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Abstract

We present a logico-algebraic approach to probabilistic abstract interpretation
based on the ortholattice structure of the projective measurement operators in quan-
tum mechanics. On this base, we present a novel interpretation of quantum mea-
surement as a probabilistic abstraction showing that the measurement of a physical
observable essentially corresponds to a static analysis of the observed property.

Key words: Probabilistic abstract interpretation, quantum
measurement, quantum computation.

1 Introduction

Some of the best known quantum algorithms, e.g. for the Deutsch problem or
the phase estimation at the heart of Shor’s quantum factorisation algorithm,
ultimately aim in determining some properties of an unknown function f ,
represented by a black-box unitary operator Uf .

Our treatment is not concerned with the specification and description of
Uf ; in particular, it is not directed towards the immediate definition of a pro-
gramming language for quantum computation. Instead we aim in investigating
the mechanism at the base of the “detection”, or analysis of properties of Uf
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and thus f , namely quantum measurement. We show that this aspect of quan-
tum algorithms corresponds to a particular static analysis technique, namely
abstract interpretation, which is used in the classical setting for construct-
ing approximations of the programs’ semantics relatively to a given property
of interest [7,8]; in addition, probabilistic abstract interpretation provides an
estimation of such an approximation in terms of the distance between the
analysis results and the concrete semantics [11,10].

This correspondence relies on a similar “logical structure” at the basis of
both quantum measurement and probabilistic abstract interpretation. As it
is well-known in Quantum Mechanics projection operators on a Hilbert space
form a non-Boolean – in particular, non-distributive – lattice. This result
dates back to the 1936 article by Birkhoff and von Neumann [3] where the
authors’ claimed objective was to “find a calculus of propositions which is
formally indistinguishable from the calculus of linear subspaces of a Hilbert
space with respect to set products, linear sums and orthogonal complements,
and resembles the usual calculus of propositions with respect to and, or and
not”. In this paper we present a re-formulation of the theory of probabilis-
tic abstract interpretation [11,10] in terms of orthogonal projections and we
show that probabilistic abstractions possess the same lattice structure as the
Birkhoff and von Neumann lattice of projections with respect to the ordering
given by the inclusion relation on subspaces [21,3].

The intuitive reason why quantum physics and abstract interpretation re-
quire a similar non-standard logical treatment lays in the common charac-
teristics of measurements and abstractions. In quantum physics it is well
known that certain physical observables are not commensurable; this means
that a simultaneous measurement of for example the position and the mo-
mentum of a particle is impossible, as measuring the position first “destroys”
the information about the momentum and vice versa. The famous Heisenberg
uncertainty relation can be expressed via the statement that the commutator
between the position and momentum operator is not zero. In a similar way
certain abstractions “destroy” information which makes a subsequent abstrac-
tion meaningless.

Based on the intrinsic similarity between quantum physics and probabilis-
tic abstract interpretation, we show that the quantum measurement of a phys-
ical observable corresponds essentially to a static analysis of the observed
property. More precisely, given a property the corresponding abstract domain
(or equivalently the corresponding projection) can be seen as the result of the
quantum measurement of an observable including the property; vice versa any
physical observable (or equivalently any self-adjoint operator) can be seen as a
linear combination of projections corresponding to some probabilistic abstract
interpretations.
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2 Semantical Abstractions

In this section, we recall some preliminary notions and results concerning the
logic of projections in quantum mechanics, and introduce the ortholattice of
probabilistic abstract interpretations.

