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Abstract

Random 3CNF formulas constitute an important distribution for measuring
the average-case behavior of propositional proof systems. Lower bounds
for random 3CNF refutations in many propositional proof systems are
known. Most notable are the exponential-size resolution refutation lower
bounds for random 3CNF formulas with Ω(n1.5−ε) clauses (Chvátal and
Szemerédi [14], Ben-Sasson and Wigderson [10]). On the other hand, the
only known non-trivial upper bound on the size of random 3CNF refuta-
tions in a non-abstract propositional proof system is for resolution with
Ω(n2/ log n) clauses, shown by Beame et al. [6]. In this paper we show that
already standard propositional proof systems, within the hierarchy of Frege
proofs, admit short refutations for random 3CNF formulas, for sufficiently
large clause-to-variable ratio. Specifically, we demonstrate polynomial-size
propositional refutations whose lines are TC0 formulas (i.e., TC0-Frege
proofs) for random 3CNF formulas with n variables and Ω(n1.4) clauses.

The idea is based on demonstrating efficient propositional correctness
proofs of the random 3CNF unsatisfiability witnesses given by Feige, Kim
and Ofek [22]. Since the soundness of these witnesses is verified using spec-
tral techniques, we develop an appropriate way to reason about eigenvectors
in propositional systems. To carry out the full argument we work inside
weak formal systems of arithmetic and use a general translation scheme to
propositional proofs.
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1. Introduction

This paper deals with the average complexity of propositional proofs.
Our aim is to show that standard propositional proof systems, within the
hierarchy of Frege proof systems, admit short random 3CNF refutations for a
sufficiently large clause-to-variable ratio, and also can outperform resolution
for random 3CNF formulas in this ratio. Specifically, we show that most
3CNF formulas with n variables and at least cn1.4 clauses, for a sufficiently
large constant c, have polynomial-size in n propositional refutations whose
proof-lines are constant depth circuits with threshold gates (namely, TC0-
Frege proofs). This is in contrast to resolution (that can be viewed as depth-1
Frege) for which it is known that most 3CNF formulas with at most n1.5−ε

clauses (for 0 < ε < 1
2) do not admit sub-exponential refutations [14, 10].

The main technical contribution of this paper is a propositional charac-
terization of the random 3CNF unsatisfiability witnesses given by Feige at
al. [22]. In particular we show how to carry out certain spectral arguments
inside weak propositional proof systems such as TC0-Frege. The latter
should hopefully be useful in further propositional formalizations of spectral
arguments. This also places a stream of recent results on efficient refuta-
tion algorithms using spectral arguments—beginning in the work of Goerdt
and Krivelevich [26] and culminating in Feige et al. [22]—within the frame-
work of propositional proof complexity. Loosely speaking, we show that all
these refutation algorithms and witnesses, considered from the perspective
of propositional proof complexity, are not stronger than TC0-Frege.

1.1. Background in proof complexity
Propositional proof complexity is the systematic study of the efficiency

of proof systems establishing propositional tautologies (or dually, refuting
unsatisfiable formulas). Abstractly one can view a propositional proof system
as a deterministic polynomial-time algorithm A that receives a string π
(“the proof”) and a propositional formula Φ such that there exists a π with
A(π, Φ) = 1 iff Φ is a tautology. Such an A is called an abstract proof system
or a Cook-Reckhow proof system due to [18]. Nevertheless, most research
in proof complexity is dedicated to more concrete or structured models, in
which proofs are sequences of lines, and each line is derived from previous
lines by “local” and sound rules.

Perhaps the most studied family of propositional proof systems are those
coming from propositional logic, known as Frege systems, and their frag-
ments (and extensions). In this setting, proofs are written as sequences of
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Boolean formulas (proof-lines) where each line is either an axiom or was
derived from previous lines by means of simple sound derivation rules. The
complexity of a proof is just the number of symbols it contains, that is, the
total size of formulas in it. Different proof systems are compared via the
concept of polynomial simulation : a proof system P polynomially-simulates
another proof system Q if there is a polynomial-time computable function
f that maps Q-proofs to P -proofs of the same tautologies. The definition
of Frege systems is sufficiently robust, in the sense that different formaliza-
tions can polynomially simulate each other [41]. We call two systems that
mutually simulate one another polynomially equivalent.

An example of a propositional proof system that is polynomially equiva-
lent to Frege systems is Gentzen’s sequent calculus LK. The basic building
block of this calculus is a sequent, which is a relation Γ −→ Δ between two
sequences of formulas Γ and Δ. The sequent’s intended interpretation is
that the conjunction of all formulas in Γ implies the disjunction of the for-
mulas in Δ. Again, a proof of a sequent Γ −→ Δ is a sequence of sequents,
abiding the derivation rules of LK and ending with Γ −→ Δ. A proof of a
formula ϕ in this system is a proof of the sequent −→ ϕ. As the sequent
calculus is easier to analyse than arbitrary Frege systems, we will use this
calculus as our starting point to define the other necessary calculi. A more
detailed exposition is given in Section 2. From now on, a Frege system will
mean any proof system that is polynomially equivalent to the Frege system
depicted in the preceding paragraph. Especially, it will also include LK.

It is common to consider fragments (or extensions) of Frege proof sys-
tems induced by restricting the proof-lines to contain presumably weaker (or
stronger) circuit classes than Boolean formulas. This stratification of Frege
proof systems is thus analogous to that of Boolean circuit classes: Frege
proofs consist of Boolean formulas (i.e., NC1) as proof-lines, TC0-Frege
(also known as Threshold Logic) consists of TC0 proof-lines, Bounded Depth
Frege has AC0 proof-lines, depth-d Frege has circuits of depth-d proof-lines,
etc. In this framework, the resolution system can be viewed as depth-1 Frege.
Similarly, one usually considers extensions of the Frege system such as NCi-
Frege, for i > 1, and P/poly-Frege (the latter is polynomially equivalent to
the known Extended Frege system, as shown by Jeřábek [32]). Restrictions
(and extensions) of Frege proof systems form a hierarchy with respect to
polynomial simulations, though it is open whether the hierarchy is proper.

It thus constitutes one of the main goals of proof complexity to un-
derstand the above hierarchy of Frege systems, and to separate different
propositional proof systems, that is, to show that one proof system does not
polynomially simulate another proof system. These questions also relate
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in a certain sense to the hierarchy of Boolean circuits (from AC0 through
AC0[p], TC0, NC1, and so forth; see [16]). Many separations between
propositional proof systems (not just in the Frege hierarchy) are known. In
the case of Frege proofs there are already known separations between cer-
tain fragments of it (e.g., separation of depth-d Frege from depth d+1 Frege
was shown by Kraj́ıček [33]). It is also known that TC0-Frege is strictly
stronger than both resolution and bounded depth Frege proof systems, since,
e.g., TC0-Frege admits polynomial-size proofs of the propositional pigeon-
hole principle, while resolution and bounded depth Frege do not (see [29]
for the resolution lower bound, [1] for the bounded depth Frege lower bound
and [17] for the corresponding TC0-Frege upper bound).

Average-case proof complexity via the random 3CNF model. Much
like in algorithmic research, it is important to know the average-case com-
plexity of propositional proof systems, and not just their worst-case behav-
ior. To this end one usually considers the model of random 3CNF formulas,
where m clauses with three literals each, out of all possible 23 ∙

(
n
3

)
clauses

with n variables, are chosen independently, with repetitions (however, other
possible distributions have also been considered in the literature; for a short
discussion on these distributions see Section 1.3). When m is greater than
cn for some sufficiently large c (say, c = 5), it is known that with high
probability a random 3CNF is unsatisfiable. (As m gets larger the task of
refuting the 3CNF becomes easier since we have more constraints to use.)
In average-case analysis of proofs we investigate whether such unsatisfiable
random 3CNFs also have short (polynomial-size) refutations in a given proof
system. The importance of average-case analysis of proof systems is that it
gives us a better understanding of the complexity of a system than merely
the worst-case analysis. For example, if we separate two proof systems in the
average case—i.e., show that for almost all 3CNFs one proof system admits
polynomial-size refutations, while the other system does not—we establish
a stronger separation.

Until now only weak proof systems like resolution and Res(k) (for
k ≤

√
log n/ log log n; the latter system introduced in [35] is an extension of

resolution that operates with kDNF formulas) and polynomial calculus (and
an extension of it) were analyzed in the random 3CNF model; for these sys-
tems exponential lower bounds are known for random 3CNFs (with varying
number of clauses) [14, 6, 10, 5, 42, 2, 9, 3, 25]. For random 3CNFs with
n variables and n1.5−ε (0 < ε < 1

2) clauses it is known that there are no
sub-exponential size resolution refutations [10]. For many proof systems,
like cutting planes (CP) and bounded depth Frege (AC0-Frege), it is a ma-
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jor open problem to prove random 3CNF lower bounds (even for number
of clauses near the threshold of unsatisfiability, e.g., random 3CNFs with n
variables and 5n clauses). The results mentioned above only concern lower
bounds. On the other hand, to the best of our knowledge, the only known
non-trivial polynomial-size upper bound on random kCNF refutations in any
non-abstract propositional proof system is for resolution. This is a result of
Beame et al. [6], and it applies for fairly large number of clauses (specifically,
Ω(nk−1/ log n)).

Efficient refutation algorithms. A different kind of results on refuting
random kCNFs were investigated in Goerdt and Krivelevich [26] and subse-
quent works by Goerdt and Lanka [27], Friedman, Goerdt and Krivelevich
[24], Feige and Ofek [23] and Feige [21]. Here, one studies efficient refutation
algorithms for kCNFs. Specifically, an efficient refutation algorithm receives
a kCNF (above the unsatisfiability threshold) and outputs either “unsatis-
fiable” or “don’t know”; if the algorithm answers “unsatisfiable” then the
kCNF is required to be indeed unsatisfiable; also, the algorithm should out-
put “unsatisfiable” with high probability (which by definition, is also the
correct answer). Such refutation algorithms can be viewed as abstract proof
systems (according to the definition in Subsection 1.1) having short proofs
on the average-case: A(Φ) is a deterministic polytime machine whose input
is only kCNFs (we can think of the proposed proof π input as being always
the empty string). On input Φ the machine A runs the refutation algorithm
and answers 1 iff the refutation algorithm answers “unsatisfiable”; other-
wise, A can decide, e.g. by brute-force search, whether Φ is unsatisfiable
or not. (In a similar manner, if the original efficient refutation algorithm
is non-deterministic then we also get an abstract proof system for kCNFs;
now the proof π that A receives is the description of an accepting run of the
refutation algorithm.)

Goerdt and Krivelevich [26] initiated the use of spectral methods to de-
vise efficient algorithms for refuting kCNFs. The idea is that a kCNF with
n variables can be associated with a graph on n vertices (or directly with a
certain matrix). It is possible to show that certain properties of the associ-
ated graph witness the unsatisfiability of the original kCNF. One then uses
a spectral method to give evidence for the desired graph property, and hence
to witness the unsatisfiability of the original kCNF. Now, if we consider a
random kCNF then the associated graph essentially becomes random too,
and so one may show that the appropriate property witnessing the unsatis-
fiability of the kCNF occurs with high probability in the graph. The best
(with respect to number of clauses) refutation algorithms devised in this
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way work for 3CNFs with at least Ω(n1.5) clauses [23].
Continuing this line of research, Feige, Kim and Ofek [22] considered

efficient non-deterministic refutation algorithms (in other words, efficient
witnesses for unsatisfiability of 3CNFs). They established the currently
best (with respect to the number of clauses) efficient, alas non-deterministic,
refutation procedure: they showed that with probability converging to 1 a
random 3CNF with n variables and at least cn1.4 clauses has a polynomial-
size witness, for sufficiently big constant c.

The result in the current paper shows that all the above refutation algo-
rithms, viewed as abstract proof systems, are not stronger (on average) than
TC0-Frege. The short TC0-Frege refutations will be based on the witnesses
from [22], and so the refutations hold for the same clause-to-variable ratio
as in that paper.

1.2. Our result

The main result of this paper is a polynomial-size upper bound on refuta-
tions of random 3CNF formulas in a proof system operating with constant-
depth threshold circuits (known as Threshold Logic or TC0-Frege; see Def-
inition 2.4). Since Frege and Extended Frege proof systems polynomially
simulate TC0-Frege proofs, the upper bound holds for these proof systems
as well. (The actual formulation of TC0-Frege is not important since dif-
ferent formulations, given in [13, 37, 11, 40, 17], polynomially simulate each
other.)

Theorem 1. With probability 1−o(1) a random 3CNF formula with n vari-
ables and cn1.4 clauses (for a sufficiently large constant c) has polynomial-
size TC0-Frege refutations.

Beame, Karp, Pitassi, and Saks [6] and Ben-Sasson and Wigderson [10]
showed that with probability 1 − o(1) resolution does not admit sub-
exponential refutations for random 3CNF formulas when the number of
clauses is at most n1.5−ε, for any constant 0 < ε < 1/2.3 Therefore, The-
orem 1 shows that TC0-Frege has an exponential speed-up over resolution
for random 3CNFs with at least cn1.4 clauses (when the number of clauses
does not exceed n1.5−ε, for 0 < ε < 1/2).

3Beame et al. [6] showed such a lower bound for n5/4−ε number of clauses (for any
constant 0 < ε < 1/4). Ben-Sasson and Wigderson [10] introduced the size-width tradeoff
that enabled them to prove an exponential lower bound for random 3CNF formulas with
n1.5−ε number of clauses (for any constant 0 < ε < 1/2), but the actual proof for this
specific clause-number appears in [7].
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Potential significance of our work and its motivations. It is well known
that most contemporary SAT-solvers are based on the resolution proof sys-
tem. Formally, this means that these SAT-solvers use a backtracking algo-
rithm that branch on a single variable and construct in effect a resolution
refutation (in case the CNF instance considered is unsatisfiable). (The origi-
nal backtracking algorithm DPLL constructs a tree-like resolution refutation
[20, 19].) It has been known since [14] that resolution is weak in the aver-
age case. Our work gives further impetus to the quest to build SAT-solvers
based on stronger proof systems than resolution. Although there is little
hope to devise polynomial-time algorithms for constructing minimal TC0-
Frege proofs or even resolution refutations (this stems from the conditional
non-automatizability results for TC0-Frege and resolution, proved in [11]
and [4], respectively), practical experience shows that current resolution-
based SAT-solvers are quite powerful. Therefore, our random 3CNF upper
bounds give more theoretical justification for an attempt to extend SAT-
solvers beyond resolution.

Our result also advances the understanding of the relative strength of
propositional proof systems: proving non-trivial upper bounds clearly rules
out corresponding lower bound attempts. We conjecture that random 3CNF
upper bounds similar to Theorem 1 could be achieved even for systems
weaker than TC0-Frege on the expense of at most a quasipolynomial in-
crease in the size of proofs. This might help in understanding the limits of
known techniques used to prove lower bounds for random 3CNFs on resolu-
tion and Res(k) refutations.

The main result also contributes to our understanding (and possibly
to the development of) refutation algorithms, by giving an explicit logical
characterization of the Feige et al. [22] witnesses. This places a stream of
recent results on refutation algorithms using spectral methods, beginning in
Goerdt and Krivelevich [26], in the propositional proof complexity setting
(showing essentially that these algorithms can be carried out already in
TC0-Frege). This is a non-trivial job, especially because of the need to
propositionally simulate spectral arguments. Moreover, our formalization
of the spectral argument and its short propositional proofs might help in
formalizing different arguments based on spectral techniques (e.g., reasoning
about expander graphs).

1.3. Relation to previous work

The proof complexity of random 3CNF formulas has already been dis-
cussed above: for weak proof systems like resolution and Res(k) there are
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known exponential lower bounds with varying number of clauses; with re-
spect to upper bounds, there are known polynomial size resolution refuta-
tions of random 3CNF formulas with Ω(n2/ log n) clauses [6]. Below we
shortly discuss several known upper and lower bounds on refutations of dif-
ferent distributions than the random 3CNF model (this is not an exhaustive
list of all distributions studied).

Ben-Sasson and Bilu [8] have studied the complexity of refuting random
4-Exactly-Half SAT formulas. This distribution is defined by choosing at
random m clauses out of all possible clauses with 4 literals over n variables.
A set of clauses is 4-exactly-half satisfiable iff there is an assignment that
satisfies exactly two literals in each clause. It is possible to show that when
m = cn, for sufficiently large constant c, a random 4-Exactly-Half SAT for-
mulas with m clauses and n variables is unsatisfiable with high probability.
Ben-Sasson and Bilu [8] showed that almost all 4-Exactly-Half SAT formu-
las with m = n ∙ log n clauses and n variables do not have sub-exponential
resolution refutations. On the other hand, [8] provided a polynomial-time
refutation algorithm for 4-Exactly-Half SAT formulas.

Another distribution on unsatisfiable formulas that is worth mentioning
is 3-LIN formulas over the two element field F2, or equivalently 3XOR for-
mulas. A 3-LIN formula is a collection of linear equations over F2, where
each equation has precisely three variables. When the number of randomly
chosen linear equations with 3 variables is large enough, one obtains that
with high probability the collection is unsatisfiable (over F2). It is possible
to show that the polynomial calculus proof system (see [15] for a definition),
as well as TC0-Frege, can efficiently refute such random instances with high
probability, by simulating Gaussian elimination.

A different type of distribution over unsatisfiable CNF formulas can pos-
sibly be constructed from the formulas (termed proof complexity generators )
in Kraj́ıček [36]. We refer the reader to [36] for more details on this.

Subsequent developments. In the current work we show how to prove
several combinatorial and spectral arguments with polynomial-size TC0-
Frege proofs. Following our work (which appeared as [38]), [44] showed that
carrying (only parts of) these combinatorial arguments in a proof system
that possesses the feasible interpolation property, is sufficient to improve
the state-of-the-art in refutation algorithms: namely, giving polynomial-size
proofs of the so-called 3XOR-principle (Lemmas 5.6 and 5.7) in a proposi-
tional proof system that has feasible interpolation implies a polynomial-time
deterministic refutation algorithm for random 3CNF formulas with n vari-
ables and Ω(n1.4) clauses.
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1.4. The structure of the argument

Here we outline informally (and in some places in a simplified manner)
the structure of the proof of the main theorem. We need to construct certain
TC0-Frege proofs. Constructing such propositional proofs directly is tech-
nically cumbersome, and so we opt to construct them indirectly by using
a first-order (two-sorted) characterization of (short proofs in) TC0-Frege:
we use the theory V TC0 introduced in [40] (we tightly follow [17]). When
restricted to proving only statements of a certain form (formally, ΣB

0 formu-
las), the theory V TC0 characterizes (uniform) polynomial-size TC0-Frege
proofs.

The construction of polynomial-size TC0-Frege refutations for random
3CNF formulas will consist of the following steps:

I. Formalize the following statement as a first-order formula:

∀ assignment A
(
C is a 3CNF and w is its FKO unsatisfiability witness −→

exists a clause Ci in C such that Ci(A) = 0
)
,

(1)

where an FKO witness is a suitable formalization of the unsatisfiabil-
ity witness defined by Feige, Kim and Ofek [22]. The corresponding
predicate is called the FKO predicate.

II. Prove formula (1) in the theory V TC0.

III. Translate the proof in Step II into a family of propositional TC0-Frege
proofs (of the family of propositional translations of (1)). By Theorem
3.25 (proved in [17]), this will be a polynomial-size propositional proof
(in the size of C). The translation of (1) will consist of a family of
propositional formulas of the form:

JC is a 3CNF and w is its FKO unsatisfiabiliy witnessK −→

Jexists a clause Ci in C such that Ci(A) = 0K,
(2)

where J∙K denotes the mapping from first-order formulas to families
of propositional formulas. By the nature of the propositional transla-
tion (second-sort) variables in the original first-order formula translate
into a collection of propositional variables. Thus, (2) will consist of
propositional variables derived from the variables in (1).

