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ABSTRACT

Resource-aware logics to represent strategic abilities in multi-agent
systems are notoriously hard to handle as they combine strate-
gic reasoning with reasoning about resources. In this work, we
begin by providing a general overview of the model-checking re-
sults currently available for the Resource-bounded Alternating-time
Temporal Logic RB±ATL. This allows us to identify several open
problems in the literature, as well as to establish relationships with
RBTL-like logics, when RB±ATL is restricted to a single agent. Then,
we tackle one such open problem that we deem highly significant:
we show that model checking RB±ATL is ptime-complete when
restricted to a single agent and a single resource. To do so, we
make a valuable detour on vector addition systems with states, by
proving new complexity results for their state-reachability and non-
termination problems, when restricted to a single counter. Thus,
reasoning about resources comes at no computational extra cost in
the single-resource, single-agent case.
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1 INTRODUCTION

In recent years, logic-based languages for specifying the strategic
behaviours of agents in multi-agent systems have been the object
of increasing interest. A wealth of logics for strategies have been
proposed in the literature, including Alternating-time Temporal
Logic [10], possibly with strategy contexts [27], Coalition Logic [32],
Strategy Logic [17, 31], among others. The expressive power of
these formalisms has been thoroughly studied, as well as the cor-
responding verification problems, thus leading to model checking
tools for game structures and multi-agent systems [9, 16, 25, 30].

It is worth noticing that the computational models underlying
these logic-based languages share a common feature: actions are
normally modelled as abstract objects (typically a labelling on tran-
sitions) that bear no computational cost. However, if logics for
strategies are to be applied to concrete multi-agent systems of in-
terest, it is key to account for the resources actions might consume

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,

Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

or produce. These considerations have prompted recently investi-
gations in resource-aware logics for strategies. Obviously, there is
a long tradition in resource-aware logics that dates back at least to
substructural and linear logics (see e.g. [33]). More specifically, in
this paper we follow the line of Resource-bounded Alternating-time

Temporal Logics [1–5, 7], which are characterised by two main fea-
tures: firstly, actions in concurrent game structures are endowed
with (positive/negative) costs; and secondly, the standard strategy
operators of Alternating-time Temporal Logic (ATL) are indexed
by tuples of natural numbers, intuitively representing the resource
budget available to agents in the coalition. This account has proved
successful in the modelling and verification of a number of multi-
agent scenarios, where reasoning about resources is critical [3].

Our motivation for the present contribution is threefold. First of
all, in the literature there are several gaps in the results available for
the decidability and complexity of the related model checking prob-
lem. For instance, if we assume two resources and two agents in our
multi-agent system, then model checking is known to be pspace-
hard and in exptime, but no tight complexity result is available.
Our long-term aim is to fill all such gaps eventually. Further, while
completing this picture, it is of interest to identify model checking
instances that are tractable. Although the notion of tractable prob-
lem is open to discussion, in the context of strategy and temporal
logics a model checking problem decidable in polynomial time (in
the size of the formula and model) falls certainly within the descrip-
tion. Finally, complexity results for Resource-bounded ATL appear
disseminated in a number of references, and are proved by using a
wealth of different techniques, thus hindering a clear vision of the
state of the art. We aim at developing a unified framework based
on general proof techniques. Vector addition systems with states
(VASS) are key in this respect [26].

Our contribution in this paper is also threefold. Firstly, we give
an overview of the complexity results currently available for both
RB±ATL andRB±ATL∗, the twomost significant flavours of Resource-
bounded ATL. This allows us to point out that, while for RB±ATL∗
we have tight complexity results for any number of resources and
agents, in RB±ATL there are still several open problems, whose
solution is not apparent. Secondly, we extend current model check-
ing results for RB±ATL to a more expressive language including
the release operator R too. Thirdly, we prove that model checking
RB±ATL is ptime-complete, whenwe reason about a single resource
and a single agent. Since we show that this setting is tantamount to
the Computation Tree Logic CTL with a single resource, our result
means that we can reason about resources in CTL at no extra com-
putational cost. Most interestingly, to prove this main contribution
we establish new complexity results for the state-reachability and
nontermination problems in VASS with a single counter. The latter
can be seen as self-standing contributions in formal methods.



Structure of the paper. In Sect. 2, we present background no-
tions on resource-bounded concurrent game structures and ATL-
like logics. In Sect. 2.3, we show that the resource-bounded logics
RBTL∗ and RB±ATL∗ restricted to a single agent have the same
expressive power. In Sect. 3, we prove the main theoretical contri-
butions of the paper. Specifically, in Sect. 3.1 we review the state of
the art on model checking RB±ATL. Then, in Sect. 3.2 we show that
the state-reachability and nontermination problems for VASS with
a single counter are decidable in ptime. Finally, in Sect. 3.3 we lever-
age on our new results for 1-VASS to prove that model checking
RB±ATLwith a single agent and a single resource is ptime-complete.
Sect. 4 concludes the paper, discusses the complexity of RB±ATL∗
fragments, and evokes directions for future work.

2 PRELIMINARIES

Below, we introduce preliminary notions on models for resource-
bounded logics, as well as the logical languages themselves. Our
presentation follows closely [1]. In the rest of the paper,N (resp.Z) is
the set of natural numbers (resp. integers) and [m,m′] withm,m′ ∈
Z is the set {j ∈ Z | m ≤ j ≤ m′}. For a finite or infinite sequence
u ∈ Xω ∪X ∗ of elements in some setX , we writeui for the (i+1)-th
element of u, i.e., u = u0u1 . . .. For i ≥ 0, u≤i is the prefix of u of
length i + 1, i.e., u≤i = u0u1 . . .ui and u≥i is the suffix of u defined
as u≥i = uiui+1 . . .. The length of a finite or infinite sequence
u ∈ Xω ∪ X ∗ is denoted as |u |, where |u | = ω for u ∈ Xω .

2.1 Resource-bounded CGS

Resource-bounded CGS are concurrent game structures [10] en-
riched with counters and a cost function that assigns a cost (either
positive or negative) to every action, thus updating the values of
the counters as the system executes. Hereafter we follow closely [1]
and assume a countably infinite set AP of propositional variables
(or atoms).

Definition 2.1 (RB-CGS). A resource-bounded concurrent game

structure is a tupleM = ⟨Aд,S ,Act ,r ,act ,cost ,δ ,L⟩ such that:
• Aд is a finite, non-empty set of agents (by defaultAд = [1,k]
for some k ≥ 1);
• S is a finite, non-empty set of states s,s ′, . . . ;
• Act is a finite, non-empty set of actions with a distinguished
action idle;
• r ≥ 1 is the number of resources;
• act : S ×Aд → ℘(Act ) \ {∅} is the protocol function, such that
for all s ∈ S and a ∈ Aд, idle ∈ act (s,a);
• cost : S ×Aд ×Act → Zr is the (partial) cost function; that is,
cost (s,a,a) is defined only when a ∈ act (s,a), and moreover,
we assume that cost (s,a,idle) = 0⃗;
• δ : S × (Aд → Act ) → S is the (partial) transition function

such that δ is defined for state s and map f : Aд → Act only
if for every agent a ∈ Aд, f (a) ∈ act (s,a);
• L : AP → ℘(S ) is the labelling function.