2.1 The Lattice of Projections

If Y is a closed subspace of a Hilbert space 3 H, each vector in H can be
expressed uniquely in the form y + z with y ∈ Y and z ∈ Y ⊥, where Y ⊥ is
a complementary subspace to Y (i.e. Y ∪ Y ⊥ = H and Y ∩ Y ⊥ = ∅). The
linear operator P : H → Y defined by P(y + z) = y is called the orthogonal
projection 4 from H onto Y . It is easy to show that projection operators
P are bounded (their norm is always less than or equal to 1) idempotent
(P2 = P) and Hermitian. An operator A is said to be self-adjoint or Hermitian
if it coincides with its adjoint A∗, that is the unique operator such that the
condition 〈A∗x, y〉 = 〈x,Ay〉 holds for all x, y ∈ H (cf. e.g.[15, Thm 2.4.2]).
In particular, projections are a special kind of self-adjoint operators, that is
positive operators. An operator A is called positive, denoted by A w 0, if
there exists an operator B such that A = B∗B. Projections can be identified
with the closed subspaces of H. In particular, as the range YE = {Ex | x ∈ H}
of an orthogonal projection is a closed subspace (cf. [6, Proposition II.3.2.b]),
this correspondence is defined by associating to each projection on H its range
YE. The closed subspaces of H form a complete lattice under the operations of
intersection and (closed linear span of) union. The one-to-one correspondence
between this set and the collection P(H) of all orthogonal projections on H
allows us to transfer the lattice structure of the set of all closed subspaces of
H to P(H), thus turning the latter into a complete lattice.

A partial order on projections (and in general on self-adjoint operators)
can be defined directly by: E v F iff F − E is positive (e.g. [15, p105]).
This is equivalent to the partial order defined via set inclusion on closed sub-
spaces. More precisely, if E and F are projections from a Hilbert space H
onto closed subspaces Y and Z respectively, then E v F iff Y ⊆ Z (cf. [15,
Proposition 2.5.2]).

The projections P(H) form a complete lattice with respect to this order,
i.e. the least upper bound E t F and the greatest lower bound E u F always
exist for any pair E and F. The bottom element is given by the projection onto
the null space, i.e. the operator mapping all vectors x ∈ H to the null vector,
and the top element is the identity operator I, i.e. the operator mapping each
vector x ∈ H to itself. The concrete construction of E t F and E u F is in

3 A linear space is a Hilbert space if it has a scalar (or inner) product 〈., .〉 and it is complete
with respect to the norm generated by the scalar product.
4 In operator theory and quantum physics “orthogonal” is often omitted, i.e. the term
“projections” refers to “orthogonal projections”.
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general not a trivial task. Only for commuting projections, i.e. EF = FE, we
have (cf e.g. [15, Prop 2.5.3]):

E t F = E + F− EF and E u F = EF.

A general way to construct E u F (and by exploiting de Morgan’s law also
E t F) is via an infinite approximation sequence and has been suggested by
Halmos [12, Problem 122]:

E u F = lim
n→∞

(EFE)n.

For each projection E, we can define an (ortho)complement E⊥ = I−E; this
corresponds to a projection into the closed subspace orthogonal to the image
YE of E. Thus, the orthogonal projection operators (and their corresponding
closed subspaces of Hilbert spaces) form an ortholattice [2, Ex 10, II.10]. More
precisely, P(H) is a complete orthomodular lattice [16, Proposition I.5.1].

Ortholattices can be seen as non-distributive analogs of Boolean algebras
[2, I.10]. They are defined as follows (see e.g. [2, Def I.10] or [9, Def 2.1]):

Definition 2.1 An ortholattice (L,v, .⊥, 0, 1) is a lattice (L,v) with universal
bounds 0 and 1, i.e.

(i) (L,v) is a partial order (i.e. v is reflexive, antisymmetric, and transi-
tive),

(ii) all pairs of elements a, b ∈ L have a least upper bound or supremum,
denoted by a t b, and a greatest lower bound or infimum, denoted by
a u b,

(iii) 0 v a and a v 1 for all a ∈ L.

and a complementation operation a 7→ a⊥ satisfying:

(i) a u a⊥ = 0 and a t a⊥ = 1

(ii) (a u b)⊥ = a⊥ t b⊥ and (a t b)⊥ = a⊥ u b⊥

(iii) (a⊥)⊥ = a

In general u and t in an ortholattice are not distributive, in the sense that
the relations

(a u b) t (a u c) v a u (b t c) and a t (b u c) v (a t b) u (a t c)
are not in general equalities.

