Program Analysis (70020)

Correctness of an Analysis

Herbert Wiklicky

Department of Computing
Imperial College London

herbert@doc.ic.ac.uk
h.wiklicky@imperial.ac.uk

Autumn 2024

1/35

Correctness

Questions: Is a program analysis correct? Are the results
reflecting what is really happening when the program is run?

In other words: What is the relation between the (concrete)
semantics of a program, i.e. the transition relation = and/or its
transitive closure =*, and the (solutions to) the program
analysis Analysis, and Analysis,.

For example: Is a variable LV identifies as ‘live’ indeed useful,

or more importantly, is a ‘non-live’ variable really ‘dead’, i.e. is it
save to eliminate it (at least locally).

2/35

Syntax of WHILE

The labelled syntax of the language WHILE is given by the
following abstract syntax:

a == x|n|ajop,a
= true | false | not b | by op, by | a1 op, az

S = [x:=a
 [skip]
| $1;52
| if [b]° then S; else S;
| while [b]’ do S

3/35

Sketches of a Formal Semantics

Memory is modelled by an abstract state, i.e. functions of type

State = Var — Z.

For boolean and arithmetic expressions we assume that we
know what they “evaluate t0” in a state s € State. Then the
semantics for AExp is a total function

[.-]a. : AExp — State — Z
and the semantics of boolean expressions is given by

[.1z : BExp — State — {tit, ff}

4/35

Evaluating Expressions

Let us look at a program with two variables Var = {x, y}.
Two possible states in this case could be for example:

So=[x—0,y—1lands; =[x— 1,y — 1]

We can evaluate an expression like x + y € AExp:

[x+ylaso = 0+1=1
[x+ylass = 1+1=2

or a Boolean expression like x + y < 1 € BEXxp:

[x+y<1]gsy = 1<1=t
[x+y<i]gss = 2<1=H

Execution and Transitions

The configurations describe the current state of the execution.

(S,s) ... Sistobe executed in state s,
s ... aterminal state (i.e. (., s)).

The transition relation = specify the (possible) computational
steps during the execution starting from a certain configuration

(S,s) = (8, ¢)
and at the end of the computation

(S,s) = ¢

5/35

6/35

Execution Rules (SOS) [Provided in Exam]

(ass) ([x:=al]%, s) = s[x — [a]4$]
(skip) ([skip]‘,s) = s

1 <S1 , 3> = <Sq ’ Sl>
(sq’) (S81;52,8) = (5);S2,9)

R

(if") (if [b]’ then S; else S,, s) = (Sy,) if [b]ss =
(iff) (if [b]’ then S; else S,,s) = (S5, s) if [b]zs = ff
(wh) (while [b] do S, s) = (S; while [b]’ do S, s) if [b]zs = tt
(whF) (while [b]' do S,s) = s if [b]ss = ff

7/35

A SOS Example

Consider a (perhaps rather vacuous) program like:
= [z := x + y]%while [true]” do [skip]*’
So=[x—0,y—1,z—0lands;=[x—0,y—1,z— 1]

Then (S, sp) executes as follows:

(S,5) = (while [true]ﬁ do [skip]*', s¢)

([skip]*"; while [true]” do[sklp ¢, s1)
(while [true]‘f do [skip]*', s1)

(

=
=
= [sklp]e -while [true]” do[sklp]e S1)
=

8/35

Lemma 1

(i) 1f (S,s

= &’ then
final(S) =

{init(S)}.
(i) If (S,s) = (S, &) then
final(S) 2 final(S’).
(i) If (S,s) = (&', &) then
flow(S) D flow(S').
(iv) If (S,s) = (S, &) then
blocks(S) O blocks(S').
(v) If (S,s) = (S, s) then
S label consistent implies S’ label consistent.

N— T~ N

9/35

Lemma 1 - Proof (i) [Not for Exam]

Proof.

The proof is by induction on the shape of the inference tree.
Consider the only three non-vacuous cases:

(ass): ([x:=a]",s) = s[x — [a]s]

final([x : =a]*) = {¢} = {init([x:=a])}.
(skip): ([skip],s) = s

final([skip]’) = {¢} = {init([skip]%)}.
(WwhF): (while [b]¢ do S, s) = s with [b] = false

final(wnile [b]* do S) = {¢} = {init(while [b]* do S)}.

10/35

Lemma 1 - Proof (ii) [Not for Exam]
Proof (cont).

(seq'): (Sy; Sz, 8) = (S); Sy, ') because
(S1,s) = (S),8):

final(Sy ; So) = final(S,) = final(S}; Ss).

(seq’): ...
(if"): (1£ [b]¢ then Sy else S, 8) = (S, 8)
with [b] = true:

final(if [b]’ then Sy else Sp) =
final(Sy) U final(Sy) 2 final(Sy).

