
Models of Computation, Exercises 3: TM & Comp. Functions

1. Consider the Turing machine M = (Q,Σ, s, δ) where
Q = {start, skip1s, shift, append, skip∗s, tidyup, finalise}, Σ = { , 0, 1, ∗} and the transition
function δ ∈ (Q× Σ)⇀(Q× Σ× {L,R}) is given by:

δ 0 1 ∗
start (start, , R) (skip1s, 0, R)
skip1s (skip∗s, ∗, R) (skip1s, 1, R)
shift (append, 0, R) (append, 1, R) (shift, ∗, L)
append (skip∗s, 1, R)
skip∗s (skip∗s, ∗, R) (tidyup, , L) (shift, ∗, L) (skip∗s, ∗, R)
tidyup (finalise, 1, R) (tidyup, , L)
finalise (finalise, 0, L)

(a) Give the computation thatM performs with the initial configuration (start, ε, 011 111 110).
When working with pen and paper, you may wish to abbreviate the states
{start, skip1s, shift, append, skip∗s, tidyup, finalise} as {st, s1, sh, a, s∗, t, f}.

(b) If M is given a tape containing a list of numbers encoded using the representation on
Slide 11 of your lecture notes, then what function does it compute?

2. Turing machines can work with binary representations of numbers. We will represent numbers
“backwards” – as bit strings with the least significant bit first. For example 25 = 20 + 23 + 24

would be represented as 10011. (It could also be represented as 100110, 1001100, etc..)

Define a Turing machine that increments a number in this representation.

3. The kind of register machines we have seen in the course are generally called Minksy ma-
chines (after their creator). We can also define other types of register machines, such as the
Successor machine, which has three types of instruction:

clear R L which sets register R to zero, and jumps to instruction L.

increment R L which increments the value in R, and jumps to L.

test R1 R2 L1 L2 which tests whether the values in R1 and R2 are equal to each other.
If they are, it jumps to L1, if not it jumps to L2.

(a) Show that every Minsky machine has a corresponding Successor machine that computes
the same function, and vice-versa. Hint: It is enough to implement the behaviour of the
building blocks of Minsky machines using Successor machines and vice-versa. We don’t
expect you to prove your implementations correct.
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(b) Explain why this supports the Church-Turing thesis.

(c) Explain why this means that the halting problem for successor machines is undecidable.

4. (a) Just as with register machines, we can code Turing machines as numbers. Explain why
the set of numbers corresponding to the Turing machines that eventually halt when run
on the empty input is undecidable.

(b) There is an algorithm (implementable with a Turing machine) that, given the code of a
Turing machine T produces a sentence FT of first-order logic which is satisfiable (i.e. true
in some structure) if and only if the machine T never halts when run on the empty input.
What does this tell you about the set of satisfiable first-order sentences?

(c) Gödel’s completeness theorem states that a sentence of first-order logic is valid (i.e. true
in every structure) if and only if it is provable. It turns out that, sentences and proofs
in first-order logic can be represented as natural numbers in such a way that:

� Every sentence and proof has a unique representation.

� A Turing machine can check whether a pair of numbers corresponds to a sentence
and a proof of that sentence.

We say that a set is semidecidable (or recursively enumerable) if there is a Turing machine
(or equivalently a register machine) that will always halt if the input value belongs to
the set, and run forever otherwise.

Is the set of valid first-order sentences semidecidable? Is it decidable? Why?

5. Explain why it is impossible to have a perfect virus scanner.
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