We say that two elements a and b in an ortholattice commute, denoted by
[a, b] = 0, iff a = (a u b) t (a u b⊥). An ortholattice is called an orthomodular
lattice if [a, b] = 0 implies [b, a] = 0.

An important property of any ortholattice is given by the following propo-
sition.

Proposition 2.2 ([2]) In any ortholattice, a v b implies [a, b] = 0.

In the ortholattice P(H) of orthogonal projections on a Hilbert space H,
two projections E and F commute, i.e. EF = FE, iff their associated closed
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subspaces commute (cf. [16, Lemma 4]). Thus, in this case [YE, YF ] = 0
implies [YF , YE] = 0, and therefore P(H) is orthomodular.

2.2 Probabilistic Abstract Interpretation

Probabilistic Abstract Interpretation [11,10] is based on the notion of a cate-
gorical adjunction between Hilbert spaces defined by a bounded linear operator
(representing the abstraction) and its Moore-Penrose pseudo-inverse (repre-
senting a concretisation operator). If C an D are two probabilistic domains,
i.e. Hilbert spaces, and A : C → D and G : D → C are bounded linear opera-
tors between (the concrete domain) C and (the abstract domain) D, such that
G is the Moore-Penrose pseudo-inverse of A, then we say that (C,A,D,G)
forms a probabilistic abstract interpretation.

Definition 2.3 Let H1 and H2 be two Hilbert spaces and A : H1 7→ H2 a
bounded linear map between them. A bounded linear map A† = G : H2 7→ H1

is the Moore-Penrose pseudo-inverse of A iff

A ◦G = PA and G ◦A = PG,

where PA and PG denote orthogonal projections onto the ranges of A and G.

Note that the multiplication of operators is usually denoted reversely to
the corresponding function composition, i.e. AB = B ◦A.

A necessary and sufficient condition for the existence of the Moore-Penrose
pseudo-inverse for a bounded linear operator A on a Hilbert space H is that
A is normally solvable, i.e. its range {Ax | x ∈ H} is closed [4, Thm 4.24]. All
operators on a finite dimensional Hilbert space are Moore-Penrose invertible.

The properties of the Moore-Penrose pseudo-inverse (cf. e.g. [1]) guaran-
tees a form of optimality of the abstractions constructed via PAI; in fact, they
are the closest to the concrete semantics one can construct, where closeness
is defined via the distance induced by the norm on the Hilbert space. As this
is a numerical quantity, we can get an estimate of the information lost in the
abstraction [11].

2.3 Ortholattice Structure of Probabilistic Abstract Interpretations

We can restrict w.l.o.g. to abstraction operators which are surjective, i.e.
A(C) = D. In fact, given a PAI (C,A,D,G), we can always partition the ab-
stract domain D by identifying those elements with the same concrete mean-
ing. In this way we can ensure that any abstract object in D is the image of a
concrete object in C, i.e. we reduce the abstract domain to one which does not
contain redundant objects, or equivalently, we turn the abstraction operator
A into a surjective one. In this case the closed subspace of C corresponding
to the projection G ◦ A = PG is isomorphic to A(C); thus we can restrict
ourselves to considering only probabilistic abstract interpretations of the form
(C,PG,PG(C), I). This will allow us to identify orthogonal projections on a

5



Di Pierro and Wiklicky

Hilbert space H (or equivalently its closed subspaces) with all probabilistic
abstract interpretations for the given concrete domain H.

Proposition 2.4 Let H be a Hilbert space and let P ⊆ H be a closed subspace
of H. Then (H,A† ◦A, P, I) is a PAI iff A† ◦A(H) = P .

Based on this identification, we can define the lattice of probabilistic ab-
stract interpretations on a given Hilbert space H by means of the lattice of
orthogonal projections introduced in Section 2.1. Since the projection A† ◦A
and the closed subspace of a Hilbert space H associated to it are uniquely
determined by H and the abstraction operator A on H, we can simply de-
note a probabilistic abstract interpretation by a pair (A,H) or its associated
projection A† ◦A on H.