IV. For the next step we first notice the following two facts:
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(i) Assume that C is a random 3CNF with n variables and cn1.4

clauses, for a sufficiently large constant c (we use underlined sym-
bols to refer to objects, like a 3CNF C, instead of variable-symbols
in the language, like C). By [22], with high probability there ex-
ists an FKO unsatisfiability witness w for C. Both w and C can
be encoded as finite sets of numbers, as required by the predi-
cate for 3CNF and the FKO predicate in (1). Let us identify w
and C with their encodings. Then, assuming (1) was formalized
correctly, assigning w and C to (1) satisfies the premise of the
implication in (1).

(ii) Now, by the definition of the translation from first-order formu-
las to propositional formulas, if an object α satisfies the predicate
P (X) (i.e., P (α) is true in the standard model), then there is a
propositional assignment of 0, 1 values that satisfies the proposi-
tional translation of P (X). Thus, by Item (i) above, there exists
an 0, 1 assignment ζ that satisfies the premise of (2) (i.e., the
propositional translation of the premise of the implication in (1)).

In the current step we show that after assigning ζ to the conclusion of
(2) (i.e., to the propositional translation of the conclusion in (1)) one
obtains precisely ¬C (formally, a renaming of ¬C, where ¬C is the
3DNF obtained by negating C and using the de Morgan laws).

V. Take the propositional proof obtained in (III), and apply the assign-
ment ζ to it. The proof then becomes a polynomial-size TC0-Frege
proof of a formula φ → ¬C, where φ is a propositional sentence (with-
out variables) logically equivalent to True (because ζ satisfies it, by
(IV)). From this, one can easily obtain a polynomial-size TC0-Frege
refutation of C (or equivalently, a proof of ¬C).

The bulk of our work lies in (I) and especially in (II). We need to for-
malize the necessary properties used in proving the correctness of the FKO
witnesses and show that the correctness argument can be carried out in the
weak theory. There are two main obstacles in this process. The first obstacle
is that the correctness (soundness) of the witness is originally proved using
spectral methods, which assumes that eigenvalues and eigenvectors are over
the reals ; whereas the reals are not defined in our weak theory. The sec-
ond obstacle is that one needs to prove the correctness of the witness, and
in particular the part related to the spectral method, constructively (for-
mally in our case, inside V TC0). Specifically, linear algebra is not known

10



to be (computationally) in TC0, and (proof-complexity-wise) it is conjec-
tured that TC0-Frege does not admit short proofs of statements of linear
algebra (more specifically still, short proofs relating to inverse matrices and
the determinant properties; see [43, 31] on this).

The first obstacle is solved using rational approximations of sufficient ac-
curacy (polynomially small errors), and showing how to carry out the proof
in the theory with such approximations. The second obstacle is solved basi-
cally by constructing the argument (the main formula above) in a way that
exploits non-determinism (i.e., in a way that enables supplying additional
witnesses for the properties needed to prove the correctness of the original
witness; e.g, all eigenvectors and all eigenvalues of the appropriate matrices
in the original witness). In other words, we do not have to construct certain
objects but can provide them, given the possibility to certify the property
we need. Formally, this means that we put additional witnesses in the FKO
predicate occurring in the main formula in (I) above.

1.5. Organization of the paper

The remainder of the paper is organized as follows. Section 2 contains
general preliminary definitions and notations, including propositional proof
systems and the TC0-Frege proof system. Section 3 contains a long expo-
sition of the basic logical setting we use, that is, the relevant theories of
(two-sorted) bounded arithmetic (V0 and V TC0, from [17]), and a detailed
explanation of how to formalize certain proofs in these theories. This in-
cludes defining certain syntactic objects in the theories as well as counting
and doing computations in the theory. Readers who already know the basics
of bounded arithmetic can skip Section 3, and look only at specific parts or
definitions, when needed. Section 4 provides the formalization of the main
formula we prove in the theory. This formula expresses the correctness of the
Feige et al. witnesses for unsatisfiability [22]. Section 5 contains the proof of
the main formula, excluding the lemma establishing the spectral inequality
which is deferred to a section of its own. Section 6 provides the full proof
in the theory of the spectral inequality. Section 7 finally puts everything
together, and shows how to obtain short propositional refutations from the
proof in the theory of the main formula.

2. Preliminaries

We write [n] for {1, . . . , n}. We denote by >,⊥ the truth values true
and false, respectively.
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Definition 2.1 (3CNF). A literal is a propositional variable xi or its nega-
tion ¬xi. A 3-clause is a disjunction of three literals. A 3CNF is a conjunc-
tion of 3-clauses.

Definition 2.2 (Random 3CNF). A random 3CNF is generated by choosing
independently, with repetitions, m clauses with three literals each, out of all
possible 23 ∙

(
n
3

)
clauses with n variables x1, . . . , xn.

We say that a property holds with high probability when it holds with
probability 1 − o(1).

2.1. Miscellaneous linear algebra notations

We denote by Rk and Qk the k-dimensional real and rational vector
spaces in the canonical basis e1, . . . , ek. The vectors in these spaces are
given as sequences a = (a1 . . . ak). In this context, for some k-dimensional
vector space V and two vectors a, b ∈ V by 〈a, b〉 we denote the inner
product of a and b which is defined by 〈a, b〉 :=

∑k
i=1 ai ∙ bi. Two vectors

a, b are orthogonal if 〈a, b〉 = 0. The (Euclidean) norm of a vector a is

denoted by ||a|| and is defined as
√∑k

i=1 a2
i . A vector a is called normal

if ||a|| = 1. A set of vectors is called orthonormal if they are pairwise
orthogonal and normal. A function f : V −→ W is linear if for all v, w ∈ V ,
f(c1v + c2w) = c1f(v) + c2f(w). Every linear function f : V −→ W can
be represented by a matrix Af = (ai,j)i≤dim(W ),j≤dim(V ). Observe that the
representation depends not only on f but also on the bases of V and W . A
matrix A = (ai,j) is symmetric if ai,j = aj,i for all i, j. If for some matrix
A and vector v it holds that Av = λv we call v an eigenvector and λ an
eigenvalue of A.

Fact 1 (cf. [30]). The eigenvectors of any real symmetric matrix A : V −→
V form an orthogonal basis of V , and the eigenvalues of A are all real
numbers.

2.2. Propositional proofs and TC0-Frege systems

In this section we define the notion of TC0 formulas. Then we define the
propositional proof system TC0-Frege as a sequent calculus operating with
TC0 formulas and prove basic properties of it. We will follow the exposition
from [17]. The system we give is only one of many possibilities to define such
proof systems (see e.g. [11] for a polynomially-equivalent definition).

The class of TC0 formulas consists basically of unbounded fan-in con-
stant depth formulas with ∧,∨,¬ and threshold gates. Formally, we define:
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Definition 2.3 (TC0 formula). A TC0 formula is built from

(i) propositional constants ⊥ and >;

(ii) propositional variables pi for i ∈ N;

(iii) connectives ¬ and Thi, for i ∈ N;

(iv) parentheses ( , ) .

Items (i) and (ii) constitute the atomic formulas. TC0 formulas are defined
inductively from atomic formulas via the connectives:
(a) if A is a formula, then so is ¬A, and
(b) for n > 1 and i ∈ N, if A1, . . . , An are formulas, then so is

Thi(A1, . . . , An).

The depth of a formula is the maximal nesting of connectives in it and the
size of the formula is the total number of connectives in it.

The semantics of the threshold connectives Thi are as follows.
Thi(A1, . . . , An) is true if and only if at least i of the Ak are true. Therefore
we will abbreviate Thi(A1, . . . , Ai) as

∧

k≤i

Ak and Th1(A1, . . . , Ai) as
∨

k≤i

Ak.

Moreover we let Th0(A1, . . . , An) = > and Thi(A1, . . . , An) = ⊥, for i > n.
The following is the sequent calculus TC0-Frege.

Definition 2.4 (TC0-Frege). A TC0-Frege proof system is a sequent cal-
culus with the axioms

A −→ A, ⊥ −→, −→ >,

where A is any TC0 formula, and the following derivation rules:

Weaken-left: From the sequent Γ −→ Δ we may infer the sequent Γ, A −→
Δ.

Weaken-right: From the sequent Γ −→ Δ we may infer the sequent Γ −→
A, Δ.

Exchange-left: From the sequent Γ1, A1, A2, Γ2 −→ Δ we may infer the
sequent Γ1, A2, A1, Γ2 −→ Δ.

Exchange-right: From the sequent Γ −→ Δ1, A1, A2, Δ2 we may infer the
sequent Γ −→ Δ1, A2, A1, Δ2.

Contract-left: From the sequent Γ, A,A −→ Δ we may infer the sequent
Γ, A −→ Δ.

Contract-right: From the sequent Γ −→ A,A, Δ we may infer the sequent
Γ −→ A, Δ.
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¬-left: From the sequent Γ −→ A, Δ we may infer the sequent Γ,¬A −→ Δ.

¬-right: From the sequent Γ, A −→ Δ we may infer the sequent Γ −→
¬A, Δ.

All-left: From the sequent A1, . . . , An, Γ −→ Δ we may infer the sequent
ThnA1 . . . An, Γ −→ Δ.

All-right: From the sequents Γ −→ A1, Δ, . . . , Γ −→ An, Δ we may infer
the sequent Γ −→ ThnA1 . . . An, Δ.

One-left: From the sequents A1, Γ −→ Δ, . . . , A1, Γ −→ Δ we may infer
the sequent Th1A1 . . . An, Γ −→ Δ.

One-right: From the sequent Γ −→ A1, . . . , An, Δ we may infer the sequent
Γ −→ Th1A1 . . . An, Δ.

Thi-left: From the sequents ThiA2 . . . An, Γ −→ Δ and
Thi−1A2 . . . An, A1, Γ −→ Δ we may infer the sequent
ThiA1 . . . An, Γ −→ Δ.

Thi-right: From the sequents Γ −→ ThiA2 . . . An, A1, Δ and Γ −→
Thi−1A2 . . . An, Δ we may infer the sequent Γ −→ ThiA1 . . . An, Δ.

Cut: From the sequents Γ −→ A, Δ and Γ, A −→ Δ we may infer the
sequent Γ −→ Δ,

for arbitrary TC0 formulas Ai and sequences Γ, Δ of TC0 formulas. The
intended meaning of Γ −→ Δ is that the conjunction of the formulas in
Γ implies the disjunction of the formulas in Δ. A TC0-frege proof of a
formula ϕ is a sequence of sequents π = (S1, . . . , Sk) such that Sk =−→ ϕ
and every sequent in it is either an axiom or was derived from previous lines
by a derivation rule. The size of the proof π is the total size of all formulas
in its sequents. The depth of the proof π is the maximal depth of a formula
in its sequents. A TC0-Frege proof of a family of formulas {ϕi : i ∈ N}
is a family of sequences {(Si

1, . . . , S
i
ki) : i ∈ N}, where each Si

j is a TC0

formula that can be derived from some Si
k for k < j using the above rules,

such that Si
ki = −→ ϕi, and there is a common constant c bounding the

depth of every formula in all the sequences.

Proposition 2.5 (cf. [17]). The proof system TC0-Frege is sound and com-
plete. That is, every formula A proven in the above way is a tautology and
every tautology can be derived by proofs in the above sense.

Definition 2.6 (Polynomial simulation; separation). Let P,Q be two propo-
sitional proof systems that establish Boolean tautologies (or refute unsatisfi-
able Boolean formulas, or refute unsatisfiable CNF formulas). We say that
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P polynomially simulates Q if there is a polynomial-time computable func-
tion f that given a Q-proof of τ outputs a P -proof of τ . If P does not
polynomially simulate Q or vice versa we say that P is separated from Q.

(Sometimes it is enough to talk about weak polynomial simulations: we
say that a proof system P weakly polynomially simulates the proof system
Q if there is a polynomial p such that for every propositional tautology τ ,
if the minimal Q-proof of τ is of size s then the minimal P -proof of τ is of
size at most p(s). We also say that P is separated from Q when Q does not
polynomially simulate Q; but in most cases it also holds that Q does not
weakly polynomially simulate P .)

For a possibly partial {0, 1} assignment ~a to the propositional variables,
we write ϕ[~a] to denote the formula ϕ in which propositional variables are
substituted by their values in ~a. For a proof π = (ϕ1, . . . , ϕ`) we write
π[~a] to denote π = (ϕ1[~a], . . . , ϕ`[~a]). The system TC0-Frege can efficiently
evaluate assignments to some of the variables of formulas in the following
sense.

Claim 2.7. Let ϕ(~p, ~q) be a propositional formula in variables p1 . . . pm1

and q1 . . . qm2 and let ~a ∈ {0, 1}m1 . If TC0-Frege proves ϕ(~p, ~q) with a
proof πϕ of length n, then it also proves ϕ(~a, ~q) in a proof πϕ[~a] of length n.
Additionally, for any formula ϕ(~p) in variables p1 . . . pm1 and an assignment
~a ∈ {0, 1}m1 , TC0-Frege has polynomial size proofs of either ϕ[~a] or ¬ϕ[~a].

Proof sketch : Consider πϕ and substitute each occurrence of pi by ai. The
resulting proof remains correct and proves ϕ(~a, ~q), because every TC0-Frege
rule application is still correct after the assignment.

The second claim is proved by induction on the size of ϕ. If ϕ[~a] is true we
can construct a proof by proving the (substitution instances of the) atomic
formulas and then proceeding using the appropriate rules of the calculus by
the way the formula is built up.

If ϕ[~a] is false, then we proceed in the same way as above with ¬ϕ[~a]
instead of ϕ[~a]. Claim

3. Theories of bounded arithmetic

In this section we give some of the necessary background from logic.
Specifically, we present the theory V0 and its extension V TC0, as devel-
oped by Cook and Nguyen [17] (see also [45]). These are weak systems of
arithmetic, namely, fragments of Peano Arithmetic, usually referred to as
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theories of Bounded Arithmetic (for other treatments of theories of bounded
arithmetic see also [12, 28, 34]). The theories are (first-order) two-sorted the-
ories, having a first sort for natural numbers and a second sort for finite sets
of numbers (representing bit-strings via their characteristic functions). The
theory V0 corresponds to bounded depth Frege, and V TC0 corresponds
to TC0-Frege (see Section 3.2.5). The complexity classes AC0, TC0, and
their corresponding function classes FAC0 and FTC0 are also defined using
the two-sorted universe (specifically, elements of the first sort [numbers] are
given to the machines in unary representation and elements of the second
sort as binary strings).

Definition 3.1 (Language of two-sorted arithmetic L2
A). The language of

two-sorted arithmetic, denoted L2
A, consists of the following relation, func-

tion and constant symbols:

{+, ∙,≤, 0, 1, | |, =1, =2,∈} .

We describe the intended meaning of the symbols by considering the
standard model N2 of two-sorted Peano Arithmetic. It consists of a first-
sort universe U1 = N and a second-sort universe U2 of all finite subsets of
N. We will refer to elements of the first sort as numbers, to elements of the
second sort as finite sets or strings. The constants 0 and 1 are interpreted
in N2 as the appropriate natural numbers zero and one, respectively. The
functions + and ∙ are the usual addition and multiplication on the universe
of natural numbers, respectively. The relation ≤ is the appropriate “less or
equal than” relation on the first-sort universe. The function |∙| maps a finite
set of numbers to its largest element plus one. The relation =1 is interpreted
as equality between numbers, =2 is interpreted as equality between finite
sets of numbers. The relation n ∈ N holds for a number n and a finite set
of numbers N if and only if n is an element of N .

We denote the first-sort (number) variables by lower-case letters
x, y, z, ..., and the second-sort (string) variables by capital letters X,Y, Z, ....
Terms are built up from the constants variables and functions at our dis-
posal as usual. We call a term that contains no string variables as a number
term. We build formulas in the usual way, using two sorts of quantifiers:
number quantifiers and string quantifiers. A number quantifier is said to
be bounded if it is of the form ∃x(x ≤ t ∧ . . . ) or ∀x(x ≤ t → . . . ), re-
spectively, for some number term t that does not contain x. We abbreviate
∃x(x ≤ t ∧ . . . ) and ∀x(x ≤ t → . . . ) by ∃x ≤ t and ∀x ≤ t, respectively. A
string quantifier is said to be bounded if it is of the form ∃X(|X| ≤ t ∧ . . . )
or ∀X(|X| ≤ t → . . . ) for some number term t that does not contain X.
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We abbreviate ∃X(|X| ≤ t ∧ . . . ) and ∀X(|X| ≤ t → . . . ) by ∃X ≤ t and
∀X ≤ t, respectively. A formula is in ΣB

0 or ΠB
0 if it uses no string quanti-

fiers and all number quantifiers are bounded. A formula is in ΣB
i+1 or ΠB

i+1

if it is of the form ∃X1 ≤ t1 . . . ∃Xm ≤ tmψ or ∀X1 ≤ t1 . . . ∀Xm ≤ tmψ,
where ψ ∈ ΠB

i and ψ ∈ ΣB
i , respectively, and ti does not contain Xi, for all

i = 1, . . . ,m. We write ∀ΣB
0 to denote the universal closure of ΣB

0 . (i.e., the
class of ΣB

0 -formulas that possibly have (not necessarily bounded) universal
quantifiers at their front). We usually abbreviate t ∈ T , for a number term
t and a string term T , as T (t).

For a language L ⊇ L2
A we write ΣB

0 (L) to denote ΣB
0 formulas in the

language L.
As mentioned before a finite set of natural numbers N represents a finite

string SN = S0
N . . . S

|N |−1
N such that Si

N = 1 if and only if i ∈ N . We will
abuse notation and identify N and SN .

In the context of a proof in the theory, we write nc to mean the term
n ∙ ∙ ∙n︸ ︷︷ ︸
c times

for constant c.

The (first-order) two-sorted proof system LK2. For proving state-
ments in two-sorted theories we need to specify a proof system to work
with (this should not be confused with the propositional proof system for
Threshold Logic (i.e., TC0-Frege) we use). We shall work with a standard
(two-sorted) sequent calculus LK2 as defined in [17], section IV.4. This se-
quent calculus includes the standard logical rules of the sequent calculus for
first-order logic LK augmented with four rules for introducing second-sort
quantifiers. We also have the standard equality axioms (for first- and second-
sorts) for the underlying language L2

A (and when we extend the language,
we assume we also add the equality axioms for the additional function and
relation symbols). It is not essential to know precisely the system LK2 since
we shall not be completely formal when proving statements in two-sorted
theories.

3.1. The theory V0

The base theory we shall work with is V0 and it consists of the following
axioms:
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Basic 1. x + 1 6= 0 Basic 2. x + 1 = y + 1 → x = y

Basic 3. x + 0 = x Basic 4. x + (y + 1) = (x + y) + 1

Basic 5. x ∙ 0 = 0 Basic 6. x ∙ (y + 1) = (x ∙ y) + x

Basic 7. (x ≤ y ∧ y ≤ x) → x = y Basic 8. x ≤ x + y

Basic 9. 0 ≤ x Basic 10. x ≤ y ∨ y ≤ x

Basic 11. x ≤ y ↔ x < y + 1 Basic 12. x 6= 0 → ∃y ≤ x(y + 1 = x)

L1. X(y) → y < |X| L2. y + 1 = |X| → X(y)

SE. (|X| = |Y | ∧ ∀i ≤ |X| (X(i) ↔ Y (i))) → X = Y

ΣB
0 -COMP. ∃X ≤ y∀z < y(X(z) ↔ ϕ(z)) , for all ϕ ∈ ΣB

0

where X does not occur free in ϕ .

Here, the axioms Basic 1 through Basic 12 are the usual axioms used to
define Peano Arithmetic without induction (PA−), which settle the basic
properties of addition, multiplication, ordering, and of the constants 0 and
1. The Axiom L1 says that the length of a string coding a finite set is an
upper bound to the size of its elements. L2 says that |X| gives the largest
element of X plus 1. SE is the extensionality axiom for strings which states
that two strings are equal if they code the same sets. Finally, ΣB

0 -COMP
is the comprehension axiom scheme for ΣB

0 formulas (it is an axiom for each
such formula) and implies the existence of all sets which contain exactly the
elements that fulfill any given ΣB

0 property.
When speaking about theories we will always assume that the theories

are two-sorted theories.

