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Abstract

We use results from the theory of algebras with polynomial identities (PI algebras) to study
the witness complexity of matrix identities. A matrix identity of d× d matrices over a field F is
a non-commutative polynomial f(x1, . . . , xn) over F, such that f vanishes on every d×d matrix
assignment to its variables. For any field F of characteristic 0, any d > 2 and any finite basis of
d × d matrix identities over F, we show there exists a family of matrix identities (fn)n∈N, such
that each fn has 2n variables and requires at least Ω(n2d) many generators to generate, where
the generators are substitution instances of elements from the basis. The lower bound argument
uses fundamental results from PI algebras together with a generalization of the arguments in
[12].

We apply this result in algebraic proof complexity, focusing on proof systems for polynomial
identities (PI proofs) which operate with algebraic circuits and whose axioms are the polynomial-
ring axioms [13, 14], and their subsystems. We identify a decreasing in strength hierarchy of
subsystems of PI proofs, in which the dth level is a sound and complete proof system for proving
d × d matrix identities (over a given field). For each level d > 2 in the hierarchy, we establish
an Ω(n2d) lower bound on the number of proof-steps needed to prove certain identities.

Finally, we present several concrete open problems about non-commutative algebraic circuits
and speed-ups in proof complexity, whose solution would establish stronger size lower bounds
on PI proofs of matrix identities, and beyond.
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1 Introduction

Proof complexity studies the computational resources required to prove different statements in dif-
ferent proof systems. Beginning with the seminal work of Cook and Reckhow [8], proof systems
for propositional logic (or unsatisfiable CNF formulas) attracted most attention in proof complex-
ity research. It is however natural and interesting to investigate the complexity of proof systems
for languages different than propositional logic. One such language of interest is that of polyno-
mial identities written as algebraic circuits. Deciding the language of polynomial identities is the
Polynomial Identity Testing (PIT) problem.

An efficient probabilistic algorithm for PIT is known, due to Schwartz and Zippel [27, 29]:
when the field is sufficiently large, with high probability two different polynomials will differ on a
randomly chosen field assignment. However, whether the PIT problem is in P, namely is solvable
in deterministic polynomial-time, is a major open problem in computational complexity and deran-
domization theory. Moreover, even showing that there are subexponential-size witnesses (verifiable
in polynomial-time) witnessing that two algebraic circuits compute the same polynomial, consti-
tutes a major open problem. Formally, it is unknown whether PIT is in NSUBEXP (let alone in
NP; cf. Kabanets-Impagliazzo [18]).

Hrubeš-Tzameret [13] raised the question whether, assuming that the PIT problem does posses
short witnesses, a proof system using only symbolic manipulation (resembling a logical proof sys-
tem) is enough to provide these short witnesses. Or conversely, can we prove lower bounds on such
proofs? Lower bounding the size of such symbolic manipulation-based proofs would not rule out
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that PIT is in NP, but would at least show that certain methods and algorithms (those algorithms
whose run corresponds to a symbolic proof1) are incapable of establishing that PIT is in NP.

To this end, natural proof systems that operate with algebraic circuits and establish polynomial
identities (PI proof systems for short) were introduced and studied in [13, 14] (see also the survey
[23]). A PI proof starts from a set of axioms expressing properties of polynomials (e.g., distribu-
tivity and commutativity), and derives new identities between algebraic circuits, using successive
additions and multiplications of identities. It turned out that these proof systems are fairly strong:
PI proofs can simulate many non-trivial structural constructions from algebraic circuit complexity
and admit short proofs for quite a few identities of interest (see [13, 14]). Moreover, only lower
bounds on very restricted fragments of PI proofs are known [13], and apparently it is quite hard to
prove any (even polynomial-size) lower bounds on PI proofs (assuming any nontrivial lower bound
even exists). PI proofs over GF(2) were shown to constitute a subsystem of propositional (Ex-
tended Frege) proofs, and so understanding the complexity of PI proofs has important implications
in propositional proof complexity, as shown in [14] (cf. [23]).

In this paper, we continue the study of polynomial identities and their associated witness and
proof complexity. We focus on matrix identities; the language of matrix identities (written as non-
commutative algebraic circuits) constitutes a proper sub-language of polynomial identities. We are
interested in the following question: are there short witnesses for matrix identities, and specifically,
does every matrix identity have a short symbolic-proof (i.e., a proof that starts from axioms and
derives the identity step by step using symbolic manipulations)?

Matrix identities are simply non-commutative polynomials that vanish over any matrix assign-
ment. More precisely, for a polynomial f whose variables do not commute under multiplication
(hence, a non-commutative polynomial ), we can consider f as a polynomial over the matrix ring
of d × d matrices Matd(F), for some constant dimension d and field F. Then, the equation f = 0
means that f evaluates to the zero matrix for every Matd(F) assignment to its variables, in which
case we call f a matrix identity of Matd(F).

Similar to polynomial identities, matrix identities can be decided in probabilistic polynomial-
time (over sufficiently large fields).2 But as far as we know, it is open whether matrix identities
can be decided in deterministic polynomial-time, or posses sub-exponential witnesses. Thus, it
is interesting to study whether matrix identities admit short symbolic proofs and establish lower
bounds on these proofs, as a way to better understand the witness-complexity of matrix identities.

Furthermore, the proof complexity of matrix identities is interesting from the pure proof com-
plexity perspective, since proof systems for matrix identities are subsystems of PI proofs, for which
we lack any nontrivial lower bound. Matrix identities seem like a good step towards PI proofs
lower bounds, since they posses more structure than (commutative) polynomial identities. Indeed,
the languages of matrix identities, of increasing dimensions, create a fine spectrum: on the one
extreme we have (commutative) polynomial identities (i.e., identities of Mat1(F)), on the other
extreme non-commutative polynomial identities, and in between we have the languages of d × d
matrix identities, for increasing d’s (cf. Chien and Sinclair [5]). (Note that the language of d × d
matrix identities is contained in the language of matrix identities of lower dimensions.)

