σxu |= φ

The interpretation of FO-formulas is completely standard, but for
quantification that takes values from the finite set s(V ) = {u ∈
D | u = s(v) for some v ∈ V } of images of variables in V . This
is consistent with the interpretation of quantification on active do-
mains in database theory [1]. Indeed, at this stage quantification can
be considered syntactic sugar, as s(V ) is finite. However, once the
temporal evolution of reactive modules is taken into account – as we
shall see shortly – quantification makes the specification language
strictly more expressive than its propositional counterpart.

Since the set V of variables and the set P of parameters appearing
free in any guarded command are both finite and defined at design-
time, we deem them fixed. Hence, hereafter we will always consider

suitable states s and finite interpretations σ. Further, when evaluating
guards for commands of an agent modulem, it is sufficient to look at
the interpretation of observable variables provided by m’s local state
lm. Therefore, we can introduce the satisfaction relation (lm, σ) |=
φ, for fr(φ) ⊆ obsm, in analogy with Def. 4.

Finally, an infinite-state reactive module system (IRMS) is defined
as a set M = {m1, . . . ,m|Ag|} of agent modules. Given an IRMS
M , the sets Act and ACT of individual and joint actions, the set I
of initial states, the protocol Pr, the transition function τ , and the
set S of reachable states are defined as follows:

• for every agent module m, Act = update; while ACT is the
set of tuples of update commands (γ1, . . . , γ|Ag|), for γm ∈
updatem;

• I is the set of states s′ such that for every v ∈ V , s′(v) = σ(x)
for some state s, interpretation σ, and initialisation command
γ = (γ1, . . . , γ|Ag|), such that each local state satisfies the corre-
sponding guard, i.e., (lm, σ) |= gm;

• Prm : L → ((2Actm \ ∅) × Σ) such that Prm(l) = {(γ, σ) |
(l, σ) |= gγ};

• τ : G × ACT × Σ → G such that τ(s, γ, σ) = s′ iff (i) for all
m ∈ M , (γm, σm) ∈ Prm(lm); and (ii) s′(vi) = σ(xi). Often
we write s

γ,σ−−→ s′ for τ(s, γ, σ) = s′;
• S is the closure of I according to the transition function τ .

The definitions above provide the computational counterpart to
the notions of action and protocol introduced earlier. Specifically, an
agent module m can update the variables she controls by means of
actions in Act, according to protocol Pr, which returns the actions
whose guard is satisfied in her local state lm for some interpretation
σ of parameters. Overall, an IRMS M describes the evolution of a
reactive system from an initial state s ∈ I , according to the transi-
tion function τ , which returns the successive global state provided
the current state and an enabled joint action (including its data con-
tent σ). Again, since the domain D is infinite in general, IRMS are
infinite-state systems, differently from [33].

Since we assumed that the sets of parameters in the various com-
mands are disjoint, in the definition of τ the restriction σm of inter-
pretation σ to the parameters in updatem is well-defined. Hereafter
we make use of a notion of extension σ ⊆ σ′ between interpretations,
viewed as functions. Hence, above we have that for every m ∈ M ,
σm ⊆ σ.

To specify the behaviour of IRMS and to reason about the strate-
gic abilities of agent modules, we introduce a first-order version of
alternating-time temporal logic.

Definition 5 (FO-ATL) Formulas in first-order ATL are defined in
BNF as follows:

ψ ::= φ | ¬ψ | ψ ∧ ψ | ∀xψ | 〈〈C〉〉Xψ | 〈〈C〉〉(ψUψ) | 〈〈C〉〉Gψ

where φ is an FO-formula and C ⊆M is coalition of agents.

The meaning of ATL operators is standard: a formula 〈〈C〉〉Φ says
that coalitionC has a (collective) strategy to achieve Φ. Again, quan-
tification is defined on parameters only. Notice that in FO-ATL we
can have arbitrary alternations of quantifiers and ATL operators. A
consequence of this, as we shall see, is that quantification in FO-ATL
is not syntactic sugar. Also, this is in contrast with previous works
[7, 10, 22] that consider modalities (e.g., CTL, LTL, µ-calculus) ca-
pable of expressing only the temporal evolution of the system, but do
not support naturally the specification of strategic abilities of agents.

To interpret FO-ATL formulas, we introduce a suitable notion of
local strategy.



Definition 6 (Strategy) An imperfect information, memoryless
strategy (henceforth simply a strategy) for an agent module m ∈ M
is a function fm : L → Actm such that for every local state l ∈ L,
(fm(l), σ) ∈ Prm(l) for some interpretation σ ∈ Σ.

We can check that strategies, as introduced in Def. 6, are uniform
in the sense of [28], as they only depend on the local state of agents.
In particular, if s ∼m s′, then lm = l′m by definition, and therefore
fm(lm) = fm(l′m).