Intuitively, a resource-bounded CGS describes the interactions
of a group Aд of agents, who are able to perform the actions in
Act according to the protocol function act . The execution of a joint
action entails a transition in the system, as specified by the function
δ . Moreover, on each transition the values of the r resources are

updated according to the cost of the joint action. The idle action
is introduced in [5, 6] and it is often advantageous in terms of
computational complexity (see e.g. [1, 3] or Section 3). An RB-CGS
M is finite whenever L is restricted to a finite subset of AP . The
size |M | of a finiteM is the size of its encoding when integers are
encoded in binary and, maps and sets are encoded in extension
using a reasonably succinct encoding.

Given a coalition A ⊆ Aд and state s ∈ S , a joint action available

to A in s is a map f : A → Act such that for every agent a ∈ A,
f (a) ∈ act (s,a). The set of all such joint actions is denoted asDA (s ).
Given a state s ∈ S , the set of joint actions available to Aд is simply
denoted as D (s ), and the function δ is defined only for such joint
actions. We write f ⊑ д if Dom( f ) ⊆ Dom(д), and for every agent
a ∈ Dom( f ), д(a) = f (a). Given a joint action f ∈ DA (s ), we write
out (s, f ) to denote the set of immediate outcomes:

out (s, f )
def
= {s ′ ∈ S | for some д ∈ D (s ), f ⊑ д and s ′ = δ (s,д)}.

Further, given a joint action f ∈ DA (s ) and a state s , the cost of
a transition from s by f (w.r.t. coalition A) is defined as

costA (s, f )
def
=
∑
a∈A

cost (s,a, f (a)).

A computation λ is a finite or infinite sequence s0
f0
−−→ s1

f1
−−→ s2 . . .

such that for all 0 ≤ i < |λ | − 1 we have si+1 = δ (si , fi ).

2.2 The logics RB±ATL∗ and RB±ATL
To specify the strategic properties of agents in resource-bounded
CGS, we present the logics RB±ATL∗ and its fragment RB±ATL,
which are extensions of ATL∗ and ATL respectively, introduced
in [5, 7] to explicitly account for the production and consumption
of resources by agents. Once more, in the presentation of RB±ATL∗
and RB±ATL we follow [1].
Syntax. Given a finite set Aд of agents and a number r ≥ 1 of re-
sources, we write RB±ATL∗ (Aд,r ) to denote the resource-bounded
logic with agents from Aд and r resources, whose models are
resource-bounded CGS with the same parameters.

Definition 2.2 (RB±ATL∗). The state-formulasϕ and path-formulas

ψ in RB±ATL∗ (Aд,r ) are built according to the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ⟨⟨Ab⃗ ⟩⟩ψ

ψ ::= ϕ | ¬ψ | ψ ∧ψ | Xψ | ψ Uψ ,

where p ∈ AP , A ⊆ Aд, and b⃗ ∈ (N ∪ {ω})r . The formulas in
RB±ATL∗ (Aд,r ) are understood as the state-formulas.

Clearly, RB±ATL∗ extends ATL∗ by indexing the strategic opera-
tor ⟨⟨A⟩⟩with tuple b⃗, whose intuitive meaning is that the coalitionA
can achieve their goal by using at most b⃗ resources. Alternatively, b⃗
can be understood as the initial budget of the computations, which
is the interpretation followed along the paper. Then, the value ω
plays the role of an infinite supply of the resource.

The dual operator [[Ab⃗ ]] is introduced as [[Ab⃗ ]]ψ def
= ¬⟨⟨Ab⃗ ⟩⟩¬ψ .

The linear-time operators X and U have their standard readings;
while the propositional connectives ∨,→, and temporal operators
release R, always G, and eventually F are introduced as usual. For in-
stance,ϕ Rψ def

= ¬(¬ϕ U¬ψ ), and thereforeϕ Rψ shall be equivalent
to Gψ ∨ (¬ϕ ∧ψ ) U(ϕ ∧ψ ).



Wealso consider the fragmentRB±ATL(Aд,r ) ofRB±ATL∗ (Aд,r ),
where path formulas are restricted byψ ::= Xϕ | ϕ Uϕ | ϕ Rϕ.

Remark 1. Differently from [1], we explicitly consider the release
operator R in our definition of RB±ATL. Indeed, in [28] it is proved

that, differently from the case of the Computation Tree Logic CTL, it is
not possible to express R in terms of X and U in ATL. This proof can be
quite easily adapted to the case of RB±ATL by assigning cost 0 to all
actions. Hence, we explicitly introduce the operator R. In Section 3.3,

we will prove that this extra expressivity comes at no cost in terms of

the complexity of the verification problem.

Semantics. We provide a formal interpretation of the languages
RB±ATL∗ and RB±ATL by using resource-bounded CGS. Specifi-
cally, we need a formal notion of resource-bounded strategy for the
interpretation of strategic operators ⟨⟨Ab⃗ ⟩⟩. To start with, a (memory-

ful) strategy FA for coalitionA is a map from the set of finite compu-

tations to the set of joint actions ofA such that FA (s0
f0
−−→ s1 . . .

fn−1
−−−−→

sn ) ∈ DA (sn ). A computation λ = s0
f0
−−→ s1

f1
−−→ s2 . . . respects strat-

egy FA iff for all i < |λ |, si+1 ∈ out (si ,FA (s0
f0
−−→ s1 . . .

fi−1
−−−→ si )). A

computation λ that respects FA is maximal if it cannot be extended
further while respecting the strategy. In the present context, maxi-
mal computations starting in state s and respecting FA are infinite
and we denote the set of all such computations by Comp (s,FA ).

Given a bound b⃗ ∈ (N ∪ {ω})r and a computation λ = s0
f0
−−→

s1
f1
−−→ s2 . . . inComp (s,FA ), let the resource availability v⃗i at step i <

|λ | be defined as: v⃗0 = b⃗ and for all i < |λ | −1, v⃗i+1 = costA (si , fi )+
v⃗i (assuming n + ω = ω for every n ∈ Z). Then, λ is b⃗-consistent
iff for all i < |λ |, v⃗i ∈ (N ∪ {ω})r . If b⃗ (i ) = ω, we actually have
an infinite supply of the i-th resource, thus not constraining the
behaviour of agents with respect to that particular resource. Since
the resource availability depends only on the agents in A, in [1]
this is called the proponent restriction condition (see also [2]). The
set of all the b⃗-consistent (infinite) computations is denoted by
Comp (s,FA,b⃗). A b⃗-strategy FA with respect to s is a strategy such
that Comp (s,FA ) = Comp (s,FA,b⃗).

