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My main area of research is the foundations of computer science, computational complexity, satisfiabil-
ity (in practice and theory), and applications of logic in computer science. I am interested in any kind of
research in the foundations of computing, both in theconceptualaspect of the field, namely, the modeling
of natural computational phenomena, or the modeling of natural phenomena through a computational lens;
its applicationsand interactions with different areas of study; as well as in its moremathematicalaspect,
namely, advancing our understanding of the fundamental limits of efficient computation, by establishing
lower bounds on various models of computations.

1 Short Summary

In recent years I have been conducting research on the theory of computation, with an emphasis on computa-
tional complexity and proof complexity. My main contributions are in applying methods from computational
complexity, algebraic complexity and logic in the area of efficient reasoning and proof complexity. In that
respect, I have been developing the algebraic proofs regime [10, 20, 11, 18, 17, 12, 14, 16, 9], and proposi-
tional proofs under approximations and average-case proof complexity [7, 15, 21]. My research was funded
by the Natural National Science Foundation of China (NSF China).

1.1 Background

The study of the limits of efficient computation lies at the frontier of contemporary science. The significance
of this problem stems both from its clear fundamental aspect as a question about the nature of the physical
world, the nature of mathematics and their interplay, as well as from its provable practical relevance to the
contemporary information era, in which billions of explicit computational tasks are being conducted every
minute.

When building atheoretical foundationfor efficient computation, we are necessarily drawn to make
ideal simplifications regarding what is computation to start with, and what kind of computations are con-
sidered efficient. Fortunately, the foundational groundwork addressing many of these questions has already
been conducted in the 20th century, through the works of mathematicians, logicians, and computer scientists,
such as Kurt G̈odel and Alan Turing. Of a special relevance to my research is the extremely influential work
of Stephen A. Cook (and other prominent scientists such as Leonid Levin) who has laid the foundations for
what we consider nowadays to be thetheory of efficient computation, and the still somewhat enigmatic phe-
nomenon of NP-completeness. Problems we take as efficiently computable (at least in an idealized manner)
are problems solvable by a deterministic algorithm that runs in polynomial-time, where the polynomial is in
the size of the input to the algorithm.

An NP problem is a problem, or a setA of strings (i.e., alanguage) we wish to determine, whose
instances have short certificates (or equivalently,witnessesor proofs). In other words, given a stringx of
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lengths, x is in A if and only if there exists a certificatey of length polynomial ins that can be checked
efficiently for correctness. Now, the question whether problems in NP, namely those sets whose instances
have short and efficiently verifiable certificates, also have fast algorithms is one of the central problems in
computer science, and contemporary science by large. To put it differently, the question is to determine
whether verifying a (correct) solution is algorithmically equivalent tofindinga correct solution (i.e., finding
the certificate). Clearly, this question, or in its formal namethe P versus NP problem,is of great practical
and scientific value.

This problem is known to be extremely difficult by itself, and it has obtained both intensive popular
interest and scientific attention, while giving birth to many new ideas, and scientific branches within the
theory of efficient computation. One such direction, which was initiated by the fundamental work of S. Cook
[4] is that of Proof Complexity. This direction is very simple to explain in the context of computational
complexity described above: in proof complexity we take problems, or languagesA, that we assume donot
have short certificates, and tryformally to provethat if werestrict the way the certificates are being written,
then indeed there are no short certificates forA; that is, there will be instancesx ∈ A that require very large
certificatesy (wheny is written in the restricted manner we chose).

Let me give an example. Assume we getm integer inequalities

〈A1,x〉 ≤ b1, . . . , 〈Am,x〉 ≤ bm,

where〈∙, ∙〉 is the inner product, theAi’s are integers vectors and thebi’s are integer numbers andx are the
indeterminates. Are there short certificates that there is anintegersolution to this system of inequalities? It
is known that the answer is positive: if the system of inequalities is solvable then the solution itself, namely
the integer-assignment to the indeterminatesx will serve as the short certificate (it can be shown that this
certificate is indeed small in the size of the input system).

But what about the following problem:are there short certificates that the system of inequalities is
unsatisfiable? It is believed that there areno such short certificates of unsatisfiability. However, to prove
this is apparently extremely difficult, and so no real proofs of this fact is known at this stage. Indeed,
we know that determining that such systems of integer inequalities have no solutions is a coNP-complete
problem (and thus showing it does not have short certificates would mean separating NP from coNP, and
thus separating also P from NP).