Given an IRMS M , a path λ is an infinite sequence s0s1 . . . of
states, in which λ(i) denotes the i+1-th element si of λ. Further, for
a set FC = {fm | m ∈ C} of strategies, a path λ is FC -compatible
iff for every j ≥ 0, λ(j + 1) = τ(λ(j), γ, σ) for some joint action
γ and interpretation σ such that (i) for m ∈ C, γm = fm(λ(j)m);
and (ii) for m /∈ C, (γm, σm) ∈ Prm(λ(j)m). We denote the set of
FC -compatible paths from state s as out(s, FC).

In the following definition we assume that the sets of parameters
appearing in commands and in formula φ are disjoint. This can be
done without loss of generality, as both sets are finite and defined at
design-time.

Definition 7 (Satisfaction) Given an IRMS M , a state s satisfies
an FO-ATL formula ψ for interpretation σ, or (M, s, σ) |= ψ, iff
(clauses for propositional connectives are immediate and thus omit-
ted).

(M, s, σ) |= φ iff (s, σ) |= φ, where φ is an FO-formula
(M, s, σ) |= ∀xψ iff for every u ∈ s(V ), (M, s, σxu) |= ψ
(M, s, σ) |= 〈〈C〉〉Xψ iff for some strategy FC , for all λ ∈ out(s, FC),

(M,λ(1), σ) |= ψ
(M, s, σ) |= 〈〈C〉〉Gψ iff for some strategy FC , for all λ ∈ out(s, FC),

for all i ≥ 0, (M,λ(i), σ) |= ψ
(M, s, σ) |= 〈〈C〉〉(ψUψ′)iff for some strategy FC , for all λ ∈ out(s, FC),

for some i ≥ 0, (M,λ(i), σ) |= ψ′, and
for all j, 0 ≤ j < i implies (M,λ(j), σ) |= ψ

We remark that the semantics of ATL operators in Def. 7 is stan-
dard, while quantification ranges on the active domain s(V ). How-
ever, differently from Def. 4, quantification is not syntactic sugar:
transitions might take us to a successor state s′, in which an individ-
ual u ∈ s(V ) is no longer active, i.e., u /∈ s′(V ). As a consequence,
quantification in FO-ATL gives us a language that is strictly more
expressive than propositional ATL, as it allows to refer to individ-
uals across states. This feature of FO-ATL will become apparent in
Section 3.

An FO-ATL formula ψ is true in state s, or (M, s) |= ψ, iff for
all interpretations σ, (M, s, σ) |= ψ; ψ is true in M , or M |= ψ, iff
for all initial states s ∈ I , (M, s) |= ψ. We can now state the model
checking problem for infinite-state reactive module systems against
FO-ATL.

Definition 8 (Model Checking) Given an IRMS M and an FO-
ATL formula ψ, the model checking problem concerns determining
whether M |= ψ.

Notice that M is an infinite-state system, and the model checking
problem for infinite-state data-aware systems is normally undecid-
able [18]. However, in what follows we define an abstraction-based
technique to obtain decidability. First we present some instances of
IRMS.

3 Auctions
In this section we illustrate the formal machinery introduced in Sec-
tion 2 with examples from the literature on auctions. Specifically, we

model English ascending bid auctions and repeated sealed auctions
as infinite-state reactive module systems, and specify the behaviour
of agents participating in the corresponding IRMS by means of FO-
ATL formulas. We provide an informal description of these auction-
ing mechanisms and refer to [20] for further details.

In English auctions several bidders bid for an item auctioned by
the auctioneer. All the participating agents can be represented as
modules, beginning with the auctioneer.

Definition 9 (Auctioneer) The auctioneer module ma =
〈ctra, inita, updatea〉 is such that

• ctra = {base, t out} = infta, while priva = ∅. Variable t out
has type boolean, while base ranges over the rational numbers.

• inita contains guarded commands:

> ; base := x1; t out := ⊥

• updatea contains guarded commands skip and

t out = ⊥ ; t out := >
t out = > ; base := x2; t out := ⊥

Intuitively, the auctioneer module keeps track of the base price
base for the auctioned item (given as a rational), and owns a boolean
variable t out to terminate non-deterministically the bidding round
(both are public). At the start of the execution the auctioneer ini-
tialises the base price base to a random rational number x1 and t out
to false (⊥). Then, by using the updates, she can either do nothing or
terminate the bidding round, and then start a new one, with a different
base price x2 for a possibly different item.

The modules for bidders can be given as follows.

Definition 10 (Bidder) The bidder module mi =
〈ctri, initi, updatei〉 is such that

• ctri = {tvaluei, bidi} with infti = {bidi} and privi =
{tvaluei}. Both tvaluei and bidi range over rational numbers.