Definition 2.3 (Satisfaction relation). We define the satisfaction
relation |= for a state s ∈ S , an infinite computation λ, p ∈ AP ,
a state-formula ϕ, and a path-formula ψ as follows (clauses for
Boolean connectives are standard and thus omitted):
(M ,s ) |= p iff s ∈ L(p)

(M ,s ) |= ⟨⟨Ab⃗ ⟩⟩ψ iff for some b⃗-strategy FA w.r.t. s ,
for all λ ∈ Comp (s,FA ), (M ,λ) |= ψ

(M ,λ) |= ϕ iff (M ,λ0) |= ϕ
(M ,λ) |= Xψ iff (M ,λ≥1) |= ψ
(M ,λ) |= ψ Uψ ′ iff for some i ≥ 0, (M ,λ≥i ) |= ψ ′,

and for all 0 ≤ j < i , (M ,λ≥j ) |= ψ

Clearly, ATL∗ and ATL [10] can be seen as fragments of RB±ATL∗
and RB±ATL respectively. In particular, the unindexed strategic
operator ⟨⟨A⟩⟩ can be expressed as ⟨⟨Aω⃗ ⟩⟩.

In the sequel, we consider the following decision problem.

Definition 2.4 (Model Checking). Let k,r ≥ 1, ϕ a formula in
RB±ATL∗ ([1,k],r ) (resp. RB±ATL([1,k],r )),M be a finite RB-CGS

for Aд = [1,k] and r resources, and let s be a state inM . The model
checking problem amounts to decide whether (M ,s ) |= ϕ.

We conclude this section with a remark on the case of a single
agent, which will be prominent in what follows.

Remark 2. In the case of a single agent, that is, for Aд = {1}, in
our languages we only have modalities ⟨⟨Aдb⃗ ⟩⟩ and ⟨⟨∅b⃗ ⟩⟩, as well as

duals [[Aдb⃗ ]] and [[∅b⃗ ]], for b⃗ ∈ (N ∪ {ω})r .
By Definition 2.3, the meaning of these operators is as follows:

(M ,s ) |= ⟨⟨∅b⃗ ⟩⟩ψ iff for every computations λ from s , (M ,λ) |= ψ

(M ,s ) |= [[∅b⃗ ]]ψ iff for some computation λ from s , (M ,λ) |= ψ

(M ,s ) |= ⟨⟨Aдb⃗ ⟩⟩ψ iff for some b⃗-consistent computation λ from s ,
(M ,λ) |= ψ

(M ,s ) |= [[Aдb⃗ ]]ψ iff for every b⃗-consistent computation λ from s ,
(M ,λ) |= ψ

Notice that the semantics of operators ⟨⟨∅b⃗ ⟩⟩ and [[∅b⃗ ]] corresponds
to the meaning of modalities A and E in CTL∗; whereas ⟨⟨Aдb⃗ ⟩⟩ and

[[Aдb⃗ ]] can be used to introduce resource-bounded counterparts Eb⃗

and Ab⃗ of modalities E and A. In Section 2.3, we show that RB±ATL∗

for the single agent case is basically equivalent to a different resource-

bounded logic RBTL∗ introduced in [14].

One of our goals is to provide a framework for the complexity
classification of (fragments of)RB±ATL(Aд,r ), as well as extensions
such as RB±ATL∗ (Aд,r ). Mainly, we focus on bounding the number
of agents or resources, proving novel results along the way.

2.3 When RBTL∗ comes into play

Below, we present a resource-bounded temporal logic that extends
CTL∗ by adding resources [14, 15]. Then, we show that this logic is
essentially the same as single-agent RB±ATL∗ described in Exam-
ple 2. While such a result is not surprising, apparently it has so far
been overlooked in the literature1. Such an equivalence allows us
to apply results for single-agent RB±ATL to RBTL as well. We first
introduce the syntax and semantics of RBTL∗ as given in [14].

Definition 2.5. Given r ≥ 1, the state-formulasϕ and path-formulas

ψ in RBTL∗ are built according to the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ⟨b⃗⟩ψ ψ ::= ϕ | ¬ψ | ψ ∧ψ | Xψ | ψ Uψ ,

where p ∈ AP and b⃗ ∈ (N ∪ {ω})r . Formulas in RBTL∗ are all and
only the state-formulas generated by the BNF.

The fragment RBTL of RBTL∗ is obtained by restricting path
formulas just like in the case of RB±ATL:ψ ::= Xϕ | ϕ Uϕ | ϕ Rϕ.
In [1] the interpretation of RBTL∗ is given on a particular class of
models, based on vector addition systems with states:

Definition 2.6 (Model). Amodel forRBTL∗ is a tupleA = ⟨Q ,r ,R,L⟩
s.t. (i) (Q ,r ,R) is a vector addition system with states (VASS), that is,

(1) Q is a non-empty finite set of control states;
(2) r ≥ 1 is the number of counters;
(3) R is a finite subset of Q × Zr ×Q ;

1Indeed, in [1], complexity results are given independently for both RBTL∗ and single-
agent RB±ATL∗ , even though the two logics can be translated one into the other.



and (ii) L : AP → ℘(Q ) is a labelling function.

In a model A, a pseudo-run λ is an infinite sequence (q0,v⃗0) →
(q1,v⃗1) → . . . such that for all i ≥ 0, there exists (q,u⃗,q′) ∈ R such
that qi = q, qi+1 = q′, and v⃗i+1 = u⃗ + v⃗i . A pseudo-run λ is a run
iff for all i ≥ 0, v⃗i ∈ (N ∪ ω)r .

