Reasoning about Knowledge and Strategies:
Epistemic Strategy Logic

Francesco Belardinelli
Laboratoire IBISC — Unversité d’Evry
belardinelli@ibisc.fr

In this paper we introduce Epistemic Strategy Logic (ESL), an extension of Strategy Logic with
modal operators for individual knowledge. This enhanced framework allows us to represent explicitly
and to reason about the knowledge agents have of their own and other agents’ strategies. We provide
a semantics to ESL in terms of epistemic concurrent game models, and consider the corresponding
model checking problem. We show that the complexity of model checking ESL is not worse than
(non-epistemic) Strategy Logic.

1 Introduction

Formal languages to represent and reason about strategies and coalitions are a thriving area of research
in Artificial Intelligence and multi-agent system [4, [8,20]. Recently, a wealth of multi-modal logics have
appeared, which allow to formalise complex strategic abilities and behaviours of individual agents and
groups [12,5]. In parallel to these developments, in knowledge representation there is a well-established
tradition of extending logics for reactive systems with epistemic operators to reason about the knowledge
agents have of systems evolution. These investigations began in the *80s with contributions on combi-
nations of linear- and branching-time temporal logics with multi-agent epistemic languages [9), [10, |6].
Along this line of research, [11] introduced alternating-time temporal epistemic logic (ATEL), an ex-
tension of ATL with modalities for individual knowledge. The various flavours of logics of time and
knowledge have been successfully applied to the specification of distributed and multi-agent systems in
domains as diverse as security protocols, UAVs, web services, and e-commerce, as well as to verification
by model checking [7, [16].

In this paper we take inspiration from the works above and pursue further this line of research by
introducing Epistemic Strategy Logic, an extension of Strategy Logic (SL) [S} [17] that allows agents to
reason about their strategic abilities. The extension here proposed is naive in the sense that it suffers many
of the shortcomings of its relative ATEL [[12]]. Nonetheless, we reckon that it constitutes an excellent
starting point to analyse the interaction of knowledge and strategic abilities in a language, such as SL,
that explicitly allow for quantification on strategies.

Related Work. This paper builds on previous contributions on Strategy Logic. SL has been intro-
duced in [5] for two-player concurrent game structures (CGS). In [17] the semantics has been extended
to a multi-player setting. Also, [17] introduced bind operators for strategies in the syntax. In the present
contribution we consider multi-agent CGS in line with [17]. However, we adopt an agent-based perspec-
tive and consider agents with possibly different actions and protocols [6]. Also, our language do not
include bind operators to avoid the formal machinery associated with these operators. We leave such an
extension for future and more comprehensive work. Finally, the model checking results in Section {4 are
inspired by and use techniques from [17].

© F. Belardinelli
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
SR2014

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Epistemic Strategy Logic

Even though to our knowledge no epistemic extension of SL has been proposed yet, the interaction
between knowledge and strategic reasoning has been studied extensively, especially in the context of
alternating-time temporal logic. An extension of ATL with knowledge operators, called ATEL, was
put forward in [11]], and immediately imperfect information variants of this logic were considered in
[[14]], which introduces alternating-time temporal observational logic (ATOL) and ATEL-R*, as well as
uniform strategies. Notice that [[14] also analyses the distinction between de re and de dicto knowledge
of strategies; this distinction will also be considered later on in the context of Epistemic Strategy Logic.
Further, [13] enriches ATL with a constructive notion of knowledge. As regards (non-epistemic) ATL,
more elaborate notions of strategy have been considered. In [1] commitment in strategies has been
analysed; while [[15]] introduced a notion of “feasible” strategy. In future work it might be worth exploring
to what extent the theoretical results available for the various flavours of ATEL transfer to ESL.

Scheme of the paper. In Section [2| we introduce the epistemic concurrent game models (ECGM),
which are used in Section [3]to provide a semantics to Epistemic Strategy Logic (ESL). In Section 4] we
consider the model checking problem for this setting and state the corresponding complexity results.
Finally, in Section [5| we discuss the results and point to future research. For reasons of space, all proofs
are omitted. An extended version of this paper with complete proofs is available [3].

2 Epistemic Concurrent Game Models

In this section we present the epistemic concurrent game models (ECGM), an extension of concurrent
game structures [2} [11], starting with the notion of agent.

Definition 1 (Agent) An agent is a tuple i = (L;,Act;, Pr;) such that
e L; is the set of local states [;,I/,. . .;
e Act; is the finite set of actions 0;,0},...;
o Pr;:L;— 24 is the protocol function.

Intuitively, each agent i is situated in some local state [; € L;, representing her local information, and
performs the actions in Act; according to the protocol function Pr; [6]]. Differently from [[17], we assume
that agents have possibly different actions and protocols. To formally describe the interactions between
agents, we introduce their synchronous composition. Given a set AP of atomic propositions and a set
Ag ={ip,...,in} of agents, we define the set L of global states s,s, ... (resp. the set Act of joint actions
0,0’,...) as the cartesian product Lo X ... X L, (resp. Acty X ... X Acty). In what follows we denote the
Jjth component of a tuple # as ¢; or, equivalently, as 7().

