
Program Analysis (70020)
Abstract Interpretation

Herbert Wiklicky

Department of Computing
Imperial College London

herbert@doc.ic.ac.uk
h.wiklicky@imperial.ac.uk

Autumn 2024

1 / 36



Live Variable Analysis

A variable is live at the exit from a label if there exists a path
from the label to a use of the variable that does not re-define
the variable. The Live Variables Analysis will determine:

For each program point, which variables may be live at
the exit from the point.

This analysis might be used as the basis for Dead Code
Elimination. If the variable is not live at the exit from a label
then, if the elementary block is an assignment to the variable,
the elementary block can be eliminated.
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Parity Analysis

A variable has even or odd parity at a label if we can guarntee
that its value is even (e) or odd (o) for any execution of this label
(not necessarily the same actual value). The Parity Analysis will
determine:

For each program point, what is the parity of each vari-
able.

This analysis might be used as the basis for . . . (saving a bit?).
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LV Analysis: Property Space

killLV : Block⋆ → P(Var⋆)

genLV : Block⋆ → P(Var⋆)

LVentry : Lab⋆ → P(Var⋆)

LVexit : Lab⋆ → P(Var⋆)

Important fact: Information we are interested in is in P(Var⋆).
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LV Equations and Transfer Functions

LVexit(ℓ) =

{
∅, if ℓ ∈ final(S⋆)⋃
{LVentry(ℓ

′) | (ℓ′, ℓ) ∈ flowR(S⋆)},otherwise

LVentry(ℓ) = (LVexit(ℓ)\killLV([B]ℓ) ∪ genLV([B]ℓ)
where [B]ℓ ∈ blocks(S⋆)

with

killLV([ x := a ]ℓ) = {x}
killLV([ skip ]ℓ) = ∅

killLV([b]ℓ) = ∅

genLV([ x := a ]ℓ) = FV(a)
genLV([ skip ]ℓ) = ∅

genLV([b]
ℓ) = FV(b)
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Parity Information

The LV Analysis associates to lables information – concretely
the set of live variables, i.e. a set in P(Var⋆).

This is modified by
local transfer functions and collected globaly according to flow.

For Parity we have identify the abstract properties to work with.
▶ Sets in P(Var⋆ × {e,o}) or maybe P(Var⋆ × {e,o, ?}), e.g.

{(x ,e), (x ,o), (y ,e)} ≡ {(x , ?), (y ,e)}.
▶ Functions in Var⋆ → {e,o} or better Var⋆ → {e,o, ?}. e.g.

{x 7→?, y 7→ e}.

▶ represented as value tables, e.g. {x 7→?, y 7→ e} =
x y
? e

Questions: How to modify parity information locally and how to
combine it, e.g. maybe {(x ,e), (x ,o), (y ,e)} ∪ {(x ,e), (y ,e)}.
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Simplification, Abstraction, Approximation

Designing a Program Analysis needs to establish correctness.

Doing this for each program property, cf. Live Variable, might be
cumbersome, so we are looking for a general way to construct
correct and efficient frameworks; more or less automatically.

From the 1970s the work of Cousot and Cousot on Abstract
Interpretation provides a tools to do this. They demonstrated
that numerous analysises can be obtained this way.

The central element is the simplification of the concrete
semantics in order to obtain an abstract one as an optimal
approximation.
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Concrete Semantics vs Abstract Semantics

code

m := 1;
while n > 1 do

m := m*n;
n := n-1;

endwhile

concrete model
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property

abstract model 1 0 0
0 1 0
0 0 1


α γ

property#

⊢?
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Cast-out-of-Nines

Plausibility check for arithmetic calculations, for example:

123 × 457 + 76543 =?= 123654

Perform operations n mod 9 (enough to consider digits’ sum)

6 × 7 + 7 = 42 + 7 = 6 + 7 = 4 ̸= 3

This is holds because elementary facts like:

(a ± b) mod 9 = (a mod 9 ± b mod 9) mod 9
(a × b) mod 9 = (a mod 9 × b mod 9) mod 9

(10 × a ± b) mod 9 = (a ± b) mod 9

Note that there are false positives, cf also [1] and [2].
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Approximation and Correctness

Data-flow analyses can be re-formulated in a different scenario
where correctness is guaranteed by construction.