• initi contains guarded commands:

> ; bidi := uu; tvaluei := x3

• updatei contains guarded commands skip and

(t out = ⊥) ∧
∧

j∈M

(bidj = uu) ∧ (x4 ≤ tvaluei) ; bidi := x4

(t out = ⊥) ∧
∨
j 6=i

(bidi < bidj)∧

∧
j 6=i

(bidj 6= uu→ bidj < x5) ∧ (x5 ≤ tvaluei) ; bidi := x5

t out = > ; bidi := uu;

tvaluei := x6

By Def. 10 every bidder i has a private true value tvaluei ∈ Q,
up to which she is happy to bid, and a public bidi ∈ Q. At the begin-
ning she initialises her true value, while her bid is set to ‘undefined’.
Thereafter, she might choose to bid and then update it according to
the other bidders’ offers. At the end of the bidding round, she reini-
tialises her true value for a new round.

Given the auctioneer and bidder modules as defined above, an
IRMS for an English auction is a set M = {ma,m1, . . . ,mn}
of modules for the auctioneer a and bidders b1, . . . , bn. Since base
prices, true values, and bids all take rationals as values,M is actually
an infinite-state system. Notice that IRMS M is non-terminating, as



agents can skip indefinitely. We can eliminate such behaviours by
introducing fairness constraints. Also, new items are put on auction,
thus bidders can take part in successive auctions.

As a further example of the expressivity of IRMS we present mod-
ules for a repeated sealed auction, in which, differently from above,
the winning bid is used to provide feedback on the value of the base
price and true values for the next bidding round. This scenario is in-
spired to real-time bidding, where this feedback is provided by com-
plex algorithms [32]. Given the limited expressivity of our specifica-
tion language, here we consider a much simpler mechanism.

We start with a new module for the auctioneer.

Definition 11 (Auctioneer) The auctioneer module ma =
〈ctra, inita, updatea〉 is such that

• ctra = {base, t out, w bid} = intfa, while priva = ∅, where
w bid has type rational;

• inita contains guarded commands:

> ; base := x7; t out := ⊥;w bid := uu;

• update contains guarded commands

(t out = ⊥) ∧
∨
i∈M

(bidi = x8)∧

∧
j 6=i

(bidj 6= uu→ bidj ≤ bidi) ; w bid = x8 ∧ t out := >

(t out = >) ∧ (x9 ≤ w bid) ; base := x9; t out := ⊥

By Def. 11 bidding rounds are only one-step long (given by tog-
gling t out from false to true), in line with sealed auctions. Further,
the auctioneer keeps track of the highest (winning) bid w bid, and
makes use of this value as upper bound when setting the new base
price for the next bidding round.

As regards bidders, the corresponding module is as follows:

Definition 12 (Bidder) The bidder module mi =
〈ctri, initi, updatei〉 is such that component initi is given as
above, while

• ctri = {tvaluei, bidi} = privi and intfi = ∅;
• updatei contains guarded commands skip and

(t out = ⊥) ∧ (x9 ≤ tvaluei) ; bidi := x9

(t out = >) ∧ (w bid ≤ x10) ; bidi := uu; tvaluei := x10

Notice that, differently from Def. 10, now bids are private, all bid-
ders submit them at the same time and cannot raise them, as it is cus-
tomary in sealed bid auctions. Moreover, bidders use the winning bid
as lower bound when setting the new true value for the next bidding
round. We observe that the feedback provided by the winning bid
is rather crude; more sophisticated mechanisms can be considered.
Note that no quantification appears in the guards of commands for
the auctioneer and bidders. In fact, we remarked above that quantifi-
cation in guards is purely syntactic sugar. However, this is no longer
the case when quantification in combined with ATL operators, as we
now show.

Once we modelled auctions as IRMS, we might want to verify the
behaviour of the auctioneer and bidders against properties written in
FO-ATL. For instance, we might want to check that there is always
one base price base and each bidder i is associated with at most one
defined true value tvaluei (possibly none). This can be expressed in
FO-ATL as follows:

AG(∃!x(base = x) ∧ ∃≤1y(y 6= uu ∧ tvaluei = y))

where the CTL operator AG is tantamount to 〈〈∅〉〉G, and quantifiers
∃! and ∃≤1 are defined as standard in first-order logic with identity.

Further, each bidder bi can (has a strategy to) bid less or as much
as her true value:

〈〈bi〉〉G (bidi ≤ tvaluei)

More interestingly, we can specify elaborate strategic abilities of
agents. For instance, each bidder bi can raise her bid unless she has
already hit her true value:

AG ∀x(x = bidi → (x = tvaluei∨〈〈bi〉〉F ∃y(y > x∧y = bidi))) (1)

Observe that in (1) the use of quantification on parameters allows
us to compare values of bidi at different moments of the system’s
execution. Such features are not expressible in a purely propositional
language.