Definition 2 (ECGM) Given a set Ag = {iy,...,in} of agents i = (L;,Act;, Pr;), an epistemic concurrent
game model is a tuple & = (Ag,so, T,) such that

e 5o € L is the initial global state;

e 7:L X Act+ Lis the global transition function, where t(s,0) is defined iff o; € Pri(l;) for every

icAg;

o 7 : AP — 2L is the interpretation function for atomic propositions in AP.

The transition function 7 describes the evolution of the ECGM from the initial state so. We now
introduce some notation that will be used in the rest of the paper. The transition relation — on global

states is defined as s — s’ iff there exists ¢ € Act s.t. 7(s,0) =s'. A run A from a state s, or s-run,

is an infinite sequence 9 — st — ..., where s = 5. For n,m € N, with n < m, we define A(n) = 5"

F. Belardinelli 3

and A[n,m] = s",s"*1 ... ™. A state s’ is reachable from s if there exists an s-run A s.t. 1 (i) = s’

for some i > 0. We define S as the set of states reachable from the initial state sg. Further, let f be a
placeholder for arbitrary individual actions. Given a subset A C Ag of agents, an A-action Oy is an |Ag|-
tuple s.t. (i) 04 (i) € Act; for i € A, and (ii) o4(j) = f for j ¢ A. Then, Act, is the set of all A-actions and
Da(s) ={0a € Acts | for every i € A, 0; € Pri(l;)} is the set of all A-actions enabled at s = (ly,...,l,). A
joint action o extends an A-action G4, or 64 C 0, iff 04(i) = o(i) for all i € A. The outcome out(s,0y4)
of action Gy at state s is the set of all states s s.t. there exists a joint action ¢ J 64 and 7(s,0) = '.
Finally, two global states s = (lo, ...,l,) and s’ = ([{,,...,l},) are indistinguishable for agent i, or s ~; s,
iff 1; = 1] [6]].

3 Epistemic Strategy Logic

We now introduce Epistemic Strategy Logic as a specification language for ECGM. Hereafter we con-
sider a set Var; of strategy variables x;,x},.. ., for every agent i € Ag.

Definition 3 (ESL) For p € AP, i € Ag and x; € Var;, the ESL formulas ¢ are defined in BNF as follows:

¢ = pl-0[9—9|X0|oU¢|Ki¢|Ixi9

The language ESL is an extension of the Strategy Logic in [5)] to a multi-agent setting, including
an epistemic operator K; for each i € Ag. Alternatively, ESL can be seen as the epistemic extension
of the Strategy Logic in [17]], minus the bind operator. We do not consider bind operators in ESL for
ease of presentation. The ESL formula Jx;¢ is read as “agent i has some strategy to achieve ¢”. The
interpretation of LTL operators X and U is standard. The epistemic formula K;¢ intuitively means that
“agent i knows ¢”. The other propositional connectives and LTL operators, as well as the strategy
operator V, can be defined as standard. Also, notice that we can introduce the nested-goal fragment
ESL[NG], the boolean-goal fragment ESL[BG], and the one-goal fragment ESL[1G] in analogy to SL
[17]. Further, the free variables fr(¢) C Ag of an ESL formula ¢ are inductively defined as follows:

fr(p) =0

fr(=¢) =fr(Ki¢) = fr(¢)

fr(¢ — ¢') = fr(9)Ufr(¢’)
fr(Xo) =fr(pU¢") = Ag
fr(3xi¢) = fr()\{i}

A sentence is a formula ¢ with fr(¢) = 0, and the set bnd(¢) of bound variables is defined as Ag \ fr(¢).
To provide a semantics to ESL formulas in terms of ECGM, we introduce the notion of strategy.

Definition 4 (Strategy) Let v be an ordinal s.t. 1 <y < o and A C Ag a set of agents. A 7y-recall
A-strategy is a function Fa[Y] : Ui<pc144S" = UsesDa(s) s.t. Fa[Yl(x) € Da(last(k)) for every k €
Ui<n<14yS", where 14y =y for y = @ and last(x) is the last element of K.

Hence, a y-recall A-strategy returns an enabled A-action for every sequence K € Uj<,c4yS" of
states of length at most y. Notice that for A = {i}, Fx[y] can be seen as a function from U<, 5"
to Act; s.t. Fa[y|(x) € Pri(last(k)) for k € Uj<,<114S". In what follows we write Fi[y] for Fyy[7].
Then, for A = {io,...,in} C Ag, Fa[Y] is equal to Fj[y] x ... x F; [y], where for every k € Uj<u<1445",
(Fi[y] % ... x F;, [7])(x) is defined as the set of actions & € (J;5Da(s) s.t. 0; = Fi[y](x) if i€ A, 0, =1
otherwise. Therefore, a group strategy is the composition of its members’ strategies. Further, the outcome
of strategy F4 [7] at state s, or out (s, Fy[y]), is the set of all s-runs A s.t. A(i+ 1) € out (A (i), F[y](A[j,i]))
forall i > 0 and j = max(i—y+ 1,0). Depending on y we can define positional strategies, strategies with

4 Epistemic Strategy Logic

perfect recall, etc. [8]. However, these different choices do not affect the following results, so we assume
that y is fixed and omit it. Moreover, by Def.] it is apparent that agents have perfect information, as
their strategies are determined by global states [4]; we leave contexts of imperfect information for future
research.