The complexity of non-commutative identities (written as algebraic formulas) is quite well
understood: by Raz and Shpilka [24] it is decidable in P (see also the recent work of Arvind

1Like the run of a (DPLL based) SAT-solver on unsatisfiable instances corresponds to a resolution refutation [ 1].
2If we randomly choose scalar matrices αI, for α a field element and I the identity matrix, then with high

probability a non-identity evaluates to a nonzero matrix under the assignment (similar to the commutative case).
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et al. [3] and references therein). So, informally, the spectrum from (commutative) polynomial
identities to non-commutative identities becomes apparently easier to decide as we get closer to
non-commutative identities (intuitively, as we progress into “less commutative” polynomial rings
we have less dependencies between variables and thus identities become easier to track).

Our first goal will be to investigate the complexity of generating matrix identities, measured
by the minimal number of generator instances needed to generate a given identity. We establish
unconditional lower bounds on this measure. Our second goal, is to introduce sound and complete
proof systems for establishing matrix identities (of increasing dimensions). These proof systems are
subsystems of PI proof systems, and form a hierarchy of subsystems within PI proofs (whose first
level coincides with PI proofs). Moreover, these proof systems are robust in the sense that for each
level the choice of different axioms can only cost up to a polynomial increase in size. Using our
first result, we show the existence of matrix identities that require many (i.e., Ω(n2d)) proof-steps.
Our final goal is to present two natural open problems, one about algebraic circuit complexity and
another about proof complexity, based on which up to exponential-size lower bounds on PI proofs
(for matrix identities suitably encoded) in terms of the size of the identities proved, follow. We also
discuss possible connections to propositional proof complexity lower bounds.

2 Overview of Results

This section provides some necessary definitions and a detailed overview of our results.

2.1 Polynomial and Matrix Identities

For a field F let A be a non-commutative (associative and with a unity) F-algebra; e.g., the algebra
Matd(F) of d×d matrices over F. Formally, A is an F-algebra if A is a vector space over F together
with a distributive multiplication operation; where multiplication in A is associative (but it need not
be commutative) and there exists a multiplicative unity in A. We always assume, unless explicitly
stated otherwise, that the field F has characteristic 0 (when we write “any field” we also include
fields of finite characteristics).

Denote by F[X] the ring of (commutative) polynomials with coefficients from F and variables
X := {x1, x2, . . . }. A polynomial is a formal linear combination of monomials, where a mono-
mial is a product of variables. Two polynomials are identical if all their monomials have the same
coefficients. A non-commutative polynomial over the field F is a formal linear combination
of monomials, where the product of variables is non-commuting. Since most polynomials in this
work are non-commutative, unless otherwise stated when we talk about polynomials we will mean
non-commutative polynomials. Nevertheless, to avoid confusion many times we will write in brack-
ets whether a polynomial is commutative or non-commutative. The ring of (non-commutative)
polynomials with variables X and over the field F is denoted F〈X〉. We say that the polynomial
f(x1, . . . , xn) ∈ F〈X〉 is an identity of the algebra A, if for all c ∈ An, f(c) = 0. In particular, when
A is Matd(F) we say that f is a matrix identity of Matd(F). A substitution instance of a
polynomial g(x1, . . . , xn) ∈ F〈X〉 is a polynomial g(h1, . . . , hn), for some hi ∈ F〈X〉, i ∈ [n].

2.2 Stratification

A matrix identity is a non-commutative polynomial vanishing over all assignments of matrices to
variables. Consider the algebra of 1× 1 “matrices” Mat1(F), for F a field of characteristic 0. Its set
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of identities consists of all the non-commutative polynomials that vanish over field elements. Since,
by definition, the field is commutative, the identities of Mat1(F) can be considered as the set of all
(commutative) polynomial identities (written as non-commutative polynomials); in other words,
these are the non-commutative polynomials such that for every multiset of variables

{
xij : j ∈ J

}

the sum of coefficients of all monomials that are products of the variables in the multiset (with any
product orders) is zero. For example, x1x2x141 − 1

2x2x141x1 − 1
2x2x1x141 is a nonzero polynomial

in F〈X〉 that is an identity of Mat1(F).3 Equivalently, the identities of Mat1(F) are all non-
commutative polynomials in the two-sided ideal generated by the commutators xixj − xjxi, for
every pair of variables xi, xj .

Using matrix identities of increasing dimensions d we obtain a stratification of the language of
(commutative) polynomial identities, i.e., of the matrix identities of Mat1(F) (see Figure 1). Namely,
we obtain the following strictly decreasing (with respect to containment) chain of languages:

(commutative) polynomial identities = Mat1(F)-identities ) Mat2(F)-identities ) . . .

) Matd(F) ) Matd+1(F) ) . . .

The fact that the identities of Matd+1(F) are also identities of Matd(F) is easy to show. The fact
that the chain above is strictly decreasing can be proved either by elementary methods [17] or as
a corollary of [2].

2.3 Algebraic Circuits

Let F be a field. Algebraic circuits and formulas over F compute (commutative) polynomials in
F[X] via addition and multiplication gates, starting from the input variables and constants from
the field. More precisely, an algebraic circuit F is a finite directed acyclic graph (DAG) with input
nodes (i.e., nodes of in-degree zero) and a single output node (i.e., a node of out-degree zero). Input
nodes are labeled with either a variable or a field element in F. All the other nodes have in-degree
two (unless otherwise stated) and are labeled by either an addition gate + or a product gate ×.
An input node is said to compute the variable or scalar that labels itself. A + (or ×) gate is said to
compute the addition (product, resp.) of the (commutative) polynomials computed by its incoming
nodes. An algebraic circuit is called a formula, if the underlying directed acyclic graph is a tree
(that is, every node has at most one outgoing edge). The size of a circuit F is the number of nodes
in it, denoted |F |, and the depth of a circuit is the length of the longest directed path in it.

A non-commutative circuit is an algebraic circuit in which the children of product gates have
order, so that a product gate is said to compute the non-commutative polynomial obtained by multi-
plying the (non-commutative) polynomial computed by the left child with the (non-commutative)
polynomial computed by the right child (in this order). A non-commutative formula is a non-
commutative circuit whose underlying directed acyclic graph is a tree.

For a (commutative or non-commutative) algebraic circuit F we denote by F̂ the (commutative
or non-commutative, resp.) polynomial computed by F .

We say that two algebraic circuits F, F ′ are similar if F and F ′ are syntactically identical when
both are un-winded into formulas (a circuit is un-winded into a formula by duplicating every node
in the directed acyclic graph that has a fan-out bigger than one, obtaining a tree instead of a DAG).