A crucial notion to analyse in auctions is collusion: does a certain
coalition C of bidders have a strategy to win the auction, possibly
by bidding a lower amount than ‘normally necessary’? In order to
express variants of this property in FO-ATL, we introduce a formula
wini = t out ∧

∧
j 6=i(bidj ≤ bidi), which intuitively says that bid-

der bi is among the winners of the current auction (we may have mul-
tiple winner, but this issue is not relevant for the present discussion).
The simplest form of collusion we can specify in FO-ATL states that
coalition C can act so as to enforce that one of its members eventu-
ally wins:

〈〈C〉〉F
∨
bi∈C

wini

Yet another key property analysed on auctions is manipulability:
certain agents might exploit the auction design to their benefit. For
instance, we might want to check that if bidder bi has a strategy to
win by bidding x, then, no matter what the other bidders do, bi has a
strategy to win in which x is strictly less than her true value:

AG ∀x(〈〈bi〉〉(wini∧bidi = x)→ [[Ag\{bi}]](wini∧x < tvaluei))

We conclude this section by observing that IRMS, together with
FO-ATL, are a sound framework to represent various relevant types
of auctions, as well as to specify interesting properties thereof. In the
following section we study the problem of verifying these properties
on infinite-state reactive module systems.

4 Decidability by Finite Abstraction
In this section we introduce abstractions of infinite-state reactive
module systems, and show that, under specific assumptions, these
abstractions are finite. Moreover, we prove a preservation result for
FO-ATL specifications that allows us to verify an IRSM by model
checking its finite abstraction. Here we use ideas from [10, 9], but
contextualise them to ATL specifications. In the rest of the section
we consider a finite abstract interpretation domainDA

T for every type
T . We start by considering a notion of abstract (global) state.

Definition 13 (Abstract Global State) Given an IRMS M =
{m1, . . . ,m|Ag|}, an abstract global state is a tuple s =
〈θ1, . . . , θ|Ag|〉 of interpretations θm : cntm → DA, together with
a total order ≤s defined on each DA

T (when appropriate).

Notice that, differently from the concrete global states in Sec-
tion 2, the total order ≤s depends on the particular abstract state s,
rather than being defined on DT .



Next, we introduce a notion of isomorphism between concrete and
abstract states.

Definition 14 (Isomorphism) A global state s and an abstract state
s′ are isomorphic, or s ' s′, iff for some type-consistent bijection
ι : s(V ) 7→ s′(V ), we have

(i) for every m ∈ Ag, θ′m = ι ◦ θm;
(ii) ι preserves ≤, that is, for every v, v′ ∈ V , s(v) ≤ s(v′) iff

s′(v) ≤s′ s′(v′).

Any function ι as above is a witness for s ' s′, or s
ι' s′ for short.

Intuitively, isomorphic states share the same relational structure.
Observe that, as regards order ≤s′ , witness ι preserves the interpre-
tation of individuals in the active domain s′(V ) only. This feature of
isomorphisms is key to obtain finite abstractions.

Now we show that isomorphic states satisfy the same FO-formulas
φ. However, φ might contain free variables interpreted outside the
active domain. This remark motivates the following definition.

Definition 15 (Equivalent Interpretations) Given a state s, an iso-
morphic abstract state s′, and a FO-formula φ, the finite interpreta-
tions σ : fr(φ) 7→ D and σ′ : fr(φ) 7→ DA are equivalent for
φ w.r.t. s and s′ iff for some bijection χ : s(V ) ∪ σ(fr(φ)) 7→
s′(V ) ∪ σ′(fr(φ)), we have

(i) the restriction χ|s(V ) is a witness for s ' s′;
(ii) σ′ = χ ◦ σ;

(iii) for every u, u′ ∈ s(V ) ∪ σ(fr(φ)), u ≤ u′ iff χ(u) ≤s′ χ(u′).

Again, notice that for order ≤s′ , a witness χ preserves only the
interpretation of individuals in s′(V ) ∪ σ(fr(φ)), which are in finite
number. As customary in first-order logic, we can prove that equiv-
alent assignments on isomorphic states preserve FO-formulas. We
report this result for our particular setting.

Lemma 1 Given a state s, and an isomorphic abstract state s′, if
interpretations σ and σ′ are equivalent for FO-formula φ w.r.t. s and
s′, then

(s, σ) |= φ iff (s′, σ′) |= φ

Proof. The proof is by induction on the structure of φ. If φ ≡ (z =
z′), then (s, σ) |= φ iff (s, σ)(z) = (s, σ)(z′). In particular, for
some bijection χ : s(V ) ∪ σ(fr(φ)) 7→ s′(V ) ∪ σ′(fr(φ)), we have
s
χ
' s′ and σ′ = χ ◦ σ. Hence, (s′, σ′)(z) = (χ ◦ s, χ ◦ σ)(z) =

χ((s, σ)(z)) = χ((s, σ)(z′)) = (s′, σ′)(z′), as required.
If φ ≡ (z ≤ z′), then (s, σ) |= φ iff (s, σ)(z) ≤ (s, σ)(z′).