Now let be an assignment that maps each agent i € Ag to an i-strategy F;. For Ag = {io,...,in}, we
denote x(io) X ... x x(in) as F%, that is, the Ag-strategy s.t. for every kK € Uj<,<14yS", F¥(k) =0 €
UsesDag(s) iff 0; = x(i)(x) for every i € Ag. Since |out(s,F*)| = 1, we simply write A = out(s,F%).
Also, y}. denotes the assignment s.t. (i) for all agents j different from i, x. (j) = x(j). and (ii) xf, (i) = F;.

Definition 5 (Semantics of ESL) We define whether an ECGM &7 satisfies a formula ¢ at state s ac-
cording to assignment ¥, or (2,s,X) |= @, as follows (clauses for propositional connectives are straight-
forward and thus omitted):

(Z.s,20)Fp iffsenlp)
(P.5.0) =Xy ifffor & = out(s, FX), (2, 4(1),2) = v
(2,s,%) = wUViff for A = out (s, F*) there is k > 0 s.t. (P, A(k),x) E v and 0 < j < k implies (Z,A(j),x) E ¥
(Z,5,2) E Ky iffforalls €S, s~;s implies (Z,5',%) F v
(Z,s,%) E 2y iff there exists an i-strategy F; s.t. (2,5, X)) F ¥
An ESL formula ¢ is satisfied at state s, or (2, s) |= @, if (Z,s,x) = ¢ for all assignments x; @ is true
in Z,or Z | ¢, if (£,s0) = ¢. The satisfaction of formulas is independent from bound variables, that
is, x(fr(¢)) = x'(fr(¢)) implies that (2,s,x) = ¢ iff (2,s,x’) = ¢. In particular, the satisfaction of
sentences is independent from assignments.
We can now state the model checking problem for ESL.

Definition 6 (Model Checking Problem) Given an ECGM & and an ESL formula @, determine whether
there exists an assignment X s.t. (Z,s0,X) = ¢.

Notice that, if yi,...,y, is an enumeration of fr(¢), then the model checking problem amounts to
check whether & |= 3yy,..., 3y, ¢, where Jy;, ..., Iy, ¢ is a sentence.
Hereafter we illustrate the formal machinery introduced thus far with a toy example.

Example. We introduce a turn-based ECGM with two agents, A and B. First, A secretly chooses
between 0 and 1. Then, at the successive stage, B also chooses between 0 and 1. The game is won
by agent A if the values provided by the two agents coincide, otherwise B wins. We formally de-
scribe this toy game starting with agents A and B. Specifically, A is the tuple (Ls,Acta,Prs), where
(i) Ls = {€4,0,1}; (ii) Acty = {set(0),set(1),skip}; and (iii) Pra(€a) = {set(0),set(1)} and Pra(0) =
Pra(1) = {skip}. Further, agent B is defined as the tuple (Lg,Actg, Prg), where Lg = {€p,1,0,1}; Actg =
{wait,set(0),set(1),skip}; Prg(eg) = {wait}, Prg(A) = {set(0),set(1)} and Prg(0) = Prg(1) = {skip}.
The intuitive meaning of local states, actions and protocol functions is clear. Also, we consider the set
AP = {winy,wing} of atomic propositions, which intuitively express that agent A (resp. B) has won the
game. We now introduce the ECGM 2, corresponding to our toy game, as the tuple (Ag, so, T,), where
(i) so = (€a,€p); (ii) the transition function 7 is given as follows for i, j € {0,1}:

o T((&a,€p),(set(i),wait)) = (i,A)
o 7((i,A), (skip,set(}))) = (i,])
o 7((i,)), (skip,skip)) = (€a, €p)

and (iii) m(winyg) = {(0,0),(1,1)}, m(wing) = {(1,0), (0, 1) }. Notice that we suppose that our toy game,
represented in Fig. [I] is non-terminating.

F. Belardinelli 5

S1A
(skip,set(0)) (skip,set(1)) (skip,set(0)) (skip,set(1))
so0 { (0,0) (0,1)) so1 s10 ((1,0) (L, 1)) sn

Figure 1: the ECGM 2. Transitions from sgg, So1, S10, and s1; to sg are omitted.

Now, we check whether the following ESL specifications hold in the ECGM 2.

2 E Vxa X Kg Jyp X wing (D
2 W Vxa X Jyp Kg X wing 2)
2 E Vxa X Kg Ky 3y X winyg 3)
2 E Vxa X Kp Jyp Ky X wing ()

Intuitively, expresses the fact that at the beginning of the game, independently from agent A’s
move, at the next step agent B knows that there exists a move by which she can enforce her victory. That
is, if agent A chose O (resp. 1), then B can choose 1 (resp. 0). However, B only knows that there exists
a move, but she is not able to point it out. In fact, (2) does not hold, as B does not know which specific
move A chose, so she is not capable of distinguishing states s() and s;,. Moreover, by (3) B knows that
A knows that there exists a move by which B can let A win. Also, by (@) this move is known to A, as it is
the B-move matching A’s move.