As already mentioned, the problem of constructing the least upper bound
E t F of two orthogonal projections E and F on H is in general considered
as being not trivial. However, for commutative projections this can be con-
structed as EuF = EF = FE and in the general case, using the Moore-Penrose
pseudo-inverse, according to [1]:

E u F = 2E : F = 2E(E + F)†F.

3 Probabilistic Abstraction and Quantum Measurement

The close relationship between probabilistic abstract interpretation and ortho-
lattices — in effect the inherent logic of quantum physics [21,3] — allows us to
develop a new interpretation and perhaps a better understanding of quantum
physics, measurement and computation.

For a presentation of the basic model of quantum physics which goes back
to von Neumann’s work in the 1930 and which is based on a Hilbert space
formulation see for example [14]. An arguably more elegant framework which
generalises the Hilbert space based framework onto a C∗ algebraic level was de-
veloped in the 1950 [20,5]. We refer to [18,17] for an introduction to quantum
computation and the common (notational) conventions.

One of the basic features of quantum physics is the fact that on the quan-
tum level the state of a system is not directly accessible, instead the observer
needs to perform a “measurement” on the quantum system in order to ob-
tain information about the system. This measurement results in two effects:
(i) the observer “measures” some value on his “instrument” and (ii) on the
quantum level, the state is changed or “reduced” according to the result of
the measurement. Which values can be observed and how the state might
be reduced, depends on the physical observable. The postulates of quantum
mechanics identify a physical observable O with a Hermitian or self-adjoint
operator on the state space of the system being observed.

In general, even if there is no ambiguity about which state the system is
in, it is left to chance which of several possible observations (together with
the associate state reductions) will materialise. The probabilities of certain
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observations depend on the state observed and its relation to the intended
observable O (see e.g. [14, p99] or [18, p88]):

(i) The value measured is an eigenvalue λm of O

(ii) The probability for observing λm is 〈x|Pmx〉 where Pm is a projection
onto the eigenspace of O corresponding to λm.

(iii) The state |x〉 is reduced by projecting it onto the corresponding eigenspace
1√

〈x|Pmx〉
Pm |x〉.

This formal model of quantum measurement, aka projective measurement 5 ,
depends on the possibility of a spectral decomposition of observables, i.e.
finite-dimensional self-adjoint operators (see e.g. [19, Thm 10.21] and for the
general, infinite-dimensional case [15, Thm 5.2.2]).

Theorem 3.1 (Spectral Decomposition) For a finite-dimensional self-adjoint
operator O the eigenvalues λi are real numbers, the projection operators Pi on
the sub-spaces spanned by the eigenvectors corresponding to an eigenvalue λi
are orthogonal and such that

∑
i Pi = I, and

O =
∑
i

λiPi.

Considering the relation between the ortholattice of projections and the
ortholattice of probabilistic abstract interpretations we can define observables
out of PAI’s:

Proposition 3.2 Given a PAI (A,H) we can construct a corresponding phys-
ical observable O = λ•AA†+λ◦(I−AA†) on H whose measurement in a state
vector |x〉 returns either the value λ• or the value λ◦.

In this proposition we reverse the spectral decomposition in the sense that
we take a projection P = AA† and construct its ortho-complement P⊥ = I−P
such that P+P⊥ = I. By choosing any real numbers λ• and λ◦ as measurement
values and constructing the linear combination of P and P⊥, we always end
up with a self-adjoint operator, i.e. a physical observable.

The reverse of this construction is also possible; it is a simple consequence
of the spectral decomposition theorem:

Proposition 3.3 Given a physical observable O on H, we can always define
a set of PAI’s (Ai,H) such that O =

∑
i λiAiA

†
i , for some λi ∈ R.

From the spectral decomposition theorem we can always write a physical
observable as a linear combination of projections. For projections we have
P = P†; thus they can be seen directly as a PAI with A = G = P or
G = I|range(P). However, this decomposition of projections into an abstraction
A and concretisation G, i.e. P = AG, is not unique.