Definition 2.7 (Satisfaction relation). We define the satisfaction
relation |= in model A, for state q ∈ Q , run λ, p ∈ AP , state-formula
ϕ, and path-formulaψ as follows (clauses for Boolean connectives
are immediate and thus omitted):
(A,q) |= p iff q ∈ L(p)

(A,q) |= ⟨b⃗⟩ψ iff for some run λ from (q,b⃗), (A,λ) |= ψ
(A,λ) |= ϕ iff (A,λ0) |= ϕ
(A,λ) |= Xψ iff (A,λ≥1) |= ψ
(A,λ) |= ψ Uψ ′ iff for some i ≥ 0, (A,λ≥i ) |= ψ ′,

and for all 0 ≤ j < i , (A,λ≥j ) |= ψ

Next, we prove that the logics RBTL∗ and RB±ATL∗ ({1},r ) with
a single agent are semantically equivalent, in the sense that truth-
preserving translations exist between models and formulas. First,
consider the translation map τ from RBTL∗ to RB±ATL∗ ({1},r ) such
that τ is the identity onAP , it is homomorphic for Boolean and tem-
poral operators, and τ (⟨b⃗⟩ψ ) def

= Eb⃗τ (ψ ). Actually, it can be shown
that τ is a bijection between RBTL∗ and RB±ATL∗ ({1},r ). Not only
that, but τ is a bijection between RBTL and RB±ATL({1},r ) as well.
Further, given a resource-bounded CGS M = ⟨{1},AP ,S ,Act ,r ,
act ,cost ,δ ,L⟩ with a single agent 1, define the associated model
AM = ⟨S ,r ,R,L⟩ for RBTL∗ such that
• R is the set of tuples (q,u⃗,q′) such that δ (q,a) = q′ for some
action a ∈ act (q,1) with cost (q,1,a) = u⃗.

Symmetrically, given a model A = ⟨Q ,r ,R,L⟩, define the asso-
ciated single-agent, resource-bounded CGSMA = ⟨{1},Q ,R,r ,act ,
cost ,δ ,L⟩ such that for every q ∈ Q ,
• act (q,1) = {(q′,u⃗,q′′) ∈ R | q = q′};
• for every (q,u⃗,q′) ∈ act (q,1), cost (q,1, (q,u⃗,q′)) = u⃗;
• for every (q,u⃗,q′) ∈ act (q,1), δ (q, (q,u⃗,q′)) = q′.

We now state the following auxiliary lemma, whose proof follows
immediately by the definitions of AM andMA above.

Lemma 2.8. (1) Given a single-agent, resource-bounded CGS

M and state s ∈ S , for every b⃗-consistent computation λ in

M , in AM there exists a run λ′ from (s,b⃗) such that for every

i ≥ 0, (λi ,v⃗i ) → (λi+1,v⃗i+1) with v⃗i+1 = v⃗i + u⃗ for u⃗ =

cost (λi ,1,ai ) and λi
ai
−−→ λi+1.

(2) Given a model A for RBTL∗ and state q ∈ Q , for every run λ

from (s,b⃗), in MA there exists a b⃗-consistent computation λ′

such that for every i ≥ 0, λi
(λi ,u⃗,λi+1 )
−−−−−−−−−→ λi+1 for (λi ,v⃗i ) →

(λi+1,v⃗i+1) and v⃗i+1 = u⃗ + v⃗i .

By using Lemma 2.8 we can finally prove that RB±ATL∗ ({1},r )
and RBTL∗ are closely related semantically.

Theorem 2.9. (1) For every ϕ in RBTL∗ and model A with state

q ∈ Q , (A,q) |= ϕ iff (MA,q) |= τ (ϕ). (2) For every ϕ
′
in RB±ATL∗

and single-agent, resource-bounded CGSM with state s ∈ S , (M ,s ) |=
ϕ ′ iff (AM ,s ) |= τ

−1 (ϕ ′).

s1 s2move : −1 recharge : +1

switch : −1

switch : −1

Figure 1: the resource-bounded CGS in Example 2.10. Tran-

sitions with action idle are omitted.

Consequently, RBTL∗ and the restriction of RB±ATL∗ to a single
agent are essentially the same logic in the sense that their trans-
lations are semantically faithful when single-agent RB-CGS are
understood as RBTL∗ models (i.e., a VASS with a valuation). A sim-
ilar result holds for RBTL and single-agent RB±ATL. This result is
particularly relevant in the light of Section 3, where we dig deeper
into the verification of single-agent, resource-bounded logics.

Example 2.10. We illustrate the formal machinery introduced
so far, particularly the single-agent case, with a toy example. We
consider a scenario in which a rover is exploring an unknown area.
At any time the rover can choose between two modes: either it
moves around or it recharges its battery through a solar panel,
but it cannot do both things at the same time. Moving around
consumes one energy unit at every time step, whereas the rover
can recharge of one energy unit at a time. Switching between these
modes requires one energy unit.

This simple scenario can be modelled as the resource-bounded
CGS M = ⟨{rover }, {s1,s2}, {move,recharge,switch,idle},1,act ,
cost ,δ ,L⟩ depicted in Figure 1, where in particular:
• act (s1,rover ) = {move,switch,idle} and
act (s2,rover ) = {recharge,switch,idle};
• cost (s1,rover ,move) = cost (s1,rover ,switch) = cost (s2,
rover ,switch) = −1 and cost (s2,rover ,recharge) = +1;
• δ (s1,move) = s1, δ (s1,switch) = s2, δ (s2,recharge) = s2,
and δ (s2,switch) = s1;
• AP = {movinд} and L(movinд) = {s1}.

Even in such a simple scenariowith a single agent, we can express
interesting properties such as “no matter what the rover does, at
any time it has a strategy, with an initial budget of at most b energy
units, such that it will eventually be moving”. This specification
can be expressed in RB±ATL as

[[{rover }ω ]]G(⟨⟨{rover }b ⟩⟩ Fmovinд) (1)

Next, we show that specifications such as (1), concerning a single
agent and a single resource, can be efficiently verified in ptime.

3 MODEL-CHECKING RB±ATL({1},1)
This section is devoted to the technical developments of our main
theoretical results. Specifically, in Section 3.1 we review the known
complexity results for model checking RB±ATL and its fragments.
Then, in Section 3.2 we prove that the control-state reachability and
nontermination problems for vector addition systems with states
(VASS) with one counter are decidable in ptime. These results are
then used in Section 3.3 to show that the model-checking problem
for RB±ATL({1},1) is also in ptime. Thus, our contribution shows
that reasoning about a single resource in RB±ATL with a single
agent comes at no extra computational cost compared to CTL.



r\|Aд | ∞ 2 1

∞ 2exptime-c. [1, Th. 2 and 3] expspace-c. [1, Th. 4]
≥ 4 exptime-c. [1, Cor. 1] pspace-h. [13]
3 pspace-h. [13] in pspace [1, Cor. 2]
2 in exptime [1, Cor. 1]

1

ptime-h. (from ATL) ptime-h. (from CTL)
in pspace [6, Th. 2] in ptime (Th. 3.10)

Table 1: the complexity of model checking RB±ATL(Aд,r ).

3.1 Model Checking Results for RB±ATL
In Table 1, we summarize the main complexity results available in
the literature for RB±ATL(Aд,r ), depending on the number |Aд |
of agents and the number r of resources. The result in boldface is
original from this contribution. All the results hold in the presence
of R instead of G, except the pspace upper bound from [6, Theo. 2].