Proposition 3.2 (Corollary V.1.8. [17]). The theory V0 proves the (num-
ber) induction axiom scheme for ΣB

0 formulas Φ:

(Φ(0) ∧ ∀x (Φ(x) → Φ(x + 1))) → ∀z Φ(z).

In the above induction axiom, x is a number variable and Φ can have
additional free variables of both sorts.

We write ∃!yΦ to denote ∃x(Φ(x)∧∀y(Φ(y) → x = y)), where y is a new
variable not appearing in Φ. Also, recall that we use lower-case letters such
as x (and vectors ~x) for number variables (and vectors of number variables,
resp.); and we use upper-case letters like X for string variables (and similarly
for their vectors).
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The following is a basic notion needed to extend our language with new
function symbols:

Definition 3.3 (Two-sorted definability). Let T be a theory over the lan-
guage L ⊇ L2

A and let Φ be a set of formulas in the language L. A number
function f is Φ-definable in a theory T iff there is a formula ϕ(~x, y, ~X) in
Φ such that T proves

∀~x∀ ~X∃!yϕ(~x, y, ~X)

and it holds that4

y = f(~x, ~X) ↔ ϕ(~x, y, ~X). (3)

A string function F is Φ-definable in a theory T iff there is a formula
ϕ(~x, ~X, Y ) in Φ such that T proves

∀~x∀ ~X∃!Y ϕ(~x, ~X, Y )

and it holds that
Y = F (~x, ~X) ↔ ϕ(~x, ~X, Y ). (4)

Finally, a relation R(~x, ~X) is Φ-definable in a theory T iff there is a formula
ϕ(~x, ~X, Y ) in Φ such that it holds that

R(~x, ~X) ↔ ϕ(~x, ~X). (5)

The formulas (3), (4), and (6) are the defining axioms for f , F , and R,
respectively.

Definition 3.4 (Conservative extension of a theory). Let T be a theory in
the language L. We say that a theory T ′ ⊇ T in the language L′ ⊇ L is
conservative over T if every L formula provable in T ′ is also provable in T .

We can expand the language L and a theory T over the language L by
adding symbols for arbitrary functions f (or relations R) to L and their
defining axioms Af (or AR) to the theory T . If the appropriate functions
are definable in T (according to Definition 3.3) then the theory T + Af

(+AR) is conservative over T . This enables one to add new function and
relation symbols to the language while proving statement inside a theory;
as long as these function and relation symbols are definable in the theory,
every statement in the original language proved in the extended theory (with
the additional defining axioms for the functions and relations) is provable

4Meaning it holds in the standard two-sorted model N2.
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in the original theory over the original language. However, extending the
language and the theory in such a way does not guarantee that one can
use the new function symbols in the comprehension (and induction) axiom
schemes. In other words, using the comprehension (and induction) axioms
over the expanded language might not result in a conservative extension.
Therefore, definability will not be enough for our purposes. We will show
precisely in the sequel (Sections 3.1.2 and 3.2) how to make sure that a
function is both definable in the theories we work with and also can be used
in the corresponding comprehension and induction axiom schemes (while
preserving conservativity).

When expanding the language with new function symbols we can assume
that in bounded formulas the bounding terms possibly use function symbols
from the the expanded language.5

3.1.1. Extending V0 with new function and relation symbols
Here we describe a process (presented in Section V.4. in [17]) by which

we can extend the language L2
A of V0 by new function symbols, obtaining

a conservative extension of V0 that can also prove the comprehension and
induction axiom schemes in the extended language.

First note that every relation or function symbol has an intended or
standard interpretation over the standard model N2 (for instance, the stan-
dard interpretation of the binary function “+” is that of the addition of two
natural numbers). If not explicitly defined otherwise, we will always assume
that a defining axiom of a symbol in the language defines a symbol in a way
that its interpretation in N2 is the standard one. Note also that we shall use
the same symbol F (~x, ~X) to denote a function and the function symbol in
the (extended) language in the theory.

Definition 3.5 (Relation representable in a language). Let Φ be a set of
formulas in a language L extending L2

A. We say a relation R(~x, ~X) is rep-
resentable by a formula from Φ iff there is a formula ϕ(~x, ~X, Y ) in Φ such
that in the standard two-sorted model N2 (and when all relation and function
symbols in L get their intended interpretation), it holds that:

R(~x, ~X) ↔ ϕ(~x, ~X). (6)

We say that a number function f(~x, ~X) is polynomially bounded if

5Because any definable function in a bounded theory can be bounded by a term in the
original language L2

A (cf. [17]).
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f(~x, ~X) ≤ poly(~x, ~|X|). We say that a string function F (~x, ~X) is poly-
nomially bounded if |F (~x, ~X)| ≤ poly(~x, ~|X|).

Definition 3.6 (Bit-definition). Let F (~x, ~X) be a string function. We define
the bit-graph of F to be the relation R(i, ~x, ~X), where i is a number variable,
such that

F (~x, ~X)(i) ↔ i < t(~x, ~X) ∧ R(i, ~x, ~X),

for some number term t(~x, ~X).

Definition 3.7 (ΣB
0 -definability from a language; Definition V.4.1.2. in

[17]). We say that a number function f is ΣB
0 -definable from a language

L ⊇ L2
A, if f is polynomially bounded and its graph is represented by a

ΣB
0 (L) formula ϕ. We call the formula ϕ the defining axiom of f . We say

that a string function F is ΣB
0 -definable from a language L ⊇ L2

A, if F is
polynomially bounded and its bit-graph is representable by a ΣB

0 (L) formula
ϕ. We call the formula ϕ the defining axiom of F or the bit-defining axiom
of F .

Note: We used the term defining axiom of a function f in both the case
where f is defined from a language (Definition 3.7) and in case f is definable
in the theory (Definition 3.3). We will show in the sequel that for our
purposes these two notions coincide: when we define a function from a
language the function will be definable also in the relevant theory, and so
the defining axiom of f from the language will be the defining axiom of f in
the theory (when the theory is possibly extended conservatively to include
new function symbols).

Also, note that if the graph of a function F is representable by a ΣB
0 (L)

formula then clearly also the bit-graph of F is representable by a ΣB
0 (L)

formula. Therefore, it suffices to show a ΣB
0 (L) formula representing the

graph of a function F to establish that F is ΣB
0 -definable from L.

Definition 3.8 (AC0-reduction). A number function f is AC0-reducible
to L ⊇ L2

A iff there is a possibly empty sequence of functions F1, . . . , Fk such
that Fi is ΣB

0 -definable from L ∪ {F1, . . . , Fi−1}, for any i = 1, . . . , k, and
f is ΣB

0 -definable from L ∪ {F1, . . . , Fk}.

We now describe the standard process enabling one to extend a theory
T ⊇ V0 over the language L2

A with new function symbols obtaining a con-
servative extension of T such that the new function symbols can also be used
in comprehension and induction axiom schemes in the theory (see Section
V.4. in [17] for the proofs):
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(i) If the number function f is ΣB
0 -definable from L2

A, then T over the
language L2

A ∪ {f}, augmented with the defining axiom of f , is a
conservative extension of T and we can also prove the comprehension
and induction axioms for ΣB

0 (f) formulas.
(ii) If the string function F is ΣB

0 -definable from L2
A, then T over the

language L2
A ∪ {F}, augmented with the bit-defining axiom of F , is a

conservative extension of T and we can also prove the comprehension
and induction axioms for ΣB

0 (F ) formulas.
(iii) We can now iterate the above process of extending the language

L2
A(f) (or equivalently, L2

A(F )) to conservatively add more functions
f2, f3, . . . to the language, which can also be used in comprehension
and induction axioms.

By the aforementioned and by Definition 3.8, we can extend the language
of a theory with a new function symbol f , whenever f is AC0-reducible to
L2

A. This results in an extended theory (in an extended language) which
is conservative, and can prove the comprehension and induction axioms for
formulas in the extended language. In the sequel, when defining a new
function in V0 we may simply say that it is ΣB

0 -definable (or bit-definable)
in V0 and give its ΣB

0 -defining (bit-defining, respectively) axiom (that can
possibly use also previously ΣB

0 -defined (or bit defined) function symbols).
Extending the language of V0 with new relation symbols is simple: ev-

ery relation R(~x, ~X) which is representable by a ΣB
0 (L) formula, where L is

an extension of the language with new function symbols obtained as shown
above, can be added itself to the language. This results in a conservative ex-
tension of V0 that also proves the ΣB

0 induction and comprehension axioms
in the extended language.

Definition 3.9 (FAC0). A string (number) function is in FAC0 if it is
polynomially bounded and its bit-graph (graph, respectively) is definable by
a ΣB

0 formula in the language L2
A.

3.1.2. Basic formalizations in V0

In this section we show how to formalize basic notions in the theory V0.

Characteristic function of a relation. For a given predicate R we denote
by χR the characteristic function of R. If R is ΣB

0 -definable in V0 then χR

is ΣB
0 -definable in V0, using the following defining axiom:

y = χR(~x, ~X) ↔
(
R(~x, ~X) → y = 1 ∧ ¬R(~x, ~X) → y = 0

)
.
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Natural number sequences of constant length. For two numbers
x, y let 〈x, y〉 := (x + y)(x + y + 1) + 2y be the pairing function, and let
left(z), right(z) be the (easily ΣB

0 -definable in V0) projection functions of
the first and second element in the pair z, respectively. It should be clear
from the context when we mean 〈a, b〉 as an inner product of two vectors
and when we mean it as the pairing function. We also ΣB

0 -define inductively
〈v1, . . . , vk〉 := 〈〈v1, . . . , vk−1〉, vk〉, for any constant k. Then V0 proves the
injectivity of the pairing function and lets us handle such pairs in a standard
way.

Notation: Given a number x, coding a sequence of natural numbers of
constant length k, we write 〈x〉ki , for i = 1, . . . , k, to denote the number in
the ith position in x. This is a ΣB

0 -definable function in V0 (defined via
left(x), right(x) functions).

Working with rational numbers in the theory. Given the natural
numbers, we can define the integers in V0 by identifying an integer number
with a pair 〈a, b〉, such that a is its “positive” part and b is its “negative”
part. We can define addition, product and subtraction of integers. All with
ΣB

0 definitions.
Having the integer numbers, we define the rational numbers as follows:

for two integer numbers a and b, the rational number a/b, is defined by
the pair 〈a, b〉. We can define addition, subtraction and multiplication of
rational numbers, as well as the ceiling function d∙e in V0 by ΣB

0 definitions
(see [39] for the definitions of such functions).

We need to make sure that all the computations with rational numbers
are definable in the theory; namely, that all the functions used throughout
the computations in the theory are ΣB

1 -definable in V TC0. In particular,
we need to define the iterated addition of rational numbers (that is, big sums
of rational numbers). However, the denominator of an iterated addition of
rational numbers may not be polynomially bounded. To solve this problem
we use the following strategy:

Convention: when using big sums of rational numbers (i.e.,
summation of non-constant number of rational numbers), we
make sure that every rational number in the sum has a fixed
denominator n2κ, for a constant κ = 7 and n a number variable.
In other words, the denominator is fixed to be the number term
n14.

For the convention to be applicable, we need to make sure the following:
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Fact 2. All big sums of rational numbers that are used in the proofs have
denominators that are divisors of n2κ.

Proof of fact : By inspection of the proofs in the theory. We first observe
that every computation done in the proof, with numbers taken from matri-
ces and vectors over Q, starts with rational numbers that have polynomially
bounded numerators and a fixed denominator n7, where n is a number vari-
able.

We further inspect that every computation done in the proof (with num-
bers taken from matrices and vectors over Q) will result in rational numbers
whose numerator is polynomially bounded and whose denominator is either
n7 or n14 (again, for n a number variable). This stems from the following:
all rational numbers are either added together or we multiply one rational
variable with another one (and where the result of this multiplication will
not be multiplied further by rational numbers).

Comment. Note that rational numbers that are not taken from entries in
matrices and vectors (over Q) may have arbitrary (but still polynomially
bounded) denominators and numerators.

Under the assumption above we can easily compute big sums of ratio-
nal numbers: we can first make sure that all the summands have the same
denominator n14; and then add the integer numerators together (where iter-
ated addition of integers is easily ΣB

1 definable in V TC0; see Section 3.2.2)
to get the numerator of the big sum.

Notation: For the sake of readability we sometimes treat an integer number
m in the theory as its corresponding rational number m/1, thus enabling
one to compute with both types. (This is easy to achieve formally. E.g., one
can define a function numones ′(X) that outputs the corresponding rational
number of the integer numones(X).)

Absolute numbers. We can ΣB
0 -define in V0 the absolute value function

for integer numbers absZ(∙) from the language L2
A as follows (the function

max is easily ΣB
0 -definable):

y = absZ(x) ↔ y = 〈max(left(x) − right(x), right(x) − left(x)), 0〉.

Similarly we can ΣB
0 -define the absolute value function for rational numbers

absQ(∙) in V0.
For simplicity, we shall suppress the subscript Z,Q in absZ, absQ; the

choice of function can be determined from the context.
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Number sequences of polynomial length (over N,Z and Q). If we
wish to talk about sequences of numbers (whether natural, integers or ra-
tionals) where the lengths of the sequences are non-constant, we have to
use string variables. Using the number tupling function we can encode se-
quences as sets of numbers (recall that a string is identified with the finite
set of numbers encoding it). Essentially, a sequence is encoded as a string
Z such that the xth number in the sequence is y if the number 〈x, y〉 is
in Z. Formally we have the following ΣB

0 -defining formula for the function
seq(x, Z):

y = seq(x, Z) ↔
(
y < |Z| ∧ Z(〈x, y〉) ∧ ∀z < y¬Z(〈x, z〉)

)

∨ (∀z < |Z|¬Z(〈x, z〉) ∧ y = |Z|).
(7)

Formula (7) states that the xth element in the sequence coded by Z is y iff
〈x, y〉 is in Z and no other number smaller than y also “occupies the xth
position in the sequence”, and that if no number occupies position x then
the function returns the length of the string variable Z. We write

Z[x]

to abbreviate seq(x, Z).
According to the definition of the function seq(x, Z) above, there might

be more than one string Z that encodes the same sequence of numbers. How-
ever, we sometimes need to determine a unique string encoding a sequence.
To this end we use a ΣB

0 formula, denoted SEQ(y, Z), which asserts that Z
is the lexicographically smallest string that encodes a sequence of y num-
bers (i.e., no string with smaller binary code encodes the same sequence).
Specifically, the formula states that if w = 〈i, j〉 is in Z then j is indeed the
ith element in the sequence coded by Z, and for all y ≥ j the pair 〈i, y〉 is
not contained in Z:

SEQ(y, Z) ≡∀w < |Z| (Z(w) ↔ ∃i < |Z|∃j < |Z| (w = 〈i, j〉 ∧ j = Z[i]))

∧ ∀i < y∃j < |Z|(j = Z[i]).
(8)

We define the number function length(Z) to be the length of the sequence
Z, as follows:

` = length(Z) ↔ SEQ(`, Z) ∧ ∃w < |Z|∃j < |Z|(Z(w) ∧ w = 〈` − 1, j〉) .

The defining axiom of length(Z) states that Z encodes a sequence and is the
lexicographically smallest string that encodes this sequence and that the
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largest position in the sequence which is occupied is ` − 1 (by definition of
SEQ (8) there will be no pair 〈a, b〉 ∈ Z with a > ` − 1).

Note that elements of sequences Z coded by strings are referred to as
Z[i], while elements of sequences x coded by a number are referred to as
〈x〉ki (for k the length of the sequence x).

Array of strings. We want to encode a sequence of strings as an array. We
use the relation RowArray(x, Z) to denote the xth string in Z as follows
(we follow the treatment in [17], Definition V.4.26, page 114).

Definition 3.10 (Array of strings). The function RowArray(x, Z), denoted
Z [x], is ΣB

0 -definable in V0 using the following bit-definition:6

RowArray(x, Z)(i) ↔ (i < |Z| ∧ Z(〈x, i〉)).

We will abuse notation and write length(Z) for the length of the array
Z (i.e., number of strings in Z) even when Z is a RowArray (and not a
sequence according to the predicate SEQ).

Functions for constructing sequences.

Definition 3.11 (Sequencef (y, ~x, ~X)). Let f(z, ~x, ~X) be a ΣB
0 -definable

number function in V0 (or a ΣB
1 -definable number function in V TC0[see

section 3.2 below]), then Sequencef (y, ~x, ~X) is the string function ΣB
0 -

definable in V0 (or ΣB
1 -definable in V TC0, respectively) that returns the

number sequence whose jth position is f(j, ~x, ~X), for j = 0, . . . , y.

In other words, Sequencef (y, ~x, ~X) returns the graph of the function

f(z, ~x, ~X) up to y (that is, the sequence 〈f(0, ~x, ~X), . . . , f (y, ~x, ~X)〉). The
following is the ΣB

0 -definition of the Sequencef (y, ~x, ~X):

Y = Sequencef (y, ~x, ~X) ↔ SEQ(y, Y ) ∧ ∀z ≤ y (Y [i] = f(z, ~x, ~X)).

Sequences of numbers with higher dimensions. For a constant k, let
S be a k-dimensional sequence of rational numbers. We encode a sequence
S as a string variable Z such that the 〈i1, . . . , ik〉th element in S is extracted
by the function seq (defined above). Specifically, we have S[〈i1, . . . , ik〉] = y
iff 〈〈i1, . . . , ik〉, y〉 ∈ Z and there is no z < y for which 〈〈i1, . . . , ik〉, z〉 ∈ Z.
Accordingly, we write Z[i1, . . . , ik] to abbreviate seq(〈i1, . . . , ik〉, Z).

6We use the name “RowArray” (instead of the name “Row” used in [17]).
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Matrices. Given a rational n × n matrix M , we define it as a two-
dimensional sequence in the manner defined above; and refer to the number
at row 1 ≤ i ≤ n and column 1 ≤ j ≤ n of M as M [i, j]. We can define the
string function that extracts the xth row of M , and the xth column of M ,
respectively, with ΣB

0 formulas as follows. First define f(M, i, x) := M [i, x],
g(M, i, x) := M [x, i], for any i = 0, 1, . . . , n (for i = 0, the value of M [i, x]
and M [x, i] does not matter; but this value is still defined by definition of
the function seq). Then use Definition 3.11 to define:

Row(i,M) := Sequencef (i, n)

Column(i,M) := Sequenceg(i, n) .

3.2. The theory V TC0

It is known that V0 is incapable of proving basic counting statements.
Specifically, it is known that the function that sums a sequence of numbers
(of non-constant length) is not provably total, namely, is not ΣB

1 -definable in
V0 (see Definition 3.3.). Therefore, if a proof involves such computations we
might not be able to perform it in V0. The theory V TC0 extends V0, and
is meant to allow reasoning that involves counting, and specifically to sum
a non-constant sequence of numbers. The theory V TC0 was introduced in
[40]; we refer the reader to Section IX.3.2. [17] for a full treatment of this
theory. The ΣB

0 theorems of V TC0 correspond to polynomial-size TC0-
Frege propositional proofs, which will enable us to prove the main result of
this paper.

Definition 3.12 (NUMONES). Let δNUM(y,X,Z) be the following ΣB
0 for-

mula:

δNUM(y,X,Z) := SEQ(y, Z) ∧ Z[0] = 0 ∧ ∀u < y((X(u) → Z[u + 1] = Z[u] + 1)

∧ (¬X(u) → Z[u + 1] = Z[u])).
(9)

Define NUMONES to be the following ΣB
1 formula:

NUMONES := ∃Z ≤ 1 + 〈y, y〉δNUM(y,X,Z). (10)

Informally one can think of the sequence Z(X), whose existence is guar-
anteed by NUMONES, as a sequence counting the number of ones in a string
X, that is, the uth entry in Z(X) is the number of ones appearing in the
string X up to the uth position.
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Definition 3.13 (V TC0). The theory V TC0 is the theory containing all
axioms of V0 and the axiom NUMONES.