5 We are not concerned here with the more general notion of POVM measurements as in
e.g. [18, 2.2.6].
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The decomposition of physical observables into PAI’s also suggests a new
philosophical interpretation of the measurement problem. A measurement
can be interpreted as a probabilistic choice (depending on the state) among
several different abstractions. This choice has two effects: (i) The measure-
ment instrument indicates which measurement has happened (by displaying
the corresponding measurement value, i.e. eigenvalue) and (ii) the state is
abstracted accordingly and then again concretised (= projective reduction).
The second effect could be seen as forcing the (world) state through the “eye of
the needle” corresponding to the abstraction/concretisation pair representing
the chosen abstraction.

4 Examples

In this section we demonstrate the results in the previous section by presenting
examples of the translation of classical functions (and their properties) into a
quantum computation setting and, vice versa, the classical interpretation of
the measurement part of quantum algorithms.

4.1 Classical (Irreversible) Functions

Given a classical function f : {0, . . . , 2n − 1} → {0, . . . , 2m − 1} we first
construct its representation as a unitary operator Uf on m + n qubits such
that Uf (|x〉 |0〉) = |x〉 |x⊕ f(x)〉 with “⊕” the bitwise sum operation, i.e.
x⊕ y = x+ y mod 2 (cf. e.g. [18]).

For example, for the classical (irreversible) function f : {0, . . . , 3} → {0, 1}
defined below and represented by the matrix F such that |x〉 · F = |f(x)〉, a
(reversible) unitary representation is given by the operator Uf

x f(x)

0 1

1 0

2 0

3 1

F =


0 1

1 0

1 0

0 1

 Uf =



0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


Consider now the functions fi represented by the following 8× 4 matrices
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Fi (rows correspond to arguments 0, 1, . . . , 7 and columns to results 0, 1, 2, 3):

F1 =



0 1 0 0

0 1 0 0

0 0 1 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 0 1



F2 =



0 1 0 0

0 1 0 0

1 0 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 1 0

1 0 0 0



F3 =



1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0



F4 =



0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1



F5 =



0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

1 0 0 0

0 0 0 1

0 0 0 1

0 0 0 1


The corresponding Ufi = Ui are 32 × 32 matrices which we will not ex-

plicitly write down as they would require a considerable amount of space.

We are interested in analysing the zero-ness of the functions fi, that is the
probability of getting a null value by applying fi. A probabilistic abstraction
corresponding to this property can be defined by the following matrix and its
pseudo-inverse:

Z =


1 0

0 1

0 1

0 1

 Z† =

 1 0 0 0

0 1
3

1
3

1
3

 .

The abstraction Z classifies the function outputs into “zero” and “non-zero”
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values. From this abstraction we can construct the projection

PZ = ZZ† =


1 0 0 0

0 1
3

1
3

1
3

0 1
3

1
3

1
3

0 1
3

1
3

1
3


We now show that this corresponds to a physical observable for a quantum

system associated to each Ui.

We can construct a quantum circuit for Ui which starts with the 5 qubits
input vector (i.e. a 32 = 25 dimensional vector):

|x〉 |0〉 = |0〉 |0〉 |0〉 |0〉 |0〉 .
To this we apply:

H⊗H⊗H⊗ I⊗ I

where H is the Hadamard gate and I the identity, to get the superposition
state: (

1√
8

7∑
i=0

|i〉

)
|0〉 |0〉

Next we apply Ui to this vector in order to obtain

1√
8

7∑
i=0

|i〉 |0⊕ f(i)〉 =
1√
8

7∑
i=0

|i〉 |f(i)〉

In short, the circuit corresponds to the unitary operator:

(H⊗H⊗H⊗ I⊗ I) ·Ufi .

We now apply the abstraction/measurement PZ to the last two qubits
register (we thus have to consider I⊗ I⊗ I⊗PZ as our projection operator).
Consider the output vector of the circuit for each of our functions fi

|yi〉 = |0〉 |0〉 |0〉 |0〉 |0〉 · (H⊗H⊗H⊗ I⊗ I) ·Ufi .