For an unbounded number of resources and at least two agents,
the model-checking problem is known to be 2exptime-complete.
This result follows from Theorem 2 (membership) and Theorem 3
(hardness) in [1]. When restricted to a single agent, the problem
becomes expspace-complete [1, Th. 4].

For a fixed number of resources greater than four and at least two
agents, the model-checking problem is again exptime-complete.
The upper bound follows from [1, Cor. 1], while the lower bound
derives from the complexity of the control-state reachability prob-
lem for alternating VASS [18], which can be simulated by using
two agents only [1, Th. 3]. Further, for a fixed amount of resources
greater than two, and two agents, the model-checking problem is in
exptime [1, Cor. 1]. In the case of a single agent, the same problem
is in pspace [1, Cor. 2]; whereas it is pspace-hard in both cases,
as we can reduce to it the control-state reachability problem for
2-VASS, which is pspace-complete [13].

Finally, in the case of a single resource, the problem is known
to be in pspace [6, Th. 2] (the result is established for a language
with G and it is plausible to extend it to R). For the case of a single
agent, model checking is in ptime, which is the main theoretical
contribution of this section. It is therefore ptime-complete as model
checking CTL is already ptime-hard (see, e.g., [21, 37]). The charac-
terisation of the complexity for one resource and at least two agents
is still open: currently, neither the proof of the ptime upper bound
in Section 3.3, nor the pspace-hardness results from [24] and [22,
Sect. 5] could be advantageously used to close this complexity gap.

3.2 Decision problems for 1-VASS

In order to show that themodel-checking problem forRB±ATL({1},1)
is ptime-complete, we establish that two well-known decision prob-
lems on vector addition systems with states (VASS), when restricted
to a single counter, can be solved in polynomial time. More pre-
cisely, we show that the control-state reachability and nontermina-
tion problems for 1-VASS are in ptime, whereas, for instance, the
control-state reachability problem for VASS is expspace-complete
in general [29, 34]. Although control-state reachability is a sub-
problem of the covering problem, that has been quite studied (see,
e.g., [11, 12, 20]), to the best of our knowledge there is no result
in the literature on the upper bound when restricted to a single

counter. Hereafter, we provide formal arguments for tractability by
appropriately tuning and correcting the proof technique dedicated
to the boundedness problem for 1-VASS from [35]. Note also that
in [23], the updates in the BVASS (extending VASS) are restricted
to the set {−1,0,+1} (see [23, Def. 1]). Therefore the upper bound
in [23] does not extend to our present case where updates are ar-
bibtrary integers encoded in binary. When updates are arbitrary
integers encoded in binary (as done herein), the relevant problems
for 1-BVASS are known to be pspace-complete [22].

We recall the notion of VASS as given in Definition 2.6, so a VASS
is a structure V = (Q ,r ,R), where R is a finite set of transitions. A
configuration of a VASS V is defined as a pair (q, x⃗ ) ∈ Q × Nr (ω
is discarded in this section). Given (q, x⃗ ), (q′, x⃗ ′) and a transition

t = q
u⃗
−→ q′, we write (q, x⃗ )

t
−→ (q′, x⃗ ′) whenever x⃗ ′ = u⃗ + x⃗ . Then,

(q0, x⃗0) is called the initial configuration.
An r -VASS is a VASS with r counters. We present two standard

decision problems on VASS that play a crucial role in solving the
model checking problem for RB±ATL(Aд,1).
Control state reachability problem CREACH(VASS):
Input: a VASS V , a configuration (q0, x⃗0), and a control state qf .
Question: is there a finite run with initial configuration (q0, x⃗0)

and with final configuration with state qf ?
Nontermination problem NONTER(VASS):
Input: a VASS V and a configuration (q0, x⃗0).
Question: is there an infinite runwith initial configuration (q0, x⃗0)?

Other classical decision problems for VASS have been considered
in the literature (see e.g. recent developments about the reachability
problem in [19, 36]), but in this paper we only need to tame the
control-state reachability and nontermination problems for 1-VASS
in order to solve the model-checking problem for RB±ATL({1},1).

Definition 3.1 (Simple Run, Path, and Loop). A simple run ρ =
(q0, x⃗0), . . . , (qk , x⃗k ), k ≥ 0, is a finite run such that no control state
appears twice. A simple path is a sequence of transitions t1 . . . tk
such that no control state occurs more than once. A simple loop is a
sequence of transitions t1 . . . tk such that the first control state of
t1 is equal to the second control state of tk (and it occurs nowhere
else) and no other control state occurs more than once.

In a 1-VASS, a simple loop is (strictly) positive if the cumu-
lated effect is (strictly) positive. Given a run ρ = (q0,x0), . . . ,
(qk ,xk ), . . . and α ≥ 0, we write ρ+α to denote the sequence
(q0,x0 + α ), . . . , (qk ,xk + α ), . . .. If ρ is a run, the sequence ρ+α is
also a run. The following lemma provides 1-VASS with a character-
isation of runs ending in a distinguished final state.

Lemma 3.2. Let V be a 1-VASS, (q0,x0) an initial configuration,

and qf a location. There is a finite run from (q0,x0) to configuration
(qf ,xf ) for some xf ≥ 0 iff (1) either q0 = qf ; or

(2) there is a simple path (q0,x0), . . . , (qk ,xk ) with qk = qf ; or
(3) we have that

• there is a simple run (q0,x0), . . . , (qn ,xn ),
• there is a strictly positive simple loop t1 . . . tβ such that

(qn ,xn )
t1 ...tβ
−−−−→ (qn ,xn + α ) is a run (α > 0),

• there is a simple path starting at qn and ending at qf .
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Witness runs and path for (V , (q0,7),qf ):

initial run: (q0,7), (q2,11), (q3,4)

“> 0 loop”: (q3,4), (q5,1), (q4,6), (q3,5)

final path: q3 −→ q5 −→ qf

Figure 2: Witness runs and path from Lemma 3.2(3)

As illustration, Figure 2 presents a 1-VASS V , and witness runs
and path for the positive instance (V , (q0,7),qf ) of CREACH(1-
VASS). By contrast, the configuration (q0,5) cannot reach qf .

