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Overview

@ Background:
> from temporal logic to strategy logic

@ The Problem:
> imperfect information in reasoning about strategies
> weaker semantical properties (w.r.t. perfect information)
> failure of relevant fixed-point characterisations of ATL operators

© The Proposed Solution:

> Methodology: an agent knows the stragy she's using (at least)
> E-ATL: an epistemic extension of ATL

@ The Contribution:
> (partial) characterisations of ATL modalities (X))F, (X))G, (X)) U in contexts of imperfect
information

© Conclusions and Future Work
> applications to the model checking and satisfiability problems



Background

An essential history of temporal logics in CS

'70: Linear-time Temporal Logic (LTL [Pnu77])
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'80: Computation-tree Temporal Logic (CTL [EC82])
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'90: Alternating-time Temporal Logic (ATL [AHKO02])



Background

Alternating-time Temporal Logic

ATL:

a logic of strategic abilities
strategy modality ((X)) expressing that ‘the agents in coalition X have a strategy to enforce ...

LTL modalities next X and until U
interpreted on Concurrent Game Structures . . .

... with a variety of semantical options:

> perfect v. imperfect information
> perfect v. imperfect memory
> objective v. subjective strategies

Perfect information: fixed-point characterisations of ATL operators

(ZNGod < o A(INX(Z)Go (1)
SWFG oV (EWXUT)Fo )
(IN(BUP) = ¢ V(6N (ENX(DN(vUP")) (3)

useful validities: techniques for satisfiability [GS09] and model checking [AHK02, BDJ10]

The Problem: (1)-(3) do not hold in the imperfect information semantics!



The Problem

ATL with Imperfect Information
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Bob chooses secretly between 0 and 1

[ ]

® at the next step Anne also chooses between 0 and 1

® Anne wins the game iff the values provided by the two players coincide
[ ]

the dotted line indicates epistemic indistinguishability
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ATL with Imperfect Information
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The Problem

ATL with Imperfect Information

{(AWF win A
(+,0)

E (ANX(ANF win
(+,1)

(AYF win = (\0) - - -2 = (A)F win
(0,%) ; (1,%)
Y 3 3 A
(3, *) (3, *) (%, *) (%, *)

Bob chooses secretly between 0 and 1

at the next step Anne also chooses between 0 and 1

Anne wins the game iff the values provided by the two players coincide
the dotted line indicates epistemic indistinguishability

Anne knows that there exists a strategy to win the game ...
.. however, she is not able to point this strategy out

< Anne has imperfect information of the game



The Problem

ATL with Imperfect Information
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The Problem

ATL with Imperfect Information
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It looks like it's a question of knowledge

e Anne knows that there is some strategy to win (knowledge de dicto)



The Problem

ATL with Imperfect Information
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It looks like it's a question of knowledge
e Anne knows that there is some strategy to win (knowledge de dicto)
® but there is no strategy known to her to guarantee a win (knowledge de re)



The Problem

ATL with Imperfect Information

X, 1) E Ka((A)F win

0, 1, =
(0, %) (1) ©.) (1,%)
win = @ 1,0 = win
(3, *) (3, %) (3, *) (3, *)

It looks like it's a question of knowledge
e Anne knows that there is some strategy to win (knowledge de dicto)
® but there is no strategy known to her to guarantee a win (knowledge de re)

... Let's try and express this distinction explicitly in our language!



Knowledge and Strategies

Logics of strategic abilities

o Extensions of logics for reactive systems with epistemic operators to reason about the
knowledge agents have of the system’s evolution:

> combinations of CTL and LTL with multi-modal epistemic logic S5, [HV86, HV89, FHMV95]
> successfully applied to MAS specification and verification [GvdM04, KNN'08, LQR09]

o Along these lines, [vdHWO03] introduced ATEL.

> spawned a wealth of contributions:

* imperfect information/uniform strategies [Sch04, JvdH04]
* constructive knowledge [JA07]
* irrevocable/feasible strategies [AGJ07, Jon03]

e E-ATL: a logic of knowledge and strategies (under imperfect information)

> not the first attempt to distinguish knowledge de re/de dicto (ATOL [JvdHO04])
> but here knowledge is not masked by strategy operators



Epistemic Concurrent Game Models
Agents

We adopt an agent-oriented perspective.

Definition (Agent)

An agent i is
® situated in some local state |; € L; and ...
e performs the actions in Act;

e ...according to her protocol function Pr; : L; s 2/

The setting is reminiscent of the Interpreted Systems semantics for MAS [FHMV95].