In Proof Complexity what we usually do is torestrict the way that certificates for a given problem (such
as the problem considered above) are written. By putting such restrictions on the way the certificates are
written we achieve two things: first, we have a better chance in actually understanding the complexity of such
certificates, namely, we are able to understand sometimes which instances are easy (have short certificates)
and which instances arehard (require large certificates). And second, we can show that instances requiring
large certificates (if we restrict the way we write the certificates) arehard for certain algorithms; that is,
hard for those algorithms whose run induce a (restricted) certificate for the instance.

The most prominent example for the second point above, is the one between lower bounds onresolution
refutationsof unsatisfiable CNF formulas and lower bounds on the run-time of practical (DPLL-based)
contemporary SAT-solvers [1] (i.e., tools for deciding, given an input CNF formula, whether the input is
satisfiable or not).

The subject of Proof Complexity is thus a fascinating subject and one of the most fundamental natu-
ral within the theory of computing, which is at the heart of computational complexity theory. It can be
viewed as part of Concrete Complexity, that is, a part of the directions that seek to provide unconditional
limitations on concrete computational models (together with Boolean and Algebraic Circuit Complexity and
Communication Complexity).
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1.2 Overview of research themes

I have a broad interest in all areas pertaining to the theory of computation; and I have a special interest in
questions in the area of Proof Complexity. My research revolves around finding new directions towards the
lower bounds questions in computational complexity, proof complexity and connecting these questions to
algorithmic questions, algebraic complexity, pure algebra and logic.

For most part my work so far revolves around three main inter-related themes:

(i) Polynomial identities: Studying the complexity of nondeterministic algorithms for identifying poly-
nomial identities; and specifically, proofs establishingpolynomial identities(in contrast to proposi-
tional tautologies), with connections to derandomization of probabilistic algorithms and its applica-
tions to the area of feasible reasoning. Complexity of polynomial identities over matrices and matrix
algebras.

(ii) Propositionalproof complexity: The study of proof systems establishing propositionaltautologiesby
means of manipulating polynomials over a field or Boolean circuits. This is part of the main thread in
contemporary Proof Complexity.

(iii) Approximate,probabilisticand average-casereasoning;Randomk-SAT refutation algorithm: De-
veloping frameworks and concrete computational models for approximate, probabilistic and average-
case reasoning and studying their efficiency and connections with computational complexity,proof-
search algorithmsand refutations algorithms for random formulas.

1.3 Summery of recent research projects

Together with Hruběs, I have developed the theory ofarithmetic proofs of polynomial identities[10, 11] in
relation to the Polynomial Identity Testing problem from algebraic complexity and derandomization theory.
This led us [11] to the resolution of a long-standing open problem, first posed by S. Cook, (cf. [3, 19]),
in the area of efficient reasoning; namely, establishing short propositional proofs for the basic determinant
identities (and loosely speaking, for all statements of linear algebra).

In a joint project with Stephen Cook [22], we worked on a strengthening of the results from [11].
Together with my student Fu Li, we investigated in [13] the complexity of generating matrix identities

with the hope to develop a novel algebraic technique for establishing lower bounds on strong proof sys-
tems (one of the fundamental open problems in complexity). We show that for anyd and any finite set of
generators of the identities ofd × d matrix algebras (over a field), there is a family of polynomials that
requires many (namely,Ω(n2d)) generators to generate. Under further assumptions, this may lead to very
strong (up-to exponential) lower bounds on certain proofs of polynomial identities, and hence significantly
advance our understanding of the limits of efficient provability and computation.

Another important direction I have been involved in is the study ofaverage-caseunsatisfiability. To-
gether with M̈uller [15], I have established short propositional refutations for random 3CNF formulas in a
very weak propositional proof system. This places a stream of recent results on efficient refutation algo-
rithms usingspectral arguments—beginning in the work of Goerdt and Krivelevich (2001) and culminating
with the important results of Feige, Kim and Ofek (2006)—within the framework of propositional proofs.
Loosely speaking, we show that all these refutation algorithms and witnesses, considered from the perspec-
tive of propositional proofs, can be simulated efficiently within a very restricted proof systems.

In my work [21], I further show that tackling these spectral-based refutation algorithms from the per-
spective of propositional-proofs may have applications in actually solving an important open problem in the
frontiers of refutation algorithms: improving the current best efficientdeterministicrefutation algorithm for
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random 3SAT (the latter works only for the clause-to-variable densityΩ(n0.5); see [8]) so that it will work
already forΩ(n0.4) clause-to-variable density.
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