[

11/35

LV Equations: LV~

The Live Variable Analysis is given as the solution to the
following system of equations:

Wy [Wiitee final(S,)
)= L UlWVam(£) | (£.0) € low(S,)), otherwise

WVentry(£) = (LV exit(0)\Killoy ([B]?) U genyy ([B]Y)
where [B]* € blocks(S,)

12/35

Solutions via lteration Operator

WVentry(1) = Fi(WVentry(1), ..., LVexit(n))
Wenry(n) = Fp(WVentry(1), ..., Vexir(N))
WVexit(1) = Fi(Veny(1), ..., LVexit(n))
I—Vexit(n) — F%('—Ventry(1)7 ceey I—Vex/t(n))

becomes a function on the lattice P(Var)2"
F : P(Var)>" — P(Var)?"

F/,(Lvent‘ry(‘I)7 SR I—Vexit(n)) — LVentry(i)
F?(I—Venz‘ry(1)7 SR LVexit(n)) - I—Vexit(i)

13/35

LV Constraints: LV=

The Live Variable Analysis is equivalently given as the solution
to the following system of constraints:

| 0,if ¢ € final(S,)
Weall) 2 { U{Wern(£') | (£.1) € flow(S.)}. otherwise

Wenmy(€) 2 (WVexit(£)\killy([B]) U genyy([B]")
where [B]* € blocks(S,)

14/35

LV Solutions to LV- and LV=

Consider collections live = (liveentry, liveeyit) Of functions:

/iveentry . Lab* — p(var*)
livesyit : Lab, — P(Var,)

If live solves LV~ for a statement S we write:
live = LV=(S)
If live solves LV~ for a statement S we write:

live |= LV=(S)

15/35

Theorem 1

Given a label consistent program S,.

If

> live = LV=(S,)
then

> live = LVQ(S*).

That is: The least solution of LV=(S,) coincides with the least
solution to LVS(S,).

16/35

Theorem 1 - Proof [Not for Exam]

Proof.
If live = LV=(S,) also live = LVS(S,) as “D” includes “=".

To show that LV=(S,) and LV=(S,) have the same least
solution consider the iteration operator F = F; /= Fiv

live = LVS(S,) iff live 1 F(live)
live = LV=(S,) iff live = F(live)

By Tarski’'s Fixed Point Theorem we have:
Ifo(F) = |_|{live | live J F(live)} = |—|{live | live = F(live)}.

Since Ifp(F) = F(/fp(F)) and Ifo(F) 3 F(I/fo(F)) we see that we
get the same least solutions. O

17/35

Preservation of Solution

During the (actual) execution of any program S, a solution to
the Live Variable analysis LV=(S,) remains a solution.

(S, s1) = <S/,Sq> = ... = <S”,Sq/> — Sq//

A A

= LV= = LV= = LVE

Y Y Y

live live e live

18/35

Lemma 2

Given a label consistent program S;.

If
> live = LV=(S;) and
> flow(Sq) O flow(S,) and
» blocks(S1) O blocks(Sy)
then
> live = LVE(Sy)
with S» being label consistent.

Proof [Not for Exam].

If S; is label consistent and blocks(Sy) 2 blocks(S,) then S; is
also label consistent.

If live |= LV=(Sy) then live also satisfy each constraint in
LV&(S,) and hence live = LV=(S,).]

19/35

Lemma 3

Given a label consistent program S.

If
> live = LV=(S) and
> (S,8) = (S8, ¢)
then
> live = LV=(S)).

Proof [Not for Exam].
Follows directly from Lemma 1 and Lemma 2. N

20/35

Lemma 4

Given a label consistent program S.

If
> live = LV=(S)

then for all (¢,¢") € flow(S) we have:
> llvee)qt(g) 2 liveentry(fl)

Proof [Not for Exam].
Follows immediately from the construction of LV&(S). O

21/35

Correctness Relation

Assume that V is a set of live variables.

Define the correctness relation via
Sy ~y So iff Vx € V:s1(x) = so(x).
In other word:
Two states are equivalent iff for all live variables —i.e. all

“practical purposes” — the states s; and s, agree on the
variables in V.

22/35

Example

Consider [x := y + z]* and V4 = {y, z} and Vb = {x}.

S1 ~v, S2 means si(y) = sz(y) A s1(2) = s2(2).

S1 ~y, S2 means sy(x) = Sp(x).

Assume ([x :=y + 2], 81) = s}, ([x :== y + Z]°, s0) = s}, then

S1 ~y, Sz €nsures s ~y, Ss.

If Vo = LVgit(¢) thus is the set of live variables after
[x .=y + z]* then Vi = LWVenry(¥) is the set of live variables

before [x := y + z|*.

Correctness of LV Analysis

<87 S1> = <S/734> =

A A

~yV ~y\

(S,82) = (8.,8) =

V = N(init(S)) V' = N(init(S"))

23/35

= (5",8]) = sy’

~yr ~X(0)

Y Y
= (§",s5) = Sy

V" = N(inif(S")) ¢ € final(S)

Short-hand notation: N(¢) = liveentry(¢) and X(¢) = liveeit(£).

24/35

Lemma 5

Given a label consistent program S.

If
> live = LV&(S)
then

> S1 ~Jive,(o S2 IMPlies st ~jiyg) S2 for all
(¢,¢) € flom(S).

Proof [Not for Exam].
Follows directly from Lemma 4 and the definition of ~,.]