Example

Anne = (La, Acta, Pra) is defined as
o [p= {GA, }\, 0, 1}
e Acta = {0,1, %}, where * is the skip action
® Pra(ea) = Pra(0) = Pra(1) = {x}, Pra(A\) = {0,1}




Epistemic Concurrent Game Models
ECGM

Interactions amongst agents generate ECGM.

® related to CGS [AHK02, MMPV14] and AETS [vdHWO03]
e global states are not primitive: s = (l, ..., l) € G = Micagl;

® joint actions are tuples o = (o9, ...,0p) € Act = MjcpgAct;

Definition (ECGM)
Given
aset Ag = {iy,...,is} of agents
a set AP of atomic propositions
an ECGM P includes
a finite set | C G of initial global states
a transition function 7 : G x Act — G

an interpretation w : AP — 26 of atomic propositions

e we denote with S the set of reachable global states
o the epistemic indistinguishability relation is not primitive: s ~; s’ iff [; = I



Epistemic Alternating-time Temporal Logic
E-ATL

E-ATL extends ATL with epistemic operators K; for individual knowledge.
Definition (E-ATL)
E-ATL state formulas ¢ and path formulas 1) are defined in BNF as follows:

¢ == pldle—=o| (D] Ko
v o= X | U | Kiyp

where p € AP, i € Ag and X C Ag.

e Syntatically,

> ATEL C E-ATL
> E-ATL and ATEL™ are uncomparable

e Ka{(A)F win: Anne knows that there is some strategy to win the game

e —((A)KaF win: but there is no strategy known to her to guarantee a win



Epistemic Concurrent Game Models

Strategies

Definition (Strategy)

An i-strategy f; : GT +— Act; maps finite sequences of states to enabled i-actions (i.e., fi(s) € Pri(l;)).

e for a group ¥ = {ig, ..., I¢} of agents, a group strategy fy is a tuple (fy, ..., f;)
® arun \is a sequence s° — s! — ... of states s.t. 71 = 7(s', o) for some joint action o € Act

® arun X belongs to outcome out(s, f) iff A(i + 1) € T(A(i), (fz, f£)(A(i))) for some T-strategy fi.
Under imperfect information, strategies depend on the local state of agents only.

Definition (Uniform Strategy [JvdHO04])

An j-strategy is uniform iff for all states s,s’ € S, s ~; s’ implies fi(s) = f;(s’).

e A uniform i-strategy f; : L; — Act; maps local states to enabled i-actions (i.e., fi(l;) € Pri(l;)).



Semantics of E-ATL

Formal definition

Definition (Satisfaction)

An ECGM 7P satisfies a formula ¢ in a state s (possibly w.r.t. a strategy profile faz) as follows:

(P,s)=p iff  semn(p)

(P,s) = (Z)y iff  for some T-strategy fy, for all T-strategies f, (P, s, (fx, f5)) = ¢
(P,s) = Kig iff  forevery s’ € S, s ~; s’ implies (P,s’) E ¢

(P, s, fag) = Xo iff  for X = out(s, fag), (P, (1)) E ¢

(P,s,fag) = U’ iff  for X\ = out(s, fag), for some k > 0, (P, A(k)) = ¢’

and 0 < j < k implies (P, \(j)) E ¢
(P, s, fag) = Kitb iff  forevery s’ €S, s~;s implies (P,s', fag) =9




The Working Hypothesis

Fixed-point Characterisations

(iHGp < dALINX((INGoN (Ki{i) G — (INKiGo))
(IVFo o oV WX Fo A K U) Fo — (iVKFe))

(N@Ue) = oV (@ ALYXIN(PUS) A K (i) (0Ud) = (i) Ki(vU9))))

e Single agent case only.
e Also, negations appear in (4)-(6),
> hence, the corresponding functions are not monotonous.

= Least and greatest fixed points might not exist.

4)
®)
(6)



The Working Hypothesis

The puzzle revisited

{(AWF win A
(*,0) (*,1)
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* (A,0)
° (),0)

= Ka{((A)) F win: Anne knows that there is some strategy to win the game
&

((AY) KaF win: but there is no strategy known to her to guarantee a win



More Problems . ..

and a first solution
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and a first solution
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More Problems . ..

and a first solution

(ANF win <

(0, %) ) %)
Ka(A)F win — (AYKaF win # LA Nl
(0, %) (1,%)
2 *)
"G 3 3 L
(%, *) (3, *) (%, %) (%, *)

e Methodology: agents know the strategy they are using (context)

e ECGM P satisfies formula ¢ in state s w.r.t. strategy profile 4z and context Vs, = (W, . ..