Using NUMONES we can define the function numones(y,X) that, given
y and X, returns the yth entry of Z(X) via the following ΣB

1 -defining axiom

numones(y,X) = z ↔ ∃Z ≤ 1 + 〈|X| , |X|〉 (δNUM(|X| , X, Z) ∧ Z[y] = z) .
(11)

We shall use the following abbreviation:

numones(X) := numones(|X| − 1, X).

Next we show how to obtain the functions we will use in the theory V TC0

(these will include the function numones).

3.2.1. Extending V TC0 with new function and relation symbols
Similar to the case of V0, we would like to extend the language L2

A of
V TC0 with new function and relation symbols, to obtain a conservative
extension. Moreover, we require that the new function and relation symbols
could be used in induction and comprehension axioms (while preserving
conservativity). We can do this, using results from Sections I.X.3.2. and
I.X.3.3. in [17], as follows.

Definition 3.14 (Number summation). For any number function f(z, ~x, ~X)
define the number function sumf (y, ~x, ~X) by7

sumf (y, ~x, ~X) =
y∑

i=0

f(i, ~x, ~X) .

Recall that by Definition 3.7, a string (number) function F is ΣB
0 -

definable from L ⊇ L2
A iff there is a ΣB

0 formula over the language L that
bit-defines (defines, respectively) the function F (when all the functions and
relation symbols in L get their intended interpretation).

We can use the following facts to extend the language of V TC0 with
new function symbols (proved in Section IX.3.2. in [17]): if f is a (number
or string) function in FTC0 (see below), then there is a ΣB

1 formula ϕ
that represents its graph, and the theory V TC0 extended with the defining

7Note that this is a definition in the meta-theory (or in other words the standard
two-sorted model).
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axiom for f (using ϕ, as in Definition 3.7) over the language L = L2
A ∪ {f}

is a conservative extension of V TC0. And by Theorem IX.3.7. in Section
IX.3.2. [17], V TC0 can prove the induction and comprehension axioms for
any ΣB

0 (L) formula.
Thus, to extend V TC0 with new function symbols, by the above it

suffices to show how to obtain FTC0 functions. For this we use the following
equivalent characterizations of FTC0 (see Sections IX.3.2. and IX.3.3. in
[17]):

Proposition 3.15 (Theorem IX.3.12., Proposition IX.3.1. in [17]). The
following statements are equivalent:

1. The function f is ΣB
1 -definable in V TC0, and is applicable inside

comprehension and induction axiom schemes.
2. The function f is in FTC0.
3. The function f is obtained from FAC0 by number summation and

AC0-reductions.
4. There exist a natural k and functions f1, . . . , fk = f such that for every

i = 1, . . . , k, the function fi is either definable by a ΣB
0 formula in the

language L2
A ∪ {f1, . . . , fi−1} or there exists h ∈ L2

A ∪ {f1, . . . , fi−1}
such that fi = sumh.

5. The function f is AC0-reducible to L2
A ∪ {numones}.

Therefore, to obtain new FTC0 functions, and hence to extend conser-
vatively the language of V TC0 with function symbols that can also be used
in comprehension and induction axioms, we can define a function with a
ΣB

0 formula in a language that contains sumf , for f in FAC0, and possibly
contains also other symbols already definable in V0. Then, we can iterate
this process a finite number of times, where now sumf is defined also for f
being a function defined in a previous iteration. Since a function is in FTC0

iff it is ΣB
1 -definable in V TC0, new functions obtained in this way are said

to be ΣB
1 -definable in V TC0.

To extend the language of V TC0 with new relation symbols, we can
simply add new ΣB

0 -definable relations, using possibly relation and func-
tion symbols that were already added to the language, and specifically the
numones function. Such relations can then be used in induction and com-
prehension axioms, and we shall say that they are ΣB

0 -definable relations in
V TC0.

3.2.2. Summation in V TC0

Here we show how to express and prove basic equalities and inequalities
in the theory V TC0.
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Summation over natural and rational number sequences. Given
a sequence X of natural numbers, we define the function that sums the
numbers in X until the yth position by sumseq(y,X) which is equal to∑y

i=0 seq(i,X).
To sum sequences of rational numbers, on the other hand, we do the

following. For our purposes it is sufficient to sum polynomially bounded
numbers (this is in contrast to addition of numbers encoded as strings);
recall also (Section 3.1.2) that for our purposes it will be enough to have big
sums (i.e., summation of more than 2 summands) of rational numbers with
the same denominator n14. Thus, the big sum function is defined only for
numbers with the same denominator.

Proposition 3.16. Let X be a sequence of rational numbers with the
same denominator. Then, the number function sumQ(z,X) that outputs∑z

i=0 X[i] is ΣB
1 -definable in V TC0.

Proof. It suffices to show that there is a ΣB
0 formula that defines the number

function sumQ(z,X) using only number summation functions and FAC0

functions.
The AC0 function seq(i,X) extracts the ith element (that is, rational

number) from the sequence X (see Equation (7) above). A rational num-
ber is a pair of integers, and hence is a pair of pairs. Thus, gp(i,X) :=
left(left(seq(i,X))) extracts the positive part of the integer numerator of
the ith rational number in X, and gn(i,X) := right(left(seq(i,X))) extracts
the negative part of the integer numerator of the ith rational number in
X. Note that both gp(i,X) and gn(i,X) are FAC0 functions. Therefore,
sumgp(z,X) equals the sum of all the positive parts in X, and sumgn(z,X)
equals the function that sums of all the negative parts of the numerators in
X. The term right(seq(i,X)) is the common denominator of all the rational
numbers in X. Hence, we can define sumQ(z,X) as follows:

w = sumQ(z,X) ↔ w = 〈〈sumgp(z,X), sumgn(z,X)〉 , right(seq(i,X))〉
(12)

Notation: As a corollary from Proposition 3.16, we can abuse notation as
follows: for f(y, ~x, ~X) a number function mapping to the rationals we write
sumf (n, ~x, ~X) to denote the sum of rationals

∑n
i=0 f(i, ~x, ~X), for some fixed

~x, ~X and n. Abusing notation further, we can write in a formula in the
theory simply

∑n
i=0 f(i, ~x, ~X).
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Expressing vectors and operations on vectors. Vectors over Q are
defined as sequences of rational numbers (for simplicity we shall assume
that the number at the 0 position of a vector is 0). Thus the elements of
vectors are rational numbers a/n2κ, with a fixed denominator). Given two
rational vectors v,u of size n, their inner product, denoted 〈v,u〉, is defined
as follows (we identify here v,u with the string variables encoding v,u): let
f(y,v,u) be the FAC0 number function defined by f(y) := v[y] ∙u[y]. Then
the inner product of v and u is defined by

innerprod(v,u) := sumQ
(
length(v) + 1, Sequencef (length(v) + 1)

)
.

The function that adds two rational vectors is easily seen to be in FAC0 (use
Definition 3.11 to construct a sequence, where each entry in the sequence is
the addition of the corresponding entries of the two vectors).

Expressing products of matrices and vectors. Let v be an n-
dimensional rational vector and let M be an n×n rational matrix. Assume
that f(z,M,v) := innerprod(Row(z,M),v). We ΣB

1 -define in V TC0 the
product Mv as follows:

Matvecprod(M,v) := Sequencef (length(v) + 1,M,v) .

Notation: When reasoning in the theory V TC0 we sometimes abuse no-
tation and write v ∙ u or 〈v,u〉 instead of innerprod(u,v), and Mv instead
of Matvecprod(M,v), and utMv instead of 〈u,Mv〉.

3.2.3. Counting in V TC0

Here we present basic statements involving counting of certain objects
and sets, provable in V TC0.

Notation: When reasoning in the theory V TC0, we will say that a family
of sets B0, . . . , B` which are ΣB

0 -definable in V TC0 forms a partition of⋃`
i=0 Bi := {r : ∃i ≤ `, Bi(r)} whenever V TC0 proves that (i)

⋃`
i=0 Bi =

B, and (ii) Bi ∩ Bj = ∅, for all 0 ≤ i 6= j ≤ `.

Proposition 3.17 (Some counting in V TC0). Let B1, . . . , B` be a family
of ΣB

0 -definable sets in V TC0 that partition the set B (` may be a variable).
Then, V TC0 proves:

numones(B) =
∑̀

i=1

numones(Bi) .
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Proof. We proceed by induction on ` to show that for every 0 ≤ y ≤
max{B1, . . . , B`}:

numones(y,B1 ∪ ∙ ∙ ∙ ∪ B`) =
∑̀

i=1

numones(y,Bi).

Base case: ` = 1. Thus, B = B1 and so we need to prove only
numones(y,B1) =

∑
i=1 numones(y,Bi). Since V TC0 proves that a sum-

mation that contains only one summand B1 equals B1 we are done.

Induction step: ` > 1. We have B =
⋃`

i=1 Bi = (
⋃`−1

i=1 Bi) ∪ B`. Assume by
way of contradiction that (

⋃`−1
i=1 Bi) ∩ B` 6= ∅. Then V TC0 can prove that

this contradicts the assumption that Bi ∩Bj = ∅, for all i 6= j (which holds
since the Bi’s form a partition of B). Hence, (

⋃`−1
i=1 Bi) ∩ B` = ∅, and by

Claim 3.18 (proved below):

numones(y,B) = numones(y,
`−1⋃

i=1

Bi) + numones(y,B`)

=
`−1∑

i=1

numones(y,Bi) + numones(y,B`) (by induction hypothesis)

=
∑̀

i=1

numones(y,Bi).

It remains to prove the following:

Claim 3.18. (In V TC0) let A,B be two sets such that A∩B = ∅, then for
all 0 ≤ y ≤ max{|A|, |B|}:

numones(y,A ∪ B) = numones(y,A) + numones(y,B).

Proof of claim: We proceed by induction on y, using the defining axiom of
numones (stating the existence of a counting sequence for the input string
variable; see Equations (11) and (9)).

Base case: y = 0. The counting sequence Z for numones(A ∪ B) is defined
such that Z[0] = 0. Thus,

0 = numones(0, A ∪ B) = numones(0, A) + numones(0, B) = 0 + 0 = 0.
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Induction step: 0 < y ≤ max{|A|, |B|}. By the defining axiom of numones
we have:

numones(y,A ∪ B) =

{
numones(y − 1, A ∪ B) + 1, y ∈ A ∪ B;
numones(y − 1, A ∪ B), otherwise.

(13)

We have to consider the following three cases:
Case 1: y ∈ A. Thus, by assumption that A and B are disjoint, we have
y 6∈ B. Also, we have y ∈ A ∪ B. Therefore:

numones(y,A) + numones(y,B)

= numones(y − 1, A) + 1 + numones(y,B) (since y ∈ A)

= numones(y − 1, A) + 1 + numones(y − 1, B) (since y 6∈ B)

= numones(y − 1, A ∪ B) + 1 (by induction hypothesis)

= numones(y,A ∪ B) (since y ∈ A ∪ B).

Case 2: y ∈ B. This is the same as Case 1.
Case 3: y 6∈ A ∪ B. This is similar to the previous cases. We omit the
details. Claim

Proposition 3.19 (More counting in V TC0). Let ϕ(x) be a ΣB
0 formula

(possibly in an extended language of V TC0). The theory V TC0 can prove
that if Z = {0 ≤ i < m : ϕ(i)} and for any 0 ≤ i < m,

γi =

{
a, ϕ(i);
b, ¬ϕ(i),

then ∑

i<m

γi = a ∙ numones(Z) + b ∙ (m − numones(Z)).

Proof. Since ϕ(x) is a ΣB
0 formula, by Section 3.2.1, we can use the compre-

hension axiom scheme to define, for any 0 ≤ k ≤ m − 1, the set:

Zk := {i ≤ k : ϕ(i)} .

The claim is proved by induction on k.

Base case: k = 0. If ϕ(0) is true, then Z0 = {0}, and so numones(Z0) = 1.
By assumption we have γ0 = a = a ∙ numones(Z0) + b ∙ (1 − numones(Z0)).
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Otherwise, ϕ(0) is false and so Z0 = ∅, implying that numones(Zk) = 0. By
assumption again we have γ0 = b = a ∙ numones(Z0) + b(1− numones(Z0)).

Induction step: k > 0.
Case 1: ϕ(k) is true. Thus Zk(k) is true and also

numones(Zk) = numones(Zk−1) + 1, (14)

and by assumption γk = a. Therefore,

k∑

i=0

γi =
k−1∑

i=0

γi + γk =
k−1∑

i=0

γi + a

= a ∙ numones(Zk−1) + b ∙ (k − 1 − numones(Zk−1)) + a (by induction hypothesis)

= a ∙ (numones(Zk−1) + 1) + b ∙ (k − 1 − numones(Zk−1)) (rearranging)

= a ∙ numones(Zk) + b ∙ (k − numones(Zk)) (by (14)).

Case 2: ϕ(k) is false. This is similar to Case 1. Specifically, Zk(k) is false
and also

numones(Zk) = numones(Zk−1), (15)

and by assumption γk = b. Therefore

k∑

i=0

γi =
k−1∑

i=0

γi + γk =
k−1∑

i=0

γi + b

= a ∙ numones(Zk−1) + b ∙ (k − 1 − numones(Zk−1)) + b (by induction hypothesis)

= a ∙ numones(Zk−1) + b ∙ (k − 1 − numones(Zk−1) + 1) (rearranging)

= a ∙ numones(Zk) + b ∙ (k − numones(Zk)) (by (15)).

For a number term t, we write ∀x ∈ [t] Φ to abbreviate ∀x ≤ t(x ≥ 1 →
Φ). We shall use the following proposition in Section 5 (Lemma 5.15).

Proposition 3.20. The theory V TC0 proves the following statement. Let
F (x) be a string function. Let d < t be two natural numbers and assume
that any number in each set F (1), . . . , F (t) occurs in at most d many sets
in F (1), . . . , F (t). Let g(x) be a number function such that g(1), . . . , g(t)
are (not necessarily distinct) numbers with g(i) ∈ F (i) for all i ∈ [t]. Then
numones({g(i) : i ∈ [t]}) ≥ dt/de.
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Proof. Let Img(g(x)) := {i : g(x) ∈ F (i)} be a string function (it is ΣB
0 -

definable in V0). By assumption

∀z ∈ [t] (numones(Img(g(z))) ≤ d) . (16)

Since for any i ∈ [t], g(i) ∈ F (i), we can prove in V TC0 that
⋃

z∈[t] Img(g(z))

equals {1, 2, . . . , t}, and so V TC0 proves:

numones




⋃

z∈[t]

Img(g(z))



 = t. (17)

Claim 3.21. (Under the assumptions of the proposition) V TC0 proves:

numones




⋃

z∈[t]

Img(g(z))



 ≤ d ∙ numones({g(i) : i ∈ [t]}).

Proof of claim: The proof follows from (16), by induction on t.
Base case: t = 1. We have

numones(∪z∈[t]Img(g(z))) = numones(Img(g(1)))

≤ d (by assumption)

= d ∙ numones({g(1)})

= d ∙ numones({g(i) : i ∈ [t]}).

Induction step:
Case 1: g(t) ∈ {g(i) : i ∈ [t − 1]}. Thus,

{g(i) : i ∈ [t−1]} = {g(i) : i ∈ [t]} and
⋃

i∈[t−1]

Img(g(i)) =
⋃

i∈[t]

Img(g(i)).

(18)
Therefore,

numones




⋃

i∈[t]

Img(g(i))



 = numones




⋃

i∈[t−1]

Img(g(i))





≤ d ∙ numones ({g(i) : i ∈ [t − 1]}) (by induction hypothesis)

= d ∙ numones ({g(i) : i ∈ [t]}) (by (18)).
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Case 2: g(t) 6∈ {g(i) : i ∈ [t − 1]}. Thus,

numones({g(i) : i ∈ [t − 1]}) + 1 = numones({g(i) : i ∈ [t]}). (19)

We have

numones




⋃

z∈[t]

Img(g(z))



 ≤ numones




⋃

z∈[t−1]

Img(g(z))



+ numones (Img(g(t))) ,

and by induction hypothesis

≤ d ∙ numones ({g(i) : i ∈ [t − 1]}) + numones (Img(g(t)))

≤ d ∙ (numones({g(i) : i ∈ [t]}) − 1) + numones (Img(g(t))) (by (19))

≤ d ∙ (numones({g(i) : i ∈ [t]}) − 1) + d (by assumption)

= d ∙ numones({g(i) : i ∈ [t]}).

Claim

Thus, by Claim 3.21 and by (17), we get:

t ≤ d ∙ numones({g(i) : i ∈ [t]}),

which leads to t/d ≤ numones({g(i) : i ∈ [t]}), and since numones({g(i) :
i ∈ [t]}) is an integer number we get:

dt/de ≤ dnumones({g(i) : i ∈ [t]})e = numones({g(i) : i ∈ [t]}).

3.2.4. Manipulating big sums in V TC0

We need to prove basic properties of summation (having a non-constant
number of summands) like commutativity, associativity, distributivity, sub-
stitution in big sums, rearranging etc., in V TC0, to be able to carry out
basic calculations in the theory. As a consequence of this section we will
be able to freely derive inequalities and equalities between big summations
(using rearranging, substitutions of equals, etc.) in V TC0.

Since big sums of rational numbers will be considered only when the
rational numbered that are summed all have the same denominator (see
Section 3.1.2), the proposition proved below is applicable also to big sums
of rational numbers.
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Proposition 3.22 (Basic properties of sums in V TC0). In what follows
we consider the theory V TC0 over an extended language (including possibly
new ΣB

1 -definable function symbols in V TC0 and their defining axioms).
The function f(i) is a number function symbol mapping to the rationals
or naturals (possibly with additional undisplayed parameters). The theory
V TC0 proves the following statements:

Substitution: Assume that u(i), v(i) are two terms (possibly with addi-
tional undisplayed parameters), such that u(i) = v(i) for all i ≤ n,
then

n∑

i=0

f(u(i)) =
n∑

i=0

f(v(i)).

Distributivity: Assume that u is a term that does not contain the variable
i, then

u ∙
n∑

i=0

f(i) =
n∑

i=0

u ∙ f(i).

Rearranging: Assume that I = {0, . . . , n} and let I1, . . . , Ik be a definable
partition of I (specifically, the sets I1, . . . , Ik are all ΣB

0 -definable in
V TC0 and V TC0 proves that the Ij’s form a partition of I). Then

n∑

i=0

f(i) =
k∑

j=1

∑

i∈Ij

f(i),

where
∑

i∈Ij
f(i) denotes the term

∑|Ij |−1
i=0 f(δ(i)) where δ(i) is the

function that enumerates (in ascending order) the elements in Ij.

Inequalities: Let g(i) be a number function mapping to the rationals or
naturals (possibly with additional undisplayed parameters), such that
f(i) ≤ g(i) for all 0 ≤ i ≤ n, then

n∑

i=0

f(i) ≤
n∑

i=0

g(i).

Proof.
Substitution: When we work in the theory V TC0 we implicitly assume
that we have equality axioms stating that if t = t′, for any two terms t, t′,
then F (t) = F (t′), for any function F (including functions F that are from
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the extended language of V TC0). Since we assume that f(i) is a ΣB
1 -

definable number function in V TC0, the function g(n) :=
∑n

i=0 f(i) is also
ΣB

1 -definable in V TC0, and so we also have the equality axiom for g(n).
Thus, if u(i) = v(i), for any i ≤ n, then we can prove also g(u(n)) = g(v(n)).

Distributivity: This is proved simply by induction on n. We omit the
details.

Rearranging: Because I1, . . . , Ik are ΣB
0 -definable sets in V TC0 we can

define the family of sequences S1, . . . , Sk, each of length n + 1, such that

Sj [i] :=

{
f(i), i ∈ Ij ;
0, otherwise.