3Note that the problem of deciding the language of (commutative) polynomial identities (the PIT problem)
written as algebraic circuits is identical to the problem of deciding the language of Mat 1(F) identities written as
non-commutative algebraic circuits.
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The similarity relation can be decided in polynomial time (cf. [16]). For example, the following two
circuits are similar, since the formula to the left is obtained by un-winding the circuit to the right
into a formula (cf. [14]):

1�
�

+
@@

x5

��
×
A
AA

x5 1�
�

+
@@

x5

��
×

�
��

2.4 Proofs of Matrix Identities

We now introduce a hierarchy of proof systems for matrix identities. Each level d of the hierarchy
proves d × d matrix identities over a given field. We begin with polynomial identities (PI) proofs.

2.4.1 Polynomial Identities Proofs

PI proofs as initially introduced in [13], denoted PIc (and PIc(F) when we wish to be explicit
about the field F), are sound and complete proof systems for the set of (commutative) polynomial
identities of F, written as equations between algebraic circuits. A PI proof starts from axioms like
associativity, commutativity of addition and product, distributivity of product over addition, unit
element axioms, etc., and derives new equations between algebraic circuits F = G using rules for
adding and multiplying two previous identities. The axioms of PIc express reflexivity of equality,
commutativity and associativity of addition and product, distributivity, zero element, unit element,
and true identities in the field.

Algebraic circuits in PI proofs are treated as purely syntactic objects (similar to the way a
propositional formula is a syntactic object in propositional proofs). Thus, simple computations
such as multiplying out brackets, are done explicitly, step by step.

Definition 1 (System PIc(F), [13, 14]). The system PIc(F) proves equations of the form F = G,
where F,G are algebraic circuits over F. The inference rules of PIc are (with F,G,H ranging over
all algebraic circuits, and where an equation below a line can be inferred from the one above the
line):

F = G

G = F

F = G G = H

F = H

F1 = G1 F2 = G2

F1 ◦ F2 = G1 ◦ G2
for ◦ ∈ {+, ∙} .

The axioms of PIc are the following (again, F,G,H range over algebraic circuits):

F = F F + (G + H) = (F + G) + H

F + G = G + F F ∙ (G ∙ H) = (F ∙ G) ∙ H

F ∙ G = G ∙ F F ∙ (G + H) = F ∙ G + F ∙ H

F + 0 = F F ∙ 0 = 0

F ∙ 1 = F

a = b + c , a′ = b′ ∙ c′ , when a, b, c, a′, b′, c′ ∈ F, and the equations hold in F ;

F = F ′ , when F, F ′ are similar circuits.

A PIc proof is a sequence of equations (called proof-lines) F1 = G1, F2 = G2, . . . , Fk = Gk, with
Fi, Gi circuits, such that every equation is either an axiom or was obtained from previous equations
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by one of the inference rules. The size of a proof is the total size of all circuits appearing in the
proof. The number of steps in a proof is the number of proof-lines in it.

A PI proof can be verified for correctness in polynomial-time (assuming the field has efficient
representation; e.g., the field of rational numbers).

2.4.2 Matrix Identities Proofs

To define proof systems for matrix identities we need the concept of a basis of a set of identities of
a given F-algebra A (e.g., the matrix algebra Matd(F)).

Definition 2 (Basis). We say that a set of non-commutative polynomials B forms a basis for
the identities of an F-algebra A, if the following holds: for every identity f of A there exist non-
commutative polynomials g1, . . . , gk, for some k, that are substitution instances (see Sec. 2.1) of
polynomials from B, and such that f is in the two-sided ideal 〈g1, . . . , gk〉 .

Notice that if we take out the “commutativity axiom”

F ∙ G = G ∙ F

from PIc proofs, we get a proof system that establishes non-commutative polynomial identities
written as non-commutative algebraic circuits. The reason why we can consider this proof system
as operating with non-commutative algebraic circuits is that, as mentioned above, circuits in PIc

proofs are treated as syntactic objects and so product gates have order on their children and thus
can be considered as either computing commutative or non-commutative polynomials.

Accordingly, to define proof systems for matrix identities we replace the commutativity axiom
with polynomials from a basis of Matd(F), as shown below. Intuitively, the basis of Matd(F)-
identities can be thought of as higher-order commutativity axioms.

For any field F of characteristic 0, any d ≥ 1, and any basis B of the identities of Matd(F),
we define the following proof system PIMatd

(F), which is sound and complete for the identities of
Matd(F) written as equations between non-commutative circuits:

Definition 3 (Proof system PIMatd
(F)). Let B = {B1, . . . , Bk} ⊂ F〈X〉 be a finite basis of Matd(F)-

identities, and let H1, . . . , Hk be non-commutative algebraic circuits such that Ĥi = Bi, for all
i ∈ [k]. The proof system PIMatd

(F) is defined by taking PIc(F) (Definition 1) and replacing the
commutativity axiom F ∙G = G∙F by the set of axioms H1 = 0, . . . , Hk = 0. Additionally, PIMatd

(F)
has the axioms of distributivity of product over addition from both left and right: F ∙ (G + H) =
F ∙ G + F ∙ H and (G + H) ∙ F = G ∙ F + H ∙ F .4

Note that PIc(F) is equivalent to PIMat1(F), since the commutator [g, h] is an axiom of PIc(F)
and the commutator is a basis of the identities of Mat1(F) (and the two distributivity axioms
polynomially simulate each other using the commutator axiom, and so they do not add more power
to the system PIMat1(F)).

Figure 1 illustrates the languages of matrix identities written as non-commutative circuits and
their corresponding proof systems.

4This is needed because we do not have anymore the commutativity axiom in our system to simulate both of these
two distributivity axioms.
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(Commutative) Polynomial Identities

Mat2(F)-identities

overF (= Mat1(F)-identities)

Mat3(F)-identities

Mat4(F)-identities

PI proof systemPIc(F)

PIMat2(F)

PIMat3(F)

PIMat4(F)

Figure 1: A schematic illustration of the languages of polynomial identities and their corresponding proof systems.
The largest language is that of commutative polynomial identities written as non-commutative circuits (see Section
2.2).