Classically, the theory of Abstract Interpretation allows us to

▶ construct simplified a (computable) abstract semantics
▶ construct approximate solutions
▶ obtain the correctness of the approximate solutions

Abstract Interpretation also uses other techniques, like
widening/narrowing, which we will not cover here.
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Notions of Approximation

Assume that we have a “solution” s to a problem.
What counts as a (good) approximation s∗ to s?

In order theoretic structures we are looking for
Safe Approximations

s∗ ⊑ s or s ⊑ s∗

In quantitative, vector space structures we want
Close Approximations

∥s − s∗∥ = min
x

∥s − x∥
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Example: Function Approximation

Concrete and abstract domain are step-functions on [a,b].

The set of (real-valued) step-function Tn is based on the
sub-division of the interval into n sub-intervals.

The concrete function needs n data points, its abstraction or
approximation should need less, i.e. from Rn to Rm with m < m.
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Close Approximations

Approximate f ∈ R16 by “least square” simplifications

in R8, in
R4, in R2 or even in R.
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Safe Approximations

Approximate f ∈ R16 by over/under approximation

in R8, in R4,
in R2 or even in R.
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Abstract Interpretation

In Program Analysis (cf. Monotone Frameworks) our property
spaces are (complete) lattice.

Aim: Find abstract descriptions on which computations are
easier; then relate the concrete and abstract solutions.

Definition
Let C = (C,≤C) and D = (D,≤D) be two partially ordered sets.
If there are two functions α : C → D and γ : D → C such that for
all c ∈ C and all d ∈ D:

c ≤C γ(d) iff α(c) ≤D d ,

then (C, α, γ,D) form a Galois connection.
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Relating Concrete and Abstract Properties

C

e.g. P(Z)

D

e.g. P({−,0,+})

c
α(c)

d
γ(d)
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Galois Connections

Definition
Let C = (C,≤C) and D = (D,≤D) be two partially ordered sets
with two order-preserving functions α : C 7→ D and γ : D 7→ C.
Then (C, α, γ,D) form a Galois connection iff

(i) α ◦ γ is reductive i.e. ∀d ∈ D, α ◦ γ(d) ≤D d ,
(ii) γ ◦ α is extensive i.e. ∀c ∈ C, c ≤C γ ◦ α(c).

Proposition
Let (C, α, γ,D) be a Galois connection. Then α and γ are
quasi-inverse, i.e.

(i) α ◦ γ ◦ α = α and (ii) γ ◦ α ◦ γ = γ
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Uniqueness and Duality
Given an abstraction α there is a unique concretisation γ.

Proposition
Let (C, α, γ,D) be a Galois connection, then

(i) α uniquely determines γ by

γ(d) =
⊔

{c | α(c) ≤D d},

and γ uniquely determines α via

α(c) =
l

{d | c ≤C γ(d)}.

(ii) α is completely additive and γ is completely
multiplicative, and α(⊥) =⊥ and γ(⊤) = ⊤.

For a proof see e.g. [3] Lemma 4.22.
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Correctness and Optimality

Proposition
Given α : P(Z) → D and γ : D → P(Z) a Galois connection
with D some property lattice. Consider an operation op : Z → Z
on Z which is lifted to ôp : P(Z) → P(Z) via

ôp(X ) = {op(x) | x ∈ X},

then op# : D → D defined as op# = α ◦ ôp ◦ γ is the most
precise function on D satisfying for all Z ⊆ Z:

α(ôp(Z )) ⊑ op#(α(Z ))

It is enough to consider so-called Galois Insertions.
See [1] Lemma 2.3.2.
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General Construction
The general construction of correct (and optimal) abstractions
f# of concrete function f is as follows:

A
α //

f
��

A#

γ
oo

f#
��

B
α′

// B#

γ′
oo

Correct approximation:

α′ ◦ f ≤# f# ◦ α.

Induced semantics:

f# = α′ ◦ f ◦ γ.
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Abstract Multiplication

How can we justify or obtain correct abstract versions of various
operations, e.g. multiplication?

×# ⊥ even odd ⊤
⊥ ⊥ ⊥ ⊥ ⊥

even ⊥ even even even
odd ⊥ even odd ⊤
⊤ ⊥ even ⊤ ⊤

Abstract Interpretation – introduced by Patrick Cousot and
Radhia Cousot in 1977 – allows to “compute” abstractions
which are correct by construction.
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Parity (again)
Consider concrete C = P(Z) and abstract D = P({even,odd}).

