Linearisability on Datalog Programs ™

Foto Afrati®, Manolis Gergatsoulis” and Francesca Toni

& Dept. of Flectrical and Computing Engineering,
National Technical University of Athens, 157 73 Zographou, Athens, Greece,

e_mail: afrati@softlab.ece.ntua.gr

b Institute of Informatics and Telecommunications, N.C.S.R. ‘Demokritos’
153 10 A. Paraskevi Attikis, Greece

e_mail: manolis@iit.demokritos.gr

¢ Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ, UK

e_mail: £t@doc.ic.ac.uk

Abstract

Linear Datalog programs are programs whose clauses have at most one intensional
atom in their bodies. We explore syntactic classes of Datalog programs (syntactically
non-linear) which turn out to express no more than the queries expressed by linear
Datalog programs. In particular, we investigate linearisability of (database queries

corresponding to) piecewise linear Datalog programs and chain queries:

a) We prove that piecewise linear Datalog programs can always be transformed
into linear Datalog programs, by virtue of a procedure which performs the transfor-
mation automatically. The procedure relies upon conventional logic program trans-

formation techniques.

b) We identify a new class of linearisable chain queries, referred to as pseudo-
reqgular, and prove their linearisability constructively, by generating, for any given

pseudo-regular chain query, the Datalog program corresponding to it.

Keywords: Datalog programs, program transformation, program optimisation,

linearisability, deductive databases, database queries.

Preprint submitted to Elsevier Science 1 April 2002

1 Introduction

First-order (algebraic) query languages lack recursion and, as a consequence,
have limited expressive power. Datalog, the language of Horn logic without
function symbols, embeds recursion and therefore allows to express a far wider
class of queries. However, queries expressed in Datalog are harder to evaluate
than classical first-order queries (from the point of view of parallel complexity):
whereas first-order queries can be solved in deterministic log-space (namely by
a deterministic Turing machine using a workspace whose size is log n, where
n is the dimension of the problem, i.e. the number of the relations tuples in
the underlying database), Datalog programs are log-space complete for P in
general (namely, Datalog queries cannot be solved in deterministic log-space,
unless P = log-space which is believed to be highly unlikely [19]). Indeed, the
prototypical P-log-space complete path system accessibilily problem [9] can be
encoded by the Datalog program

access(X) — source(X).

access(X) « access(Y1),access(Yy), triple(Yy, Ya, X).

The predicates source and triple represent, respectively, source nodes and
accessibility conditions: in particular, the predicate triple(Y;, Yz, X) represents

that if ¥7,Y, are accessible from the source nodes, then so is X.

As a consequence many efforts have been devoted to detect special classes
of Datalog programs for which efficient evaluation methods and optimisation
techniques exist [29,6]. These classes are defined by imposing syntactic re-
strictions on the Datalog programs belonging to them, following two main

approaches:

— restricting the width (number of arguments) of the predicates defined by the
Datalog programs (as, e.g., in [7,10,32]);

— imposing the [linearily condition on the clauses of Datalog programs that

*This research has been partly supported by the EEC HCM Project no CHRX-
CT93-00414 “Logic Program Synthesis and Transformation”.

at most one non-database predicate is allowed in the body of each clause

defined by the Datalog program (as, e.g., in [17,18,24,10]).

Linear programs have been widely studied (e.g. see [1,17,3]) both as concerns
their computational complexity and the efficiency of algorithms for computing
their consequences. In particular, it has been shown that all Datalog programs
currently known to be P-complete require non-linear clauses, because in each
case there is a first-order reduction from path system accessibility to such
Datalog programs (e.g. see [11,30,3]). Finally, it is known ([1], see section 5 for
more details) that there are Datalog programs in N'C* which are not equivalent
to any linear program: these are Datalog programs corresponding to a special

class of (recursive) queries, referred to in the literature as chain queries [30,3].

In this context, an interesting question is whether syntactic restrictions on
classes of Datalog programs necessarily restrict their expressive power. In par-
ticular, linearisability of Datalog programs/recursive queries (i.e., the ques-
tion whether queries expressed by certain programs can be still expressed
within the class of linear programs) has been widely studied in the (deduc-

tive) database community, e.g. by [23,33,14].

As an example, consider the following Datalog program which checks if there
is a path joining two nodes of a graph:

path(X,Y) < arc(X,Y).
path(X.,Y) < path(X, Z), path(Z,Y).

Here arc is a database predicate. This program is not linear, whereas the

equivalent Datalog program:

path(X,Y) < arc(X,Y).

path(X,Y) < arc(X, Z), path(Z,Y).

is. Thus, in this example, imposing the linearity condition did not prevent
the “path query” to be expressible. That is, the “path query” can also be
expressed within the class of linear programs. Thus, a natural question is: Are

there (syntactic) classes of Datalog programs that have this property, that for

any query expressed by a program in the class, there is a linear program which
also expresses the query? In this paper, we answer this question affirmatively
for two special classes of Datalog programs/recursive queries. More in detail,
we investigate linearisability of piecewise linear programs and chain queries.
We prove that piecewise linear programs are always linearisable. Moreover,
whereas it is known that chain queries are not linearisable in general [1], we
prove that reqular and pseudo-regular chain queries always are. To the best of
our knowledge, the class of pseudo-regular chain queries has not been studied

elsewhere in the literature.

We prove all linearisability results constructively, by showing how to translate
any given programs/queries into corresponding linear Datalog programs. In
particular, we transform piecewise linear programs into linear programs via a
procedure which relies heavily upon conventional logic program transforma-
tion techniques [21,22], such as fold, unfold and Eureka definition introduction
operations. The correctness of this procedure is a direct consequence of the

fact that these transformation techniques are equivalence preserving.

The rest of the paper is organised as follows. Section 2 gives some prelimi-
nary notions. Section 3 and 4 present, respectively, linearisability results for
piecewise linear programs and some classes of chain queries, namely regular
chain queries and the newly introduced pseudo-regular chain queries. Section 5
reviews non-linearisability results for some other classes of chain queries. Sec-

tion 6 concludes and discusses future work.

Some of the material in this paper is a revised and extended version of material

from [2,5].

2 Preliminaries

Suppose that we have four disjoint, countably infinite sets of symbols namely
constants, variables, function symbols of all arities and predicates of all arities.
A term is either a constant or a variable or an expression of the form f(u)

where f is a function symbol of arity n and u is a n-vector of terms. An atom

is an expression of the form p(u), where p is a predicate symbol of arity n
and wu is a n-vector of terms. A ground atom is an atom without variables. Let
Ag, Ay, ..., Ay, with £ > 0, be atoms. Then Ay < A,..., A, is a Horn clause
or a rule (in the following we will call it simply a clause). A is referred to
as the head and Ay, ..., A, as the body of the clause. A clause with an empty
body (n = 0) is referred to as a unit clause. A clause with a non-empty body
(n > 0) is referred to as a non-unit clause. A definite logic program is a set
of Horn clauses. If p is the predicate in the head of a clause then the clause

defines or is a definition for p.

Let P be a definite logic program. Then the Herbrand Universe Up of P
is the set of all ground terms that can be formed using the constant and
function symbols that appear in P. The Herbrand base H Bp of P is the set of
ground atoms whose predicate symbols appear in P and whose arguments are
terms in Up. A Herbrand interpretation for P is a subset of HBp. A Herbrand
model for P is a Herbrand interpretation which satisfies all clauses in P. The
meaning M(P) of a definite logic program P is defined as M(P) given by the
least Herbrand model of P. Two definite logic programs are equivalent if they
have the same meaning. If S is a set of predicate symbols, then the meaning
Ms(P) of a definite logic program P restricted to the predicates in S is defined
as Mg(P)= M(P)N{A|A is a ground atom whose predicate is in S}.

2.1 Database Queries and Datalog Programs

A relational (or extensional) database of arity (ay,...a,), where each a;, with
1 < < n,isanon-negative integer, is a tuple (D, rq,...,r,) with D a finite set
(called the domain) and r;, i = 1,...,n, arelation of arity a; over D. A relation

r of arity a over the domain I is a finite subset of D” i.e. its elements are a-
tuples of elements of D. In logic programming terms, an extensional database
is represented by a (finite) set of unit clauses without function symbols. Under
this formulation, the (implicit) domain D is the Herbrand Universe of the set of
unit clauses. The predicates occurring in an extensional database are referred

to as extensional (or EDB) predicates. Atoms whose predicate is extensional

are referred to as extensional (or EDB) atoms.