Indeed, in ESL it is possible to express the difference between de re and de dicto knowledge of
strategies. One of the first contributions to tackle this issue formally is [14]. Formula (I]) expresses agent
B’s de dicto knowledge of strategy yp; while (2)) asserts de re knowledge of the same strategy. Similarly,
in (3) agent A has de re knowledge of strategy yp; while () states that agent A knows the same strategy
de dicto. The de relde dicto distinction is of utmost importance as, as shown above, having a de dicto
knowledge of a strategy does not guarantee that an agent is actually capable of performing the associated
sequence of actions. Ideally, in order to have an effective strategy, agents must know it de re.

4 Model Checking ESL

In this section we consider the complexity of the model checking problem for ESL. For an ESL formula
¢ we define alt(¢) as the maximum number of alternations of quantifiers 3 and V in ¢. Then, ESL[k-alt]
is the set of ESL formulas ¢ with alf(¢) equal to or less than k. We can now state the hardness result for
ESL.

Theorem 1 (Hardness) The model checking problem for ESL{k-alt] is k-EXPSPACE-hard.

This result is inspired to Theorem 3.5 in [[17]], as its proof reduces the satisfiability problem for the
quantified propositional temporal logic QPTL to ESL model checking. However, the reduction provided
in Appendix [A]is different, as [17] makes use of the bind operator, which is not available in ESL.

Finally, we state the following completeness result, corresponding to Theorem 5.8 in [17]].

6 Epistemic Strategy Logic

Theorem 2 (Completeness) The model checking problem for ESL is PTIME-complete w.r.t. the size of
the model and NON-ELEMENTARYTIME w.r.t. the size of the formula.

We provide a proof in Appendix [B|and observe that for the nested-goal fragment ESL[NG] it is possi-
ble to show that the model checking problem is in (k+ 1)-EXPTIME w.r.t. the maximum alternation k of
a formula. We conclude that the complexity of model checking ESL is not worse than the corresponding
problem for the Strategy Logic in [[17].

5 Conclusions

In this paper we introduced Epistemic Strategy Logic, an extension of Strategy Logic [17] with modal-
ities for individual knowledge. We provided this specification language with a semantics in terms of
epistemic concurrent game models (ECGM), and analysed the corresponding model checking problem.
A number of developments for the proposed framework are possible. Firstly, the model checking prob-
lem for the nested-goal, boolean-goal, and one-goal fragment of SL has lower complexity. It is likely
that similar results hold also for the corresponding fragments of ESL. Secondly, we can extend ESL with
modalities for group knowledge, such as common and distributed knowledge. Thirdly, we can consider
various assumptions on ECGM, for instance perfect recall, no learning, and synchronicity. The latter two
extensions, while enhancing the expressive power of the logic, are also likely to increase the complexity
of the model checking and satisfiability problems.

References

[1] Thomas Agotnes, Valentin Goranko & Wojciech Jamroga (2007): Alternating-time Temporal Logics with
Irrevocable Strategies. In: Proceedings of the 11th Conference on Theoretical Aspects of Rationality and
Knowledge, TARK 07, ACM, New York, NY, USA, pp. 15-24, doi110.1145/1324249.1324256

[2] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (2002): Alternating-time temporal logic. J. ACM
49(5), pp. 672-713, doii10.1145/585265.585270.

[3] Francesco Belardinelli (2014): Reasoning about Knowledge and Strategies: Epistemic Strategy Logic. Tech-
nical Report, Universit d’Evry, Laboratoire IBISC. Available at https://www.ibisc.univ-evry.fr/
“belardinelli/Documents/sr2014.pdf.

[4] Nils Bulling, Jurgen Dix & Wojciech Jamroga (2010): Model Checking Logics of Strategic Ability: Complex-
ity*. In Mehdi Dastani, Koen V. Hindriks & John-Jules Charles Meyer, editors: Specification and Verification
of Multi-agent Systems, Springer US, pp. 125-159, doii10.1007/978-1-4419-6984-2|

[5] Krishnendu Chatterjee, Thomas A. Henzinger & Nir Piterman (2010): Strategy logic. Inf. Comput. 208(6),
pp. 677-693, doi:10.1016/.ic.2009.07.004.

[6] R.Fagin, J.Y. Halpern, Y. Moses & M.Y. Vardi (1995): Reasoning About Knowledge. The MIT Press.

[7] Peter Gammie & Ron van der Meyden (2004): MCK: Model Checking the Logic of Knowledge. In Ra-
jeev Alur & Doron Peled, editors: CAV, Lecture Notes in Computer Science 3114, Springer, pp. 479483,
doi:10.1007/978-3-540-27813-9._41.

[8] Valentin Goranko & Wojciech Jamroga (2004): Comparing Semantics of Logics for Multi-Agent Systems.
Synthese 139(2), pp. 241-280, doi:10.1023/B:SYNT.0000024915.66183.d1.

[9] Joseph Y. Halpern & Moshe Y. Vardi (1986): The Complexity of Reasoning about Knowledge and Time:
Extended Abstract. In Juris Hartmanis, editor: STOC, ACM, pp. 304-315, doii10.1145/12130.12161.