PIMatd
(F) proofs are robust proof systems in the sense that different choices of finite bases B

can only increase the number of lines in a PIMatd
(F)-proof by a constant factor. That is, for any

fixed field F and fixed d ≥ 1, replacing the axioms in PIMatd
(F) with any other finite set of axioms

that are complete for Matd(F)-identities will amount to a proof system that polynomially simulates
PIMatd

(F) (when we use the gates algebraic gates ∙, +, and field elements).

2.5 Main Lower Bound

Our main result is an unconditional lower bound on the size (in fact the number of proof-lines) of
PIMatd

(F) proofs, for any d, in terms of the number of variables n in the matrix identity proved:

Theorem 5 (Main lower bound). Let F be any field of characteristic 0, let d > 2 be any natural
number and B be any finite basis of the identities of Matd(F). Then, there exists a family of
identities (fn)n∈N of Matd(F) each with degree 2d + 1 and 2n variables, such that any PIMatd

(F)
proof of fn requires Ω(n2d) proof-lines.

The proof of the main lower bound is explained in the following subsection, and is based on a
complexity measure defined on matrix identities and their generation in a (two-sided) ideal. The
complexity measure is interesting by itself, and can be applied to identities of any algebra with
polynomial identities (PI-algebras; see [26, 10] for the theory of PI-algebras), and not only matrix
identities.

Comments. (i) When d = 2, our proof, showing the lower bound for every basis B of the identities
of Mat2(F), does not hold (see final paragraph of Section 5.1.3 for an explanation).

(ii) The hard instance in the main lower bound theorem is non-explicit. Thus, we do not know
if there are small non-commutative circuits computing the hard instances. This is the reason the
lower bound holds only with respect to the number of variables n in the hard-instances and not with
respect to its circuit size—the latter is the more desired result in proof complexity. Section 6 sets
out an approach to achieve this latter result. However, we emphasize that in proof complexity non-
explicit lower bounds are almost as interesting as explicit ones, and that for strong enough proof
systems no non-explicit lower bounds are known to date (in contrast to Boolean circuit complexity
in which explicitness plays a crucial role in lower bound results).
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(iii) The proof-systems PIMatd
(F) are defined using a finite basis of the identities of Matd(F).

An interesting feature of our proof (and theorem), is that it is an open problem to describe bases
of the identities of Matd(F), for any d > 2. (For the case d = 2 the basis is known by Drensky [9]).
However, a highly nontrivial result of Kemer [19], shows that for any natural d there exists a finite
basis for Matd(F).

(iv) We do not know if the hierarchy of proof systems PIMatd
(F) for increasing d’s is a strictly

decreasing hierarchy (since we do not know if PIMatd−1
(F) has any speed-up [namely, has smaller

size proofs for some instances] over PIMatd
(F) for identities of Matd(F)).

In the following section we give a detailed overview of the lower bound argument.

2.6 Proof Overview

Here we explain in details the complexity measure we define and how to obtain the lower bound
on this measure. This complexity measure is a lower bound on the minimal number of proof-lines
in a corresponding PIMatd

(F)-proof (for the case d = 1 this was observed in [12]), from which we
conclude Theorem 5.

2.6.1 Generative Complexity of Identities

Let B ∈ F〈X〉, and assume that A is an F-algebra and f is an identity of A. Define

QB(f)

as the minimal number k such that there exist g1, . . . , gk ∈ F〈X〉 that are all substitution instances
of polynomials in B, and such that f ∈ 〈g1, . . . , gk〉. (Note that different substitution instances of
the same polynomials from B are counted twice.) We call QB(f) the generative complexity of
f with respect to B.

We extend this definition by defining QB(f1, . . . , fm) as the minimal number k such that there
exist g1, . . . , gk ∈ F〈X〉 that are all substitution instances of polynomials in B, and fi ∈ 〈g1, . . . , gk〉,
for all i ∈ [m]. See Section 3.1 for more formal definitions.

Example: Let F be an infinite field and consider the field F itself as an F-algebra, denoted A . Then
the identities of A are all the polynomials from F〈X〉 that evaluate to 0 under every assignment
from F to the variables X. The identities of A are precisely the identities of Mat1(F) discussed
in Section 2.2. That is, these are the (non-commutative) polynomials that are identically zero
polynomials when considered as commutative polynomials.

It is not hard to show that the basis of the algebra A is the commutator x1x2 − x2x1, denoted
[x1, x2]. In other words, every identity of A is generated (in the two-sided ideal) by substitution
instances of the commutator. Considering Q{[x1,x2]}, we can now ask what is Q{[x1,x2]}(x1x3−x3x1+
x2x3 − x3x2)? The answer is 1, since we need only one substitution instance of the commutator to
generate the polynomial: (x1 + x2)x3 − x3(x1 + x2) = x1x3 − x3x1 + x2x3 − x3x2.

Hrubeš [12] showed the following lower bound (using a slightly different terminology):

Theorem 1 (Hrubeš [12]). For any field and every n, there exists an identity f ∈ F〈X〉 of A with
n variables, such that

Q{[x1,x2]}(f) = Ω(n2) .

It is also not hard to show that Q{[x1,x2]}(f) = O(n2) for any identity f .
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2.6.2 Lower Bounds on Generative Complexity

An algebra with polynomial identities, a PI-algebra for short, is an F-algebra that has a non-trivial
identity, that is, there is a nonzero f ∈ F〈X〉 that is an identity of the algebra.

We completely generalize Hrubeš [12] lower bound above (excluding the case d = 2), from a
lower bound of Ω(n2) for generating identities of Mat1(F) to a lower bound of Ω(n2d) for generating
identities of Matd(F), for any d > 2 and any field F of characteristic 0. We exploit results about
the structure of the identities of matrix algebras and the general theory of PI-algebras.

Theorem 4 (Lower bound on generative complexity). Let F be any field of characteristic 0. For
every natural number d > 2 and every finite basis B of the identities of Matd(F), there exists a
family of identities fn over Matd(F) of degree 2d + 1 and 2n variables, such that QB(f) = Ω(n2d).

Similar to [12], the lower bound in Theorem 4 is non-explicit.
Also, note that we do not know of an upper bound (in terms of n) that holds on QB(g), for

every identity g with n variables.
The main lower bound (Theorem 5) is a corollary of Theorem 4 and the following proposition:

Proposition 6. Let F be any field and let B be a finite basis of the identities of Matd(F). For every
identity f of Matd(F), if F is a non-commutative circuit that computes f , the number of proof-lines
in any PIMatd

(F) proof of F = 0 is lower bounded up to a constant factor (depending on the choice
of finite basis B) by QB(f).