A Datalog program (or intensional database) is a set of Horn clauses with-
out function symbols. The predicates that appear in the head of clauses in
a Datalog program are referred to as intensional (or IDB) predicates. Atoms
whose predicate is intensional are referred to as intensional (or IDB) atoms.
We assume that extensional predicates cannot appear in the head of clauses,
and that predicates appearing only in the bodies of the clauses of a Datalog
program are extensional. As a result, the sets of intensional and extensional

predicates/atoms are necessarily disjoint.

A query of arity (ay,...,a,) to (a) is a function from extensional databases of
arity (ai,...,a,) to extensional databases of arity (a). A query is expressed
by a program written in some database query language. In this paper we
use Datalog programs to express queries over extensional databases. Given
an extensional database K DB and a Datalog program [DB, the query corre-

sponding to an intensional predicate p in DB is:

Q;DB(EDB) = {d|p(d) belongs to the least Herbrand model of EDBUIDB} .

Example 1 Let EDB = {arc(a,b),arc(b,c),arc(c,d),arc(a,e)} (with im-
plicit domain {a,b,c,d,e}) and let IDB be

path(X,Y) < arc(X,Y).
path(X.,Y) < arc(X, Z), path(Z,Y).
Then, the query corresponding to the (intensional) predicate path is:
ZI)QE(EDB) = {(a,b),(b,c), (c,d), (a,¢),(a,), (a,d), (b, d)}.

In this paper we will study the transformation of some, syntactically defined
classes of Datalog programs and queries into special “linear” Datalog pro-

grams, defined as follows:

Definition 2 A linear program is a Datalog program such thal every clause

'n general, d is a tuple of elements of the domain D.

in the program has at most one intensional atom in its body.
The program in example 1 is linear.

Notice that the notion of linear Datalog programs presented above has been

previously used in the literature [24,10].

Definition 3 A linearisable program DB is a Datalog program such that
there exists a linear program I DB’ salisfying the property that, for every exten-
stonal database ED B, the meaning of EDBUIDB coincides with the meaning
of EDB U IDB' restricted to the predicates occurring in EDBUIDB.

A linearisable query is a query corresponding to a linearisable program.

Notice that, since the database DB in the earlier definition is not fixed, the
Herbrand universe of DB is not fixed either.

In this paper we study linearisability of “piecewise linear programs” and “chain

queries”, defined below.

Definition 4 A piecewise linear program is a Datalog program I DB such
that for every clause in IDB there is at most one atom in the body whose

predicate s “mutually recursive” with the predicate in the head, where

— two predicates p and q are said to be mutually recursive iff p “depends on”
q and q “depends on” p, where “depends on” is the least relation such that:
a predicate p depends on a predicate q iff there is a clause with p in its head
and either q or a predicate r which depends on q in ils body.

It is easy to see that every linear program is piecewise linear. However, piece-

wise linear programs are not guaranteed to be linear in general.

Example 5 The following Datalog programs are piecewise linear bul not lin-

ear.

Program 1:

path(X,Y) < arc(X,Y).

path(X,Y) are(X, Z), path(Z,Y).

double_path(X,Y) ¢ path(X,Y), path(Y, X).
Program 2:

ancestor(X,Y) < parent(X,Y).

ancestor(X,Y) < parent(X, 7),ancestor(Z,Y).

parent(X,Y) « mother(X,Y).

parent(X,Y) « father(X,Y).
where are, father and mother are extensional predicates.

Note that the path system accessibility program given in the Introduction is

neither linear nor piecewise linear.

In this paper we will refer to extensional databases with binary relations only
as graphs. Note that the extensional database F DB in example 1 is a graph.
Moreover, any EDB for the extensional predicates are, father and mother in

example 5 would be a graph too.

Definition 6 Let EDB be a graph and ¥ be the (finite) alphabet conlaining
a letter R; for each relation r; in EDB. Then, the chain query for a language
L CY* is:

CQr(EDB) = {(u,v)| there exists a “path in EDB from u to v spelling a
word” in L},

where a path from u to v spelling a word R;, ... R;, € ¥ is a sequence u =
U, ..., uipr = v of elements of the domain of EDB such that r; (u;,uj1.) €
EDB, for each j = 1,...,l, and a path spelling the empty word, €, is the

sequence u,u, for every element u of the domain of EDB.

Example 7 Let EDB be as in example 1. Then ¥ = {Arc}.

Let I = {Arci|i > 1}. Then

CQL(EDB) = {(a,b), (b, c),(c.d),(a,€),(a,c), (a,d), (b,d)}

(= Q;gl}? in example 1). The spelled words are Arc, Are, Are, Arc, Arc?,

Arc?, Arc?, respectively.

Example 8 Let EDB = {r(a,b),r(b,c),s(c,d)} (with implicit domain {a, b,
c,d}). Then, ¥ = {R,S}. Let L ={ R'S/]i,57 > 0,i+ 35 >0 }. Then,

CQr(EDB) = {(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)}.
The spelled words are R, RR, RRS, R, RS, S, respectively.

Finally, we will also use the following notion:

Definition 9 The transitive closure of a predicate p w.r.t. a program P is

the set of clauses S,, where S, C P, defined as follows:

(i) If the predicate of the head of C is p, then C' belongs to S,,.
(ii) Let C be a clause in Sp and p’ be the predicate of an atom in the body of
C'. Then the clauses in the transitive closure S, of p" w.r.l. P are also in
Sp-
(iii) All clauses in S, are generated by applying the above rules.

2.2 Logic Program Transformation

In the transformation system of Tamaki & Sato [27] %, a sequence P, ...,P,
of definite logic programs is generated, starting from the initial program Py, by
applying the unfold/fold transformation rules [27,20,22,12,13], defined below,
and by introducing clauses defining new predicates (called Eureka definitions)
[20]. The unfold/fold transformation rules preserve the meaning of definite
logic programs. The clause introduction rule preserves the meaning of the

definite logic program it is applied to, restricted to the predicates occurring

2In the following we adopt it in the formulation which appears in [15]

in the program before the rule is applied.

Definition 10 An initial program Py is a program satisfying the following

conditions:

(i) Py is divided into two disjoint sets of clauses, P, and P,q4. The pred-
icates defined by P,., are called new predicates, while those defined by
P4 are called old predicates.

(ii) The new predicates never appear in Pyq nor in the bodies of the clauses

n Py

Note that, although clauses defining new predicates (Fureka definitions) can
be introduced in any program of the transformation sequence, Fy, ..., P,, we

will assume that all these definitions are in P,.,, in P, to start with.

Definition 11 Let C be the clause A « B, K in P, with | > 0, where B is an
atom and K a conjunction of atoms, and C1, ..., C,, be all clauses in Py ® whose
heads are unifiable with B by most general unifiers 0y, ...,0,,, respectively.
The result of unfolding C at B is the set of clauses {C1,....,C} } such that if
Cj, with 1 < j <m, is B; + Q;, where Q; is a (possibly empty) conjunction
of atoms, then C} is (A < Q;, K)0;.

Then, Py = (P —{C})U{Cy,.....CL}.

C' s called the unfolded clause and Cf4,....,C,, the unfolding clauses. B is
called the unfolded atom.

Definition 12 Let C be the clause H + K, L in P, and F the clause A + K’
in Ppew, where K, K', and L are conjunctions of atoms.
Then, the clause C': H < A0, L is the result of folding C' using F' if there

exists a substitution 0 satisfying the following conditions:

(i) K'0 = K.
(ii) All variables in the body of F' which do not appear in the head of F are

mapped through 6 into distinct variables which do not occur in C”.

31t has been shown [20] that in general one can choose any Pj,j < [, rather than
just P;. We omit this possibility here as this plays no role in the methodology we

propose later, in section 3.

10

(iii) F' is the only clause in P,., whose head is unifiable with A#.
(iv) Fither the head predicate of C is an old predicate, or C' has been unfolded

at least once in the sequence Py, Py, ..., P_;.

Then, P1+1 = (Pl — {O}) U {Cl}
C' is called the folded clause, and F' is called the folding clause.