[10] Joseph Y. Halpern & Moshe Y. Vardi (1989): The Complexity of Reasoning about Knowledge and Time. 1.
Lower Bounds. J. Comput. Syst. Sci. 38(1), pp. 195-237, doi:10.1016/0022-0000(89)90039-1.

http://dx.doi.org/10.1145/1324249.1324256
http://dx.doi.org/10.1145/585265.585270
https://www.ibisc.univ-evry.fr/~belardinelli/Documents/sr2014.pdf
https://www.ibisc.univ-evry.fr/~belardinelli/Documents/sr2014.pdf
http://dx.doi.org/10.1007/978-1-4419-6984-2
http://dx.doi.org/10.1016/j.ic.2009.07.004
http://dx.doi.org/10.1007/978-3-540-27813-9_41
http://dx.doi.org/10.1023/B:SYNT.0000024915.66183.d1
http://dx.doi.org/10.1145/12130.12161
http://dx.doi.org/10.1016/0022-0000(89)90039-1

F. Belardinelli 7

[11] W. van der Hoek & M. Wooldridge (2003): Cooperation, Knowledge, and Time: Alternating-time Temporal
Epistemic Logic and its Applications. Studia Logica 75(1), pp. 125-157, doi;10.1023/A:1026185103185.

[12] Wojciech Jamroga (2004): Some Remarks on Alternating Temporal Epistemic Logic. In: Proceedings of
Formal Approaches to Multi-Agent Systems (FAMAS 2003), pp. 133-140.

[13] Wojciech Jamroga & Thomas Agotnes (2007): Constructive knowledge: what agents can achieve under im-
perfect information. Journal of Applied Non-Classical Logics 17(4), pp. 423-475, doi;10.3166/jancl.17.423-
475.

[14] Wojciech Jamroga & Wiebe van der Hoek (2004): Agents that Know How to Play. Fundam. Inform. 63(2-3),
pp. 185-219. Available athttp://iospress.metapress.com/content/xh738axb47d8rchf/,

[15] G.Jonker (2003): Feasible strategies in Alternating-time Temporal Epistemic Logic. Master’s thesis, Univer-
sity of Utrecht.

[16] A. Lomuscio, H. Qu & F. Raimondi (2009): MCMAS: A Model Checker for the Verification of Multi-Agent
Systems. In A. Bouajjani & O. Maler, editors: CAV, Lecture Notes in Computer Science 5643, Springer, pp.
682-688, doi:10.1007/978-3-642-02658-4_55.

[17] Fabio Mogavero, Aniello Murano, Giuseppe Perelli & Moshe Y. Vardi (2011): Reasoning About Strategies:
On the Model-Checking Problem. CoRR abs/1112.6275. Available at http://arxiv.org/abs/1112.
6275.

[18] D. Muller & P. Schupp (1995): Simulating Alternating Tree Automata by Nondeterministic Automata: New
Results and New Proofs of Theorems of Rabin. Theoretical Computer Science 141, pp. 69-107.

[19] David E. Muller & Paul E. Schupp (1987): Alternating Automata on Infinite Trees. Theor. Comput. Sci. 54,
pp. 267-276, doii10.1016/0304-3975(87)90133-2.

[20] Marc Pauly (2002): A Modal Logic for Coalitional Power in Games. J. Log. Comput. 12(1), pp. 149-166,
doi:10.1093/logcom/12.1.149.

A Model Checking ESL: lower bound

In this section we prove that model checking ESL formulas is non-elementary-hard. Specifically, we
show that for ESL formulas with maximum alternation k the model checking problem is k-EXPSPACE-
hard. The proof strategy is similar to [17], namely, we reduce the satisfiability problem for quantified
propositional temporal logic (QPTL) to ESL model checking. However, the reduction applied is differ-
ent, as ESL does not contain the bind operator used in the reduction in [17].

First, we introduce QPTL formulas by the following BNF, for p € AP:

v = ploy|y—y|Xy|Fy|3py

In analogy to ESL, we can define the notion of sentence and the fragment QPTL[k-alt] of QPTL
formulas with maximum alternation equal to or less than k. To interpreted QPTL formulas we introduce
temporal evaluations as functions re from N to the set {t, f} of truth values. Further, a propositional eval-
uation pe is a function from AP to the set TE of temporal evalutations. Similarly to strategy assignments,
the propositional evaluation pe!, assigns te to p and coincides with pe on all other atomic propositions.
We can now define the notion of satisfaction for QPTL.

Definition 7 (Semantics of QPTL) We define whether a propositional evaluation pe satisfies a QPTL

Sformula @ at time k, or (pe,k) = @, as follows (clauses for propositional connectives are straightforward
and thus omitted):

(pe,k) = p i pe(p)(k) =t

e EXy i ekt Ew

(pe,k) =EFy iff there exists] > k, (pe,j) = v

(pe,k) E Ipy iff there exists a temporal evaluation te s.t. (pel,. k) =y

http://dx.doi.org/10.1023/A:1026185103185
http://dx.doi.org/10.3166/jancl.17.423-475
http://dx.doi.org/10.3166/jancl.17.423-475
http://iospress.metapress.com/content/xh738axb47d8rchf/
http://dx.doi.org/10.1007/978-3-642-02658-4_55
http://arxiv.org/abs/1112.6275
http://arxiv.org/abs/1112.6275
http://dx.doi.org/10.1016/0304-3975(87)90133-2
http://dx.doi.org/10.1093/logcom/12.1.149

8 Epistemic Strategy Logic

We now prove that the satisfiability problem for QPTL sentences built on a finite set AP = {py, ..., pn }
of atomic propositions can be reduced to model checking ESL sentences on a ECGM 2 of fixed size on
|AP|, albeit exponential. The main result follows from the next lemma.