(P,s, Vag) E Kig iff for every s’ € Vi, s ~; s” implies (P, s, Vag) E ¢

(P,s, Vag, fag) | Kip  iff forevery s’ € Vi, s ~; s’ implies (P, s', Vag, fag) = ¥

(P, s, Vag) E (XN iff for some X-strategies fy, for all X-strategies f,
(P,s,out(V1, f1),...,out(Ve, fp),(fs, f5)) E

e A formula ¢ is satisfied at s iff it is satisfied in context ({s}, ..., {s}).

Vo) iff



Yet More Problems . ..

and a second attempt

(A)F win =
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Yet More Problems . ..

and a second attempt

(A)F win =
(0, %) (1, %)
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Ka((A)F win — (A)KaF win A
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Yet More Problems . ..

and a second attempt

(A)F win =
(0, = (1, %)

(17 *)
(0, =
win =| @ ? ? |= win

(%, *) (3, *) (%, *)

® Let's consider a perfect memory semantics

e ECGM P satisfies formula ¢ at history h w.r.t. strategy profile fa, and context Vs, = (Vo, ...,

(P, h, Vag) = Kid iff for every h’ € V;, h ~; h" implies (P, h’, Vag) E ¢
(P, h, Vag, fag) = Kinp  iff forevery i’ € Vi, h~; b implies (P, h', Vag, fag) E 9
(P, h, Vag) E (ZN iff for some Y-strategies fy, for all X-strategies fs,

(P, h,out(Vi, f), ..., out(Ve, fo), (f, f5)) E o

V) iff



A (Fixed-point) Characterisation

e by considering a semantics with imperfect information but perfect memory, formulas (4)-(6)
are valid.

e actually, they can be reduced to the following equivalences:

(NG < oA (ENX((XNELGH)
(ZNFe & oV (ENX((Z)ELF¢)
(EN(eU) ¢ V(oA (ENX((Z)Ex(9U)))

Limitations:

e ¢ must be purely temporal!

e no unfolding!



Conclusions

Results:
e E-ATL: a logic for reasoning about knowledge and strategies in a multi-agent setting
e Methodology: agents know the strategy they are using, that is, their context

e under perfect memory E-ATL allows us to (partially) recover the characterisation of ATL
operators

and Future Work:

e Extension to arbitrary formulas (arbitrary contexts)

Application (algorithms?) to satisfiability

| R ir iR
sub [ obj sub [ obj
[ SAT [[ EXPTIME | EXPTIME | no result [ no result | no result [ no result |

> perfect () and imperfect (i) information
> perfect (R) and imperfect (r) memory
> subjective and objective strategies



Questions?



References

Thomas Agotnes, Valentin Goranko, and Wojciech Jamroga.

Alternating-time temporal logics with irrevocable strategies.

In Proceedings of the 11th Conference on Theoretical Aspects of Rationality and Knowledge, TARK '07, pages 15-24, New York, NY, USA, 2007
ACM

Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman.

Alternating-time temporal logic.
J. ACM, 49(5):672-713, 2002.

Nils Bulling, Jurgen Dix, and Wojciech Jamroga.

Model checking logics of strategic ability: Complexity*.
In Mehdi Dastani, Koen V. Hindriks, and John-Jules Charles Meyer, editors, Specification and Verification of Multi-agent Systems, pages 125-159
Springer US, 2010.

E. A. Emerson and E. M. Clarke.

Using branching-time temporal logic to synthesize synchronization skeletons.
Science of Computer Programming, 2(3):241-266, 1982.

R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi.

Reasoning About Knowledge.
The MIT Press, 1995

V. Goranko and D. Shkatov.

Tableau-based decision procedures for logics of strategic ability in multiagent systems.
ACM Trans. Comput. Log., 11(1), 2009

Peter Gammie and Ron van der Meyden.

Mck: Model checking the logic of knowledge.
In Rajeev Alur and Doron Peled, editors, CAV, volume 3114 of Lecture Notes in Computer Science, pages 479-483. Springer, 2004

Joseph Y. Halpern and Moshe Y. Vardi.

The lexity of ing about k ledge and time: E ded abstract.
In Juris Hartmanis, editor, STOC, pages 304-315. ACM, 1986

T I O T R P 1A T A 11

Joseph Y. Halpern and Moshe Y. Vardi.

The c lexity of ing about k ledge and time. i. lower bounds.
J. Comput. Syst. Sci., 38(1):195-237, 1989.

Dg