Note that this definition prevents self-folding (see part (iv)), namely folding
where the same clause serves as both folded and folding clause, which does

not preserve the meaning of definite logic programs.

Note that more powerful unfold/fold transformation systems than the Tamaki
& Sato’s we use in this paper have been proposed in the literature [28,8,13]. In
particular, in [28], recursive clauses are allowed to be used as folding clauses. In
the system proposed in [13,12] simultaneous folding of more than one clauses
is allowed, while in [12] simultaneous folding using recursive Eureka definitions
is allowed. A lot of research work has also been done (see for example [25,26])
towards the definition of unfold/fold transformation systems that preserve
various semantics of logic programs which allow negative atoms in the clause
bodies. Although in this paper we do not need such additional features, it
would be interesting to investigate the usefulness of such systems in optimizing

transformations of database logic programs.

In the remainder of the paper we will rely upon the program transformation

methodology proposed in [22].

Definition 13 An unfolding selection rule (U-rule for short) is a (partial)
function from clauses to atoms. The value of the function for a clause is a

body atom called the selected atom.

Definition 14 Let P be a program, C' a clause and S a U-rule. An unfolding
tree (or U-tree for short) T for < P,C' > via S is a tree labeled with clauses,

constructed as follows:
- C s the root label of T, and

11

— if M is a node labeled by a clause C' and B is the atom selected by S in C,
then, for each clause C' in the result of unfolding C' at B, there is a child
node N of M labeled by C'.

Definition 15 A nonempty tree T is called an upper portion of a tree T iff
the following hold:

— The roolt node N of T" is also the root node of T'.
— For every node N of T', N is also a node of T and either N is a leaf node
of T" or all child nodes of N in T are also child nodes of N in T".

An upper portion of T consisting of a single node is called a trivial upper

portion.

It can be shown [22] that for any program P and clause C, if L is the set of
leaves of an upper portion of a U-tree for < P,C' > via an U-rule S, then

M(PU{C})= M(PUL).

3 Transforming Piecewise Linear Programs into Linear Programs

In this section we show that every piecewise linear Datalog program can be
transformed into an equivalent linear program. We show this constructively by
presenting a procedure which performs the transformation. The procedure uses
unfold /fold transformations and introduction of Fureka definitions. The pro-
cedure repeatedly applies a procedure which replaces by linear programs non-
linear clauses of a special kind, referred to as “minimally non-linear clauses”
(see definition 17 below), which are always guaranteed to exist in piecewise

linear programs containing non-linear clauses (see lemma 18 below).
The following example illustrates the overall behavior of the procedure.

Example 16 Let P = {C,Cy,C5,C4,Cs, Ce} be the piecewise linear Datalog

program with:

Ci: a(X,Y) + edbl(X,Y).

12

Cy: a(X,Y) « b(X,7),a(Z,Y).
Cy: B(X,Y) « edb2(X,Y).
Cy: b(X,Y) < edb3(X, Z),c(Z, W), b(W,Y).
Cs: o(X,Y) edbd(X,Y).
Co: o(X,Y) edb5(X, Z),c(Z,Y).
P is not lincar due to the non-linear clauses Cy and Cy. We show how Cy can

be replaced by a set of linear clauses, by applying logic program transformation

rules.

First, we introduce the FEureka definition:

Dy newl(X,Y) + ¢(X,Z),b(Z,Y).

Then, we fold Cy using Dy, thus obtaining the linear clause:
Cr: b(X,)Y) ¢ edb3(X,7),newl(Z,Y).

The Fureka definition Dy is a non-linear clause. In order to replace it by a
set of linear clauses, we unfold Dy at ‘¢(X,7Z)’ using the clauses Cs and Cg,

thus obtaining:

Cs: newl(X,Y) < edbd(X,7),b(Z,Y).

Co: newl(X,Y) « edb5(X,W),c(W,Z),b(Z,Y).

Finally, by folding Cy using D we obtain:
Cio: newl(X,Y) « edb5(X, W), newl(W,Y).

{Cs, Cio} is a linear program for ‘newl’. Let P' = P — {C4} U {Cr, Cs, Cio}-
P’ is equivalent to PU{Dy}. P’ is still not linear due to the non-linear clause
C'y. Starting from P', we can replace Cy by an equivalent set of linear clauses,

by applying similar techniques to the ones above. We first introduce the Fureka
definition:

Dy new2(X,Y) « b(X,7),a(Z,Y).

13

Then, we fold Cy using Dy, thus obltaining the linear clause:
Cii: a(X,Y) < new2(X,Y).

We now unfold Dy at b(X,Z)’ using the clauses Cs and C7, thus oblaining:

Ciz: new2(X,Y) edb2(X,7Z),a(Z,Y).

Ciz: new2(X,Y) < edb3(X,W),newl(W, 7),a(Z,Y).

Then, we introduce the Fureka definition:

Dy newd(X,Y) « newl(X,Z),a(Z,Y).

Further, we fold Ci3 using Ds, thus obtaining the linear clause:

Cra: new2(X,Y) edb3(X, W), new3(W,Y).

Again, in order to replace D3 by a set of linear clauses, we unfold D3 at
‘newl(X, Z)’ using Cs and Cio, and then we fold the clauses obtained, using

Dy and Ds. In this way we obtain the linear clauses:

Cis: newd(X,Y) edbd(X, W), new2(W,Y).

Cie: new3(X,Y) < edb5(X, W), new3(W,Y).

The final program obtained by the above procedure is Pyina = {C1,C3, Cs, Cs,
C7, Cs, Cio, Ci1,Cho, 01470157016}- Pfinal is a linear program. Nole that, if
we are interested only in the predicate ‘a’, we can just consider the transilive

closure of ‘a’ w.r.t. Ppinq, consisting of the clauses Cy, Cy1,Cha, Cha, Cis, Che.

Definition 17 Lel P be a piecewise linear program and C' a non-linear clause
in P. Then C is said to be minimally non-linear ¢ff for every IDB atom in the
body of C'" whose predicate p is not mutually recursive with the predicate of the

head of C, the transitive closure of p w.r.t. P is a linear program.

Note that, in example 16, 4 is a minimally non-linear clause in P, whereas

(5 is not; however, Cy is a minimally non-linear clause in P’.

Every piecewise linear program which is not linear is guaranteed to contain at

least one minimally non-linear clause:

14

Lemma 18 Let P be a piecewise linear Datalog program and N the sel of
non-linear clauses in P. Then, either N is emply or there is (al leasl) one

minimally non-linear clause in N.

Proof. We define an ordering relation >, over the set N consisting of all
nonlinear clauses of P, as follows: Cy > (), if (5 is in the transitive closure
wrt P of some intensional atom in the body of C other than the atom which is
mutually recursive with the head of C;. It is easy to see that > is asymmetric
since otherwise P would not be piecewise linear. The minimally non linear

clauses of P are the minimal elements of N. O

Basically, the procedure, formally given in section 3.2, selects in turn mini-
mally non-linear clauses and replaces them by a set of linear clauses as given by
the procedure, formally given in section 3.1. The procedure applies unfolding,
clause introduction (giving a new Eureka definition), and folding. The unfold-
ing steps are determined by an unfolding selection rule, uniquely determined

by the set of intensional atoms in the bodies of clauses as follows:

Definition 19 An unfolding selection rule S is a linear unfolding selection
rule (linear U-rule in short) iff, for any clause C' in a program P, S selects
an intensional atom p(t) in the body of C' such that the transitive closure of
p w.r.t. P is a linear program, and S is undefined for C' if there is no such
predicate p.

Note that the U-rule (implicitly) adopted in example 16 is linear.

Note also that, in general, the atom selected by a linear U-rule, if any, is
not uniquely defined. Therefore, there might be multiple U-trees via a linear

U-rule for any Datalog program and clause. Finally:

Lemma 20 A linear U-rule is always defined for minimally non-linear clauses

in piecewise linear programs.

Proof. Trivial, since if a clause C' in a piecewise linear program P is minimally

15

non-linear, then there is always an atom in the body of C' whose predicate’s

transitive closure w.r.t. P is a linear program. 0O

In the remainder of this section we will define formally the procedure.