In order to check their “zero-ness” we measure the physical observable:

Az = λZPZ + λZ⊥P⊥Z = λZPZ + λZ⊥(I−PZ)

with any two “measure values” λZ and λZ⊥ . We get the following probabilities
of measuring λZ and λZ⊥ :

prob(λZ) prob(λZ⊥)

f1 0.33333 0.66667

f2 0.50000 0.50000

f3 1.00000 0.00000

f4 0.33333 0.66667

f5 0.41667 0.58333
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which we calculate as:

prob(λZ) = 〈yiPZ |yi〉 and prob(λZ⊥) = 〈yi(I−PZ)|yi〉 .

As we only test for yes/no answers we have:

prob(λZ⊥) = 〈yi(I−PZ)|yi〉 = 〈yi|yi〉 − 〈yiPZ |yi〉 = 1− 〈yiPZ |yi〉 .

As expected, these results show that the more often fi = 0 holds the higher
the probability that we measure λZ instead of λZ⊥ : In the case of the constant
zero function f3 = 0 this probability is 1.

4.2 The Deutsch Algorithm Revisited

The arguably best-known quantum algorithms are implemented essentially
via a unitary transformation followed by a measurement in some appropri-
ate base. Furthermore, they exploit various tricks to take advantage of the
quantum parallelism and achieve a substantial speedup in comparison with
corresponding classical algorithms.

By taking a semantic rather than a complexity theoretical viewpoint, we
present a re-interpretation of the Deutsch algorithm which shows how these
tricks can actually be seen as semantical abstractions aiming at “collecting”
into an appropriate domain (base) the computational properties of interest.

We briefly recall the Deutsch problem and the quantum circuit for solving
it. We consider here the case of a unary Boolean function, but the result can
straightforwardly be generalised to the case of n-ary Boolean functions in the
same way as the Deutsch algorithm can be generalised to the Deutsch-Jozsa
algorithm (see e.g. [18]).

The problem solved by the Deutsch algorithm is to determine whether a
function f is constant or balanced, where ’balanced’ means that it returns 1 for
half the domain and 0 for the other half. The quantum circuit implementing
this algorithm takes two input qubits initialised to |0〉 and |1〉 respectively.
It first applies Hadamard on the first qubit, forming all possible inputs; the
second will be the answer qubit. Next, the circuit runs the operator Uf

implementing the function (and given as a black box) once; this exclusive
or’s the result with the answer qubit. Finally, Hadamard is applied on the
input qubit again, and the answer qubit is measured. If it is 0, the function
is constant, otherwise the function is balanced.

Consider a function f : {0, 1} → {0, 1} and classify it either as con-
stant – if f(0) = f(1) – or balanced – if f(0) 6= f(1). There are four pos-
sible pairs (f(0), f(1) for a function f which we abstract into two classes
c(onstant) and b(alanced). This abstraction from a four element concrete
space {(0, 0), (0, 1), (1, 0), (1, 1)} into a two element abstract space {c, b} cor-
responds to a matrix D with its Moore-Penrose pseudo-inverse D† and the
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projection PD = DD† given by:

D =


1 0

0 1

0 1

1 0

 D† =

 1
2

0 0 1
2

0 1
2

1
2

0

 PD =


1
2

0 0 1
2

0 1
2

1
2

0

0 1
2

1
2

0

1
2

0 0 1
2


Our aim is to show that PD can be used to define a physical observable

whose measurement is consistent with the final measurement in the Deutsch
circuit. In fact, consider the physical observable

A = λcPD + λbP
⊥
D

and measure it on the output vector of the Deutsch circuit for the function f

|of〉 = (|0〉 |1〉) · (H⊗H) ·Uf .

It turns out that we will get with probability one λc if the unknown function
f is constant and λb in the case that f is a balanced function.