Proof. First, it is not difficult to check that if either (1), (2) or
(3) holds, then there is a finite run from (q0,x0) to configuration
(qf ,xf ) for some xf ≥ 0. By way of example, firing the strictly

positive simple loop at least ( |Q | ×max{| u |: q
u
−→ q′ is a transition}

times, allows to pursue the run following the path from qn to qf .
Conversely, let us suppose that ρ = (q0,x0), . . . , (qk ,xk ) is a run

with qk = qf . If q0 = qf , then the witness run can be reduced
to (q0,x0). Otherwise, either ρ is a simple run and condition (2)
holds, or there are 0 ≤ i < j ≤ k such that qi = qj . In case
xi ≥ x j , the subrun (qi ,xi ), . . . , (qj ,x j ) can be removed from ρ
while leading to a run reaching qf . Typically, the suffix subrun
(qi ,xi ), . . . , (qj ,x j ), . . . , (qk ,xk ) with ρ† = (qj ,x j ), . . . , (qk ,xk ) is
replaced by ρ+α

†
for α = x j − xi . Such a transformation can be

performed as soon as the subruns correspond to the application of
simple loops with negative effect. Without loss of generality, we
can assume that ρ has no loop with strictly negative effect.

If ρ is not a simple run, there are 0 ≤ I < J ≤ |Q | such that
qI = q J and xI < x J . Consequently,
• there is a simple run (q0,x0), . . . , (qI ,xI );
• there is a strictly positive simple loop tI . . . t J−1 such that

(qI ,xI )
tI ...t J−1
−−−−−−→ (qI ,xI + (x J − xI ));

• there is a path fromq J toqk = qf such that (q J ,x J ), . . . , (qk ,xk )
is a run. So, there is a simple path from q J to qk .

As a result, condition (3) is satisfied and the lemma holds. □

The characterisation in Lemma 3.2 can be turned into an algo-
rithm running in polynomial time.

Theorem 3.3. The problem CREACH(1-VASS) is in ptime.

Proof. Let V be a 1-VASS, (q0,x0) an initial configuration, and
qf a location. If q0 = qf , we are done. Otherwise, define values
maxvaliq for i ∈ [0, |Q |] and q ∈ Q such that if there is a run
(q0,x0), . . . , (qj ,x j ) with qj = q and j ≤ i , then the maximal value
x j among all these runs is precisely maxvaliq . When there is no
such run, by convention maxvaliq = −∞. Similar values have been
considered to solve the boundedness problem for 1-VASS in [35].
Let us compute the values maxvaliq :

• maxval0q0
def
= x0 and maxval0q

def
= −∞ for all q , q0.

• For all q and i + 1 ∈ [1, |Q |],

maxvali+1q
def
= max(maxvaliq ,

{maxval
j
q′ + u ∈ N | j ≤ i, q

u
−→ q′ is a transition}).

The values maxvaliq ’s can be computed in polynomial time in the
size of V (the number |Q | of locations being an essential parameter
as well as the maximal absolute value | u | from updates –integers
being written in binary). One can show that maxvaliq is indeed the
maximal value as specified above.

Further, note that condition (2) in Lemma 3.2 is equivalent to
maxval

|Q |
qf , −∞. Similarly, the three conditions in (3) fromLemma 3.2

are equivalent to: there are q ∈ Q and I < J ≤ |Q | such that
• maxvalIq , −∞.
• maxvalIq < maxvalJq and auxval0q < auxvalJ−Iq , where the
values auxvaliq′ ’s (i ∈ [0, J−I ],q

′ ∈ Q) are defined as follows

(similarly to what is done for the maxvaljq′ ’s):

– auxval0q
def
= maxvalIq and auxval0q′

def
= −∞ for all q′ , q.

– For all q′ and i + 1 ∈ [1, J − I ],

auxvali+1q′
def
= max(auxvaliq′ ,

{auxval
j
q′′ + u ∈ N | j ≤ i, q′

u
−→ q′′ is a transition}).

• There is a simple path starting at q and ending at qf .
The first two points above can be checked in ptime, and the third
one in nlogspace as it is an instance of the standard graph reacha-
bility problem GAP. So, CREACH(1-VASS) is in ptime. □

Note that the values auxvaliq′ ’s in the proof of Theorem 3.3 are

necessary to guarantee that the values maxvalIq and maxvalJq are
obtained following a common subrun until reaching the configura-
tion (q,maxvalIq )

2. Now, let us turn to the characterisation of runs
and paths witnessing nontermination.

Lemma 3.4. LetV be a 1-VASS and (q0,x0) an initial configuration.
There is an infinite run starting at (q0,x0) iff

• there is a simple run (q0,x0), . . . , (qn ,xn ); and

• there is a positive simple loop t1 . . . tk such that (qn ,xn )
t1 ...tk
−−−−→

(qn ,xn + α ) is a run (α ≥ 0).

Proof. Clearly, the satisfaction of the two conditions implies
that there is an infinite run starting at (q0,x0): just consider the
run generated by (t1 . . . tk )

ω from configuration (qn ,xn ). Let us
prove the other direction, similarly to what is done in the proof of
Lemma 3.2. Suppose that ρ = (q0,x0), . . . , (qk ,xk ), . . . is an infinite
run. Without loss of generality, we can assume that ρ has no simple
loop with strictly negative effect. There are n ≥ 0 and q ∈ Q such
that qn = q, {i ∈ N | qi = q} is infinite and (q0,x0), . . . , (qn ,xn )
is a simple run. Consider some J > I ≥ |Q | such that q J = qI = q
(such an index J necessarily exists). Obviously, there is a positive

simple loop tI . . . t J−1 such that (qI ,xI )
tI ...t J−1
−−−−−−→ (q J ,x J ) is a run.

Hence, both conditions in the statement of the lemma hold. □

Once more, the characterisation in Lemma 3.4 can be turned into
an algorithm to check nontermination, running in polynomial time.

Theorem 3.5. The problem NONTER(1-VASS) is in ptime.

2We remark that in the proof of [35, Theorem 3.4] for solving the boundedness problem
for 1-VASS in ptime, a similar argument should have been used.



Proof. Let V be a 1-VASS and (q0,x0) an initial configuration.
Define the values maxvaliq for i ∈ [0, |Q |] and q ∈ Q such that if
there is a run (q0,x0), . . . , (qi ,xi ) with qi = q, then the maximal
value xi among all these runs is precisely maxvaliq . Note that these
values are not the same as those from the proof of Theorem 3.3 as
we consider runs of length exactly i . When there is no such run, by
convention maxvaliq = −∞.

• maxval0q0
def
= x0 and maxval0q

def
= −∞ for all q , q0.

• For all q and i + 1 ∈ [1, |Q |],

maxvali+1q
def
= max({maxvaliq′ + u ∈ N |

q
u
−→ q′ is a transition, maxvaliq′ , −∞}).