3.1 Minimally Non-Linear Clause Linearisation Procedure

The following lemma implies that when we unfold a minimally non-linear
clause C' 1n a piecewise linear program P via a linear U-rule S, then S is also
defined for all non-linear clauses (if any) resulting from this unfolding, as these

clauses are minimally non-linear.

Lemma 21 Let C' be a minimally non-linear clause in P, S a linear U-rule
and T a U-tree for < P,C > wvia S. Then, every non-linear clause in the
set of leaves L of any finite upper portion of T is minimally non-linear in

(P—-{C})UL.

Proof (By contradiction). Suppose that a clause D € L is not minimally
non-linear. Then, there is an atom in the body of D whose predicate p is not
mutually recursive with the predicate of the head of D and whose transitive
closure is a non-linear program. However, the clauses in the transitive closure
of p are also in the transitive closure of the predicate g of the atom selected
by S in the body of C. Therefore, the transitive closure of ¢ is not linear:

contradiction. 0O

The following definition introduces two kinds of upper portions of U-trees that
will be constructed by the procedure for deciding when to stop unfolding,

which Eureka definitions to introduce and when to start performing folding.

Definition 22 Let P be a Datalog program, C be a clause in P, S a U-rule,
T a U-tree for < P,C > via S. A finite upper portion U of T' is said to be

— F-linearisable wrt a set of Eureka definitions KD iff each leaf of U

16

- either can be folded using as folding clause a definition in ED and giving
as a result a linear clause,

- oris a linear clause,

- oris a “failing” clause in P, where a clause is failing in a program ff
there is an atom in the body of the clause which does not unify with the
head of any clause in the program.

— E-linearisable iff each leaf of U is

- either a linear clause,

- or a failing clause in P,

- or a “Furekable” clause, where a clause D in a node of a U-tree T' for
< P,C" > via S is Eurekable iff there is an ancestor F of D in T and a
tuple I of intensional atoms such that the tuples of all intensional atoms
in the bodies of both D and F are instances of I. F is called a folding

ancestor of D.

U is a minimal F-linearisable (E-linearisable) upper portion of T iff there
exists no F-linearisable (E-linearisable, resp.) upper portion U’ of T, with U' #
U, which is also an F-linearisable (E-linearisable, resp.) upper portion of U.

As we will see in the procedure 24, the detection of a Eurekable clause in an
E-linearisable upper portion tells us that we have to stop unfolding in the
corresponding branch of the U-tree and introduce a new Eureka definition.
The body of the new definition consists of the tuple I. A failing clause in
an F-linearisable upper portion can be removed from any program without

affecting the meaning of the program.

Note that, for any Datalog program, clause in the program, U-rule and U-tree,
if there exists an E-linearisable upper portion (F-linearisable upper portion wrt
some given set of clauses) of the U-tree, then there exists a unique minimal

E-linearisable (F-linearisable, resp.) upper portion. Moreover:
Lemma 23 Let P be a Datalog program, C' be a minimally non-linear clause
in P, S a linear U-rule, T a U-tree for < P,C' > via S. Then there exists at

least an F-linearisable upper portion of T'.

17

Proof. Since S is a linear U-rule, it always selects an atom whose transitive
closure is a linear program. Thus, the number of the intensional atoms in the
body of each clause resulted by unfolding a clause C' (i.e. descendant of C' in
T) is less than or equal to the number of the intensional atoms in the body
of C. Since the number of intensional predicates in P is finite, it is obvious
that for every branch of T' we can find in a finite depth from the root of T'
either a linear clause or a clause D for which there is a tuple I of intensional
atoms and an ancestor clause F' such that the tuple of the intensional atoms
of both clauses F' and D are instances of I. Therefore, there exists a finite

upper portion of 7" with the required properties. O

Instead, even if the chosen clause is minimally non-linear and the U-rule is
linear, an F-linearisable upper portion of T' is only guaranteed to exist wrt

some special set of clauses, for example the set FD chosen below.
Procedure 24 (Clause Linearisation procedure (CLP))

Input : a precewise linear program P, a minimally non-linear clause C' in P

and a linear U-rule S.

Output : a set LC of linear clauses and a set ED of clauses defining predi-

cates not occurring in P (Fureka definitions).

(i) Construct the minimal E-linearisable upper portion of a U-tree T for
< P,C > via S.

(ii) For every leaf D in U which is Eurekable via ancestor F' introduce a fresh
predicate symbol new and construct a clause
E:new(Xq,...,Xg) < 1
with
(a) I a conjunction of intensional atoms such thal both the conjunction

ID of all intensional atoms in the body of D and the conjunction [F

of all intensional atoms in the body of F' are instances of I * and

*The best choice is to use as I the most specific generalization[16] of 1D and IF.
An algorithm to compute the most specific generalization of a set of expressions is

given in [16].

18

(b) {X1,...,Xx} the minimal subset of the set of all variables in I such
that both D and F can be folded using F.

Let ED be the set consisting of all F's constructed as above after having
eliminated “copies”, differing from other clauses in the sel only in the
names of the predicate they define and in the order of the variables in the
heads.

(iit) Select the minimal F-linearisable upper portion U of U wrt ED.

(iv) For each clause 2 in ED construct the minimal, non-trivial F-linearisable
upper portion Ug wrt ED of a U-tree for < P, E > via S.

(v) Let LC be the set of all linear clauses in the leaves of U' and Ug together
with the set of all clauses resulting from the folding of the non-linear and

non-failing clauses in the leaves of U and Ug using the clauses in ED.

Note that U’ in step (iii) can be a trivial upper portion, whereas Ug in step (iv)
is necessarily non-trivial, by definition of folding. Indeed, if Ug were trivial,
then a step of self-folding would take place in step (v). But this is prohibited
by definition 12, part (iv).

All clauses in ED are non-linear clauses by construction (see step (ii)). How-

ever:

Lemma 25 Let P be a piecewise linear program, C' a minimally non-linear
clause in P, S a linear U-rule for P, and (LC, ED) be the output of the CLP
applied to input (P,C,S). Then:

1) every clause in ED is a minimally non-linear clause in PU ED;

2) every clause in LC is linear.

Proof.

1) Directly from lemma 21, since C' is a minimally non-linear clause in P, and
by construction of the Eureka definitions (step (ii)).
2) Trivially, by construction (step (v)) and by definition of F-linearisable upper

portion. 0O

19

Part 1) of this lemma implies that the linear selection rule S (used in step (i))
is always defined for the clauses in D and the clauses in Ug, for all £ € ED,

constructed at step (iv).

Theorem 26 (Correctness of CLP) Let P be a piecewise linear program,

C' a minimally non-linear clause in P and S a linear U-rule for P. Then

T CLP applied to (P,C,S) terminates.

I Let LC be the set of linear clauses returned by CLP applied to (P,C,S),
and pred(P) be the set of predicates defined in P.
Then, M(P) = Mycqpy((P —{C})U LC).

Proof.

T Termination: 1t is sufficient to prove that it is always possible to construct
1) a minimal E-linearisable upper portion U of a U-tree for < P,C" >
via S in step (i) of the procedure, 2) a minimal F-linearisable (wrt £ D)
upper portion U’ of U in step (iii), and 3) for every clause F; in ED, a
minimal (non-trivial) F-linearisable (wrt ED) upper portion Ug, of a U-
tree for < P, FE; > via S in step (iv) of the procedure.

1) Directly by lemma 23.

2) Directly by construction of the Eureka definitions (step (ii)).

3) Assume that, for the construction of Ug,, we use the same U-rule S as
in step (i). Since the selection performed by S is uniquely determined
by the set of the intensional atoms in the body of a clause, Ug, will be
constructed in a similar way as the U-tree for the clause which led to the
introduction of Fj;. In fact, as the body of F; has the same intensional
atoms with a clause G' in a leaf of U’ for which E; has been introduced,
the clauses in the nodes of Ug, can be put into one-to-one correspondence
with the clauses in the subtree of U whose root is G. The clause in a node
of Ug, has the same intensional atoms with the corresponding clause in a
node of U. The two clauses differ in that the EDB atoms in the body of
a clause in Ug, is subset of the EDB atoms of the corresponding clause in

U. Thus Ug, will be constructed in a finite number of unfolding steps.

20

I Fquivalence: Tt is easy to see that the application of the unfold/fold trans-
formations in the procedure 24 complies with the conditions in the defini-
tions 10, 11 and 12. Thus, by the correctness of the transformation system
we conclude that M.cqsp)(P U ED) = My.cq5p)((P — {C}) U LC). Since
P,eww = FED it is easy to by the definition 10 that Mp,eds(p)(P UED) =
Myreas(py(P). Therefore My, casp)(P) = Myreas(pr)((P — {C'})U LC). O

Example 27 Figures 1 and 2 show the application of the CLP procedure 24
to clause Cy of the program of example 16. In this case, the procedure returns
ED ={Dy} and LC = {C7,Cs,Cyo}. The underlined atoms in non-leaf nodes
of the trees are the atoms selected by the U-rule.