The theory V TC0 proves, by induction on n, that

k∑

j=1

n∑

i=0

Sj [i] =
n∑

i=0

f(i).

For any j = 1, . . . , k, we can ΣB
1 -define in V TC0 the function δj :

{0, . . . , |Ij |−1} → {0, . . . , n} such that δj(`) = i iff i is the (`+1)th element
in Ij (when the elements in Ij are ordered in ascending order). In other
words, the δj ’s functions enumerate the elements in Ij .

We can now prove in V TC0 that

n∑

i=0

Sj [i] =
|Ij |−1∑

i=0

f(δj(i)),

from which, by Substitution (proved above), we can prove:

k∑

i=1

n∑

i=0

Sj [i] =
k∑

i=1

|Ij |−1∑

i=0

f(δj(i)).

Inequalities: This can be proved in V TC0 simply by induction on n. We
omit the details.

All the equalities and inequalities which contain big summations that we
will derive in the theory, can be proved using Proposition 3.22. We shall not
state this explicitly in the text, but continue to derive such equalities and
inequalities freely.
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3.2.5. The relation between V TC0 and TC0-Frege
In this section we show how one can translate a ΣB

0 formula ϕ into a
family of propositional formulas JϕK. We then state the theorem showing
that if the universal closure of a ΣB

0 formula ϕ is provable in V TC0 then
the propositional translation JϕK has a polynomial-size proof in TC0-Frege.

We will, however, only explain the translation for V0-formulas, as this is
all we need to do explicitly to obtain our result. For the complete translation,
we refer the reader to [17] Chapter X.4.

Definition 3.23 (Propositional translation J∙K of ΣB
0 formulas). Let ϕ(~x, ~X)

be a ΣB
0 formula. The propositional translation of ϕ is a family

JϕK = {JϕK~m;~n | mi, ni ∈ N}

of propositional formulas in variables pXi
j for every Xi ∈ ~X. The intended

meaning is that JϕK is a valid family of formulas if and only if the formula

∀~x∀ ~X
(
(
∧

|Xi| = ni) → ϕ(~m, ~X)
)

is true in the standard model N2 of two-sorted arithmetic, where n denotes
the nth numeral, for any n ∈ N.

For given ~m,~n ∈ N we define JϕK by induction on the size of the formula
JϕK~m;~n. We denote the value of a term t by val(t).

Case 1: Let ϕ(~x, ~X) be an atomic formula.

• If ϕ(~x, ~X) is > (or ⊥), then JϕK~m,~n := > (or ⊥).

• If ϕ(~x, ~X) is Xi = Xi, then JϕK~m,~n := >.

• If ϕ(~x, ~X) is Xi = Xj for i 6= j, then (using the fact that V0contains
the extensionality axiom SE) instead of translating ϕ, we translate the
V0-equivalent formula

|Xi| = |Xj | ∧ ∀k ≤ |X| (Xi(k) ↔ Xj(k))).

• If ϕ(~x, ~X) is t1(~y, |~Y |) = t2(~z, |~Z|) for terms t1, t2, number variables
~y, ~z and string variables ~Y , ~Z, where ~y ∪ ~z = ~x and ~Y ∪ ~Z = ~X, and
~my, ~mz and ~nY , ~nZ denote the corresponding assignments of numerals
~m,~n to the ~y, ~z and ~Y , ~Z variables, respectively. Then

JϕK~m,~n :=

{
> if val(t1(~mY , ~nY )) = val(t2(~mZ , ~nZ)) and

⊥ otherwise.
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• If ϕ(~x, ~X) is t1(~y, |~Y |) ≤ t2(~z, |~Z|) for terms t1, t2, number variables
~y, ~z and string variables ~Y , ~Z, then

JϕK~m,~n :=

{
> if val(t1(~mY , ~nY )) ≤ val(t2(~mZ , ~nZ)) and

⊥ otherwise.

• If ϕ(~x, ~X) is Xi(t(~x, | ~X|)), then

JϕK~m,~n := ⊥ if ni = 0

and otherwise

JϕK~m,~n :=






pXi

val(t(~m,~n)) if val(t(~m,~n)) < ni − 1,

> if val(t(~m,~n)) = ni − 1,

⊥ if val(t(~m,~n)) > ni − 1.

Case 2: The formula ϕ is not atomic.

• If ϕ ≡ ψ1 ∧ ψ2 we let

JϕK~m,~n := Jψ1K~m,~n ∧ Jψ2K~m,~n.

• If ϕ ≡ ψ1 ∨ ψ2 we let

JϕK~m,~n := Jψ1K~m,~n ∨ Jψ2K~m,~n.

• If ϕ ≡ ¬ψ we let
JϕK~m,~n := ¬JψK~m,~n.

• If ϕ ≡ ∃y ≤ t(~x, | ~X|)ψ(y, ~x, ~X) then

JϕK~m,~n :=
val(t(~m,~n))∨

i=0

Jψ(i, ~x, ~X)K~m,~n.

• If ϕ ≡ ∀y ≤ t(~x, | ~X|)ψ(y, ~x, ~X) then

JϕK~m,~n :=
val(t(~m,~n))∧

i=0

Jψ(i, ~x, ~X)K~m,~n.

This concludes the translation for ΣB
0 formulas.
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Proposition 3.24 (Lemma VII.2.2. [17]). For every ΣB
0 formula ϕ(~x, ~X)

there exists a constant d ∈ N and a polynomial p(~m,~n) such that for all
~m,~n ∈ N, the propositional translation Jϕ(~x, ~X)K~m,~n has depth at most d
and size at most p(~m,~n).

We can now state the relation between provability of an arithmetical
statement ϕ in V TC0 to the provability of the family JϕK in TC0-Frege as
follows.

Theorem 3.25 (Section X.4.3. [17]). Let ϕ(~x, ~X) be a ΣB
0 formula. Then, if

V TC0 proves ϕ(~x, ~X) then there is a polynomial-size family of TC0-Frege
proofs of JϕK.

4. Feige-Kim-Ofek witnesses and the main formula

In this section we define the main formula we are going to prove in
the theory. We are concerned with proofs of 3CNF formulas. Let us fix
the following notation. By n we will denote the number of propositional
variables x1, . . . , xn and by m we will denote the number of clauses appearing
in the 3CNF denoted C =

∧m−1
α=0 Cα. Each clause Cα is of the form x`1

i ∨
x`2

j ∨ x`3
k , for `1, `2, `3 ∈ {0, 1}, where x1

i abbreviates xi and x0
i abbreviates

¬xi. A clause Cα is represented by the sequence
〈
i, j, k, 〈`1, `2, `3〉, α

〉
.

Formally, the defining ΣB
0 formula of the relation is:

Clause(x, n,m) ↔ ∃i, j, k ≤ n∃α < m∃`1, `2, `3 < 2

(i > 0 ∧ j > 0 ∧ k > 0 ∧ 〈x〉51 = i ∧ 〈x〉52 = j ∧ 〈x〉53 = k ∧ 〈x〉54 = 〈`1, `2, `3〉 ∧ 〈x〉55 = α).

A 3CNF C ≡
∧m−1

α=0 Cα is represented by the sequence (C0, . . . , Cm−1). Since
m is not a constant, we use a string variable to code C. The defining ΣB

0

formula of this relation is:

3CNF(C, n,m) ↔ ∀α < m
(
Clause(C[α], n,m) ∧ 〈C[α]〉55 = α

)
.

For a number variable x, we ΣB
0 -define Even(x) by the formula ∃y ≤

x(2 ∙ y = x) (meaning that x is an even number). Accordingly, we define
Odd(x) by ¬even(x).

For some clause C and a string variable A (interpreted as a Boolean
assignment), we ΣB

0 -define the following predicate, stating that C is not
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satisfied under the assignment A:

NotSAT(C,A) ≡∃i, j, k ≤ n
(
〈C〉51 = i ∧ (A(i) ↔ 〈〈C〉54〉

3
1 = 0)

)

∧
(
〈C〉52 = j ∧ (A(j) ↔ 〈〈C〉54〉

3
2 = 0)

)

∧
(
〈C〉53 = k ∧ (A(k) ↔ 〈〈C〉54〉

3
3 = 0)

)
.

We need the following notations and definitions to facilitate the formal-
ization of certain sets and objects:

Notation:

1. When considering a set of clauses, then a clause in C will be referred
to only by its index 0 ≤ α < m. Thus, a set of clauses from C is a set
of natural numbers less than m.

2. A set of literal positions from C will be coded as a set of numbers
〈α, b〉, where 0 ≤ α < m is the index of a clause in C and b = 1, 2, 3 is
the index of a literal in the clause.

3. For 0 ≤ α < m and ε = 0, 1 and a sequence S of 3-clauses we de-
fine LitPos(S, α, ε) to be the string function that outputs the set of
(positions of) literals xε

α in S. In other words, we have:

LitPos(S, α, ε) :=
{
〈j, `〉 : j < length(S) ∧ ` ≤ 3 ∧ 〈S[j]〉5` = α ∧ 〈〈S[j]〉54〉

3
` = ε

}
.

4. Let satLit(A,C) be the string function that outputs the set of all literal
positions in C that are satisfied by A.

5. The function Lit(C, i) returns the ith literal xε
j of the clause C, for

i = 1, 2, 3, in the form of a pair 〈j, ε〉.
6. If the literals of a clause are not all true or not all false under A, then

we say that the clause is satisfied as NAE (standing for “not all equal”)
by A. We can easily ΣB

0 -define the predicate SatL(z,A), stating that
the literal z is satisfied by the assignment A in V TC0. Let:

NAE(C,A) ↔ Clause(C) ∧
∨

i=1,2,3

SatL (Lit(C, i), A) ∧
∨

i=1,2,3

¬SatL (Lit(C, i), A)

be the ΣB
0 relation that states that the assignment A satisfies the 3-

clause C as NAE. Let satNAE(A,C) be the string function that outputs
the set of clauses in C that are satisfied as NAE by A.

The functions LitPos(S, i, ε), satLit(A,C) and satNAE(A,C) above are all
AC0-reducible to the language L2

A and so we can assume that we have these
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functions (along with their defining axioms) in V TC0 (see Section 3.1.2).
All the functions in this section will be AC0-reducible to L2

A ∪ {numones},
and all the relations in this section will have ΣB

0 definitions in the language
L2

A extended to include both our new function symbols and numones .

Definition 4.1 (Even k-tuple). For any given k, a sequence S of k clauses
is an even k-tuple iff every variable appears an even number of times in the
sequence. Formally, the predicate is denoted TPL(S, k):

TPL(S, k) ↔ length(S) = k ∧

∀i ≤ n, Even (numones(LitPos(S, i, 0)) + numones(LitPos(S, i, 1))) .

(20)

Observe that if S is an even k-tuple then k is even (since the total
number of variable occurrences N is even, by assumption that each variable
occurs an even number of times; and k = N/3, since each clause has three
variables).

Definition 4.2 (Inconsistent k-tuple). An even k-tuple is said to be incon-
sistent if the total number of negations in its clauses is odd. Formally, the
predicate is denoted by ITPL(S, k):

ITPL(S, k) ↔ TPL(S, k) ∧ Odd

(
n∑

i=1

numones(LitPos(S, i, 1))

)

.

Definition 4.3 (The imbalance Imb(S, y)). For a 3CNF S we define the
function i-imbalance iImb(S, i) to be the absolute value of the difference of
negated occurrences of xi and non-negated occurrences of xi in the 3CNF S
(where x1, . . . , xn are considered to be all the variables in S). It is defined
simply by the term:

iImb(S, i) := abs(numones(LitPos(S, i, 0)) − numones(LitPos(S, i, 1))).

For a 3CNF S, the predicate imbalance of S, denoted Imb(S, y), is true iff
y equals the sum over the i-imbalances of all the variables, that is:

Imb(S, y) ↔ y =
n∑

i=1

iImb(S, i).

Definition 4.4 ((t, k, d)-collection). A (t, k, d)-collection D of a 3CNF C
with m clauses is an array (coded as in Definition 3.10) of t many inconsis-
tent k-tuples, which contain only clauses from C, and each clause appears
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in at most d many such inconsistent k-tuples. The predicate is denoted
Coll(t, k, d,C, D) and is defined by the following formula:

length(D) = t∧

∀i < t ITPL(D [i], k)∧

∀i < t∀` < k∃j < |C| (D [i][`] = C[j])∧

∀j < |C|
t−1∑

i=0

k−1∑

`=0

χ=(〈D [i][`]〉55, j) ≤ d.

Definition 4.5 (Mat(M,C)). We define the predicate Mat(M,C) that
holds iff M is an n × n rational matrix such that Mij equals 1

2 times the
number of clauses in C where xi and xj appear with a different polarity mi-
nus 1

2 times the number of clauses where they appear with the same polarity.
More formally, we have

Mij :=
m−1∑

k=0

E
(k)
ij , for any i, j ∈ [n], (21)

where E
(k)
ij corresponds to the kth clause in C as follows:

E
(k)
ij :=






1
2 , xεi

i , x
εj

j ∈ C[k] and εi 6= εj, for some εi, εj ∈ {0, 1} and i 6= j;

−1
2 , xεi

i , x
εj

j ∈ C[k] and εi = εj, for some εi, εj ∈ {0, 1} and i 6= j;

0, otherwise.
(22)

Note that E
(k)
ij is definable by a ΣB

0 formula (in L2
A), and so Mat(M,C)

is a ΣB
0 -definable relation in V TC0.

Finally, we need a predicate EigValBound(M,~λ, V ) that ensures that
~λ is a collection of n rational approximations of the eigenvalues of the matrix
M and that V is a rational matrix whose rows are rational approximations
of the eigenvectors of M (where the ith row in V is the approximation of the
approximate eigenvector λi). For the sake of readability we defer the formal
definition of the predicate EigValBound(M,~λ, V ) and all the lemmas that
relate to it, including the proofs in the theory making use of this predicate,
to Section 6.

We can now state the main formula that we are going to prove in V TC0.
It says that if the Feige-Kim-Ofek witness fulfills the inequality t > d∙(I+λn)

2 +
c′d/n, where c′ is a sufficiently large constant number term, then there exists
a clause in C that is not satisfied by any assignment A (one can think of all
the free variables in the formula as universally quantified):
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Definition 4.6 (The main formula). The main formula is the following formula (~λ
denotes n distinct number parameters λ1, . . . , λn):

(

3CNF(C, n,m) ∧ Coll(t, k, d,C, D) ∧ Imb(C, I) ∧ Mat(M,C)∧

EigValBound(M,~λ, V ) ∧ λ = max{λ1, . . . , λn} ∧ t >
d ∙ (I + λn)

2
+

c′d

n

)

−→ ∃i < mNotSAT(C[i], A).

5. Proof of the main formula

In this section we prove the key theorem, stating that the theory V TC0

proves the main formula (Definition 4.6). This means that the theory proves
the correctness of the FKO witness (namely, that its existence implies un-
satisfiability). The formal proof in the theory is quite long and detailed. To
facilitate the understanding of this formal proof (given in Section 5.2), we
present a slightly less formal proof of the correctness of the FKO witnesses
in what follows.

5.1. Informal proof of the main formula

Assume by way of contradiction that the premise of the implication in the
Main Formula holds and that there is an assignment A ∈ {0, 1}n (construed
as a string variable of length n) that satisfies every clause in C. Recall that
satLit(A,C) is the string function that outputs the set of all positions of
literals in C that are satisfied by A and that satNAE(A,C) is the string
function that returns the set of all clauses in C that are satisfied as NAE
by A.

Lemma 5.1. (In V TC0) numones(satLit(A,C)) ≤ 3m+I
2 .

This lemma is proved by basic counting in V TC0.
We now bound the number of clauses in C that contain exactly two

literals satisfied by A.
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Lemma 5.2. (In V TC0) Assume the premise of the Main Formula and let
h be the number of clauses in C that contain exactly two literals satisfied by
A. Then

h ≤
3m + I

2
− 3m + 2 ∙ numones(satNAE(A,C)) .

Similarly to Lemma 5.1, Lemma 5.2 is proved by basic counting in V TC0

as follows. Let `, h and g be the number of clauses in C that have precisely
one, two and three literals satisfied under A, respectively. By Lemma 5.1
we have (3m + I)/2 ≥ 1 ∙ ` + 2 ∙ h + 3 ∙ g. Let f = numones(satNAE(A,C)).
Then by definition, ` + 2h = 2f − (f − h) = f + h. Also, g = m − f (since
by assumption every clause has at least one literal set to true under A). We
therefore get

(3m + I)/2 ≥ ` + 2h + 3g

= f + h + 3m − 3f

= h + 3m − 2f,

which implies that h ≤ (3m + I)/2 − 3m + 2f , concluding the lemma.

We now wish to provide an upper bound on the number of clauses
in C that can be satisfied as NAE by the assignment A, that is,
numones(satNAE(A,C)). First we need the technical claim below.
Notation: For an assignment A we define its associated vector a ∈ {−1, 1}n

such that a(i) = 1 if A(i) = 1 and a(i) = −1 if A(i) = 0.

Claim 5.3. (In V TC0) Assume the premise of the Main Formula holds and
let f = numones(satNAE(A,C)). Then, atMa = f − 3(m − f) = 4f − 3m.

Proof of claim: First note that by symmetry of M we have atMa =∑
i,j∈[n] a(i)a(j)Mij =

∑
i<j∈[n] 2a(i)a(j)Mij .

The proof follows by the definition of the matrix M . Recall that
Mij :=

∑
k<m E

(k)
ij , where E

(k)
ij is the contribution of clause Ck to Mij (Defi-

nition 4.5). Then,
∑

i<j∈[n] 2a(i)a(j)Mij =
∑

i<j∈[n] 2a(i)a(j)
∑

k<m E
(k)
ij =

∑
k<m

∑
i<j∈[n] 2a(i)a(j)E(k)

ij .

Fix some 0 ≤ k < m, and consider
∑

i<j∈[n] 2a(i)a(j)E(k)
ij . If the variable

xi does not occur in clause Ck, then by definition, E
(k)
ij = 0, for all j. Thus,

considering all six possible cases where 2a(i)a(j)E(k)
ij is nonzero, it is not

hard to prove that 2a(i)a(j)E(k)
ij is 1 if Ck is satisfied as NAE by A, and
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otherwise it is −3. Thus, we can prove that atMa = 1 ∙ f − 3(m − f) =
4f − 3m. Claim

Lemma 5.4 (In V TC0). If the premise of the Main Formula holds then

numones(satNAE(A,C)) ≤ (λn + 3m)/4 + Θ(1/n) .

To prove this lemma we reason as follows: let f =
numones(satNAE(A,C)). Then, 4f − 3m = atMa by the previous
claim. Thus, f = (atMa + 3m)/4. Hence, it suffices to prove the following
basic spectral inequality:

Lemma 5.5 (Main spectral bound). (In V TC0) If
EigValBound(M,~λ, V ) holds, then for any assignment A to n vari-
ables:

atMa ≤ λn + Θ(1/n) .

We can now finish the proof of the key theorem. In V TC0 (and assuming
the premise of the Main Formula), let h be the number of clauses in C that
contain exactly two literals satisfied by A. By Lemmata 5.2 and 5.4, we
have:

h ≤
3m + I

2
− 3m + 2 ∙ numones(satNAE(A,C))

≤
3m + I

2
− 3m +

3m + λn

2
+ Θ(1/n) =

I + λn

2
+ Θ(1/n) . (23)

Since we assumed that A satisfies C, then every clause in C has at least one
literal satisfied by A. Thus, the clauses in C that are not satisfied as 3XOR
by A are precisely the clauses that have exactly two literals satisfied by A.
By (23), the number of clauses that have exactly two literals satisfied by A
is at most I+λn

2 + Θ(1/n). We now use our witness, assumed to exist in the
premise of the Main Formula, to show that:

Lemma 5.6 (In V TC0). (Assuming the premise of the Main Formula) the
number of clauses in C that are not satisfied as 3XOR by A is at least dt/de.