Again, this is the case iff (s′, σ′)(z) ≤s′ (s′, σ′)(z′), as s
χ
' s′ and

for every u, u′ ∈ s(V ) ∪ σ(fr(φ)), u ≤ u′ iff χ(u) ≤s′ χ(u′).
The cases for propositional connectives are immediate.
If φ ≡ ∀xψ, then (s, σ) |= φ iff for all u ∈ s(V ), (s, σxu) |=

ψ. Observe that interpretations σxu and σ′xχ(u) are equivalent for ψ
w.r.t. s and s′. Hence, by induction hypothesis, (s′, σ′xχ(u)) |= ψ.
Since u is arbitrary and χ : s(V ) → s′(V ) is a bijection, we have
that (s′, σ′) |= φ.

Lemma 1 also applies to local states. Hence, if s, s′ are isomor-
phic, and σ, σ′ are equivalent for all guards gγ of module m’s com-
mands, then ‘isomorphic’ actions are available to module m in s and
s′, that is, (γ, σ) ∈ Prm(sm) iff (γ, σ′) ∈ Pr′m(s′m), for the same
command γ. This remark will be frequently used in the following,
without explicitly mentioning it.

We now define the execution of an infinite-state reactive module
system on the abstract domain DA. Given an IRMS M defined on
infinite domainD, the abstractionMA ofM is the same IRMS, exe-
cuted on abstract domainDA with a different semantics. Specifically,
the abstract componentsActAm,ACTA, PrAm, and SA are defined as
for M (in particular, ActAm = Actm and ACTA = ACT ), while
components IA and τA are given as follows:

• IA is the set of abstract states s′ such that for every v ∈ V ,
s′(v) = σ(x) for some state s, interpretation σ, and initialisa-
tion command γ, such that (s, σ) |= gγ . Moreover, ≤s′ is any
total linear extension on DA of the partial order ≤s |s′(V );

• τA : GA × ACTA × ΣA → 2G
A

is such that s′ ∈ τA(s, γ, σ)
iff (i) for all m ∈ M , (γm, σm) ∈ PrAm(lm); and (ii) s′(vi) =
σ(xi). Moreover, ≤s′ is any total linear extension of the partial
order ≤s |s′(V ).

The main difference between the concrete and abstract execution
of an IRMS is that in the latter the total orders are updated at each
transition. Specifically, in a transition from a state s to s′ we preserve
the order ≤s on the elements in s that appear also in the active do-
main of s′. As to the remaining elements inDA\(s(V )∩s′(V )), we
extend the restriction ≤s |V (s′) to the whole DA arbitrarily. Notice
that this can be done in polynomial time. By doing so, the abstract
transition τA is non-deterministic, differently from the concrete τ . In
particular, all abstract states s′ ∈ τA(s, γ, σ) are total completions
of the partial order ≤s |s′(V ).

We now prove that Lemma 1 can be lifted to the full language
FO-ATL. To do so, we need a few more definitions. First, an IRMS
is dense (with no end points) iff for each type, the total linear order
≤ is. Also, for a type T , parT (ψ) is the set of all parameters (free
and bound) appearing in ψ, while NT denotes the set of parameters
appearing in all guarded command, for all agents. For instance, in
the IRMS for English auctions in Section 3, for the type of rational
numbers N = 2 + 4n, where n is the number of bidders. Finally, for
a coalition C ⊆ Ag, a C-action γC ∈ ActC is a tuple of commands
for all agents in C. We say that a joint action γ′ ∈ ACT extends γC ,
or γ′ w γC , iff for all i ∈ C, γ′i = γi.

We now prove the following auxiliary lemma, which states that,
provided a sufficient number of abstract values, transitions in a dense
IRMS M (with no endpoints) can be replicated in the abstraction
MA, and viceversa.

Lemma 2 Consider a dense IRMS M with abstraction MA, a state
s ∈ S, an isomorphic abstract state s′ ∈ S′, and an FO-ATL formula
ψ. If for every type T , |DA

T | ≥ |VT | + |parT (ψ)| + |NT |, then for
every assignments σ and σ′ equivalent for ψ w.r.t. s and s′, we have

1. for every C-action γC ∈ ActC and finite interpretation ρC , if
for every m ∈ C, (γm, ρm) ∈ Prm(lm), then there exists a fi-
nite interpretation ρ′C such that for every m ∈ C, (γm, ρ

′
m) ∈

PrAm(l′m), and for every extension γ w γC and ρ′ ⊇ ρ′C , if

s′
γ,ρ′−−→ t′, then for some extension ρ ⊇ ρC , s

γ,ρ−−→ t and σ
and σ′ are equivalent for ψ w.r.t. t and t′.