By convention, the maximal value of the empty set is −∞.
All the values maxvaliq ’s can be computed in polynomial time

in the size of V . One can show that maxvaliq is the maximal value
as specified above. Finally, the characterisation in Lemma 3.4 is
equivalent to: there are q ∈ Q and I < J ≤ |Q | such that maxvalIq ,
−∞ and maxvalIq ≤ maxvalJq and auxval0q ≤ auxvalJ−Iq , where
values auxvaliq′ ’s (i ∈ [0, J − I ], q

′ ∈ Q) are defined as

• auxval0q
def
= maxvalIq and auxval0q′

def
= −∞ for all q′ , q;

• for all q′ and i + 1 ∈ [1, J − I ],

auxvali+1q′
def
= max{auxvaljq′′+u ∈ N | j ≤ i, q′

u
−→ q′′ is a transition}.

All conditions can be checked in polynomial time and therefore the
nontermination problem for 1-VASS is in ptime. □

To conclude, by Theorem 3.3 and 3.5 both the state-reachability
and nontermination problems for 1-VASS are decidable in ptime.

3.3 Model-checking RB±ATL({1},1) is in ptime

In this section we establish our main theoretical result, that is,
the model-checking problem for RB±ATL({1},1) is ptime-complete
(forthcoming Theorem 3.10) by leveraging on Theorem 3.3 and 3.5.
Hereafter, for every b ∈ N∪ {ω}, we write ⟨⟨b⟩⟩ϕ instead of ⟨⟨{1}b ⟩⟩ϕ.
We observe that the case of a single resource can also capture
situations in which r > 1 resources can be converted into a unique
resource (e.g., money), possibly with different rates.

As done in Section 2.3, given a resource-bounded CGS M =

({1},S ,Act ,1,act ,cost ,δ ,L) with a single agent and a single resource,
let us define the 1-VASS VM = (S ,1,RV ) such that q

u
−→ q′ ∈ RV

iff there is some action a ∈ act (q,1) such that δ (q,a) = q′ and
cost (q,1,a) = u. Similarly, we write KM = (S ,R,LK ) to denote
the Kripke structure such that q R q′ iff there is some action a ∈
act (q,1) such that δ (q,a) = q′ and LK (q) = {q} (by a slight abuse of
notations, we assume that AP = Q). Note that, thanks to the idle
action, KM is a total Kripke structure, i.e., every world has at least
one successor. We introduce Kripke structures as the modality ⟨⟨ω⟩⟩
amounts to forget about the costs in M , and therefore M can be
understood as the Kripke structureKM , andmodel checking reduces
to CTL model checking. Similarly, as remarked in Section 2.3, the
strategy modality ⟨⟨∅b ⟩⟩ behaves as the universal path quantifier A
in cost-free transition systems.

We now investigate the relationship between computations inM
and runs in VM and in KM , respectively (a variant of Lemma 2.8).

Lemma 3.6. LetM be a RB-CGS with a single agent and a single

resource.

(I) Let q0
a0
−→ q1

a1
−→ q2 · · · be a b-consistent computation associated to

the family of resource values (vi )i ∈N. If b ∈ N, then (q0,v0) −→
(q1,v1) −→ (q2,v2) · · · is an infinite run in VM ; otherwise

q0 −→ q1 −→ q2 · · · is an infinite path in KM .

(II) Let (q0,v0) −→ (q1,v1) −→ (q2,v2) · · · be an infinite run in VM .

Then, there is a v0-consistent computation q0
a0
−→ q1

a1
−→ q2 · · ·

associated to the family of resource values (vi )i ∈N.
(III) Let q0 −→ q1 −→ q2 · · · is an infinite path in KM . Then, there is

an ω-consistent computation q0
a0
−→ q1

a1
−→ q2 · · · inM .

The proof of Lemma 3.6 follows immediately by definition, and
this result is instrumental to the three following lemmas that are
at the heart of the model-checking algorithm for RB±ATL({1},1).
Given S1 ⊆ S , we write V S1

M (resp. KS1
M ) to denote the restriction of

VM (resp. KM ) to the locations in S1 only.

Lemma 3.7. LetM be an RB-CGS for RB±ATL({1},1), S1 ⊆ S with

s ∈ S1, and b ∈ N.

(I) There is a b-consistent computation starting at s in M that vis-

its only states in S1 iff (V S1
M , (s,b)) is a positive instance of

NONTER(1-VASS).

(II) There is anω-consistent computation starting in s inM that visits

only states in S1 iff (KM ,s ) |= EG(
∨
s ′∈S1 s

′) in CTL.

This is a consequence of Lemma 3.6 (which will be generalised
in Lemma 3.9). Let us focus now on the until operator U.

Lemma 3.8. Let M be a RB-CGS for RB±ATL({1},1), S1,S2 ⊆ S
with s ∈ S , and b ∈ N.

(I) There is a b-consistent computation starting at s inM such that

its projection on S is in S∗1 ·S2 ·S
ω
(understood as an ω-regular

expression) iff for some s ′ ∈ S2, (V
S1∪S2
M , (s,b),s ′) is a positive

instance of CREACH(1-VASS).

(II) There is anω-consistent computation starting at s inM such that

its projection on S is in S∗1 · S2 · S
ω
iff in CTL, we have

(KM ,s ) |= E(
∨
s ′∈S1

s ′) U(
∨
s ′∈S2

s ′).

This is again a consequence of Lemma 3.6 but here, we have to
use the fact that the distinguished action idle is enabled in any
state (which is handy to extend to the infinity a finite witness run).
Finally, we consider the linear-time temporal operator R.

Lemma 3.9. Let M be a RB-CGS for RB±ATL({1},1), S1,S2 ⊆ S
with s ∈ S , and b ∈ N.

(I) There is a b-consistent computation starting at s inM such that

its projection on S is in Sω2 ∪ ((S \ S1) ∩ S2)
∗ · (S1 ∩ S2) · Sω iff

either (V S2
M , (s,b)) is a positive instance of NONTER(1-VASS)

or for some s ′ ∈ S1 ∩ S2, (V
S2
M , (s,b),s

′) is a positive instance
of CREACH(1-VASS).

(II) There is anω-consistent computation starting at s inM such that

its projection on S is in Sω2 ∪ ((S \ S1) ∩ S2)∗ · (S1 ∩ S2) · Sω

iff in CTL, we have

(KM ,s ) |= (EG
∨
s ′∈S2

s ′) ∨ E(
∨

s ′∈(S\S1 )∩S2

s ′) U(
∨

s ′∈S1∩S2

s ′).



By using Lemmas 3.7-3.9 we derive our main theoretical result.

Theorem 3.10. The model-checking problem for RB±ATL({1},1)
is ptime-complete.

ptime-hardness is inherited from the model-checking problem
for CTL.

Proof. LetM = ({1},S ,Act ,1,act ,cost ,δ ,L) be a resource-boun-
ded CGS, and ϕ be a formula in RB±ATL({1},1). Let us present
Algorithm 1, a polynomial-time algorithm that computes the finite
set {s ∈ S | (M ,s ) |= ϕ} (by default, b ∈ N)3.