This concludes the key theorem, since the number of clauses in C not
satisfied as 3XOR by A is at most I+λn

2 + Θ(1/n), and so by Lemma 5.6 we
get that t ≤ d ∙

⌈
t
d

⌉
≤ d ∙ I+λn

2 + Θ(d/n), which contradicts our assumption

(in the Main Formula) that t > d(I+λn)
2 + c′d

n , for a sufficiently large constant
term c′.

To prove Lemma 5.6 we need the following:
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Lemma 5.7. (In V TC0) If S is an inconsistent (even) k-tuple, then for
every assignment A to its variables there exists a clause in S that is not
satisfied as 3XOR.

The proof of this lemma is again by a basic counting argument, as follows:
assume by way of contradiction that all the clauses in the k-tuple are satisfied
as 3XOR under A. We consider the sum modulo 2 of all literals in the k-
tuple under A. First we consider this sum by summing over clauses; since
k is even, and by assumption all clauses are satisfied as 3XOR under A,
summing over clauses evaluates to 0.

Now we consider summing the literals under A over variables. It is not
hard to show that since every number occurs even number of times in the
k-tuple and since the number of negative literals (and hence also the number
of positive literals) is odd, summing the literals over variables evaluates to
1, modulo 2, and we obtain a contradiction.

It is important to note that the reason why we can carry out the above
argument in V TC0 is that we can define (and reason about) the parity of
big sums of numbers.

5.2. The formal proof in the theory

We now prove the key theorem:

Theorem 5.8 (Key). The theory V TC0 proves the main formula (Defini-
tion 4.6).

The proof of this theorem follows the (informal) sketch given in Section
5.1 above.

Proof. We reason inside V TC0. Assume by way of contradiction that the
premise of the implication in the main formula holds and that there is an
assignment A ∈ {0, 1}n (construed as a string variable of length n) that
satisfies every clause in C. Recall that satLit(A,C) is the set of all literal
positions that are satisfied by A.

The following lemma is a reiteration of Lemma 5.1 in Section 5.1:

Lemma 5.9. (Assuming the premise of the main formula) the theory V TC0

proves:

numones(satLit(A,C)) ≤
3m + I

2
.

Proof. First observe that for any assignment A and any 1 ≤ i ≤ n the set of
satisfied literals of xi is defined by LitPos(C, i, A(i)). Therefore, the sets
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LitPos(C, 1, A(1)), . . . , LitPos(C, n,A(n)) form a partition of satLit(A,C)
(provably in V TC0), and thus by Proposition 3.17, V TC0 proves that

numones(satLit(A,C)) =
n∑

i=1

numones(LitPos(C, i, A(i))). (24)

By (24) we get

numones(satLit(A,C)) ≤
n∑

i=1

max{numones(LitPos(C, i, 0)), numones(LitPos(C, i, 1))}.

(25)
For any 1 ≤ i ≤ n, define the term

LitPos(C, i) := LitPos(C, i, 0) ∪ LitPos(C, i, 1).

Then by

iImb(C, i) + numones(LitPos(C, i))
2

=

iImb(C, i) + numones(LitPos(C, i, 0)) + numones(LitPos(C, i, 1))
2

,

and since, by Definition 4.3, iImb(C, i) =
abs (numones(LitPos(C, i, 0)) − numones(LitPos(C, i, 1))), the theory
V TC0 proves that for any 1 ≤ i ≤ n:

max{numones(LitPos(C, i, 0)), numones(LitPos)(C, i, 1)} =
iImb(C, i) + numones(LitPos(C, i))

2
.

(26)

Claim 5.10. (Assuming the premise of the main formula) the theory V TC0

proves:
n∑

i=1

iImb(C, i) + numones(LitPos(C, i))
2

=
I + 3m

2
.

Proof of claim: First recall the definition of imbalance (Defini-
tion 4.3) I =

∑n
i=1 iImb(C, i). Thus it remains to prove that∑n

i=1 numones(LitPos(C, i)) = 3m. For this, note that LitPos(C, i), for
i = 1, . . . , n, partition the set of all literal positions in C. In other words,
we can prove that: (i) if H is the set of all literal positions in C (this
set is clearly ΣB

0 -definable in V TC0) then H = ∪n
i=1LitPos(C, i); and (ii)
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LitPos(C, i) ∩ LitPos(C, j) = ∅, for all 1 ≤ i 6= j ≤ n. Therefore, by Propo-
sition 3.17 we can prove that:

numones(H) =
n∑

i=1

numones(LitPos(C, i)). (27)

Now, the set H of all literal position in C can be partitioned (provably in
V TC0) by the sets T1, . . . , Tm, where each Tj , for 0 ≤ j < m, is the set of
the three literals in the jth clause in C. Thus, again by Proposition 3.17,
we can prove that numones(H) = 3m. By (27) we therefore have

n∑

i=1

numones(LitPos(C, i)) = 3m.

Claim

We conclude that:

numones(satLit(A,C))

≤
n∑

i=1

max{numones(LitPos(C, i, 0)), numones(LitPos(C, i, 1))} (by (25))

=
n∑

i=1

iImb(C, i) + LitPos(C, i)
2

(by (26))

=
I + 3m

2
. (by Claim 5.10).

We now bound the number of clauses in C that contain exactly two lit-
erals satisfied by A. We say that a 3-clause is satisfied by a given assignment
as NAE (which stands for not all equal ) if the literals in the clause do not
all have the same truth values. That is, if either exactly one or exactly two
literals in the clause are satisfied by the assignment.

Recall that satNAE(A,C) is the function that returns the set of all clauses
(formally, indices < m) that are satisfied as NAE by A.

The following lemma is a reiteration of Lemma 5.2 in Section 5.1:

Lemma 5.11. (Assuming the premise of the main formula) the theory
V TC0 proves: let h be the number of clauses in C that contain exactly
two literals satisfied by A. Then

h ≤
3m + I

2
− 3m + 2 ∙ numones(satNAE(A,C)) .
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Proof. For i = 0, 1, 2, 3, let Bi be the set of clauses in C that contain exactly
i literals satisfied by A. For i = 0, 1, 2, 3, let Fi be the string function that
maps a clause (index) C to the set of literal positions that are satisfied by
A in case there are exactly i such literals and to the empty set otherwise:

Fi(j) =

{
{l1, . . . , li}, if j ∈ Bi ;
∅, otherwise

(where a literals lk is coded, as before, by the pair 〈a, b〉 for a an index of
a clause in C and b the position of the literal in the clause). Every such
function Fi is ΣB

0 -defined in V TC0. We also ΣB
0 -define the image of Fi as

follows:
Img(Fi) := {x : ∃y < m (Fi(y))(x)}.

Claim 5.12. (Assuming the premise of the main formula) If A is a satis-
fying assignment for C, then the theory V TC0 proves:

numones(satLit(A,C)) =
3∑

i=1

numones(Img(Fi)).

Proof of claim: In light of Proposition 3.17, it suffices to prove
that satLit(A,C) is partitioned by Img(F1), Img(F2), Img(F3) (note that
Img(F0) = ∅ by definition), in the sense that:

(i) satLit(A,C) = Img(F1) ∪ Img(F2) ∪ Img(F3), and
(ii) Img(Fi) ∩ Img(Fj) = ∅, for all 1 ≤ i 6= j ≤ 3.

We prove (i): consider a literal x ∈ satLit(A,C), and let x = 〈a, b〉. We
know that the clause Ca contains the literal x. Now, either zero, or one, or
two of the remaining literals in Ca are satisfied by A. So x must be in either
F1(a) or in F2(a) or in F3(a), respectively. Item (ii) is easy to prove by the
definition of the Fi’s. We omit the details. Claim

Claim 5.13. For any i = 1, 2, 3, numones(Img(Fi)) = i ∙ numones(Bi).

Proof of claim: Fix some i = 1, 2, 3. We prove the claim by induction on
the number of clauses j < m (we can consider the sets Bi and the functions
Fi having an additional parameter that determines until which clause to
build the sets. That is, Bi(z) is the set of clauses from 0 to z that have i
literals satisfied by A; and similarly we add a parameter for the Fi’s). In the
base case j = 0 there is only one clause C0. Depending on A we know how
many literals in C0 are satisfied by A. So 0 ∈ Bi iff i literals are satisfied
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by A in C0 iff numones(Fi(0)) = i = i ∙ 1 = i ∙ numones(Bi). The induction
step is similar and we omit the details. Claim

By Claim 5.12 and Claim 5.13 we get:

numones(satLit(A,C)) =
∑

i=1,2,3

numones(Img(Fi))

=
∑

i=1,2,3

i ∙ numones(Bi) . (28)

It is easy to show (in a similar manner to Claim 5.12) that B1 ∪ B2 ∪ B3 =
{0, . . . ,m − 1} and Bi ∩ Bj = ∅, for any 1 ≤ i 6= j ≤ 3. From this,
using Proposition 3.17, we get that m = numones(B1) + numones(B2) +
numones(B3), and so:

numones(B1) = m − numones(B2) − numones(B3) . (29)

Thus, by (28):

numones(satLit(A,C)) = m − numones(B2) − numones(B3) + 2 ∙ numones(B2) + 3 ∙ numones(B3)

= m + 2 ∙ numones(B3) + numones(B2) ,

and so

numones(B2) =numones(satLit(A,C)) − m − 2 ∙ numones(B3) .
(30)

The set of clauses in C that are NAE satisfied by A (i.e., satNAE(A,C))
is equal to the set of clauses having either one or two literals satisfied by
A; the latter two sets are just B1 and B2, and since they are (provably in
V TC0) disjoint we have (using also (29)):

numones(B3) = m−(numones(B1)+numones(B2)) = m−numones(satNAE(A,C)) .

Plugging this into (30), and using Lemma 5.9, we get:

numones(B2) = numones(satLit(A,C)) − 3m + 2 ∙ numones(satNAE(A,C))

≤
3m + I

2
− 3m + 2 ∙ numones(satNAE(A,C)).

This concludes the proof of Lemma 5.11

Notation:
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1. The notation Θ(1/n) appearing inside formulas in the proof within the
theory, stands for a term of the form b/n, for b a sufficiently large num-
ber constant and n a number variable (and where a rational number
is encoded in the way described in Section 3.1.2).

2. Given two terms t and f(n) in the language L2
A, where n is a number

variable, we say that V TC0 proves t = O(f(n)), to mean that there
exists some constant b (independent of n; namely, b is a term without
variables in the language L2

A), such that V TC0 proves t ≤ b ∙ f(n).

The following lemma provides an upper bound on the number of clauses
in C that can be satisfied as NAE by the assignment A (it is a reiteration
of Lemma 5.4 in Section 5.1):

Lemma 5.14. (Assuming the premise of the main formula) the theory
V TC0 proves:

numones(satNAE(A,C)) ≤ (nλ + 3m)/4 + Θ(1/n).

The proof of this lemma involves a spectral argument. Carrying out
this argument in the theory is fairly difficult because one has to work with
rational approximations (as the eigenvalues and eigenvectors might be ir-
rationals, and so undefined in the theory) and further the proof must be
sufficiently constructive, in the sense that it would fit in the theory V TC0.
We thus defer to a separate section (Section 6) all treatment of the spec-
tral argument. Given the desired spectral inequality, we can prove Lemma
5.14—this is done in Section 5.4.

We can now finish the proof of the key theorem:

Concluding the proof of the theorem (Theorem 5.8). In V TC0 (and
assuming the premise of the main formula), let h be the number of clauses
in C that contain exactly two literals satisfied by A. We have:

h ≤
3m + I

2
− 3m + 2 ∙ numones(satNAE(A,C)) (by Lemma 5.11)

≤
3m + I

2
− 3m +

3m + λn

2
+ Θ(1/n) (by Lemma 5.14)

=
I + λn

2
+ Θ(1/n) . (31)

Since we assumed that A satisfies C, then every clause in C has at least
one literal satisfied by A. Thus, the clauses in C that are not satisfied as
3XOR by A are precisely the clauses that have exactly two literals satisfied
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by A. By (31), the number of clauses that have exactly two literals satisfied
by A is at most I+λn

2 + Θ(1/n).
We now use Lemma 5.16 (proved in the next subsection) to prove the

following reiteration of Lemma 5.6 from Section 5.1:

Lemma 5.15. (Assuming the premise of the main formula) the theory
V TC0 proves that the number of clauses in C that are not satisfied as
3XOR by A is at least dt/de.

Proof. Consider the collection Coll(t, k, d,C, D) in the premise of the main
formula. Then, D is a sequence of t inconsistent k-tuples from C, and every
k-tuple in D intersects8 in the same clause from C with at most d−1 other k-
tuples. By Lemma 5.16, each of the t inconsistent k-tuples contains a clause
which is unsatisfied as 3XOR by A. Since each such clause may appear in
at most d inconsistent k tuples, using Proposition 3.20 the theory V TC0

proves that the total number of distinct clauses not satisfied as 3XOR by A
is at least dt/de.

Using this lemma, we can finish the proof of the key Theorem 5.8, as
follows: by Lemma 5.15 and the fact that the number of clauses in C that
are not satisfied as 3XOR by A is at most I+λn

2 + Θ(1/n), we get

t = d ∙
t

d
≤ d ∙

⌈
t

d

⌉

≤ d ∙
I + λn

2
+ Θ(d/n) , (32)

which contradicts our assumption (in the main formula) that t > d(I+λn)
2 +

c′d
n , for c′ a sufficiently large constant term c′.

5.3. Formulas satisfied as 3XOR

Here we prove the missing lemma that was used in the proof of Lemma
5.15.

Notation: For a sequence S of k many 3-clauses, and for 0 ≤ α < k, we
denote the three variables in the clause S[α] by xiα , xjα , xhα , and abbre-
viate 〈〈S[α]〉54〉

3
t , which is the polarity of the tth variable in S[α], by `α

t ,

for t = 1, 2, 3. Thus, x
`α
1

i , x
`α
2

j , x
`α
3

h , are the three literals in S[α] and the
values of ¬A(i) ⊕ `α

1 ,¬A(j) ⊕ `α
2 ,¬A(h) ⊕ `α

3 are the values that A assigns

to x
`α
1

i , x
`α
2

j , x
`α
3

h , respectively, where ⊕ is the XOR operator. We also abuse

8Where a clause is identified with its index 0, . . . , m − 1 in C, so that two identical
clauses with a different index are considered as two different clauses.
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notation and write ¬A(i) inside a term to mean the characteristic function
of the predicate ¬A(i), that is, the function that returns 1 if ¬A(i) is true,
and 0 otherwise.

For a clause C and an assignment A the predicate 3XOR(C,A) says
that A satisfies exactly one or three of the literals in C. If we denote by
xi, xj , xh the three variables in C and by `1, `2, `3 their respective polarities,
we have:

3XOR(C,A) iff ¬A(i) ⊕ `1 + ¬A(j) ⊕ `2 + ¬A(h) ⊕ `3 = 1 mod 2 ,

and formally the predicate 3XOR is ΣB
0 -definable by the following formula:

3XOR(C,A) := Odd(¬A(i) + `1 + ¬A(j) + `2 + ¬A(h) + `3) .

The following lemma is a reiteration of Lemma 5.7 in Section 5.1:

Lemma 5.16. The theory V TC0 proves that if S is an inconsistent (even)
k-tuple, then for every assignment A to its variables there exists α < k such
that A satisfies exactly zero or exactly two literals in the clause S[α]. More
formally, V TC0 proves:

∀A ≤ n ∀k ≤ n∀S ≤ p(n) ∃α < k (|A| = n ∧ ITPL(S, k) → ¬3XOR (S[α], A)) ,

for some (polynomial) term p(∙).

Proof. We need the following claim:

Claim 5.17. Let f(y) be a number function definable in V TC0. Then
V TC0 proves the following statements:

1. (∀α < k,Odd(f(α))) ∧ Even(k) → Even
(∑k−1

α=0 f(α)
)
;

2. (∀α < k,Even(f(α))) → Even
(∑k−1

α=0 f(α)
)
;

3. (∀α < k,Odd(f(α))) ∧ Odd(k) → Odd
(∑k−1

α=0 f(α)
)

.

Proof of claim: Consider Item 1 (the other items are similar). The proof
is by induction on k, showing that

((∀α < k∃y(2y + 1 = f(α))) ∧ ∃y(2y = k)) → ∃y

k−1∑

α=0

f(α) = 2y ,

and using the fact that V0 proves that Odd(x) ↔ ∃y ≤ x(2y +1 = x) (e.g.,
by induction on x). We omit the details. Claim
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Now, assume by way of contradiction that A satisfies all the clauses in
S as 3XORs. Thus, for any α < k, if we define f(α) := ¬A(iα) + `α

1 +
¬A(jα) + `α

2 + ¬A(hα) + `α
3 , then Odd(f(α)). Hence, because Even(k), by

Claim 5.17 we can prove that:

k−1∑

α=0

(¬A(iα) ⊕ `α
1 + ¬A(jα) ⊕ `α

2 + ¬A(hα) ⊕ `α
3 ) = 0 mod 2. (33)

Recall that every variable appears an even number of times in S. Thus, a
variable has an odd number of negative appearances if and only if it has
has an odd number of positive appearances. Let I0 ∈ {0, . . . , n − 1} be the
indices of variables having an even number of positive (and thus negative)
appearances in S and let I1 = {0, . . . , n − 1} \ I0 be the indices of variables
having an odd number of positive (and thus negative) appearances in S.
Thus, the left hand side of (33) can be written as follows (for ε = 0, 1, we
denote by xε

i (A) the truth value of the literal xε
i under A):

∑

i∈I0



x1
i (A) + . . . + x1

i (A)
︸ ︷︷ ︸

even times

+ x0
i (A) + . . . + x0

i (A)
︸ ︷︷ ︸

even times



+

∑

i∈I1



x1
i (A) + . . . + x1

i (A)
︸ ︷︷ ︸

odd times

+ x0
i (A) + . . . + x0

i (A)
︸ ︷︷ ︸

odd times



 .

(34)

Claim 5.18. For any i ∈ I0 (and any string variable A of size n) the theory
V TC0 proves that

x1
i (A) + . . . + x1

i (A)
︸ ︷︷ ︸

even times

+ x0
i (A) + . . . + x0

i (A)
︸ ︷︷ ︸

even times

is an even number.

Proof of claim: Reason in V TC0 as follows: assume that A(i) = 0. Then
x1

i (A) = 0 and x0
i (A) = 1 and so by Claim 5.17 the sum of evenly many

x1
i (A)’s is even and the sum of evenly many x0

i (A)’s is also even. The sum
of two even numbers is even, and so we are done. (The case where A(i) = 1
is similar.) Claim

By Claims 5.17 and 5.18, the theory V TC0 proves

Even




∑

i∈I0



x1
i (A) + . . . + x1

i (A)
︸ ︷︷ ︸

even times

+ x0
i (A) + . . . + x0

i (A)
︸ ︷︷ ︸

even times







 . (35)
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Similarly to the above claims we have:

Claim 5.19. For any i ∈ I1 (and any string variable A of size n) the theory
V TC0 proves that

x1
i (A) + . . . + x1

i (A)
︸ ︷︷ ︸

odd times

+ x0
i (A) + . . . + x0

i (A)
︸ ︷︷ ︸

odd times

is an odd number.

Since by assumption S is an inconsistent k-tuple, the number of negative
literals is odd (Definition 4.2), and so (provably in V TC0) the number of
variables that have an odd number of negative appearances must be odd, in
other words, |I1| is odd. Therefore, by Claims 5.19 and 5.17, V TC0 proves:

Odd




∑

i∈I1



x1
i (A) + . . . + x1

i (A)
︸ ︷︷ ︸

odd times

+ x0
i (A) + . . . + x0

i (A)
︸ ︷︷ ︸

odd times







 . (36)

Since V TC0 proves both (35) and (36), V TC0 proves that (34) is odd,
which contradicts (33). This implies that not all the clauses in S are satisfied
as 3XOR by the assignment A.