Lemma 3 (QPTL Reduction) Let AP = {py, ..., p,} be a finite set of atomic propositions. There exists
an ECGM 2 on AP s.t. for every QPTL[k-alt] sentence ¢ on AP, there exists an ESL[k-alt] sentence ¢

s.t. ¢ is satisfiable iff 2 = ¢@.
Sketch of Proof. First, we introduce an agent p = (L,,Acty, Pr,) for every atomic proposition
p € AP, defined as follows:

o L,={T,1}
o Act, = {t,f} is the set of truth values;
e Pr,(l) =Act, forevery l € L,.
Then, we introduce the ECGM 2 = (Ag,I, T,) where
o so=(L,...,1) €L, x...xL, fordefiniteness;
e 7(s,0) = s’ where for every p € Ag, s, = T (resp. 1) iff 6, = t (resp. f);
o sem(p)iffs,=T.

Further, we define a translation function - from QPTL to ESL formulas:

9 = Xq

9 =
Px¢" = ox¢’
dg¢ = dx,0

where b (resp. %) is any unary (resp. binary) operator.

It is easy to check that for every QPTL formula ¢, alt(¢) = alt(¢). Hence, - is indeed a translation
from QPTL[k-alt] to ESL[k-alt].

We can now prove the following result from which it follows that a QPTL[k-alt] sentence ¢ is satis-
fiable iff the ESL[k-alt] sentence ¢ is true in 2.

Lemma 4 For every QPTL formula ¢, (pe,i) = ¢ iff (2,A(i),x) = ¢, where A = out(sy,F*) and
x(p)(A10,n]) = pe(p)(n) for every n € N.

Sketch of Proof. For ¢ = p, (pe,i) = ¢ iff pe(p)(i) = t. Hence, by definition x(p)(A[0,i]) =t for
A = out(so, F*). Also, we observe that (2,4 (i), x) E X p iff for A" = out (A (i),F*), (2,A'(1),x) E p,
iff A/(1)(p) = T. In particular, this means that x(p)(A'(0)) =t. We observe that 1'(0) = A(i) and
1(P)((0)) = 2(p)(A[0,i]) = t. Asaresult, (pe,i) = piff pe(p)(i) = %(p)(A[0,1]) = t = 2 (p) (A'(0)).
i (2,2/(1),2) b= p iff (2,4, 7) F Xp.

The inductive cases for propositional connectives and LTL operators are straightforward.

Let ¢ = Ipy. = If (pe,i) |= ¢ then there exists re s.t. (pel,,i) = . Now consider a p-strategy F),
s.t. for all n € N, F,(A[0,n]) =te(n). Then, for all n € N, xﬁp (q)(A]0,n)) = pel,(q)(n) for all g € AP.

Therefore, by induction hypothesis we have that (2,4(i), xz,) = V. thatis, (2,1 (i),) = ¢.
< If (2,A(i), %) = ¢ then there exists a p-strategy F, s.t. (Q,?L(i),prp) = W. Now consider the

temporal evaluation ze s.t. for all n € N, re(n) = F,(A[0,n]). As above, for all n € N, pel,(q)(n) =
)(,{fp (q)(A[0,n]) for all g € AP. Therefore, by induction hypothesis we obtain that (pe/,,i) = v, that is,

(pe,i) E ¢. O

F. Belardinelli 9

By Lemma 4] we complete the proof of Lemma [3| In particular, QPTL satisfiability is reducible to
ESL model checking. U

By this result and the fact that the satisfiability problem for QPTL[k-alt] is k-EXPSPACE-hard [17],
we can derive Theorem[I]

Theorem E] (Hardness) The model checking problem for ESL[k-alt] is k-EXPSPACE-hard.

In particular, it follows that ESL model checking is non-elementary-hard.

B Model Checking ESL: upper bound

In this section we extend to Epistemic Strategy Logic the model checking procedure for SL in [17],
which is based on alternating tree automata [[19]. First, let A be a finite set of directions {dy,...,dy}.
Further, for some set U, U™ is the set of finite, non-empty, sequences of elements in U.

Definition 8 (Tree) A A-tree is a set T C A" s.t. () ifx-j€T forx € AT and j € A, then x € T; (ii)
there is only one j € Ain T (i.e., the root).

The sequences x € A" in T are called nodes. For x € T, j € A, the nodes x - j are the successors of x.
A leaf is a node with no successors.

Definition 9 (Branch) A branch in a A-tree T is a non-empty set B C T such that (i) rootr € B, and (ii)
for every x € AT in B, either x is a leaf or there exists a unique j € A such that x- j € B.

Given an alphabet X, a X-labelled tree is a pair .7 = (T, V) where (i) T is a tree, and (i) V : T — X
maps each node of T to a letter in X.

We now introduce alternating tree automata. In what follows 2" (AP) is the set of positive Boolean
formulas over a set AP of atomic propositions. For instance, Z* ({p,q}) includes p Aq, pV q, p A p.