2. for every C-action γ′C ∈ ActAC and finite interpretation ρ′C , if
for every m ∈ C, (γ′m, ρ

′
m) ∈ PrAm(l′m), then there exists a fi-

nite interpretation ρC such that for every m ∈ C, (γ′m, ρm) ∈
Prm(lm), and for every extension γ′ w γ′C and ρ ⊇ ρC , if

s
γ′,ρ−−→ t, then for some extension ρ′ ⊇ ρ′C , s′

γ′,ρ′−−−→ t′ and σ
and σ′ are equivalent for ψ w.r.t. t and t′.

Proof. To prove (1), let χ : s(V )∪σ(fr(ψ)) 7→ s′(V )∪σ′(fr(ψ))
be a bijection witnessing that σ and σ′ are equivalent for ψ w.r.t. s



and s′, i.e., σ′ = χ ◦ σ. Also, consider C-action γC and finite in-
terpretation ρC such that for every m ∈ C, (γm, ρm) ∈ Prm(lm).
Since for every type T , |DA

T | ≥ |VT |+|parT (ϕ)|+|NT |, we can ex-
tend χ to an injective function χ : s(V )∪σ(fr(ψ))∪ρC(N)→ DA

satisfying the condition: u ≤ u′ iff χ(u) ≤s′ χ(u′). Then define
ρ′C = χ ◦ ρC . By construction and Lemma 1, for every m ∈ C
and action γm, (l′m, ρ

′
m) |= gm iff (lm, ρm) |= gm. Hence, ac-

tion γC is enabled in state s′ as well. Then, consider the execution
of any joint action γ w γC with parameters ρ′ ⊇ ρ′C , thus giv-

ing s′
γ,ρ′−−→ t′ for some t′ ∈ SA. Since the IRMS M is infinite,

dense, and with no end points, we can always find a further exten-
sion χ : s′(V ) ∪ σ′(fr(ψ)) ∪ ρ′(N) → D, that agrees with the
converse χ−1 of χ on s′(V )∪ σ′(fr(ψ))∪ ρ′C(N) and also satisfies
the condition: u ≤s′ u′ iff χ(u) ≤ χ(u′). Then define ρ = χ ◦ ρ′.
Again, by construction and Lemma 1, for every m ∈ Ag and action
γm, (lm, ρm) |= gm iff (l′m, ρ

′
m) |= gm. Hence, joint action γ is

also enabled in state s, and the execution of γ in s with parameters ρ
gives s

γ,ρ−−→ t, where in particular t is isomorphic to t′ with witness
χ. Also, by the construction above, σ and σ′ are equivalent for ψ
w.r.t. t and t′.

The proof for (2) follows a similar line of reasoning: given a C-
action γ′C ∈ ActAC and finite interpretation ρ′C such that for every
m ∈ C, (γ′m, ρ

′
m) ∈ PrAm(l′m), by exploiting the density of M (and

the lack of end points), we can construct a finite interpretation ρC
such that for every m ∈ C, (γ′m, ρm) ∈ Prm(lm). Moreover, for

every joint action γ′ w γ′C and extension ρ ⊇ ρC , if s
γ′,ρ−−→ t,

then by using the constraint on the cardinality of DA in MA, we can

construct an extension ρ′ ⊇ ρ′C such that s′
γ′,ρ′−−−→ t′ and σ and σ′

are equivalent for ψ w.r.t. t and t′.

Lemma 2 states that, by the constraint on the cardinality of DA,
in abstraction MA we have ‘enough’ elements to simulate the tran-
sitions in M . On the other hand, by using density (and the lack of
endpoints), in M we can simulate the transitions in abstraction MA.
Actually, Lemma 2 provides a notion of alternating bisimulation for
first-order ATL, which is an original contribution of the paper to our
knowledge. Also, this result is applied in the proof of the following
key lemma.

Lemma 3 Consider a dense IRMS M with abstraction MA, state
s ∈ S and isomorphic abstract state s′ ∈ S′, and an FO-ATL for-
mula ψ. If for every type T , |DA

T | ≥ |VT |+ |parT (ϕ)|+ |NT |, then
for every assignments σ and σ′ equivalent for ψ w.r.t. s and s′, we
have

1. for every joint strategy FC , there exists F ′C such that for every
λ′ ∈ out(s′, F ′C), there exists some λ ∈ out(s, FC) such that for
all i ≥ 0, σ and σ′ are equivalent for ψ w.r.t. λ(i) and λ′(i).

2. for every joint strategy F ′C , there exists FC such that for every
λ ∈ out(s, FC), there exists some λ′ ∈ out(s′, F ′C) such that for
all i ≥ 0, σ and σ′ are equivalent for ψ w.r.t. λ(i) and λ′(i).