5.4. Bounding the number of NAE satisfying assignments
Here we prove Lemma 5.14, used to prove the key theorem (Theorem

5.8). Recall that satNAE(A,C) is the string function that outputs the set
of clauses in C that are satisfied as NAE by A (see Section 4). The proof of
the following lemma is based on the spectral inequality proved in Section 6.

Lemma 5.14 (Assuming the premise of the main formula) V TC0 proves

numones(satNAE(A,C)) ≤ (λn + 3m)/4 + Θ(1/n).

Proof. Let a be a vector from {−1, 1}n such that a(i) = 2A(i) − 1. Thus,
a(i) = 1 if A(i) = 1 and a(i) = −1 if A(i) = 0. We can prove in V TC0

(by definition of inner products and a product of a matrix and a vector—
innerprod and Matvecprod function symbols, respectively, as defined in Sec-
tion 3.2.2) the following:

atMa =
n∑

i=1

n∑

j=1

Mija(i)a(j). (37)
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By assumption Mat(M,C) holds (see Definition 4.5) and so by definition
4.5 and by (37) we can prove in V TC0 that:

atMa =
n∑

i=1

n∑

j=1

m−1∑

k=0

E
(k)
ij a(i)a(j), (38)

where E
(k)
ij , for any i, j ∈ [n], is:

E
(k)
ij :=






+1
2 , xεi

i , x
εj

j ∈ C[k] and εi 6= εj , for some εi, εj ∈ {0, 1} and i 6= j;

−1
2 , xεi

i , x
εj

j ∈ C[k] and εi = εj , for some εi, εj ∈ {0, 1} and i 6= j;

0, otherwise.
(39)

By rearranging (38) we get

atMa =
m−1∑

k=0

n∑

i=1

n∑

j=1

E
(k)
ij a(i)a(j),

and since E
(k)
ij = 0 whenever either xi 6∈ C[k] or xj 6∈ C[k], we get

=
m−1∑

k=1

∑

i,j∈{r : xr∈C[k]}

E
(k)
ij a(i)a(j),

and further, since E
(k)
ij = 0 if i = j, and E

(k)
ij = E

(k)
ji , for any i, j, we have

=
m−1∑

k=0

∑

i<j∈{r : xr∈C[k]}

2E
(k)
ij a(i)a(j). (40)

Claim 5.20. The theory V TC0 (in fact already V0) proves that for any
k = 0, . . . ,m − 1:

∑

i<j∈{r : xr∈C[k]}

2E
(k)
ij a(i)a(j) =

{
+1, NAE(C[k], A);
−3, ¬NAE(C[k], A).

Proof of claim: For any i < j ∈ {r : xr ∈ C[k]}, if A(i) 6= A(j) (which
means that a(i) 6= a(j)) then a(i)a(j) = −1, and if A(i) = A(j) (which
means that a(i) = a(j)) then a(i)a(j) = 1. Note also that xεi

i 6= x
εj

j under a
means that either xi, xj have different polarities εi 6= εj and a(i) = a(j) or
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xi, xj have the same polarities εi = εj and a(i) 6= a(j). Similarly, xεi
i = x

εj

j

under a means that either xi, xj have different polarities εi 6= εj and a(i) 6=
a(j) or xi, xj have the same polarities εi = εj and a(i) = a(j). Thus, by
(39), for any i < j ∈ {r : xr ∈ C[k]}:

E
(k)
ij a(i)a(j) =

{
+1

2 , if xεi
i 6= x

εj

j under a;

−1
2 , if xεi

i = x
εj

j under a.
(41)

Note that if NAE(C[k], A) is true then there are exactly two pairs of literals
xεi

i , x
εj

j , i < j, for which xεi
i and x

εj

j get different values under the assignment
a (if A assigns 1 (i.e., >) to one literal and 0 (i.e., ⊥) to the other two
literals, then two pairs have different values and one pair has the same value;
and similarly if A assigns 0 to one literal and 1 to the other two literals).
Therefore, if NAE(C[k], A) is true then

∑

i<j∈{r : xr∈C[k]}

2E
(k)
ij a(i)a(j) = 2

(
1
2

+
1
2
−

1
2

)

= 1.

On the other hand, if NAE(C[k], A) is false then all pairs of literals xεi
i , x

εj

j ,
i < j, get the same value under the assignment A, and so:

∑

i<j∈{r : xr∈C[k]}

2E
(k)
ij a(i)a(j) = 2

(

−
1
2
−

1
2
−

1
2

)

= −3.

Claim

Let Z = {i < m : NAE (C[i], A)} (note that Z = satNAE(A,C)), and

for any k = 0, . . . ,m − 1, let γk =
∑

i<j∈{r : xr∈C[k]} 2E
(k)
ij a(i)a(j). Then, by

Claim 5.20 and Proposition 3.19:

m−1∑

i=0

γi = 1 ∙ numones(Z) − 3 ∙ (m − numones(Z))

= 4 ∙ numones(Z) − 3m

= 4 ∙ numones(satNAE(A,C)) − 3m.

(42)

By (40) we have
m−1∑

i=0

γi = atMa, (43)

and by the spectral inequality proved in Lemma 6.7 in the next section, we
have:

atMa ≤ λn + Θ(1/n).
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By (42) we thus get

4 ∙ numones(satNAE(A,C)) − 3m ≤ λn + Θ(1/n),

which leads to

numones(satNAE(A,C)) ≤
λn + 3m

4
+ Θ(1/n).

6. The spectral bound

In this section we show how to prove inside V TC0 the desired spectral
inequality, used in the proof of the key theorem (Theorem 5.8; specifically,
it was used in Lemma 5.14 in Section 5.4).

Since the original matrix associated with a 3CNF is a real symmetric
matrix, and its eigenvectors and eigenvalues also might be real, and thus
cannot be represented in our theory V TC0, we shall need to work with
rational approximations of real numbers. We will work with polynomially-
bounded approximations. Specifically, a real number r in the real interval
[−1, 1] is represented with precision 1/nκ, where n is the number of variables
in the 3CNF (that is, if r̃ is the approximation of r, we shall have |r −
r̃| ≤ 1/nκ). For concreteness we fix κ = 7. Recall that when we use
iterated addition of many rational numbers we first make sure that all the
denominators are identical, and specifically are n2κ = n14 (see Section 3.1.2,
Fact 2).

The idea of proving the spectral bound in V TC0 (Lemma 6.7).
Here we explain informally how to proceed to prove the bound atMa ≤
λn + Θ(1/n), for any a ∈ {−1, 1}n, in the theory V TC0, assuming that
EigValBound(M,~λ, V ) (and Mat(M,C)) hold. The idea is as follows: in
the predicate EigValBound(M,~λ, V ) we certify that the rows of a given
matrix V are rational approximations of the normalized eigenvector basis
of M . Since M is symmetric and real, V will approximate an orthonormal
matrix, and V t will approximate V −1 (this is where we circumvent the need
to prove the correctness of inverting a matrix in the theory V TC0: instead
of proving the existence of an inverse matrix, we simply assume that there
exists an object which [approximates] the inverse matrix of V ). Thus, V t

approximates the matrix of the basis transformation from the standard basis
to the eigenvector basis. Note that a (as a {−1, 1} vector) is already almost
described in the standard basis. Hence, it will be possible to prove in the
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theory that V ta is the representation of a in the (approximate) eigenvector
basis, i.e., we shall have an equality a =

∑n
i=1 γivi + o(1), for vi’s the

approximate eigenvectors of M and some rationals γi’s. After plugging
in this equality in atMa, to prove atMa ≤ λn we only need to validate
computations—using also the fact that we know that the inequalities Mvi ≤
λvi + o(1), for any i ∈ [n], hold (since this will be stated in the predicate
EigValBound(M,~λ, V )).

6.1. Notations

Here we collect the notation we use in this section. We denote by
e1, . . . , en the standard basis vectors spanning Qn. That is, for any 1 ≤ i ≤ n
the vector ei ∈ Qn is 1 in the ith coordinate and all other coordinates are
0. For a vector v we denote by v(j) the jth entry in v. Given a real sym-
metric matrix M we denote by u1, . . . ,un ∈ Rn the normalized eigenvectors
of M . It is known that the collection of normalized eigenvectors of a sym-
metric n × n real matrix M forms an orthonormal basis for Rn, called the
eigenvector basis of M (cf. [30]). The (rational) approximation of the eigen-
vectors will be denoted v1, . . . ,vn ∈ Qn and we define vij := vi(j). Recall
that for a real or rational vector v = (v1, . . . , vn) we denote by ‖v‖2 the
squared Euclidean norm of v, that is, ‖v‖2 = v2

1 + . . . + v2
n. We also define

‖v‖∞ := max{vi : 1 ≤ i ≤ n}.

6.2. Rational approximations of real numbers, vectors and matrices

Definition 6.1 (Rational ε-approximation of a real number). For r ∈ R, we
say that q ∈ Q is a rational ε-approximation of r (or just ε-approximation),
if |r − q| ≤ ε.

Claim 6.2. For any real number r ∈ [−1, 1] and any natural number m
there exists a 1/m-approximation of r whose numerator and denominator
have values linearly bounded in m.

Proof of claim: By assumption, there exists an integer 0 ≤ k < 2m, such
that r ∈

[
−1 + k

m ,−1 + k+1
m

]
. Then −1+ k

m is a rational 1/m-approximation
of r. Claim

In a similar fashion we have:

Definition 6.3 (Rational ε-approximation of (sets of) real vectors). Let
0 < ε < 1. For u ∈ Rn, we say that v ∈ Qn is an ε-approximation of u, if
v(i) is an ε-approximation of u(i), for all i = 1, . . . , n. Accordingly, for a
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sequence U = (u1, . . . ,uk) ∈ (Rn)k, we say that V = (v1, . . . ,vk) ∈ (Qn)k

is a (rational) ε-approximation of U if every vi ∈ Qn is an ε-approximation
of the vector ui, i = 1, . . . , n.

6.3. The predicate EigValBound

We define the predicate EigValBound(M,~λ, V ), which is meant
to express the properties needed for the main proof. Basically,
EigValBound(M,~λ, V ) expresses the fact that V is a rational 1/nκ-
approximation (Definition 6.3) of the eigenvector basis of M , whose 1/nκ-
approximate eigenvalues (in decreasing order with respect to value) are ~λ
(for κ = 7) (recall that the denominator of every rational number in the
theory is n2κ).

Note: For a number or a number-term in the language, we sometimes use
|t| to denote the absolute value of t. This should not be confused with the
length |T | of a string term T .

Definition 6.4 (EigValBound predicate). The predicate
EigValBound(M,~λ, V ) is a ΣB

0 -definable relation in V TC0 that
holds (in the standard two-sorted model) iff all the following properties hold:

1. V is a sequence of n vectors v1, . . . ,vn ∈ Qn with polynomially small
entries. That is, for any 1 ≤ i, j ≤ n, the rational number

vij := vi(j) ∈ Q

is polynomial in n (meaning that both its denominator and numerator
are polynomially bounded in n).

2. For any 1 ≤ i, j ≤ n it holds that the absolute value |vij | ≤ 2.
3. For any 1 ≤ i ≤ n, define:

ẽi :=
n∑

j=1

vij ∙ vj .

Then, there exists ri ∈ Qn for which

ẽi = ei + ri and ‖ri‖∞ = O(1/nκ−1).

To formalize the existence of such an ri we do not use an existential
second-sort quantifier here; instead, we simply assert that for any ` =
1, . . . , n:

|ẽi(`) − ei(`)| = O(1/nκ−1).
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4. The vectors in V are “almost” orthonormal, in the following sense:

〈vi,vj〉 = O(1/nκ−1) , for all 1 ≤ i 6= j ≤ n,

〈vi,vi〉 = 1 + O(1/nκ−1) , for all 1 ≤ i ≤ n .

5. The parameter ~λ is a sequence λ1 ≥ λ2 ≥ . . . ≥ λn of rational numbers
such that for every 1 ≤ i ≤ n, there exists a vector ti ∈ Qn for which
‖ti‖∞ = O(1/nκ−3), and

Mvi = λivi + ti .

(Similar to Item 3 above, we do not use an existential second-sort
quantifier for ti here.)

It should be easy to check that EigValBound(M,~λ, V ) is a ΣB
0 -

definable relation in V TC0.
Now we show that there exist objects M,~λ, V that satisfy the predicate

EigValBound(M,~λ, V ).

Proposition 6.5 (Suitable approximations of eigenvector bases exist). Let
M be an n × n real symmetric matrix whose entries are quadratic in n.
Let U = {u1, . . . ,un} ⊆ Rn be the orthonormal basis consisting of the
eigenvectors of M . If V = {v1, . . . ,vn} ⊆ Qn is an 1/nκ-approximation
of U (Definition 6.3), ~λ = {λ1, . . . , λn} is the collection of rational 1/nκ-
approximations of the real eigenvalues of M such that λ1 ≥ λ2 ≥ . . . ≥ λn,
then EigValBound(M,~λ, V ) holds (as before, the predicate holds in the
standard two-sorted model, for the appropriate encodings of its parame-
ters).9

Proof. Let uij be an abbreviation of ui(j), that is, the jth element in the
vector ui, and similarly for vij . We proceed by checking each of the condi-
tions in Definition 6.4.

Condition (1): Holds by the definition of an approximation of a real vector
and by Claim 6.2, stating that the ε-approximation of a real number in
[−1, 1] is a rational number whose denominator and numerator both are of
value O(nκ).

9This is an existence statement. We do not claim that the statement of the proposition
is provable in the theory (nevertheless, some of the computations can be carried out inside
the theory).
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Condition (2): Since vij is a rational 1/nκ-approximation of uij , and
|uij | ≤ 1 (because ‖ui‖ = 1) for any 1 ≤ i, j ≤ n, we have |vij | ≤ 2 .

Condition (3): We will identify the set U of eigenvectors with its associated
matrix consisting of the eigenvectors as columns. By orthonormality of this
real matrix U , we have that U t = U−1, that is:

n∑

i=1

uijui = ej , for any j = 1, . . . , n . (44)

By assumption, for any 1 ≤ i ≤ n there exists si = (si1, . . . , sin) ∈ Rn such
that ‖si‖∞ ≤ 1/nκ and vi = ui + si. Therefore, for any 1 ≤ j ≤ n, we have:

ẽj :=
n∑

i=1

vijvi =
n∑

i=1

(uij + sij) ∙ (ui + si)

=
n∑

i=1

uijui

︸ ︷︷ ︸
=ej by (44)

+
n∑

i=1

uijsi +
n∑

i=1

sij ∙ (ui + si) . (45)

We define

rj :=
n∑

i=1

uijsi +
n∑

i=1

sij ∙ (ui + si) ,

which gives us
ẽj = ej + rj .

Note that since
∑n

i=1 vijvi = ẽj is a rational vector then rj is also a rational
vector.

It remains to show that ‖rj‖∞ = O(1/nκ−1). Since 1 = ‖ui‖2 =∑n
j=1 u2

ij , we have |uij | ≤ 1. By this, and by the fact that ‖si‖∞ ≤ 1/nκ, we
get ‖

∑n
i=1uijsi‖∞ = O(1/nκ−1) , and ‖

∑n
i=1 sij ∙ (ui + si)‖∞ = O(1/nκ−1).

This means that ‖rj‖∞ = O(1/nκ−1).

Condition (4): This is similar to the proof of Condition (3). By assump-
tion, for any 1 ≤ i ≤ n there exists si = (si1, . . . , sin) ∈ Rn such that
‖si‖∞ ≤ 1/nκ, and vi = ui + si. Thus, we have

〈vi,vj〉 = 〈ui + si,uj + sj〉

= 〈ui,uj〉 + 〈si,uj + sj〉 + 〈ui, sj〉 . (46)

The first term in (46) is 0 since U is an orthonormal basis, and the second
and third terms in (46) are both O(1/nκ−1) (by calculations similar to that
in the proof of Condition (3)).
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The proof of 〈vi,vi〉 = 1 + O(1/nκ−1) , for all 1 ≤ i ≤ n , is similar.

Condition (5): Similar to the proof of previous conditions, we define si =
(si1, . . . , sin) ∈ Rn such that ‖si‖∞ ≤ 1/nκ, and vi = ui + si, for any
1 ≤ i ≤ n. We have

Mvi = M(ui + si)

= Mui + Msi. (47)

Since ui ∈ Rn is the eigenvector of M and λi is a 1/nκ-approximation of the
eigenvalue of ui, we have that (47) equals

(λi + ε)ui + Msi (48)

for some |ε| ≤ 1/nκ,

= λiui + εui + Msi

= λi(vi − si) + εui + Msi

= λivi − λisi + εui + Msi .

We put
ti := −λisi + εui + Msi.

It remains to show that ‖ti‖∞ = O(1/nκ−3).

Claim 6.6. For every 1 ≤ i ≤ n, λi = O(n3).

Proof of claim: Since ‖ui‖∞ = 1 and, by assumption, every entry in M is
O(n2), we have:

‖Mui‖∞ = O(n3). (49)

Observe that
Mui = (λi + ε)ui = λiui + εui. (50)

Because |ε| ≤ 1/nκ and ‖ui‖∞ = 1, we have ‖εui‖∞ = O(1/nκ). Therefore,
by (49) and (50) we have λi = O(n3). Claim

We have ‖si‖∞ ≤ 1/nκ, and so by Claim 6.6 we get that ‖ − λisi‖∞ =
O(1/nκ−3). Now, ‖εui‖∞ = O(1/nκ) and since M has entries which are
O(n2) we have ‖Msi‖∞ = O(1/nκ−3). We conclude that

‖ti‖∞ = ‖ − λisi + εui + Msi‖∞
≤ ‖−λisi‖∞ + ‖εui‖∞ + ‖Msi‖∞

= O(1/nκ−3).
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6.4. Certifying the spectral inequality

In this section we show that the theory V TC0 can prove that, if
EigValBound(M,~λ, V ) holds, then the desired spectral inequality also
holds.

Note on coding and formalizing the proof in V TC0: In what follows
we will write freely terms such as matrices, vectors, inner products, prod-
ucts of a matrix by a vector (of the appropriate dimensions), addition of
vectors, and big sums. We also freely use basic properties of these objects;
like transitivity of inequalities, distributivity of a product over big sums, as-
sociativity of addition and product, etc. We showed how to formalize these
objects and how to prove their basic properties within V TC0 in Sections
3.2.2 and 3.2.4 (see Proposition 3.22).

For an assignment A ∈ {0, 1}n we define its associated vector a ∈
{−1, 1}n such that a(i) = 1 if A(i) = 1 and a(i) = −1 if A(i) = 0.
In other words, we define a(i) = 2A(i) − 1. Note that

a =
n∑

i=1

a(i) ∙ ei .

We define

ã :=
n∑

i=1

a(i) ∙ ẽi , (51)

and recall that ẽi :=
∑n

j=1 vij ∙vj is a rational approximation of ei (Definition
6.4). We let atMa abbreviate 〈a,Ma〉 (which is ΣB

1 -definable in V TC0, by
Section 3.2.2).

The following lemma is a reiteration of Lemma 5.5 in Section 5.1:

Lemma 6.7 (Main spectral bound). The theory V TC0 proves that if A is
an assignment to n variables (that is, A is a string variable of length n + 1)
and EigValBound(M,~λ, V ) holds, then

atMa ≤ λn + Θ(1/n) . (52)

This is a corollary of Lemma 6.8 and Lemma 6.11 that follow.

Lemma 6.8. The theory V TC0 proves that for any assignment A to n
variables, EigValBound(M,~λ, V ) implies:

atMa ≤ ãtM ã + Θ(1/nκ−6).
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Proof. First note that A is a string variable of length n. By Definition 6.4,
for any 1 ≤ j ≤ n there exists a vector rj ∈ Qn such that ẽj = ej + rj , and
where ‖rj‖∞ = O(1/nκ−1). Therefore, by (51):

ã =
n∑

i=1

a(i)ẽi =
n∑

i=1

a(i)(ei + ri) =
n∑

i=1

a(i)ei +
n∑

i=1

a(i)ri .