Overview of the proof of Theorem 4. The study of algebras with polynomial identities
is a fairly developed subject (see for instance he monographs by Drensky [10] and Rowen [26]).
Within this field, perhaps the most well studied topic is about the identities of matrix algebras. In
particular, the well-known theorem of Amitsur and Levitzky from 1950 [2] is the following:

Amitsur-Levitzki Theorem ([2]). Let Sd be the permutation group on d elements and let
Sd(x1, x2, . . . , xd) denote the standard identity of degree d as follows:

Sd(x1, x2, . . . , xd) :=
∑

σ∈Sd

sgn(σ)
d∏

i=1

xσ(i).

Then, for any natural number d and any field F (in fact, any commutative ring) the standard
identity S2d(x1, x2, . . . , x2d) of degree 2d is an identity of Matd(F).

Theorem 4 is proved in several steps. The main argument can be divided into two main parts,
described as follows:

Part 1: We use the Amitsur-Levitzki Theorem to show that when E = {S2d(x1, . . . , x2d)} there
exists an fn ∈ F〈X〉 with 2n variables and degree 2d + 1, such that QE(f) = Ω(n2d). To this
end, we generalize the method in [12] to “higher order commutativity axioms”: using a counting
argument we show the existence of n special polynomials (that we call s-polynomials ; see Definition
8) P1, P2, . . . , Pn over n variables each of degree 2d such that QE(P1, . . . , Pn) = Ω(n2d) (see Lemma
11). Then, we combine the n s-polynomials into a single polynomial P ? with degree 2d + 1, by
adding n new variables, such that QE(P ?) = Ω(QE(P1, . . . , Pn)). (The polynomial P ? will constitute
the hard instance fn.)

See the proof of Lemma 11 for a concise overview of the counting argument we use.
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Part 2: In contrast to the case d = 1 in [12], E = {S2d(x1, . . . , x2d)} for d > 1, is known
not to be a basis of Matd(F), namely there are identities of Matd(F) that are not generated by
substitution instances of S2d (see [4, Sec. 2] and [10]) (also notice that QB(f) can be defined for
any set B ⊆ F〈X〉). In this part we show roughly that for the hard instances fn in Theorem 4 no
generators different from the S2d generators can contribute to its generation. More precisely, we
show that when d > 2, for all finite bases B of the identities of Matd(F), the following holds for fn:
QB(fn) ≥ c ∙ QE(fn) for some constant c that depends on B and d but not on n.

For this purpose, we find a special set B′ ⊆ F〈X〉 that serves as an “intermediate” set between
B and E , such that B is generated by B′, and all the polynomials in B′ that contribute to the
generation of the hard instance fn can be generated already by E . We then show (Corollary 19)
that for any basis B, there is a specific set B′ of polynomials of a special form, namely, multi-
homogenous commutator polynomials (Definition 9), that can generate B. Based on the properties
of multi-homogenous commutator polynomials, we show that, for the hard instance fn, only the
generators of degree at most 2d + 1 in B′ can contribute to the generation of fn (Lemma 23). We
then prove that when d > 2, all the generators of degree at most 2d + 1 in B′ can be generated by
E (this is where we use the assumption that d > 2 (see Lemma 22)). We thus get the conclusion
QB′(f) ≥ c ∙ QE(f), when d > 2.

2.7 Relation to Previous Work

As mentioned above, our work generalizes Hrubeš’ work [12]. That work also considered proving
quadratic size lower bounds on PI proofs PIc. It gave several conditions and open problems, under
which, quadratic size lower bounds on PI proofs would follow, and further, showed that the general
framework suggested may have potential, at least in theory, to yield Extended Frege quadratic-size
lower bounds; note however that Extended Frege quadratic-size lower bounds are already known,
since the same lower bound on Frege from [20] holds for Extended Frege5.

Hrubeš and Tzameret [14] obtained polynomial-size (algebraic and propositional) proofs for
certain (suitably encoded) identities concerning matrices. However, in the current work we are
studying matrix identities in which the number of matrices grows with the number of variables n
in the identity, whereas in [14] the number of matrices was fixed and only the dimension of the
matrices grows.

Other results connecting non-commutative polynomials and proof complexity is the recent work
of Li et at. [22] (and its precursor in [28]) showing that a non-commutative formula-based proof
system (formally, an Ideal Proof System certificate in the sense of Grochow and Pitassi [11], which is
written as a non-commutative formula and uses the commutators as additional axioms) is sufficient
to polynomially simulate Frege proofs (and over GF(2) is equivalent to Frege proofs up to quasi-
polynomial size factors).

3 More Formal Preliminaries

3.1 Algebras with Polynomial Identities

For a natural number n, put [n] := {1, 2, . . . , n}. We use lower case letters a, b, c for constants
from the underlying field, x, y, z for variables, x, y, z for vectors of variables, f, g, h, ` or upper case

5We thank Emil Jeřabek for drawing our attention to this fact.
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letters such as A,B, P,Q for polynomials and f, g, h, `, A,B, P ,Q, for vectors of polynomials (when
the arity of the vector is clear from the context).

Recall the definition of commutative and non-commutative polynomials from Section 2.1. For
two polynomials f(x1, . . . , xn) and g we sometimes denote the substitution instance f(h1, . . . , hn)
by f(h). For a polynomial f(x1, . . . , xn) ∈ F〈X〉, f

∣
∣
xi1
←gi1

,...,xik
←gik

denotes the polynomial that

replaces xi1 , . . . , xik by gi1 , . . . , gik in f, respectively, where gi1 , . . . , gik ∈ F〈X〉, i1, . . . , ik are distinct
numbers from [n] and k ∈ [n]. For a vector H of polynomials H1, . . . , Hk ∈ F〈X〉 where k is a
positive integer, we use the notation H|Hj←f , to denote the vector of polynomials that replaces the
jth coordinate Hj in H by a polynomial f ∈ F〈X〉, where j ∈ [k].