Algorithm 1 – RB±ATL({1},1) model checking –
1: procedure GMC(M, ϕ)
2: case ϕ of

3: p : return {s ∈ S | s ∈ L(p ) }
4: ¬ψ : return S \GMC (M,ψ )
5: ψ1 ∧ψ2: return GMC (M,ψ1) ∩GMC (M,ψ2)
6: ⟨⟨b⟩⟩Xψ : return {s | ∃ a ∈ act (s, 1), 0 ≤ b +

cost (s, 1, a), δ (s, a) ∈ GMC (M,ψ ) }
7: ⟨⟨ω⟩⟩Xψ :

return {s | ∃ a ∈ act (s, 1), δ (s, a) ∈ GMC (M,ψ ) }

8: ⟨⟨∅b ⟩⟩Xψ :
return {s | ∀ a ∈ act (s, 1), δ (s, a) ∈ GMC (M,ψ ) }

9: ⟨⟨b⟩⟩ψ1 Uψ2: S1 := GMC (M,ψ1); S2 := GMC (M,ψ2);
return {s ∈ S | ∃ s′ ∈ S2 s.t. V S1∪S2

M , (s, b ), s′ is a positive
inst. of CREACH(1-VASS) }

10: ⟨⟨ω⟩⟩ψ1 Uψ2: S1 := GMC (M,ψ1); S2 := GMC (M,ψ2);
return {s ∈ S | KM , s |= E(

∨
s′∈S1 s

′) U(
∨
s′∈S2 s

′) }

11: ⟨⟨∅b ⟩⟩ψ1 Uψ2: S1 := GMC (M,ψ1); S2 := GMC (M,ψ2);
return {s ∈ S | KM , s |= A(

∨
s′∈S1 s

′) U(
∨
s′∈S2 s

′) }
12: ⟨⟨b⟩⟩ψ1 Rψ2: S1 := GMC (M,ψ1); S2 := GMC (M,ψ2);

return {s ∈ S | V S2
M , (s, b ) is a positive inst. of NONTER(1-

VASS) } ∪{s ∈ S | ∃ s′ ∈ S1 ∩ S2 s.t. V
S2
M , (s, b ), s′ is a positive inst.

of CREACH(1-VASS) }
13: ⟨⟨ω⟩⟩ψ1 Rψ2: S1 := GMC (M,ψ1); S2 := GMC (M,ψ2);

return {s ∈ S | KM , s |= E(
∨
s′∈S1 s

′) R(
∨
s′∈S2 s

′) }

14: ⟨⟨∅b ⟩⟩ψ1 Rψ2: S1 := GMC (M,ψ1); S2 := GMC (M,ψ2);
return {s ∈ S | KM , s |= A(

∨
s′∈S1 s

′) R(
∨
s′∈S2 s

′) }
15: end case

16: end procedure

By induction, one can show that (M ,s ) |= ϕ iff s ∈ GMC (M ,ϕ).
Lemmas 3.7-3.9 are used to prove the soundness of the subroutines
for U and R, with b ∈ N ∪ {ω}, respectively. When the strategy
modality is ⟨⟨∅b ⟩⟩, it behaves as the standard path quantifierA, which
is reflected in Algorithm 1. As far as computational complexity is
concerned, GMC (M ,ϕ) is computed with a recursion depth linear
in the size of ϕ and the control-state reachability and nontermina-
tion problems can be solved in polynomial time by Theorem 3.3
and 3.5. More precisely, for each occurrence of a subformulaψ of
ϕ, GMC (M ,ψ ) can be computed only once, which guarantees the
overall number of calls of the form GMC (M ,ψ ): it is sufficient to
take advantage of dynamic programming and to work with a table
to remember the valuesGMC (M ,ψ ) already computed (omitted in
the present algorithm). It is also worth observing that the instances
we consider are polynomial in the sizes ofM and ϕ. Finally, we take
3We omit the case for the operator G as Gϕ is logically equivalent to ⊥ Rϕ .

r \ |Aд | ∞ 2 1

∞ in 2exptime [1, Th. 7] expspace-c. [1, Th. 8]
≥ 1 2exptime-h. (from ATL∗) in pspace ([1, Cor. 2] & Th. 2.9)

pspace-h. (from CTL∗)
Table 2: The complexity of model checking RB±ATL∗ (Aд,r ).

advantage of the fact that the model-checking problem for CTL
including R remains in ptime (see, e.g., [21, Chapter 7]). □

Consequently, reasoning about a single resource in the Compu-
tation Tree Logic CTL comes at no extra computational cost. Hence,
in principle we can verify specification such as formula (1) in Ex-
ample 2.10 efficiently. Based on the correspondences established in
Theorem 2.9, we immediately derive the following consequence.

Corollary 3.11. The model-checking problem for RBTL restricted
to a single resource is ptime-complete.

4 CONCLUDING REMARKS

We investigated the complexity of the model-checking problem for
Resource-bounded Alternating-time Temporal Logics. In particular,
we established that RBTL∗ and RB±ATL∗ ({1},r ) can be understood
as slight variants of the same logic. More importantly, we provided
a unified view of the model-checking problems for RB±ATL, then
proved that model checking RB±ATL({1},1) is ptime-complete. To
do so, we designed original algorithms to solve the control-state
reachability and nontermination problems for 1-VASS. Hence, as
far as worst-case complexity is concerned, the model-checking
problems for CTL and RB±ATL({1},1) behave similarly.

The paper has not touched very much on the model-checking
problem for RB±ATL∗, for which the main results are summarised
in Table 2. Unlike RB±ATL, tight complexity bounds are known for
all variations on the number of agents and resources. For at least
two agents, the model-checking problem is 2exptime-complete.
The upper bound comes from [1, Th. 7], whereas the lower bound
follows from the 2exptime-hardness of ATL∗, which is proved by us-
ing two agents only [10]. On the other hand, the problem restricted
to a single agent becomes expspace-complete for an unbounded
number of resources [1, Th. 8]; while for a bounded number r , model
checking RB±ATL∗ ({1},r ) is pspace-complete: the lower bound fol-
lows immediately from the pspace-hardness of the model-checking
problem for CTL∗; as for the upper bound, we derive it from the fact
that model checking RBTL∗ is in pspace [1, Cor. 2] and Theorem 2.9.

As far as future work is concerned, we plan to implement the
ptime algorithm for model checking RB±ATL({1},1), possibly tak-
ing advantage of the very recent results in [8], and to investigate the
complexity of other meaningful fragments of RB±ATL(Aд,r ) for
which tight bounds are unknown. The synthesis of parameters for
the parameterised version of RB±ATL({1},1) (as well as for other
fragments of RB±ATL∗ (Aд,r )) is also worth further investigation.
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