Definition 10 (ATA) An alternating tree automaton is a tuple o = (£, A, Q,qo, 8,) where

e Y is a finite alphabet;

o Ais a finite set of directions as above;

o (is a finite set of states;

® go € Q is the initial state;

o 0:0xX— P (AxQ) is the transition function;

o 7 =(F,...F) €T with F; C...CF=Q.

Intuitively, when the automaton is in state ¢ and reads a node that is labelled by o, it applies the
transition (g, o). Then, a run is the execution of an ATA over a tree.

Definition 11 (Run) A run of an ATA < over a X-labelled A-tree 7 = (T,V) is a (A x Q)-tree T, such
that

(i) if d is the root of T, then (d,qo) is the root of T,

(ii) for x =11 (di,q;) €T, and y =1}, d; € T, if 6(qu,V(y)) = 0 € B (A x Q) then there is a
(possibly empty) set S C A x Q such that

(a) the assignment that assigns t to all the atomic propositions in S satisfies 0

10 Epistemic Strategy Logic

(b) forevery (d,q) € S we have x-(d,q) € T,.

Notice that if, for some node y, the transition function o returns the value t, then y may have no
successor. Also, 0 can never return the value f in a run. We use the term run to designate different
notions in ECGM and ATA, in order to be consistent with [6}117]]. Also, o may refer to actions in ECGM
or symbols in X. The context will disambiguate. A run 7, is accepting if all its infinite branches satisfy
the acceptance condition. Here we consider a parity acceptance condition. Given a run 7, and an infinite
branch B C T,, let inf(B) C Q be the set of g € Q such that there are infinitely many x € B for which
last(x) € (A x {q}), that is, inf(B) contains exactly all the states that appear infinitely often in B. The
acceptance condition is then defined as follows:

e A branch B satisfies the parity condition iff the least index i for which inf(B) N F; # 0 is even.

An automaton accepts a tree if and only if there exists a run that accepts it. We denote by .£(.«7) the
set of all X-labelled trees that .7 accepts. In what follows we consider only ATA coupled with a parity
acceptance condition. So, we refer simply to ATA for brevity.

We now show how ATA can be used to decide the model checking problem for ESL. First, we remark
that ECGM can be encoded as particular labelled trees. In what follows we take the set A of directions
as S X (AgU{r}). Further, a temporal epistemic run A from a state s, or t.e. s-run, is an infinite sequence
5O~ 5!~ ..., where s° = 5 and either s’ — 5" or 5' ~; s""! for some j € Ag.

Definition 12 (Assignment-State Encoding) Let &2 be an ECGM, s a state in &, and) a strategy
assignment. An assignment-state encoding for s and) over A C Ag is an (Acts X S)-labelled A-tree
Fx = (Tsx,st> such that
o T/ is the set of finite sequences (s', j1),...,(s", j,) € AT s.t. O, s, ... s" is a fragment of a t.e. s-
run for s = s, and if s' — st then ji 1 =t, if s ~ s then jiy = k;
o V(x)= (FXC(KY.X),last(Kv.X)) where Ks.x € Uy<p<c14yS" is the finite fragment of run obtained from
s - x by considering the maximal suffix of x € A" containing only elements in S x {t}, and then
eliminating the component t as above.

We can now prove the following result, which extends Lemma 5.6 in [17]. In what follows o4 is
the restriction of action ¢ to A C Ag, that is, the A-action s.t. 0|4(i) = 6 (i) for i € A, and o4 (i) = §
otherwise.

Lemma 5 Let &2 be an ECGM and ¢ an ESL formula. Then, there exists an ATA sz; = (Actp(g) ¥
S,A,Q0,q0¢,00,Fy) s.t. for every state s € S and assignment ¥, we have that (Z,s,X) = ¢ iff A=
L (D).

Sketch of Proof. The result is proved by induction on the structure of ¢. In the base case of an atomic
proposition p, we exhibit an ATA for p. The induction step is perform by applying transformations on
ATA corrisponding to each logical operator. The construction is analogous to [[17]], but in the present case
the directions are not just states in S, but couples of states and indexes from Ag U {r}, which represent
whether a transition is epistemic or temporal. Hereafter we consider the most significant cases and refer
to [[17] for further details.

For (P =D JZ{Z; = <{Gﬁ} X S,A, {p}>p76p> ({p}»’ where Oy = <ﬁ7 aﬁ> € Actp and Sp((cﬁvs)ap) =t
if s € m(p), 8s((04,5), p) = f otherwise.

For ¢ = -y, 427; is the complement automaton of <%, as defined in [19] for instance.
For ¢ = y; x y, where x € {A,V}, ;z%;; = (Actp(g) X S,A,Q0,909,0p,F) is such that

e Oy ={qos}UQy, UQy, with goy & Qy, UQy,

F. Belardinelli 11

o 85((0.5):00) = 8y (Olytyn)3)sd0w) 8y (Olpyeo5)s o)

* 8,((0,5):9) = 8y, ((Olpr(yn)»5),9) If ¢ € Qyy and 8y((0,5),q) = Sy, ((Osys)»5),9) if q € Qv

o Fy=(Fy,...,Fy), where (i) Fy, = (Fiy, ..., Fiyy,) and Fy, = (Fiy,, ..., Fi,y,); (ii) k = max (k; , k2);
(iii) h = min(ky,k2); (iv) Fip = Fiy, U Fpy, fori < h; (v) Fip = Fy, forh+1<i<k—1and k; = k;
and (vi) Fry = Qp.