Let A be a vector space over a field F and ∙ : A × A → A be a distributive multiplication
operation. If ∙ is associative, that is, a1 ∙ (a2 ∙ a3) = (a1 ∙ a2) ∙ a3 for all a1, a2, a3 in A, then the pair
(A, ∙) is called an associative algebra over F, or an F-algebra, for short.6

The algebra of d×d matrices Matd(F), for some positive natural number d, with entries from F
(and with the usual addition and multiplication of matrices) is an example of an F-algebra. Note
that Matd(F) is an associative algebra but not a commutative one.

We can consider the ring of non-commutative polynomials F〈X〉 as the associative algebra of
all polynomials such that the variables X = {x1, x2, . . .} are non-commutative with respect to
multiplication. The ring F〈X〉 is also called the free algebra (over X).

We now define formally the concept of a polynomial identity algebra (mentioned before):

Definition 4. Let A be an F-algebra. An identity of A is a polynomial f(x1, . . . , xn) ∈ F〈X〉
such that:

f(a1, . . . , an) = 0, for all a1, . . . , an ∈ A.

A PI-algebra is an algebra that has a non-trivial identity, that is, there is a nonzero f ∈ F〈X〉
that is an identity of the algebra.

For example, every commutative F-algebra A is also a PI-algebra: for any u, v ∈ A, it holds that
uv − vu = 0, and so xixj − xjxi is a nonzero polynomial identity of A, for any positive i 6= j ∈ N.
A concrete example of a commutative algebra is the usual ring of (commutative) polynomials with
coefficients from a field F and variables X = {x1, x2, . . .}, denoted F[X].

An example of an algebra that is not a PI-algebra is the free algebra F〈X〉 itself. This is because
a nonzero polynomial f ∈ F〈X〉 cannot be an identity of F〈X〉 (since the assignment that maps
each variable to itself does not nullify f).

A two-sided ideal I of an F-algebra A is a subset of A such that for any (not necessarily
distinct) elements f1, . . . , fn from I we have

∑n
i=1 gi ∙ fi ∙ hi ∈ I, for all g1, . . . , gn, h1, . . . , hn ∈ A.

Definition 5. A T-ideal T is a two-sided ideal of F〈X〉 that is closed under all endomorphisms7,
namely, is closed under all substitutions of variables by polynomials.

In other words, a T-ideal is a two-sided ideal T , such that if f(x1, . . . , xn) ∈ T then
f(g1, . . . , gn) ∈ T , for any g1, . . . , gn ∈ F〈X〉.

It is easy to see the following:

Fact 2. The set of identities of an (associative) algebra is a T-ideal.

6In general an F-algebra can be non-associative, but since we only talk about associative algebras in this paper
we use the notion of F-algebra to imply that the algebra is associative.

7An algebra endomorphism of A is an (algebra) homomorphism A → A.

12



Recall the definition of a basis of a set of identities over an algebra (Definition 2). We repeat
here the definition of a basis, using the notion of a T-ideal. The basis of a T-ideal T is a set of
polynomials whose substitution instances generate T as an ideal :

Definition 6. Let B ⊆ F〈X〉 be a set of polynomials and let T be a T-ideal in F〈X〉. We say that
B is a basis for T or that T is generated as a T-ideal by B, if every f ∈ T can be written
as:

f =
∑

i∈I

hi ∙ Bi(gi1, . . . , gini) ∙ `i , (1)

for hi, `i, gi1, . . . , gini ∈ F〈X〉 and Bi ∈ B (for all i ∈ I).

Given B ⊆ F〈X〉, we write T (B) to denote the T-ideal generated by B. Thus, a T-ideal T is
generated by B ⊆ F〈X〉 iff T = T (B).

Examples: T (x1) is simply the set of all polynomials from F〈X〉. T (x1x2 − x2x1) is the set of all
non-commutative polynomials that are zero if considered as commutative polynomials.

We say that a polynomial f ∈ F〈X〉 is a consequence of the polynomials {Bi}i∈I , if f can be
written as in (1).

Note that the concept of a T-ideal is already reminiscent of logical proof systems, where gen-
erators of the T-ideal T are like axioms schemes and generators of a two-sided ideal containing f
are like substitution instances of the axioms.

A polynomial is homogenous if all its monomials have the same total degree. Given a poly-
nomial f , the homogenous part of degree j of f , denoted f (j) is the sum of all monomials with
total degree j. We write (C)(j) to denote the jth-homogeneous part of the circuit C, and given the

vector of circuits C = (C1, . . . , Ck) the vector
(
C
)(j)

denotes the vector (C(j)
1 , . . . , C

(j)
k ).

4 Complexity of Generating Matrix Identities

Here we formally define the complexity measure for generating a matrix identity. We repeat some
of the concepts introduced already in Section 2.6.

Let A be a PI-algebra (Definition 4) and let T be the T-ideal (Definition 5) consisting of all
identities of A (see Fact 2). Assume that B is a basis for the T-ideal T (Definition 6), that is,
T (B) = T . Then every f ∈ T is a consequence of B, that is, can be written as a combination of
substitution instances of polynomials from B, as follows:

f =
∑

i∈I

hi ∙ Bi(gi1, . . . , gini) ∙ `i , (2)

for hi, `i, gi1, . . . , gini ∈ F〈X〉 and Bi ∈ B (for all i ∈ I). A very natural question, from the
complexity point of view, is the following: How many distinct substitution instances of generators
are needed to generate f above?

Formally, we have the following:

Definition 7 (QB(f)). For any set of polynomials B ⊆ F〈X〉, define QB(f) as the smallest (finite)
k such that there exist substitution instances g1, . . . , gk of polynomials from B with

f ∈ 〈g1, . . . , gk〉,

where 〈g1, . . . , gk〉 is the two-sided ideal generated by g1, . . . , gk.
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Note that we do not need to assume that B is a basis of all identities of the algebra A to make
QB(F ) definable. If the set B is a singleton B = {h}, we can also write Qh(∙) instead of Q{h}(∙).
We also extend Definition 7 to a sequence of polynomials and let QB(f1, . . . , fn) be the smallest k
such that there exist some substitution instances g1, . . . , gk of polynomials from B with

fi ∈ 〈g1, . . . , gk〉, for all i ∈ [k].