The abstraction α : C → D is given by for X ⊆ Z:

α(∅) = ⊥ = ∅
α(X ) = even iff ∀x ∈ X ∃k : x = 2k
α(X ) = odd iff ∀x ∈ X ∃k : x = 2k + 1
α(X ) = ⊤ = {even,odd} otherwise

The concretisation γ : D → C then needs to be:

γ(⊥) = ∅
γ(even) = {x ∈ Z | ∃k : x = 2k} = E
γ(odd) = {x ∈ Z | ∃k : x = 2k + 1} = O

γ(⊤) = ⊤ = Z otherwise
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Parity: From × to ×#

To construct ×# using α and γ we need to lift .× . : Z× Z → Z
to .×̂. : P(Z)× P(Z) → P(Z).

Obviosly, for X = {x} ⊆ Z and
Y = {y} ⊆ Z:

X ×̂Y = {x × y | x ∈ X and y ∈ Y}

Defining the abstract multiplication ×# = α ◦ (.×̂.) ◦ (γ, γ):
▶ γ(even) = E , then E×̂E = E ′ ⊂ E , and α(E ′) = even
▶ γ(odd) = O, then E×̂O = E and α(E) = even
▶ etc.

Therefore, even ×# even = even, even ×# odd = even, etc.
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Concrete Semantics → and Abstract Semantics⇝
Imagine some programming language, e.g. WHILE. Its concrete
semantics identifies values in V (e.g. states) and specifies how
a program S transforms v1 into v2;

we may write this as

S ⊢ v1 → v2

A program analysis or abstract semantics identifies the set L of
properties and how a program S transforms l1 in to l2

S ⊢ l1 ⇝ l2

Unlike for general semantics, it is customary to require⇝ to be
deterministic and thus define a function; this allows us to write:

fS(l1) = l2 to mean S ⊢ l1 ⇝ l2.
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Situation in While

We have SOS transitions ⟨S, s⟩ ⇒ ⟨S′, s′⟩ with S and S′

programs and s, s′ ∈ State = (Var → Z), e.g.

⟨z := 2 × z, [z 7→ 2]⟩ ⇒ [z 7→ 4]

translates to just an evaluation of the state:

z := 2 × z ⊢ [z 7→ 2] → [z 7→ 4]

The fact that this also holds for the (abstract) parity means:

z := 2 × z ⊢ even(z)⇝ even(z)

and also z := 2 × z ⊢ odd(z)⇝ even(z).
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Correctness Relation

Every program analysis should be correct with respect to the
semantics.

For a class of (so-called first-order) program analyses this is
established by directly relating properties to values using a
correctness relation:

▷ : V × L → {tt, ff} or ▷ ⊆ V × L

The intention is that “v ▷ l” formalises our claim that the value
v is described by the property l (or v abstracts to l).
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Preservation of Correctness
One has to prove that ▷ is preserved under computation.

This
may be formulated as the implication:

v1 ▷ l1 ∧
S ⊢ v1 → v2 ∧ S ⊢ l1 ⇝ l2

⇒ v2 ▷ l2

This property is also expressed by the following diagram:

S ⊢ v1 → v2...
...

▷ ⇒ ▷
...

...
S ⊢ l1 ⇝ l2
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Correctness of Parity

0 ▷ even 1 ▷ odd
2 ▷ even 3 ▷ odd
4 ▷ even 5 ▷ odd

. . . . . .

z := 2 × z ⊢ [z 7→ 1] → [z 7→ 2] odd(z)⇝ even(z)
z := 2 × z ⊢ [z 7→ 2] → [z 7→ 4] even(z)⇝ even(z)
z := 2 × z ⊢ [z 7→ 3] → [z 7→ 6] odd(z)⇝ even(z)

. . . . . .

1▷ odd ∧ p ⊢ 1 → 2 ∧ p ⊢ odd⇝ even ⇒ 2▷ even
2▷ even ∧ p ⊢ 2 → 4 ∧ p ⊢ even⇝ even ⇒ 4▷ even
3▷ odd ∧ p ⊢ 3 → 6 ∧ p ⊢ odd⇝ even ⇒ 6▷ even

. . .