Figure 1 corresponds to step (i) of the procedure. The underlined tuple of atoms
in the leaf is instance of the chosen tuple I (that leaf is a Furekable clause).
The detected Furekable clause allows to introduce the Fureka definition Dy

(step (ii)).

The minimal F-linearisable upper portion of the U-tree in Figure 1 consists of
a single node labeled by the clause Cy. Cy is folded using Dy. The resull of this
folding (step (iii) of the CLP procedure) is the clause Cs.

Figure 2 corresponds to the construction of a linear definition for the predicate

‘newl’ in step (iv).

Finally, figure 3 corresponds to the step (i) of the CLP procedure applied to
< P',Cy >. The detected Furekable clauses allows to introduce the definitions
D2 and D3.

C,: b(X.Y) <--edb3(X,2), cZW), b(W,Y) < 1

/\

b(X,Y) <- edb3(X,Z), edb4(Z,W), b(W,Y) b(X,Y) <— edb3(X,Z), edb5(Z,F), c(E.W). b(W.Y)

Fig. 1. A minimal E-linearisable upper portion of a U-tree for < P,Cy > .

21

D,: newl(X)Y) <--c(X.Z),b(Z,Y)

Cq: newl(X,Y) <-- edb4(X,2), b(Z,Y) Cy: newl(X,Y) <-- edb5(X,W), c(W %) b?Z Yf
C

10
Dl

Fig. 2. A minimal (non-trivial) F-linearisable upper portion of the U-tree for

< P, Dy >. The non-linear leaf clause Cy is foldable using D;.

y » C,: a(X)Y) <--b(X.Z).a(Z,)Y)
a(X,Y) <--edb2(X,2), a(Z,Y) a(X,Y) <--edb3(X,W), newl(W.7). a(Z,Y) «—3

a(X)Y) <-- edb3(X,W), edb4(W,F),

b(E.Z2), a(Z.Y)
a(X,Y) <-- edb3(X,W), edb5(W,F), newl(F.Z). a(Z.Y)

Fig. 3. A minimal E-linearisable upper portion of a U-tree for < P',Cy >.

3.2 Program Linearisation Procedure

The procedure repeatedly applies the CLP, replacing the chosen minimally

non-linear clause by the set of linear clauses generated by CLP for that clause.
Procedure 28 (Program Linearisation Procedure (PLP))

Input : a piecewise linear program P and a linear U-rule S.

Output : a set LC of linear clauses and a set of Fureka definitions ED.
Let1=0and P,=P.

Let NL be the set of all non-linear clauses in P.

22

while NI is non-empty do
- Select a minimally non-linear clause C' from N L.
- Apply CLP to (P;,C,S) giving LC; and ED;.
- Let Py = (P —{C})U LC;.
-Let NL=NL —{C}, and i =i + 1.
Let ED =; ED; for all i, and LC = U; LC; for all 1.

Theorem 29 (Correctness of PLP) Lel P be a piecewise linear program,
S a linear U-rule for P. Then

T PLA applied to (P, S) terminates.
I Let LC be the set of linear clauses returned by PLP applied to (P,S),
pred(P) be the set of predicates defined in P, and NL be the set of all

non-linear clauses in P.

Then, M(P) = Mypeqpy(P — NLY U LC).

Proof.

1 Termination: The procedure always terminates since: 1) there is a finite
number of clauses in NI, 2) in each iteration of PLP exactly one clause in
NL is replaced by a set of linear clauses, and 3) each iteration has a finite
number of steps.

I Fquivalence: Directly from the correctness of the CLLP. O

It is interesting to notice that the CLLP procedure does not preserve finite fail-
ure in the top-down evaluation of intensional atoms, namely, such evaluation
might finitely fail w.r.t. the original (non-linear) Datalog program but might
infinitely fail in the program returned by the CLP procedure. Indeed, in order
to preserve finite failure, we should impose stronger conditions on the folding
rule (see [25]). Besides, our procedure could be easily modified so as to pre-

serve finite failure. In any case, the loss of finite failure does not constitute

23

a problem when Datalog programs are evaluated bottom-up, which is usually

the case.

We have considered a class of Datalog programs, that are called piecewise lin-
ear, and we showed that it coincides with the class of linear Datalog programs.
Up to our knowledge, it was not known until now that these two classes of
programs have the same expressive power. To prove this result, we have pre-
sented a transformation from non-linear to linear programs. Questions may
arise concerning the size and the efficiency of the programs obtained by the
transformation. Although answering these questions is outside the scope of the
paper, it is worth making the following observations. Firstly, it is important
to notice that the number of new predicates introduced by the transforma-
tion depends solely on the number of IDB predicates in the original programs.
In particular, this number is completely independent from the specific EDB
database, hence the transformation can be carried out without any reference
to any specific EDB database. The only relation of the proposed transfor-
mation with any possible EDB is that they share the same EDB predicate
names. Moreover, the transformation of a program can be done off-line, prior
to using the transformed program in conjunction with any EDB, and thus the
complexity of performing the transformation is not of particular importance,
especially if such complexity is weighted against multiple repeated uses of the

trnasformed program with many different EDBs.

However, note that refinements of the proposed transformation might allow
to reduce the number of clauses in the transformed program (e.g. by choosing
appropriate unfolding selection rules, and/or by discarding redundant clauses

produced by the transformation). This is however outside the scope of this

paper.

4 Linearisable Chain Queries

In this section we consider chain queries for some classes of languages (regular

and “pseudo-regular”, defined below) and prove their linearisability. Linearis-

24

ability of “pseudo-regular” chain queries is proven with the help of the results

in the previous section 3.

Further, we study linearisability of generic chain queries, defined as “combi-

nations” of “simpler” chain queries.

4.1 Regular Chain Queries

Regular languages are generated by grammars with production rules of the

form:
I =R,
I — RJ, or

I - JR

where I, J are non-terminal symbols and R is a terminal symbol. The ter-
minal symbols are elements of ¥, the (finite) alphabet for the language L(G)
generated by the grammar G.

It is known that chain queries for regular languages are linearisable [30]. We
re-prove this result constructively, by generating, for each given regular chain

query, the corresponding (equivalent) linear Datalog program.

Definition 30 The Datalog program [DB(() corresponding to a regular

grammar (¢ is constructed as follows:

~ each (terminal or non-terminal) symbol is mapped onto a binary (exten-
sional or intensional, respectively) predicate;
~ let (non-terminal) symbols I, J be mapped onto the intensional predicales 1,
J and (terminal) symbol R be mapped onto the extensional predicate r; then
each production rule I — R.J is mapped onto a clause
(X,Y) «r(X,2),5(Z,Y)
each production rule I — JR is mapped onto a clause

25

W(X,Y) « (X, Z2),r(Z,Y)
and each production rule I — R is mapped onto a clause

i(X,Y) « r(X,Y).

Then, the query for a regular language L(() coincides with the query corre-
sponding to the predicate 1 in /DB((G) on which the initial symbol I in G is
mapped:

Theorem 31 Given a reqular grammar G with initial symbol I, let I be

mapped onto the intensional predicate 1 in IDB(G). For every extensional

database EDB for the extensional predicates in IDB(G):

CQuey(EDB) = QI""'YEDB).

k3

Proof. By definition, QfDB(G)(EDB) = {(u,v)|i(u,v) belongs to the least
Herbrand model of EDB U IDB(G)}. Since SLD resolution is complete with
respect to the least Herbrand model semantics [31], QfDB(G)(EDB) = {(u,v)|
there is an SLD refutation for ¢(u,v) in EDB U IDB(G)}.