Notice that QB(f) is interesting only if f is not already in the generating set. Hence, we need
to make sure that the generating set does not contain f and the easiest way to do this (when
considering asymptotic growth of measure) is by stipulating the the generating set is finite. Given
an algebra, the question whether there exists a finite generating set of the T-ideal of the identities of
the algebra is a highly non-trivial Specht Problem. Fortunately, for matrix algebras we can use the
solution of the Specht problem given by Kemer [19]. Kemer showed that for every matrix algebra
A there exists a finite basis of the T-ideal of the identities of A. The problem to actually describe
such a finite basis for most matrix algebras (namely for all values of d, for Matd(F)) is open.

We have the following simple proposition, which is analogous to a certain extent to the fact
that every two (Frege) propositional proof systems polynomially simulate each other (cf. [20]):

Proposition 3 (Robustness of Q-measure). Let A be some F-algebra and let B0 and B1 be two
finite bases for the identities of A. Then, there exists a constant c (that depends only on B0, B1)
such that for any identity f of A:

QB0(f) ≤ c ∙ QB1(f).

Proof. Assume that B0 = {A1, . . . , Ak} and B1 = {B1, . . . , B`}. And suppose that QB1(f) = q and
f ∈

〈
Bi1(g1), . . . , Biq(gq)

〉
, for ij ∈ [`] and where gj ∈ F〈X〉 are the substitutions of polynomials for

the variables of Bij . By assumption that both B0 and B1 are bases for A, there exists a constant r

such that Bij ∈
〈
Aj1(hj1), . . . , Ajr(hjr)

〉
, for all j ∈ [q], and where hjl

∈ F〈X〉 are the substitutions
of polynomials for the variables of Ajl

, for any l ∈ [r] (formally, r = max{QB0(Bi) : i ∈ [`]}).
Note that if Bij ∈

〈
Aj1(hj1), . . . , Ajr(hjr)

〉
, then for any substitution gj (of polynomials to

the variables X) we have Bij (gj) ∈
〈(

Aj1(hj1)
)
(gj), . . . ,

(
Ajr(hjr)

)
(gj)

〉
. Thus, every Bij (gj) is

generated by r substitution instances of polynomials from B0, for any j ∈ [q]. Therefore, f can be
generated with at most r ∙ q substitution instances of generators from B0, that is,

QB0(f) ≤ r ∙ QB1(f), where r = max{QB0(Bi) : i ∈ [`]}. (3)

QED

5 Main Lower Bound

Here we prove our main lower bound on the generative complexity of matrix identities (restated
from Section 2.6.2):

Theorem 4. Let F be a field of characteristic 0. For every natural number d > 2 and for every
finite basis B of the T-ideal of identities of Matd(F), there exists an identity P over Matd(F) of
degree 2d + 1 with n variables, such that QB(P ) = Ω

((
n
2d

))
= Ω(n2d).
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It is interesting to point out that although we do not necessarily know what is the (finite)
generating set of Matd(F) we still can lower bound the number of generators needed to generate
certain identities. This is due to the fact that we know some finite bases exist, and further we will
have some information on the generating set of the hard instances considered (see Section 5.1.3).

As a corollary of Theorem 4 we obtain the main proof complexity lower bound (restated from
Section 2.5):

Theorem 5 (Main lower bound). Let F be any field of characteristic 0. For any natural number
d > 2 and every finite basis B of the identities of Matd(F), there exists an identity f over Matd(F)
of degree 2d + 1 with n variables, such that any PIMatd

(F)-proof of f requires Ω(n2d) proof-lines.

Assuming Theorem 4, to prove 5 it suffices to prove the following proposition:

Proposition 6. Let F be any field and let B be a finite basis of the identities of Matd(F). For every
identity f of Matd(F), if F is a non-commutative circuit that computes f , the number of lines in
a PIMatd

(F) proof of F = 0 is lower bounded up to a constant factor (depending on the choice of
finite basis B) by QB(f).

Proof. Let π be a PIMatd
(F) proof of F = 0 and let T be the set of all the basis B axioms used in

π, namely, T consists of all the equations H = 0 in π, where H is a substitution instance of some
B ∈ B. It suffices to show that |T | ≥ QB(f), which will follow by showing that

f ∈
〈
h ∈ F〈X〉 : h = Ĥ and (H = 0) ∈ T

〉
. (4)

(4) is proved by a straightforward induction on the number of proof-lines in π (because every
PIMatd

(F) proof can be seen as computing in the ideal generated by the proof lines). QED

5.1 Lower Bound Proof

We start by proving a lower bound on QS2d
, that is, we prove a lower bound on the number of

substitution instances of S2d identities needed to generate a certain identity (though S2d is not
known to be the basis of the T-ideal of the identities over Matd(F)) .

Lemma 7. For any natural d ≥ 1 and any field F of characteristic 0 there exists a polynomial
P ∈ Matd(F) of degree 2d + 1 with n variables such that QS2d

(P ) = Ω(n2d).

Comment: It can be shown that the lemma also holds for any finite field F. Since in Section
5.1.3 we need to assume that the field is of characteristic 0, we prove the lemma only for fields of
characteristic 0 .

We introduce the following definition:

Definition 8. A polynomial P ∈ F〈X〉 with n variables x1, . . . , xn is called an s-polynomial if:

P =
∑

j1<j2<...<j2d∈[n]

cj1j2...j2d
∙ S2d (xj1 , . . . xj2d

) ,

for some natural d and constants cj1j2....j2d
∈ {0, 1}, for all j1 < j2 < . . . < j2d ∈ [n].
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Lemma 8. For any P1, . . . , P2d ∈ F〈X〉 where d is a positive integer, S2d(P1, . . . , P2d) is the zero
polynomial if there exists i ∈ [2d] such that Pi is a constant.

Proof. Assume Pδ = c ∈ F, for some δ ∈ [2d]. Given i1 6= i2 6= . . . 6= i2d−1 ∈ [n] \ δ, let σm denote
the permutation (

1 2 . . . m − 1 m m + 1 . . . 2d
i1 i2 . . . im−1 δ im . . . i2d−1

)

.