Proof. We begin by proving (1). We build the strategy F ′C and prove
the statement of the lemma by induction on length n of paths. For
n = 0, we have that σ and σ′ are equivalent for ψ w.r.t. λ(0) = s
and λ′(0) = s′. As to the inductive step, suppose that σ and σ′

are equivalent for ϕ w.r.t. λ(i) and λ′(i), and consider C-action γC
such that for every m ∈ C, γm ∈ FC(λ(i)m) and finite interpreta-
tion ρC such that for every m ∈ C, (γm, ρm) ∈ Prm(lm). We set
F ′C(λ′(i)m) = γm for every m ∈ C. In particular, by Lemma 2.1
there exists a finite interpretation ρ′C such that for every m ∈ C,
(γm, ρ

′
m) ∈ PrAm(l′m). Now consider the joint action γ w γC

and extension ρ′ ⊇ ρ′C such that λ′(i)
γ,ρ′−−→ λ′(i + 1). Again by

Lemma 2.1, there exist some extension ρ ⊇ ρC and t ∈ S such that
λ(i)

γ,ρ−−→ t. Then, set λ(i+1) = t. In particular, σ and σ′ are equiv-
alent for ψ w.r.t. λ(i+ 1) and λ′(i+ 1), and therefore the statement
of the lemma is satisfied.

Item (2) is proved similarly, by using Lemma 2.2 instead.

Intuitively, Lemma 3 states that joint strategies can be simulated
between M and its abstraction MA, provided that the relevant con-
straint are met. By this lemma we can prove the main result of this
section.

Theorem 4 Consider a dense IRMS M , its abstraction MA, a state
s ∈ S, an isomorphic abstract state s′ ∈ S′, and an FO-ATL formula
ψ. If for every type T , |DA

T | ≥ |VT | + |parT (ϕ)| + |NT |, then for
every assignments σ and σ′ equivalent for ψ w.r.t. s and s′, we have
that

(M, s, σ) |= ψ iff (MA, s′, σ′) |= ψ.

Proof. The proof is by induction on the structure of ψ. The base case
for first-order formulas follows by Lemma 1; the inductive cases for
propositional connectives are immediate. In particular, notice that,
since for every type T , |DA

T | ≥ |VT |+|parT (¬ψ)|+|NT | = |VT |+
|parT (ψ)|+ |NT | and |DA

T | ≥ |VT |+ |parT (ψ1 ∧ ψ2)|+ |NT | ≥
|VT | + |parT (ψi)| + |NT |, for i = 1, 2, the induction hypothesis
holds.

For ψ ≡ ∀xφ, (M, s, σ) |= ψ iff for all u ∈ s(V ), (M, s, σxu) |=
φ. If χ is a witness to the fact that σ and σ′ equivalent for ψ w.r.t. s
and s′, then interpretations σxu and σ′xχ(u) are equivalent for φ (also
w.r.t. s and s′). Moreover, |DA

T | ≥ |VT | + |parT (ψ)| + |NT | ≥
|VT |+ |parT (φ)|+ |NT |. Hence, the induction hypothesis holds and
it follows that (MA, s′, σ′xχ(u)) |= φ. Since χ is a bijection, we obtain
that (MA, s′, σ′) |= ψ.

Suppose that ψ ≡ 〈〈C〉〉Xφ. As regards the ⇒ direction,
(M, s, σ) |= ψ iff for some joint strategy FC , for every λ ∈
out(s, FC), (M,λ(1), σ) |= φ. By Lemma 3.1 there exists a strat-
egy F ′C depending on FC , such that for every λ′ ∈ out(s′, F ′C),
there exists some λ ∈ out(s, FC) such that σ and σ′ are
equivalent for ϕ w.r.t. λ(1) and λ′(1). Since |DA

T | ≥ |VT | +
|parT (ψ)| + |NT | = |VT | + |parT (φ)| + |NT |, by induction hy-
pothesis (MA, λ′(1), σ′) |= ψ for every λ′ ∈ out(s′, F ′C), that is,
(MA, s′, σ′) |= ψ. The ⇐ direction is proved similarly, by using
Lemma 3.2. The proof for the other ATL operators follows an analo-
gous line of reasoning.

By Theorem 4 a dense IRMS M and its abstraction MA satisfy
the same formulas in FO-ATL, whenever the abstract domain DA

contains enough elements to replicate transitions in M . Most impor-
tantly, MA can be assumed to be finite. As a consequence, we can
verify an FO-ATL formula ψ on M by model checking MA. We
state this last result formally in the following corollary.