Note that
∑n

i=1 a(i)ei = a, and let

r :=
n∑

i=1

a(i)ri .

Then,
ã = a + r ,

and since a(i) ∈ {−1, 1}, we have ‖r‖∞ = O(1/nκ−2). Now, proceed as
follows:

atMa = (ã − r)tM(ã − r)

= ãtM ã − ãtMr − rtM ã + rtMr . (53)

We now claim that (provably in V TC0) the addition of the three right terms
in (53) is O(1/nκ−6):

Claim 6.9. The theory V TC0 proves that for any assignment A to n vari-
ables, EigValBound(M,~λ, V ) implies:

−ãtMr − rtM ã + rtMr = O
(
1/nκ−6

)
.

Proof of claim: Consider −ãtMr. Since ‖ã‖∞ ≤ 2, and since (by con-
struction) each entry in M is at most O(n2), we have ‖ãtM‖∞ = O(n3) .
Therefore, since ‖r‖∞ ≤ 1/nκ−2, we get −ãtMr = O

(
1

nκ−6

)
. Similarly, we

have −rtM ã = O
(

1
nκ−6

)
.

Considering rtMr, we have ‖rtM‖∞ = O(1/nκ−5) and so rtMr =
O(1/nκ−5 ∙ 1/nκ−2 ∙ n) = O(1/n2κ−8) = O(1/nκ−6). Claim

Claim 6.9 concludes the proof of Lemma 6.8.

Claim 6.10. The theory V TC0 proves that EigValBound(M,~λ, V ) im-
plies that:

〈ẽi, ẽi〉 = 1 + O(1/n5), for any 1 ≤ i ≤ n, and

〈ẽi, ẽj〉 = O(1/n5), for any 1 ≤ i 6= j ≤ n.
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Proof of claim: By assumption for any 1 ≤ i ≤ n, ẽi = ei + ri for some
‖ri‖∞ = O(1/nκ−1). Thus

〈ẽi, ẽi〉 = 〈ei + ri, ei + ri〉

= ‖ei‖
2 + 2〈ei, ri〉 + ‖ri‖

2

= 1 + O(1/nκ−1) + O(n/nκ−1)

= 1 + O(1/nκ−2)

= 1 + O(1/n5),

Proving 〈ẽi, ẽj〉 = O(1/n5) for any 1 ≤ i 6= j ≤ n is similar (in fact
〈ẽi, ẽj〉 = O(1/n9)). Claim

Lemma 6.11. The theory V TC0 proves that for any assignment A to n
variables, EigValBound(M,~λ, V ) implies:

ãtM ã ≤ λn + Θ(1/n) . (54)

Proof. We have:

ãtM ã = ãtM

(
n∑

i=1

a(i)ẽi

)

(by definition of ã)

= ãtM




n∑

i=1



a(i) ∙
n∑

j=1

vjivj







 (by definition of ẽi)

= ãt
n∑

i=1



a(i) ∙
n∑

j=1

vjiMvj



 (rearranging)

= ãt
n∑

i=1



a(i) ∙
n∑

j=1

vji(λjvj + rj)



 (by Definition 6.4)

= ãt
n∑

i=1



a(i) ∙
n∑

j=1

λjvjivj



+ ãt
n∑

i=1



a(i) ∙
n∑

j=1

vjirj





︸ ︷︷ ︸
①

(rearranging)

(55)

We first bound (inside V TC0) the second term above, denoted ①:
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Claim 6.12. The theory V TC0 proves that for any assignment A to n
variables, EigValBound(M,~λ, V ) implies

ãt
n∑

i=1



a(i) ∙
n∑

j=1

vjirj



 = O(1/nκ−6) .

Proof of claim: The proof is similar to the proof of Claim 6.9. Specifically,
by Definition 6.4, for any 1 ≤ j ≤ n, we have ‖rj‖∞ ≤ 1/nκ−1, and for any
1 ≤ i, j ≤ n, we have |vji| ≤ 2. Thus, V TC0 proves that ‖

∑n
j=1 vjirj‖∞ =

O(1/nκ−2) , for any 1 ≤ i ≤ n. Since a(i) ∈ {−1, 1}, for any 1 ≤ i ≤ n, the
theory V TC0 proves ‖a(i) ∙

∑n
j=1 vjirj‖∞ = O(1/nκ−2), for any 1 ≤ i ≤ n,

and therefore also proves
∥
∥
∥
∥
∥
∥

n∑

i=1



a(i) ∙
n∑

j=1

vjirj





∥
∥
∥
∥
∥
∥
∞

= O(1/nκ−3). (56)

Now consider ã =
∑n

i=1 a(i)ẽi =
∑n

i=1

(
a(i) ∙

∑n
j=1 vjivj

)
. Since, for any

1 ≤ i, j ≤ n we have |vji| ≤ 2 we have ‖
∑n

j=1 vjivj‖∞ = O(n). Thus, since
a(i) ∈ {−1, 1}, V TC0 can prove that ã = O(n2), and so by (56) the theory
can finally prove

ãt
n∑

i=1



a(i) ∙
n∑

j=1

vijrj



 = O(1/nκ−6).

Claim

It remains to bound the first term in (55):

ãt ∙




n∑

i=1

a(i)
n∑

j=1

λjvjivj



 . (57)

By the definition of ã in (51) and the definition of the ẽi’s, we get that (57)
equals: 


n∑

i=1

a(i)
n∑

j=1

vjiv
t
j



 ∙




n∑

i=1

a(i)
n∑

j=1

λjvjivj



 . (58)

We can prove in V TC0 that for any vectors b1, . . . ,b` ∈ Qn and any
rational numbers c1, . . . , c` and ζ1, . . . , ζ`, such that ζ = max{ζi : 1 ≤ i ≤
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`}, we have

〈
∑̀

i=1

cibi,
∑̀

i=1

ζicibi

〉

≤ ζ ∙

〈
∑̀

i=1

cibi,
∑̀

i=1

cibi

〉

.

Therefore, we can prove in V TC0 that (58) is at most:

λ ∙




n∑

i=1

a(i)
n∑

j=1

vjiv
t
j



 ∙




n∑

i=1

a(i)
n∑

j=1

vjivj





= λ ∙

(
n∑

i=1

a(i)ẽt
i

)

∙

(
n∑

i=1

a(i)ẽi

)

(by definition of ẽi)

= λ ∙

〈
n∑

i=1

a(i)ẽi ,
n∑

i=1

a(i)ẽi

〉

= λ ∙
n∑

i=1

〈a(i)ẽi , a(i)ẽi〉 + λ ∙
n∑

1≤i 6=j≤n

〈a(i)ẽi, a(i)ẽj〉 (by rearranging)

= λ ∙
n∑

i=1

a(i)2〈ẽi , ẽi〉 + λ ∙
n∑

1≤i 6=j≤n

a(i)a(j)〈ẽi, ẽj〉 (by rearranging again)

= λ ∙
n∑

i=1

1 ∙ (1 + O(1/n4)) + λ ∙
n∑

1≤i 6=j≤n

a(i)a(j)O(1/n4) (by Claim 6.10)

= λn + O(λ/n4)

We have shown before that λ = O(n3), hence the last term is λn +
O(1/n), concluding the proof of Lemma 6.11.

7. Wrapping up the proof: TC0-Frege refutations of random
3CNFs

In this section we establish the main result of this paper, namely,
polynomial-size TC0-Frege refutations for random 3CNF formulas with
Ω(n1.4) clauses.

7.1. Converting the main formula into a ∀ΣB
0 formula

Note that the main formula (Definition 4.6) is a ΣB
0 (L) formula, where

the language L contains function symbols not in L2
A, and in particular it

contains the numones function. Since Theorem 3.25 relates V TC0 proofs

70



of ΣB
0 formulas to polynomial-size TC0-Frege proofs, in order to use this

theorem we need to convert the main formula into a ΣB
0 formula (in the

language L2
A). It suffices to show that V TC0 proves that the main formula

is equivalent to a ∀ΣB
0 formula, since if V TC0 proves a ∀ΣB

0 formula ∀Φ,
it also proves the ΣB

0 formula Φ obtained by discarding all the universal
quantifiers in ∀Φ.

Lemma 7.1. The theory V TC0 proves that the main formula is equivalent
to a ∀ΣB

0 formula ∀Φ where the universal quantifiers in the front of the
formula all quantify over string variables that serve as counting sequences.
Specifically,

∀Φ := ∀Z1 ≤ t1 . . . ∀Zr ≤ tr Φ(Z1, . . . , Zr), (59)

where t1, . . . , tr are number terms and Φ(Z1, . . . , Zr) has also free variables
other than the Zi’s, and every occurrence of every Zi appears in Φ in the
form (δNUM(|T | , T, Zi) ∧ Zi[t] = s), for some string term T and number
terms t, s, and where δNUM(|T | , T, Zi) states that Zi is a counting sequence
that counts the number of ones in T until position |T | (see Definition 3.12).

Proof. The following steps convert the main formula into a ∀ΣB
0 formula

which is equivalent (provably in V TC0) to the main formula:

1. All the functions in the main formula are AC0-reducible to L2
A ∪

{numones} (see Section 3.2.1). Thus, the defining axioms of all
the function symbols in the main formula can be assumed to be
ΣB

0 (numones) formulas. Now, it is a standard procedure to substitute
in the main formula all the function symbols by their ΣB

0 (numones)-
defining axioms.10 The resulting formula is ΣB

0 (numones), and prov-
ably in V TC0 is equivalent to the original main formula.

2. We now substitute all the numones function symbols by their ΣB
1 -

defining axioms. Specifically, every occurrence of numones(t, T ) in
the formula, for t, T number and string terms, respectively, occurs
inside some atomic formula Ψ := Ψ(. . . numones(t, T ) . . . ). And so we
substitute Ψ by the existential formula

∃Z ≤ 1 + 〈|T | , |T |〉 (δNUM(|T | , T, Z) ∧ Z[t] = z ∧ Ψ(. . . z . . . )) .

10When the defining axiom of a string function F (~x, ~X) is a bit-definition i < r(~x, ~X)∧
ψ(i, ~x, ~X) we substitute an atomic formula like F (~x, ~X)(z), by z < r(~x, ~X) ∧ ψ(z, ~x, ~X)
(cf. Lemma V.4.15. in [17]).
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3. Note that all the numones function symbols appear in the premise of
the implication in the main formula, so we can take all these existential
quantifiers out of the premise of the implication and obtain a univer-
sally quantified formula, where the universal quantifiers in the front
of the formula all quantify over string variables that serve as counting
sequences (as in Item 2 above).

7.2. Propositional proofs

We need to restate the main probabilistic theorem in [22]:

Theorem 7.2 ([22], Theorem 3.1). Let C be a random 3CNF with n vari-
ables and m = β ∙ n clauses, for β = c ∙ n0.4, where c a sufficiently large
constant. Then, with probability converging to 1 as n −→ ∞, the following
hold:

• The imbalance of C is at most O(n
√

β);

• The largest eigenvalue λ satisfies λ = O(
√

β);

• There are k = O(n0.2), t = Ω(nβ) (and t < n2), d = O(k), and C with
|C| = t, such that Coll(t, k, d, n,m, C, C) holds.

We need to rephrase the theorem in a manner that suites our needs, as
follows:

Corollary 7.3. Let C be a random 3CNF with n variables and m = βn
clauses, where β = cn0.4, for c a sufficiently large constant. Then, with
probability converging to 1 as n −→ ∞, the following hold:11

1. There exists an I = O(n
√

β) = O(n1.2) such that Imb(C, I).
2. Let κ = 7. There exists a 1/nκ-rational approximation V of

the eigenvector matrix of M and 1/nκ-rational approximations ~λ of
the eigenvalues of M ; in other words, EigValBound(M,~λ, V ) and
Mat(M,C) hold. And the 1/nκ-rational approximation λ of the
largest eigenvalue of M satisfies λ = O(

√
β) = O(n0.2).

11Formally speaking, we mean that the following three items hold in the standard two-
sorted model N2, when all the second-sort objects (like C and D) are in fact finite sets
of numbers (encoding C and D), natural numbers are treated as natural numbers in the
standard two-sorted model and rational numbers are the corresponding natural numbers
that encode them as pairs of natural numbers (as described in Section 3.1.2).
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3. There are natural numbers k = O(n0.2), t = Ω(nβ) = Ω(n1.4) (and
also t < n2), d = O(k) = O(n0.2) and a sequence D of t inconsistent
k-tuples such that Coll(t, k, d, n,m, C, D) holds, and such that (where
c′ is the sufficiently large constant term from the main formula):

t >
d(I + λn)

2
+

c′d

n
. (60)

Proof. The corollary stems from Theorem 7.2, when plugging-in the value
cn0.4 for β. Item 2 follows from Proposition 6.5. For the third item, we first
plug-in the value cn0.4 for β, and then we need to verify inequality (60).
For this, note that if we substitute the parameters in the inequality, we get
Ω(nβ) in the left hand side, and O(n0.2(n

√
β + n

√
β)/2) = O(n1.2

√
β) in

the right hand side of (60). Thus, (60) holds for a sufficiently large constant
c (where c is the constant from β = cn0.4).

Recall the premise in the implication in the main formula:

3CNF(C, n,m)∧Coll(t, k, d, n,m, C, D) ∧ Imb(C, I) ∧ Mat(M,C)∧

EigValBound(M,~λ, V ) ∧ λ = max{~λ} ∧ t >
d ∙ (I + λn)

2
+ c′d/n.

(61)

Let PREM(C, n,m, t, k, d, D , I, ~λ, V,M, λ, ~Z) be the formula obtained from
(61) after transforming the main formula into a ∀ΣB

0 formula, where ~Z
is a sequence of strings variables for counting sequences added after the
transformation (as described in Lemma 7.1).

The following is a simple claim about the propositional translation (given
without a proof):

Claim 7.4. If a ΣB
0 formula ϕ(~x, ~X) can be evaluated to a true sentence in

N2 by assigning numbers ~x and sets ~X to the appropriate variables, then the
translation JϕK

~x, ~|X|
is satisfiable.

Lemma 7.5. For every m,n ∈ N and every unsatisfiable 3CNF formula
C with m clauses and n variables such that PREM(C, n,m, . . . ) is true for
some assignment to the remaining variables (i.e. to the unspecified variables
denoted by “. . . ”; this also implies that JPREM(C, n,m, . . . )K is satisfiable),
there exists a polynomially bounded TC0-Frege proof of ¬C (i.e. the sequent
−→ ¬C can be derived).
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Proof. Recall that for given m,n ∈ N, 3CNF formula C = (C[α])α<m and
assignment A, the formula ∃α ≤ mNotSAT(C[i], A) (which is the conse-
quence of the implication in the main formula 4.6) is the statement:

∃α < m∃i, j, k ≤ n
(

〈C[α]〉51 = i ∧ (A(i) ↔ 〈〈C[α]〉54〉
3
1 = 0)

∧ 〈C[α]〉52 = j ∧ (A(j) ↔ 〈〈C[α]〉54〉
3
2 = 0)

∧ 〈C[α]〉53 = k ∧ (A(k) ↔ 〈〈C[α]〉54〉
3
3 = 0)

)
.

The propositional translation of this formula (Definition 3.23) contains
the variables pC

〈i,j,k,`,α〉 with i, j, k ≤ n, α < m and ` describes the signs of

the literals. Additionally it contains variables pA
i for i ≤ n stemming from

the assignment A. It is not necessary to show the full translation of the
formula, since we intend to plug-in propositional constants (>,⊥) for some
of the variables. In other words, parts of the formula will consist only of
constants and so it is unnecessary to give these parts in full detail. Having
this in mind, the translation J∃α < mNotSAT(C[α], A)Km,n is

m−1∨

α=0

n∨

i,j,k=1

(
(J〈C[α]〉51 = iKm,n ∧ (pA

i ↔ J〈〈C[α]〉54〉
3
1 = 0Km,n))

∧ (J〈C[α]〉52 = jKm,n ∧ (pA
j ↔ J〈〈C[α]〉54〉

3
2 = 0Km,n))

∧ (J〈C[α]〉53 = kKm,n ∧ (pA
k ↔ J〈〈C[α]〉54〉

3
3 = 0Km,n))

)
.

(62)

Here, the variables pC
〈i,j,k,`,α〉 all implicitly appear in the parts inside J∙K.

Now assume we have a fixed 3CNF C with n variables and m clauses.
Then for every α < m there exist 1 ≤ i, j, k ≤ n such that the formulas
J〈C[α]〉51 = iKm,n and J〈C[α]〉52 = jKm,n and J〈C[α]〉53 = kKm,n are all satisfied
(in fact they are polynomial-size in n propositional tautologies consisting of
only constants >,⊥). From now on we will only concentrate on the disjuncts
where this is the case (as the other disjuncts are falsified, or in other words
they are propositional contradictions consisting of only constants).

By plugging C into J〈〈C[α]〉54〉
3
1 = 0Km,n and J〈〈C[α]〉54〉

3
2 = 0Km,n and

J〈〈C[α]〉54〉
3
3 = 0Km,n we get that J∃α < mNotSAT(C[α], A)Km,n is evaluated

(modulo a trivial simplification) to
∨

α<m

(
(pA

i )`α
1 ∧ (pA

j )`α
2 ∧ (pA

k )`α
3

)
, (63)

where `α
r is an abbreviation of J〈〈C[α]〉54〉

3
r = 0Km,n, and thus we can observe

that (63) gets evaluated to ¬C(pA
1 /x1, . . . , p

A
n /xn), where pA

i /xi means sub-
stitution of xi by pA

i .
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By Theorem 5.8 the theory V TC0 proves the main formula and so by
Lemma 7.1 there is a V TC0 proof of

PREM(C, n,m, t, k, d, D , I, ~λ, V,M, λ, ~Z) → ∃i < mNotSAT(C[i], A).

Thus, by Theorem 3.25 we can derive a polynomially bounded TC0-proof
of the formula

JPREM(C, . . . )Km,n → J∃α < mNotSAT(C[α], A)Km,n

and thus also of the sequent

JPREM(C, . . . )Km,n −→ J∃α < mNotSAT(C[α], A)Km,n.

By Claim 7.4 and the assumption that PREM(C, n,m, . . . ) is true
in N2 for an assignment to the remaining variables we know that
JPREM(C, . . . )Km,n is satisfiable. Plugging in such a satisfying assignment
~a into JPREM(C, . . . )Km,n, Lemma 2.7 yields a polynomially bounded TC0-
Frege proof of

JPREM(C,~a)Km,n

and of the sequent

JPREM(C,~a)Km,n −→ J∃α < mNotSAT(C[α], A)Km,n.

Using the Cut rule (Definition 2.4) we get a polynomially bounded TC0-
Frege proof of the formula

J∃α < mNotSAT(C[α], A)Km,n.

As we showed before, this gets evaluated to

¬C(pA
1 /x1, . . . , p

A
n /xn)

as desired. Because of Claim 2.7, this proof is only polynomially longer
than the one of the translation of the main formula. Since that proof was
polynomially bounded, the above proof of ¬C(pA

i /xi) also is.

We can now conclude:

Corollary 7.6. With probability converging to 1, a random 3CNF C with
n variables and m ≥ c ∙ n1.4 clauses, c a sufficiently large constant, ¬C has
polynomially bounded TC0-Frege proofs, while C has no sub-exponential size
resolution refutations (as long as m = O(n1.5−ε), for 0 < ε < 1/2).
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Proof. By Corollary 7.3, with probability converging to 1 there exists an
assignment of numbers and strings ~α (including also the appropriate count-
ing sequences assigned to the Zi string variables introduced in Lemma 7.1)
such that PREM(C, ~α) holds (in the standard two-sorted model). There-
fore, with probability converging to 1 we can apply Lemma 7.5 to establish
that ¬C has a short TC0-Frege proof. That with probability converging to
1 there are no sub-exponential size resolution refutations of C follows from
[14, 6, 10].
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