25/35

Theorem 2

Given a label consistent program S.

If
> live = LV=(S)
then
(i) 1f (S,s1) = (S, 8]) and sq ™ 1V (i(S)) 52 then
there exists s; such that
(S, 82) = (S, 85) and 81 ~jiyg, . (init(s)) So-
(i) If (S,sy) = s} and sy ™ [iVun, (iNit(S)) S2 then
there exists s, such that
(S, 82) = 55 and s ™ liVeuu(init(S)) S5

26/35

Theorem 2 -

Proof.

Proof [Not for Exam]

The proof is by induction on the shape of the inference tree.
(ass): ...

Theorem 2 -

27/35

Proof (ass) [Not for Exam]

Proof (cont).
The proof is by induction on the shape of the inference tree.

(ass):

We have ([x:=a]’, sy) = s1[x — [a]s{] and from
the specification of the constraints:

liveentry(£) = (liveexit(€)\{x}) U FV/(a)
and therefore
1™ [iVeqmey (£) S2 implies [a](s1) = [a](s2)

because the value of a depends only on variables
in it.

Thus with s, = sy[x — [a] 4S2] we have
s} (x) = s5(x) and thus s} ~ Ve, (o) Sh.

28/35

Theorem 2 - Proof (skip) [Not for Exam]

Proof (cont).

(skip): We have ([skip]’, s1) = sy and from the
specification of the constraints we get:

[IVeentry (£) = (IIVeexit(£)\D) U 0 = liveexit(£)

Thus taking s, to be s, we get s} ~ live,
required.

/
(1) S2 @s

Xit

29/35

Theorem 2 - Proof (seq') [Not for Exam]

Proof (cont).

(seq'): We have (Sy; Sy, s1) = (S} ; Sz, s|) because of
(S1,81) = (5, 8)).

By construction we have flow(S;y; So) O flow(S;)
and also blocks(Sy; Sz) O blocks(Sy), thus by
Lemma 2 live = LV=(S;) and by the induction
hypothesis there exists a s, such that

(S1,82) = (5], s5) and s ™ V€ (iNit(S])) S2

and the result follows.

30/35

Theorem 2 - Proof (seq’) [Not for Exam]
Proof (cont).

(seq”): We have (S;; Sy, s1) = (S, ;) because of
(S1,81) = s}. Again by Lemma 2, live is a solution
to LV&(S;) and thus by induction hypothesis there
exists a s; such that

(S1,82) = s, and s} ~ live,(init(s,)) Sh
Now we have:
{(¢,init(Sp)) | ¢ € final(S1)} C flow(Sy; S»)

and by Lemma 1, final(Sy) = {init(S1)}. Thus by
Lemma 5

S} ™ [iVenry (INt(S2)) $2
and the result follows.

31/35

Theorem 2 - Proof (if") & (if") [Not for Exam]

Proof (cont).
(if"): We have (if [b]’ then Sj else S, s1) = (S, 51)
with [b](s1) = true.
Since s1 ~ Ve any(0) 52 and liveentry(¢) 2 FV(b) we

also have [b](s2) = true (the value of b is only
dependent on the variables occurring in it) and
thus

(if [b]e then Sy else Sy, 8) = (51, S2)

From the constraints we get /iveentry(£) 2 liveexit(€)
and hence sy ~ live, () 52

Since (¢, init(Sy)) € flow(S) Lemma 5 gives

1™ iV, (iNit(s;)) 52 88 required.

(if"): similar to case (if").

32/35

Theorem 2 - Proof (wh') [Not for Exam]

Proof (cont).

(WhT): (while [b]’ do S,s1) = (S; while [b]’ do S, s1)
with [b](s1) = true.
Since s1 ~ IVEany () S2 and livegniry(¢) > FV(b) we
also have [b](s2) = true and thus

(while [b]* do S, sp) = (S; while [b]’ do S, sy)

Again since liveentry(£) 2 liveeit(¢) we have
S1 ™~ five,q(0) S2 and then

S1™ fivesmy (init(s)) S2

from Lemma 5 as
(4, init(S)) € flow(while [b]f do S).

33/35

Theorem 2 - Proof (wh”) [Not for Exam]

Proof (cont).
(wh): We have (while [b]’ do S, si) = s1 with
[b](s1) = false.

Since sy ~ Ve any (¢) 52 and liveentry(¢) 2 FV(b) and
we also have [b](s2) = false and thus:

(while [b] do S, sp) = Sp.

From the specification of LV~ we have

[

34/35

Corollary 1

Given a label consistent program S.

If
> live = LV=(S)
then
(i) 1f (S,s1) =" (S',s}) and s; ~ liveuny (init(s)) S2 then
there exists s; such that
<S, 32> = * <S/7 S’2> and S{I N/iveemry(init(S’)) 3,2.
(i) If (S, s1) =* s} and s; ™ 1V (i(S)) 52 then
there exists s; such that
(S,82) =" 5, and sy ~jje_ () S5 for some
¢ € final(S).

Proof [Not for Exam].

The proof is by induction on the length of the derivation
sequences and uses Theorem 2. H

35/35

	Correctness