It is easy to prove, by induction, that there is a one-to-one correspondence
between derivation trees for words R;, ... R;, of L(G) and SLD derivations, in
IDB(G) (and therefore in EDB U IDB(()) from goals < i(X,Y) to goals
—ry (X, Z1), ... ri(Zi-1,Y), for some distinct variables 71, ..., Z;_;. Indeed,
the application of a production rule I — JR to a non-terminal symbol [
corresponds to a step of resolution between the goal « ... i(X,Y),... and the
clause i(X,Y) « j(X,Z),r(Z,Y) (similarly for the other kinds of production

ru]es).

Then, for any such word R; ...R; of L(G), assume ry (uj,uj+1) € EDB,
for j = 1,...,1, ie. (ur,uip1) € CQr)(EDB). Then, trivially there is a
refutation for < r; (X, Z1),...,7,(Z—1,Y) in EDB (and therefore in EDBU
IDB(()) returning the substitution {X/u1, Z1/uz, ..., Zi—1/w, Y /w1 }, ie.
(ur,uigr) € QZ-IDB(G)(EDB).

Conversely, for any derivation from < (X, Y) to < r; (X, Z1),...,1r,(Z_1,Y),

26

assume there is a refutation for « r, (X, 7),...,r;(Z=1,Y) in EDB (and
therefore in EDB U I DB(()) returning the substitution

{X/uy, Zy fuy, ... Ziey fug, Y b e (ug,ugy) € QIPPO(EDB).

Then, trivially r; (uj,ujp1) € EDB, for j = 1,...,1, namely (ui,ui1) €
CQue(EDB). O

Trivially, for every regular grammar (, the corresponding I DB((G) is linear
and therefore linearisable. As a consequence, the chain queries for regular

languages are linearisable.

4.2 Pseudo-Regular Chain Queries

We identify a class of languages, containing all regular languages, such that
all chain queries for languages in such class are linearisable. This is the class

of all pseudo-reqular languages, of the form:

{o/fl ...afr| for each j = 1,...,n, either k; is an index and k; > 0

or k; is a positive natural number }
with a; € X7, 57 =1,...,n, and n > 0.

We will refer to the chain queries for such languages as pseudo-regular (chain)

queries.
Note that every regular language is trivially pseudo-regular.

We prove that pseudo-regular queries are linearisable by constructing the cor-
responding Datalog programs, show that they are piecewise linear and there-
fore linearisable, by the results in section 3. We first illustrate the construction

by means of examples.

Example 32 Let [= {R}RyR}|iy > 0} (with ¥ = {Ry, Ry, Rs}). The
Datalog program corresponding to the query for L is:

27

io(X,Y) «ir(X, Z, 2, W,W,Y).
(X, Z,W,U,V,Y)

11 (X, X0), 15.0(W, W), i55(V, VA), 60 (X, Z, Wh, U, VA, Y,
0(X, X, W,W,Y,Y).
1i1(X, X1) & (X, X))
i52(W,Wh) 4= ro(W, W7).

Z'j,S(V7 ‘/1) — TS(Va ‘/1)

This program is not linear but is piecewise linear and therefore linearisable
(see section 3). Note that in this example linearisation can be achieved simply

by unfolding the predicates 1., for e =1,2,3:
w(X,Y) « (X, Z,W,U,V,Y).

(X, Z, W, U, V,Y) (X, Xq),ro (W, W1),r3(V, V1),
(X, Z, Wy, U, Y).

(X, X, W,W,Y,Y).

Example 33 Let [= {RY R2RY R%|iy, iy > 0} (with ¥ = {Ry, Ry, Rs, Ry}).
The Datalog program corresponding to the query for L is:

io(X,Y) iy(X, Z,W,U),iy(Z,W),is(U, V),is(V,Y).
(X, Z,W,Y) e ina (X, Xy), i1 oW, W), i1 (X1, Z, Wy, YY),
(X, X,Y,Y).

i1 (X, X7) (X, X;).

Z.LQ(W’, W1> — T'3(W, Wl)

28

is(Z, W) = i91(Z, 74),i9(Z0, W).

i(7, 7).

i01(Z, 71) < ro(7, 71).

is(U, V) « i51(U, V).

is(V,Y) ¢ iga(V,Y),

is1 (U, V) « ra(U, V).

11 (VYY) = rg(V)Y).
This program is not linear bul is piecewise linear and therefore linearisable
(see section 3). Note that in this example it is not sufficient just unfolding

the predicates i, for 7 =1,2,3, in order to achieve linearisation. Indeed, the

resull of such unfolding is:

io(X,Y) iy(X, Z,W,U),iy(Z,W),is(U,V),is(V,Y).
(X, Z,W,Y) e ri(X, X1),rs(W, Wh), iy (Xy, Z, W3, Y).
(X, X,Y,Y).

in(Z, W) = ro(Z, 70),ia(70, W).

i(Z, 7).

is(U, V) ¢ ra(U, V).

i(V,Y) & ra(V,Y).

Example 34 Let L = {(RiRyR3)" R? R i1, iy > 0} (with S = {Ry, Ry, R3, Ry, Rs}).
The Datalog program corresponding to the query for L is:

(X, Y) « iy(X, Z,W,Y),i(Z,W).
il(Xa Z7 W7 Y) — il,l(Xa X1)7 il,?(W7 Wl)ail(Xla Z7 W17 Y)

(X, X,Y,Y).

29

i1 (X, X1) (X, Xa), r2(Xa, X3), r3(X, X3).
i1 2 (W, W) = rs(W, W),

if(Z W) g (2, 70),ia(70, W).

i 7, 7).

ian (7, 70) — ra(2, 7).

This program ts not linear but is piecewise linear and therefore linearisable

(see section 3)

Before we define the general technique for mapping pseudo-regular chain
queries onto Datalog programs, note that each pseudo-regular language can be
equivalently rewritten in such a way that every integer exponent is 1. For ex-
ample, the language in example 33 can be rewritten as { R\ R Ry RyRyliy, iy >

0}. In the sequel, we will assume such rewriting of pseudo-regular languages.

Definition 35 The Datalog program [DB(L) corresponding to a pseudo-

regular query for a language

{oz]fl ..akn| for each 5 =1,...,n, either k; is an index and k; > 0

OR kj 15 1}
for somen >0 and o; € T, j =1,...,n, is constructed as follows. Let:

— m be the number of integer and distinct indexes amongst ky, .. ., k, (trivially,
m < n), and, after renaming them (for ease of reference) as iy,..., 1,
according to the order in which they appear, let

— a; be the number of factors with (the integer or index) i; as exponent, j =

5
1,....m.

For ease of reference, let us

?‘Note that, if i; is 1 then a; = 1.

30

— rename the bases of the a; factors of exponent i; (j=1,...,m)
as 1y ..y g, and
. _ 6
— assume each aj. (1 =1,...,m, e =1,...,a;) ° be Rjcy1,...,Rjc; ., for

some i;. > 1 (given in the definition of L).

Then, IDB(L) has m + 1 intensional predicales, ig,11,...,0,, with arity 2,
2a1,...,2a,,, respectively, and, for each 3 = 1,...,m, a; inlensional predi-

cates, 11, ..., 1q,, cach with arity 2, defined by

io(vary (o), vary(ay,))

i1(varsy), ... im(vars,,)
by clauses (for j =1,...,m)

ij(vari(ajq),vara(agq),. .. vari(oy.,), vary(aj,,))
iia(vari(a;q), X9, ... s (vary (o), Xdai),
(X9 vary(ajq), . .. ,Xj’ai,varg(amj))

ij(vari(ajq),vara(agq), ... vari(ay.,), vary(aj,,))

vari(aj) = vary(ay), ..., vari (o .,) = vary(oj,,)
and by clauses (for j=1,...,m,e=1,...,a;)

ij7e(1)ar1(aj7e),Xj’e) —
. . X . X, X (X X e
TJ7671(UG’T1((XJ76>5 1)7 TL&?(1, 2)7 s 7T]7672j,1< t5e—19)

where X; are fresh, distinct variables, each rj.; is an (extensional) predicate

symbol corresponding to the letler R;.;, and

- var (o), vary(a;) be (distinet) variables associated to the factor with base
a;, fori=1,....n (we use a functional representation of variables for ease
of reference), such that, fori=1,...,n — 1, vary(a;) = vari(a,41), and

- vars; = vary (o), vary(a), . .., var (@,), vary(ay,;), forj=1,...,m. 7

Note that, if i; is 1 then e = 1.