Thus it is correct: “p ≡ z := 2 × z always produces an even z”.
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2▷ even ∧ p ⊢ 2 → 4 ∧ p ⊢ even⇝ even ⇒ 4▷ even
3▷ odd ∧ p ⊢ 3 → 6 ∧ p ⊢ odd⇝ even ⇒ 6▷ even

. . .

Thus it is correct: “p ≡ z := 2 × z always produces an even z”.
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Correctness of Parity

0 ▷ even 1 ▷ odd
2 ▷ even 3 ▷ odd
4 ▷ even 5 ▷ odd

. . . . . .
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Abstract Interpretation and Correctness

The theory of Abstract Interpretation comes to life when we
augment the set of properties L with a preorder (better: lattice)
structure and elate this to the correctness relation ▷.

The most common scenario is when L = (L,⊑,⊔,⊓,⊥,⊤) is a
complete lattice with partial ordering ⊑.

We then impose the following relationship between ▷ and L:

v ▷ l1 ∧ l1 ⊑ l2 ⇒ v ▷ l2

(1)

∀l ∈ L′ ⊆ L : v ▷ l ⇒ v ▷
l

L′ (2)
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Condition (1)

Consider the first of these conditions:

v ▷ l1 ∧ l1 ⊑ l2 ⇒ v ▷ l2

▶ The condition says that the smaller the property is with
respect to the partial order, the better (i.e. precise) it is.

▶ This is an “arbitrary” decision in the sense that we could
instead have decided that the larger the property is, the
better it is, as is indeed the case in much of the literature
on Data Flow Analysis; luckily the principle of duality from
lattice theory tells us that this difference is only cosmetic.
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Condition (2)

Looking at the second condition describing correctness:

∀l ∈ L′ ⊆ L : v ▷ l ⇒ v ▷
l

L′

▶ The second condition says that there is always a best
property for describing a value. This is important for having
to perform only one analysis (using the best property,
i.e. the greatest lower bound of the candidates) instead of
several analyses (one for each of the candidates).

▶ The condition has two immediate consequences:

v ▷⊤

v ▷ l1 ∧ v ▷ l2 ⇒ v ▷ (l1 ⊓ l2)
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Again: Parity Example

The abstract properties even and odd do themselves not form
a lattice L, but we can use – as usual: L = P({even,odd}),
where {even} represents the definitive fact even and {odd}
the precise property odd; while the empty set ⊥ = ∅ represents
an undefined parity and ⊤ = {even,odd} stands for any parity.

The conditions imposed on ▷ and L mean in this case:

(1) Any parity is always a valid description, e.g.

2▷ {even} ∧ {even} ⊑ ⊤ ⇒ 2▷⊤

(2) The most precise parity is valid, e.g.

(2▷ {even} ∧ 2▷⊤) ⇒ 2▷ ({even} ⊓ ⊤)

i.e. (2▷ {even} ∧ 2▷⊤) ⇒ 2▷ {even}
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Preservation of Correctness via Abstraction
We require that corectness is preserved:

v1 ▷ l1 ∧ S ⊢ v1 → v2 ∧ S ⊢ l1 ⇝ l2 ⇒ v2 ▷ l2

With a (semantical transfer) function function fS we have:

v1 ▷ l1 ∧ fS(v1) = v2 ∧ f#S (l1) = l2 ⇒ v2 ▷ l2

This property is also expressed by the following diagram:

V

L

V

L

fS

f#S

α γ αγ
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Representation and Extraction Functions

We can use a representation function β : V → L to induce a
Galois connection (P(V), α, γ,L) via

α(V ) =
⊔

{β(v) | v ∈ V}
γ(l) = {v ∈ V | β(v) ⊑ l}

For L = P(D) with D being some set of “abstract values” we
can also use an extraction function, η : V → D defined as

α(V ) = {η(v) | v ∈ V}
γ(D) = {v | η(v) ∈ D}

in order to construct a Galois connection.
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Example: Parity

A repesentation function β : Z → P({even,odd}) is easily
defined by:

β(n) =
{

{even} if ∃k ∈ Z s.t. n = 2k
{odd} otherwise

Correctness implies that the abstract properties are dominated
by the actual ones, e.g. β(4) = {even} ⊑ ⊤ = {even,odd} is
acceptable.

This means that we also could use as a representation function

β(n) = ⊤ = {even,odd}

for all n ∈ Z. Though this would be valid it would also be rather
imprecise.
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