For ¢ = Xy, o3 = (Act X ,A, Qp,qog, 89, Fy) is such that

* 0y = {qop } UQy With goy & Oy

e 5 ((0,5),900) = ((7(s5,0),1),q0y) for o € Act

o 63((0,5),) = 8y((Gl(y)>5).4) forall g € O,

o Zy=(Fiy,....,Fiy U{qop })

For ¢ = Ky, /5 = (Actpg) X 8,0, 06,409, 89, F4) is such that

* Oy = {q0p} UQy With gop ¢ Qy

* 8((0,5),906) = Ny~is((s',0), q0y)

e 3y((0,5),q9) = y((0,s),q) forall g € Qy

o Fp=(Fy,....FryU{qop})-

For ¢ = 3x;y, assume that i € fr(y). Then, we can use the operation of existential projection

for non-deterministic tree automata. First, we non-determinize the ATA d}f by applying the typical
transformation [[18]], and obtain an equivalent .4/} = (Ac(f,(l,,) X S,A, Qv qoy; Oy, Fy). Now we define

%g, = (Acts(g) X S, A, Qy, qoy, Op,-Fy) Where 8y is such that

e 0y((0,5),9) = \/c,ieDi(s) 51,,((G(l,i,s),q) forall g € Qy
where Géi is the joint action obtained by substituting the ith component o (i) with the individual action
o; for agent i.

Finally, by induction on the structure of ¢, we can prove that for every s € § and assignment ¥,
(2,s,%) = ¢ iff Z* € Z(Mg;), where .7;% is the assignment-state encoding for s and y over fr(¢) C
Ag. O

We now prove the following result that corresponds to Theorem 5.4 in [[17].

Theorem 6 (ATA Direction Projection) Let @%ﬁ—,, = (Acts () X S, A, Q9,909 09, F) be the ATA obtained
in Lemma [5] Moreover, let s € S be a distinguished state. Then, there exists a non-deterministic
ATA JV{,,%S = (Actp(9),A, Q' q0,6",.F') s.t. for all Actyg)-labelled A-tree T = (T,V), we have that
T € Z(JV;S) iff 7' e f(%&) where T is the (Acty(s) % S)-labelled A-tree (T,V') s.t. V'(x) =
(V(x),last(Ky.x)), where K., is defined as above.

Sketch of Proof. First we use the non-determinization procedure in [[18]] and transform the ATA %g,
obtained in Lemma (5| into an equivalent non-deterministic ATA 4" = (Act;9) X S,A, Q" q5,6",.F").
Then, we transform .4 into the new non-deterministic ATA JVJQY = (Acts(4),A,0Q',q0, 6", F'), where
Q' =0"xS,q,=1(q5,5), F =(Fi xS,...,Fi,x8) for " = (F,...,F),and §'(0,(q,5')) = 0" ((0,5),q)).
Finally, we can check that ./ £ , satisfies the statement of the theorem. O

Notice that for an Actj()-labelled A-tree 7 = (T,V), we have that the (Acty;(y) X S)-labelled A-tree
' = (T,V') in the statement of Theorem @ is a state-assignment encoding for s and the assignment ¥
s.t. for every i € fr(9), x(i)(Ks.x) is equal to V(x)(i), forevery x € T

Then, by using Lemma 5| and Theorem [we can prove the following result.

12 Epistemic Strategy Logic

Theorem 7 Let &2 be an ECGM, s a state in &2,) an assignment, and ¢ an ESL formula. Then, the
non-deterministic ATA E/V}?’S is such that (2 ,s,x) = ¢ Uj‘g(ﬂ/ﬁs) # 0.

Sketch of Proof. = Suppose that (22,5, x) = ¢. Then, by Lemmawe have that 7;* € £(o ;),
where .Z;* is the assignment-state encoding for s and ¥ over fr(¢). Hence, by Theorem EI we obtain that
LN) #0.

< Suppose that & (JV;;Y) # (. Then, by Theorem@there exists an (Actg;(y) X S)-labelled A-tree .7
st. 7'e ¥ (szg;) By reasoning as above, .7’ = (T, V'), can be seen as a state-assignment encoding for

s and the assignment y s.t. for every i € fr(¢), x(i)(K;.x) is equal to the ith element of the first component
of V'(x). Hence, by Lemma 5] we have that (2,s, x) |= ¢. O

We can finally state the following extension to Theorem 5.8 in [17], which follows from the fact that
the non-emptyness problem for alternating tree automata is non-elementary in the size of the formula.

Theorem [2| (Completeness) The model checking problem for ESL is PTIME-complete w.r.t. the size of
the model and NON-ELEMENTARYTIME w.r.t. the size of the formula.

We conclude by remarking that we can use Theorem 2] to show that the model checking problem for
the nested-goal fragment ESL[NG] is PTIME-complete w.r.t. the size of the model and (k+ 1)-EXPTIME
w.r.t. the maximum alternation k of a formula.

	Introduction
	Epistemic Concurrent Game Models
	Epistemic Strategy Logic
	Model Checking ESL
	Conclusions
	Model Checking ESL: lower bound
	Model Checking ESL: upper bound