"Note that, if i; is 1, then vars; = vary(a;1), varg(o;).

31

In example 32, there is one distinct index, 77, and thus two intensional predi-
cates, 19 and 1;. The predicate 7; has arity 6, since a; = 3, as there are three
factors ("ORY and Rél) with the index i; as exponent. Since a; = 3, there

are three additional (binary) intensional predicates i1,1,1; 9,1 3.

In example 33, there are two distinct indexes, 77 and iz, and an integer expo-
nent, 2 (expressible via two integer exponents, 1), and thus five intensional
predicates, 29,21, 79, 13 and 74. The predicate 7; has arity 4, since a; = 2, as
there are two factors (sz and Rél) with the index 7; as exponent. The pred-
icate 15 has arity 2, since ay; = 1, as there is only one factor (sz) with the
index i3 as exponent. The predicates i3 and 14, corresponding to the integer
exponents, have arity 2, since a3 = a4 = 1. ® Since a; = 2, there are two
additional (binary) intensional predicates 111,171 2. Since a; = 1, there is one
additional (binary) intensional predicate i3 ;. Since a3 = 1, there is one addi-
tional (binary) intensional predicate i3. Since a4 = 1, there is one additional

(binary) intensional predicate 4.
Similarly in example 34.

Moreover, in example 32, a1 = a1 = Ry, oy g = s = Ry and oy 3 = a3 = R

(all corresponding to exponent iy).

In example 33, a;; = a4 = Ry and a1 = a3 = Rs (both corresponding to
exponent 1), a1 = az = Ry (corresponding to exponent i3), az; = ag = R4
(corresponding to integer exponent 1), and a4,1 = a5 = R4 (corresponding to

integer exponent 1).

In example 34, a1 = a1 = R1 Ry R3 and a2 = a3 = R5 (both corresponding
to exponent ¢1), and az 1 = ay = R4 (corresponding to exponent i3). Moreover,
R1,1,1 = R1, R1,1,2 = RQ, R1,1,3 = R (fOT 061,1), R1,2,1 = Rs (for al,Q), and
R21,1 = R4 (for asy).

Finally, in example 34, vari(a;) = X, vary(on) = Z = vari(ag), vary(az) =

W = 'Ua7'1(a3) and 'Ua7'2(a3) =Y.

& Note that the arity of intensional predicates corresponding to integer exponents

is always 2, since each factor with integer exponent is considered separately.

32

The query for a pseudo-regular language I coincides with the query corre-

sponding to the predicate g in IDB(L):

Theorem 36 Given a pseudo-regular language L, for every extensional database

EDB for the extensional predicates in IDB(G):

CQL(EDB) = QPP (EDB).

20

The proof of this theorem is analogous to the proof of theorem 31 but is fully

given here for completeness of presentation.

Proof. By definition, QZ-IODB(L)(EDB) = {(u, v)|io(u,v) belongs to the least
Herbrand model of EDB U IDB(L)}. Since SLD resolution is complete with
respect to the least Herbrand model semantics [31], QZ»IODB(L)(EDB) = {(u,v)]

there is an SLD refutation for ig(u,v) in EDBUIDB(L)}.

It 1s not difficult to see that there is a one-to-one correspondence between
ok for concrete values of ki, ..., k,, of L and SLD derivations,

in IDB(L) (and therefore in EDBUIDB(L)), from goals + i0(X,Y) to goals

(assume each a; = Rj; ... Ry, for some [;, given in the definition of L)

k
words a7' ...

— T171(X, X1171>, T172(X1171,X;71), c.
ra (X X0,

sy

= Lki=1 ~-1,k
1171(X11 ’AXI),...

1,1 1,1
’ TLh(Xll—lv Xh)7

1,2 1,2
TS R (Xll—h Xh)7

- 1,k 1,k
. -a’Lh(Xl —17X11)a

1

. 1,k 2,1 . 2,1 2,1
r271<X11 ,)&1)a ""’2712<X12—17X12)a
ceey

. 2,ks—1 »2,ko . 2,ko 2,ko
1271(X12 ’AXI),... "7’2712(X12—17X12),

sy

Pt (X0 VET XYL g (XL XY,
P (X[XYL e Py (XY

. . 1,1
for some distinct variables X", ...

We will refer to any such goal as

,X;:L’f'i (in turn distinct from X and Y).

— goal(a]fl co.afm) T k; = 0, for some

J = 1,...,n, then the conjuncts corresponding to «; (i.e. the conjuncts in

33

the predicates r;;, for « = 1,...,[;) are missing and le;ka — Xéii’kj_l. If
ki=...=k, =0 then « goal(alfl...aﬁ“) s+ X=Y.

kn

n

the definition of L), assume (u,v) € CQr(EDB). Then, trivially there is a
refutation for < goal(af'...af) in EDB (and therefore in EDBUIDB(L))
returning the substitution {X/u,Y/v}, i.e. (u,v) € Q-IDB(L)(EDB).

20

Then, for any such word o' ...« (aj = Rj1... Ry, for some [}, given in

Conversely, for any derivation from ¢ i5(X,Y) to < goal(o/fl ..ak) assume
there is a refutation for < goal(af'...a*)in EDB (and therefore in EDBU
IDB(L)) returning the substitution {X/u,Y/v}, i.e. (u,v) € Q{fB(L)(EDB).
Then, trivially (u,v) € CQr(EDB). O

Lemma 37 The Datalog program corresponding to any pseudo-reqular chain

query is piecewise linear.

Proof. Let L be a pseudo-regular language and / DB(L) be the corresponding
Datalog program. Let ig,%1,...,%,, and, foreach j = 1,...,m,let i1, ... 54,
be the intensional predicates defined in IDB(L). The clauses defining each
ij1;,J=1,...,mand [=1,..., a;, are all linear. Then, the only (potentially)
non-linear clauses are those defining ig,21,...,%,. The clause defining i, is
(in general) non-linear but none of the intensional atoms in its body (whose
predicates are 1y, ..., i,) is mutually recursive with ¢y. Finally, in the body
of each clause defining a predicate ¢;, for j = 1,...,m, at most one atom is
mutually recursive with the head predicate of the clause. Therefore, IDB(L)

is piecewise linear. O

Therefore, the Datalog program corresponding to any pseudo-regular chain

query is linearisable (see section 3).

34

5 (Non-Linearisable) Context-Free Chain Queries

Linearisability is not a property that many Datalog programs have. In fact,
there are “simple” Datalog programs that are not linearisable. To support this

claim we review some negative results from the literature.

Chain queries for contexl-free languages are referred to as context-free chain

queries.

It is easy to map a context-free grammar (& (generating a context-free language
L(@)) in a natural way onto a Datalog program computing the chain query

CQr(). We illustrate this mapping by an example:
Example 38 Lel GG be the conlext-free grammar with production rules
[— RIIRQI | €,

initial (non-terminal) symbol I and terminal symbols Ry, Ry. Then CQrqy is
computed by the Datalog program:

I(X,Y) < R(X, 7)), [(Z1, Z3), Ro(Zs, Z3), 1(Zs,Y).
I(X, X).

Datalog programs as above, i.e. programs with one initializing clause and one
recursive clause, are called elementary chain programs [30]. All context-free

chain queries can be mapped onto elementary chain programs.

It is well known that regular languages are context-free, but there exist context-
free languages which are not regular. In addition, note that context-free lan-
guages might not be pseudo-regular, e.g. the languages {W|W has the same
number of occurrences of Ry and Ry} is context-free but not pseudo-regular.
Moreover, pseudo-regular languages might not be context-free, e.g. see the
language in example 32. However, some pseudo-regular languages are context-

free, e.g. see the languages in examples 33 and 34.

Trivially from the results in the previous section 4, all context-free chain

queries that are (pseudo-)regular are linearisable. However, there are chain

35

queries for context-free languages which are not linearisable, as proven in the

literature.

Theorem 39 [1] Let L° C {Ry, Ry}* be the context-free language:
L° = {p|p has the same number of occurrences of Ry and Ry}.
Then, the chain query C'Q o is not linearisable.