Corollary 5 Consider a dense IRMSM , its abstractionMA, and an
FO-ATL formula ϕ. If for every type T , |DA

T | ≥ |VT |+ |parT (ϕ)|+
|NT |, then

M |= ϕ iff MA |= ϕ

To conclude, we have identified a significant class of infinite-state
reactive module systems for which the model checking problem is
decidable. Specifically, whenever, the orders on the domains of in-
terpretations are assumed to be dense, with no end points, as it is



the case for the rational number in the auction IRMS, by choosing
a domain of abstract values of appropriate cardinality, we can con-
struct a finite abstraction that preserves the interpretation of FO-ATL
formulas.

5 Discussion: Complexity and Abstract Auctions
In Section 4 we provided an abstraction-based technique for the ver-
ification of IRMS. Here we elaborate more on the model checking
procedure.

By previous contributions [18, 10] we know that the model check-
ing problem for finite general data-aware systems, against a first-
order extension of CTL, is EXPSPACE-complete in the combined
size |D|+ ||ϕ|| of data and the formula. Since ATL subsumes CTL,
we immediately obtain that model checking finite reactive module
systems against FO-ATL is EXPSPACE-hard. Moreover, by combin-
ing the procedures for model checking ATL under imperfect infor-
mation and first-order logic, we obtain an algorithm in EXPSPACE
for FO-ATL. Hence, we can state the complexity of model checking,
for instance, the finite abstractions in Section 4.

Theorem 6 The model checking problem for finite reactive module
systems with respect to FO-ATL is EXPSPACE-complete in the com-
bined size |D|+ ||ϕ|| of data and the formula.

It should be noted that the complexity is the same as that of model
checking similar structures against first-order CTL [10]. Thus, the
enhanced expressiveness of ATL comes at no extra computational
cost. This is in contrast with the propositional case, where complexity
jumps from PTIME to ∆P

2 under imperfect information [27]. Here
the situation is different as the complexity of model checking data
trumps that of the modal fragment. Moreover, we discussed above
that reactive module can be thought of as compact representations of
transition systems, where states and transitions are given implicitly
in the form of agent programs. Hence, Def. 8 is really an instance of
implicit model checking, whose complexity is typically higher than
the explicit counterparts [12].

Additionally, we anticipate to be able to find cases of interest,
whose complexity is amenable to practical model checking. For ex-
ample, consider the IRMS for English auctions described in Section 3
for n bidders. The only infinite type are the rationals used to represent
bids, true values, and base prices, for which we have |V | = 1 + 2n
variables, |N | = 2 + 4n parameters, and par(φ) = 5n, where φ is
the conjunction of all specifications appearing in Section 3. Thus, to
simulate rational values in the IRMS for English auctions, it is suf-
ficient to consider a domain D of abstract elements, whose size is
|D| ≥ (1 + 2n) + (2 + 4n) + 5n = 3 + 11n, but finite and linear
in the number n of bidders. As a result, to verify English auctions
against the strategic behaviours formalised in Section 3, it is enough
to consider the finite abstraction built on such finite domain D, and
whose execution is described in Section 4. Moreover, to alleviate fur-
ther the verification burden, we can exploit the symmetries of IRMS,
both at the level of data and of the behaviours of agents (e.g., all
bidders share the same actions and protocol). Thus, we envisage to
deploy data-symmetry reductions [16] as well as further abstraction
methodologies (e.g., multi-valued abstraction [8, 29]) on the finite,
abstract reactive module system. We leave this for future work.

6 Conclusions
In this paper we have put forward a technique for the verification of
infinite-state MAS against first-order modal specifications express-
ing strategic abilities of agents. The contributions of the paper are as

follows. Firstly, we have introduced infinite-state reactive modules as
an extension of simple reactive modules [33], which are suitable to
model MAS with variables ranging over infinite domains. Secondly,
we have defined a first-order ATL to specify strategic interactions of
reactive modules in IRMS. However, the execution of IRMS gener-
ates infinite-state systems; these normally admit an undecidable ver-
ification problem. The third contribution consisted in observing that
IRMS admit a decidable verification problem under specific condi-
tions, namely a dense total order with no endpoints. Additional val-
idation of the formalism here studied came from the modelling of
auctions: IRMS were used to describe formally English and repeated
sealed bid auctions, while FO-ATL was employed to capture specifi-
cations accounting for infinite domains. Purely in terms of modelling,
we are not aware of other formalisms able to capture the strategic in-
teraction of agents in a first-order setting. Moreover, to achieve the
decidability results, specifically to show that a finite abstract model
can be used to reason about an IRMS, we introduced a novel notion
of alternating bisimulation at the first order. This notion is likely to be
applicable in similar forms to show decidability for other first-order
logics for strategic reasoning.

Several extensions of the proposed framework appear promising.
Firstly, we envisage to introduce epistemic operators in FO-ATL to
represent individual and group knowledge explicitly, and be able to
express secrecy properties in auctioning scenarios. Secondly, IRMS
can be extended with richer specification languages supporting arith-
metic operations for instance [19].
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