We can verify the result of this measurement on all four possible functions
fi : {0, 1} → {0, 1}:

x f1(x)

0 1

1 1

F1 =

 0 1

0 1

 U1 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


x f2(x)

0 0

1 1

F2 =

 1 0

0 1

 U2 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


x f3(x)

0 0

1 0

F3 =

 1 0

1 0

 U3 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


x f4(x)

0 1

1 0

F4 =

 0 1

1 0

 U4 =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1


12
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We denote by oi the output vector of the Deutsch circuit corresponding to
fi:

|oi〉 = (|0〉 |1〉) · (H⊗H) ·Ui

which in the concrete cases are given by:

|o1〉=
[
−1

2
1
2
−1

2
1
2

]
|o2〉=

[
1
2
−1

2
−1

2
1
2

]
|o3〉=

[
1
2
−1

2
1
2
−1

2

]
|o4〉=

[
−1

2
1
2

1
2
−1

2

]
If we compute the probabilities of obtaining λb and λc in the usual way we

get:

〈o1PD | o1〉= 0

〈o2PD | o2〉= 1

〈o3PD | o3〉= 0

〈o4PD | o4〉= 1

which reflect the fact that f1 and f3 are indeed constant functions, while f2
and f4 are balanced.

Our presentation differs slightly from the usual presentation of the Deutsch
circuit as:

(|0〉 |1〉) · (H⊗H) ·Ui · (H⊗ I)

In the notation of [18, p33] we measure |ψ3〉 = (|0〉 |1〉) · (H⊗H) ·Ui instead
of |ψ4〉 = (|0〉 |1〉) · (H ⊗ H) · Ui · (H ⊗ I). The reason for this is that our
measurement is with respect to a non-standard base given by the eigenvectors
of PD:

|d1〉=
[

0 − 1√
2

1√
2

0
]

|d2〉=
[

1√
2

0 0 − 1√
2

]
|d3〉=

[
1√
2

0 0 1√
2

]
|d4〉=

[
0 1√

2
1√
2

0
]

and not |0〉 |0〉, |0〉 |1〉, |1〉 |0〉, |1〉 |1〉. The last Hadamard gate, i.e. H ⊗ I in
the original Deutsch circuit has exactly the purpose of transforming |φ3〉 into
the standard base.

13
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5 Conclusion

In this paper we identified a close link between the logic of quantum mea-
surements and probabilistic abstract interpretation. This is based on a re-
interpretation of an abstraction A on a probabilistic domain H via the or-
thogonal projection AA† on H, where A† is a generalised inverse of A.

The set of projections on a Hilbert space H (e.g. any finite dimensional
vector space) is naturally equipped with two distinct structures: it is a subset
of the algebra of bounded linear operators, and it carries a lattice structure
which reflects the inclusion ordering among closed subspaces ofH. This means
that we can use both algebraic operations (scalar product, vector addition and
algebra product) and logical operations (intersection and union) in order to
construct “new” projections from old ones.

Probabilistic abstract interpretations inherit both the linear algebra and
the orthomodular structure of the set of projections on a Hilbert space. While
the logical structure provides the theoretical basis for combining program anal-
yses and for various refinement techniques in the classical and probabilistic
programming languages setting, the algebraic structure allows us to define lin-
ear combinations of PAI’s which correspond to “truly randomised” abstrac-
tions and cannot be formulated within the framework of classical abstract
interpretation. These are at the base of a new philosophical interpretation of
the measurement problem as the problem of probabilistically choosing among
several properties (abstractions) to be observed.

We aim to investigate the relation between the lattice and algebraic struc-
ture of PAI’s further. This will require in particular a more detailed study of
the non-commutative situation, a better understanding of the vector lattice
or Riesz space of positive operators which can be obtained by linear combina-
tion of projection operators, and the role of spectral theorems in decomposing
(positive) operators into linear combinations of projections.

Such investigations may lead to new approaches to (measurement based)
quantum computation; we will explore in particular the possibility of devel-
oping declarative-like quantum programming languages whose operational se-
mantics exploits the idea of an incremental construction of observables starting
from a set of possible, i.e. physically implementable, measurements. It ap-
pears that only algebraic operations are physically realisable but that logical
combinations are conceptually easier to understand. It would therefore be
important to understand how to bridge the gap in the non-commutative case,
e.g. how to “compensate” for the difference between P∩Q and PQ in general
and in particular cases.
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