Theorem 40 [1] If L is generated by one of the context-free grammars below,
then the chain query CQy, is not linearisable:

a) I — IR\ I(RyIR\T) | €, where j > 1.

b) I — (IR TR I(RiI) | ¢, whered,j > 1.

6 Conclusions and Future Work

We have investigated linearisability of Datalog programs:

a) We have shown constructively that any piecewise linear logic program into
an equivalent linear program, by giving a procedure that performs the trans-

formation.

b) We have defined pseudo-regular chain queries and have shown how to ex-
press them by means of Datalog programs that are piecewise linear, hence, by

a), linearisable.

The procedure for piecewise linear programs relies heavily upon formal logic
program transformation techniques known to preserve the meaning of pro-
grams. Correctness of the procedure is a direct consequence of the meaning-
preserving nature of the transformation techniques. Thus, the results presented
in this paper are also interesting in view of the fact that they attack the prob-
lem of applying program transformation techniques, when defining a priori the

subclass of programs to which they are going to be applied.

36

Linearisability of Datalog programs/queries has been studied elsewhere in the
literature. For example, [14] gives conditions for the linerisability of bilinear
Datalog programs, i.e. non-linear programs with at most two intensional pred-
icates in the body of each clause. Since each non-linear Datalog program can
be equivalently expressed via a bilinear program [14], these results apply gen-
erally. [23,33] give necessary and sufficient conditions for linerisability, which
are instances of the ones given in [14]. Rather than looking at generic non-
linear queries, we have considered the special class of piecewise linear Datalog

programs and some chain queries, interesting despite their simplicity [1,4].

We are currently working on defining a class of languages with the property of
being exactly the class for which chain queries are linearisable. We believe that
it is wider than the class of pseudo-regular languages: in fact we have made
some progress in figuring out that this class can be defined via a special kind
of automata that use a constant number of stacks and queues in a specific

fashion.

Acknowledgement

The authors wish to thank Stavros Cosmadakis for helpful discussions and the

anonymous reviewers for their insightful suggestions.

References

[1] F. Afrati and S. Cosmadakis. Expressiveness of restricted recursive queries. In

Proc. 21st ACM Symp. on Theory of Computing, pages 113-126, 1989.

[2] F. Afrati, M. Gergatsoulis, and M. Katzouraki. On transformations into linear
database logic programs. In D. Bjgrner, M. Broy, and l. Pottosin, editors,
Perspectives of Systems Informatics (PS1'96), Proceedings, lecture Notes in
Computer Science (LNCS) 1181, pages 433-444. Springer-Verlag, 1996.

[3] F. Afrati and C. H. Papadimitriou. The parallel complexity of simple chain
queries. In Proc. 6th ACM Symposium on Principles of Database Systems,

37

pages 210-213. ACM Press, 1987.

[4] F. Afrati and C. H. Papadimitriou. Parallel complexity of simple logic
programs. Journal of the ACM, 40(3):891-916, 1993.

[5] F. Afrati and F. Toni. Chain queries expressible by linear datalog programs.
In U. Geske, C. Ruiz, and D. Seipel, editors, Proc. of the 5th International
Workshop on Deductive Databases and Logic Programming (DDLP’97), pages
49-58, 1997. GMD-studien Nr 317, Sankt Augustin.

[6] F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive
query processing strategies. In Proc. ACM Conf. on Management of Data,
pages 16-52, 1986.

[7] C. Beeri, P. C. Kanellakis, F. Bancilhon, and R. Ramakrishnan. Bounds on
the propagation of selection into logic programs. In Proc. 6th ACM Symp. on
Principles of Database Systems, pages 214-226. ACM Press, 1987.

[8] A. Bossi and N. Cocco. Basic transformation operations which preserve
computed answer substitutions of logic programs. The Journal of Logic

Programming, 16(1 & 2):47-87, May 1993.

[9] S. A. Cook. An observation on time-storage trade off. Journal of Computer
and System Sciences, 9:308-316, 1974.

[10] S. S. Cosmadakis, H. Gaifman, P. C. Kanellakis, and M. Y. Vardi. Decidable
optimization problems for database logic programs. In Proc. 20th ACM Symp.
on Theory of Computing, pages 477-490, 1988.

[11] S. S. Cosmadakis and P. C. Kanellakis. Parallel evaluation of recursive rule
queries. In Proc. 5th ACM Symp. on Principles of Database Systems, pages
280-293. ACM Press, 1986.

[12] M. Gergatsoulis. Logic program transformations: Transformation rules and
application strategies. PhD thesis, Dept. of Computer Science, University of
Athens, 1994. (In Greek).

[13] M. Gergatsoulis and M. Katzouraki. Unfold/fold transformations for definite
clause programs. In M. Hermenegildo and J. Penjam, editors, Programming
Language Implementation and Logic Programming (PLILP’94), Proceedings,
Lecture Notes in Computer Science (LNCS) 844, pages 340-354. Springer-
Verlag, 1994.

38

[14] Y. E. loannidis and E. Wong. Towards an algebraic theory of recursion. Journal

of the ACM, 38(2):329-381, 1991.

[15] T. Kawamura and T. Kanamori. Preservation of stronger equivalence in
unfold /fold logic program transformations. Theoretical Computer Science,

75:139-156, 1990.

[16] J-L. Lasser, M. J. Maher, and K. Marriott. Unification revisited. In Jack
Minker, editor, Foundations of Deductive Databases and Logic Programming,

pages H87-625. Morgan Kaufmann Publishers,Inc., 1988.

[17] J. F. Naughton. Data independent recursion in deductive databases. In Proc.
5th ACM Symp. on Principles of Database Systems, pages 267-279. ACM Press,
1986.

[18] J. F. Naughton and Y. Sagiv. A decidable class of bounded recursions. In Proc.
6th ACM Symp. on Principles of Database Systems, pages 227-236. ACM Press,
1987.

[19] Christos H. Papadimitriou. Computational Complezity. Addison-Wesley, 1994.

[20] A. Pettorossi and M. Proietti. Transformation of logic programs : Foundations
and techniques. The Journal of Logic Programming, 19/20:261-320, May /July
1994.

[21] M. Proietti and A. Pettorossi. Synthesis of Eureka predicates for developing
logic programs. In Proc. of the 3rd Furopean Symposium on Programming,
Lecture Notes in Computer Science (LNCS) 432, pages 306-325. Springer-
Verlag, 1990.

[22] M. Proietti and A. Pettorossi. The loop absorption and the generalization
strategies for the development of logic programs and partial deduction. The

Journal of Logic Programming, 16(1 & 2):123-162, May 1993.

[23] Y. P. Saraiya. Linearising non-linear recursion in polynomial time. In Proc.
8th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pages 182-189. ACM Press, 1990.

[24] Y. P. Saraiya. On the efficiency of transforming database logic programs.
Journal of Computer and System Sciences, 51(1):87-109, 1995.

39

[25] H. Seki. Unfold/fold transformation of stratified programs. Theoretical
Computer Science, 86:107-139, 1991.

[26] H. Seki. Unfold/fold transformations for general logic programs for the well-
founded semantics. The Journal of Logic Programming, 16(1 & 2):5-23, May
1993.

[27] H. Tamaki and T. Sato. Unfold/fold transformations of logic programs. In
Sten-Ake Tarnlund, editor, Proc. of the Second International Conference on

Logic Programming, pages 127-138, 1984.

[28] H. Tamaki and T. Sato. A generalized correctness proof of the unfold/fold
logic program transformation. Technical Report No 86-4, Dept. of Information

Science, Ibaraki University, Japan, 1986.

[29] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems,
volume T & T1. Computer Science Press, 1989.

30] Jeffrey D. Ullman and Allen Van Gelder. Parallel complexity of logical query
g
programs. In Proc. 27th IEFE Symp. on Foundations of Comp. Sci., pages
438-454, 1986.

[31] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a
programming language. JJ. ACM, 23(4):733-742, Oct. 1976.

[32] M. Y. Vardi. Decidability and undecidablity results for boundedness of linear
recursive queries. In Proc. 7th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 341-351. ACM Press, 1988.

[33] W. Zang, C. T. Yu, and D. Troy. A necessary and sufficient condition to linearise
doubly recursive programs in logic databases. ACM Transaction of Database

Systems, 15(3):459-482, 1990.

40