Then,

S2d(P1, . . . , P2d) =
∑

σ∈S2d

sgn(σ)
2d∏

i=1

Pσ(i) (by definition)

=
∑

i1 6=i2 6=... 6=i2d−1∈[2d]\δ

2d∑

m=1

sgn(σm)
m−1∏

j=1

PijPδ

2d−1∏

j=m

Pij

= c ∙




∑

i1 6=i2 6=... 6=i2d−1∈[2d]\δ

(
2d∑

m=1

sgn(σm)

)
2d−1∏

j=1

Pij





= c ∙




∑

i1 6=i2 6=... 6=i2d−1∈[2d]\δ

(
d∑

m=1

(sgn (σ2m−1) + sgn(σ2m))

)
2d−1∏

j=1

Pij





= c ∙




∑

i1 6=i2 6=... 6=i2d−1∈[2d]\δ

(
d∑

m=1

0

)
2d−1∏

j=1

Pij



 = 0 .

QED

Recall that for a polynomial g, g(i) stands for the homogenous component of degree i of g. Any
s-polynomial has the following property:

Lemma 9. Let f be an s-polynomial. If there exist vectors of polynomials P1, . . . , Pr with

f ∈
〈
S2d(P1), . . . , S2d(Pr)

〉
,

then there are constants ci’s such that

f =
r∑

i=1

ciS2d

((
Pi

)(1)
)

.

Proof. Notice that the s-formula f is 2d-homogenous. Thus,

f = (f)(2d) ∈
{

(h)(2d)
∣
∣ h ∈

〈
S2d(P1), . . . , S2d(Pr)

〉}
.

That is,

f ∈
〈
S2d(P1)

(2d), . . . , S2d(Pr)
(2d)
〉

.

Claim 10. For any sequence P of 2d polynomials, S2d(P )(2d) = S2d

((
P
)(1)
)
.
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Proof of claim : Note that

S2d(P)(2d) = S2d

((
P
)(1)
)

+
∑

j1+...+j2d=2d and ∃i∈[2d],ji 6=1

S2d

(
(P )(j1) , . . . , (P )(j2d)

)
.

But every summand in the rightmost term must have jr = 0 for some r ∈ [2d] (since otherwise
j1 + . . . + j2d > 2d). Thus, by Lemma 8, every summand in the rightmost term is zero. Claim

By this claim we have

f ∈
〈
S2d

((
P1

)(1)
)

, . . . , S2d

((
Pr

)(1)
)〉

.

That is,

f =
r∑

j=1

tj∑

i=1

AjiS2d

((
Pj

)(1)
)

Bji, for some Aji, Bji ∈ F〈X〉.

Moreover,
(
AjiS2d

((
Pj

)(1)
)

Bji

)(2d)
= (AjiBji)

(0) S2d

((
Pj

)(1)
)

.

And thus,

f =
r∑

j=1

cjS2d

((
Pj

)(1)
)

,

where cj is the constant
∑tj

i=1 (AjiBji)
(0), for any j ∈ [r]. QED

5.1.1 The Counting Argument

Notation. If B ⊆ F〈X〉 contains only one polynomial g, then we write Qg(∙) instead of QB(∙),
to simplify the writing. Note that B may not be a basis for the algebra considered (e.g., we may
consider identities of the Matd(F) generated by some B, where B is not a basis for (all) the identities
of Matd(F)).

Lemma 11. For any field F of characteristic 0, there exist s-polynomials P1, . . . , Pn which are iden-
tities of Matd(F) in n variables, such that QS2d

(P1, . . . , Pn) = Ω(n2d), and where QS2d
(P1, . . . , Pn)

is finite.

In Section 5.1.3 we show that, if F is of characteristic 0 then this lower bound holds for any
finite basis of Matd(F), namely for QB , where B is any finite basis of Matd(F).

Proof. We prove, by a generalization of the counting argument from [12], that there exists a se-
quence of polynomials P1, . . . , Pn that require Ω

(
n2d
)

substitution instances of the S2d(x1, . . . , x2d)
identities to generate (all of the polynomials in the sequence) in a two-sided ideal.
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Informal overview of proof. First, we show that the total number of n-tuples of s-formulas
is 2n( n

2d). Each Pi is determined by the degree-2d standard polynomials we choose, out of the
(

n
2d

)
possibilities (the coefficients of each standard polynomial is 0-1), which amounts to 2( n

2d)

possibilities. This is powered by n because we need to choose n such Pi’s. We thus get 2n( n
2d).

Second, for any `, we count the total number of n-tuples of s-polynomials that can be generated
with ` substitution instances of degree-2d standard polynomials. By Lemma 9, we can assume
without loss of generality that all the generators are standard polynomials of degree 2d in which
we substitute variables by homogenous linear forms with n variables. Thus, for every i ∈ [n],

Pi =
∑̀

j=1

cijs2d(l1, . . . , l2d), for linear homogenous forms lj ’s, and cij ’s in F.

Then, the total number of different possible such n-tuples P1, . . . , Pn is the total number of choices
of scalars cij , for i ∈ [n], j ∈ [`], and additionally the total number of choices of ` tuples l1, . . . , l2d

of homogenous linear forms. Each li is an n-variate homogenous linear form so we have to pick n
scalars for it. Altogether we have 2dn` + n` = (2d + 1)n` scalar choices to make, namely we have
|F|(2d+1)n` possibilities. Assuming |F| is finite and constant, we get that

2n( n
2d) ≤ |F|(2d+1)n`,

implying that ` = Ω(n2d). The same can be shown for infinite fields.

Formal proof. Recall that an s-polynomial (Definition 8) is of the following form:

∑

j1<j2<...<j2d∈[n]

cj1j2∙∙∙j2d
S2d(xj1 , xj2 , . . . , xj2d

), where cj1j2∙∙∙j2d
∈ {0, 1} .

Assume that

` = max {QS2d
(P1, . . . , Pn) : Pi is an s-polynomial, for all i ∈ [n]} .

Then for any choice of n s-polynomials P1, . . . , Pn there are ` vectors of polynomials Q1, . . . , Q`

(defining the substitution instances of generators) from F〈X〉, such that

P1, . . . , Pn ∈
〈
S2d(Q1), . . . , S2d(Q`)

〉
.

By Lemma 9, for every i ∈ [n],

Pi =
∑̀

u=1

ciuS2d

(
Qu

(1)
)

=
∑̀

u=1

ciuS2d




n∑

j=1

au1jxj ,
n∑

j=1

au2jxj , . . . ,
n∑

j=1

au(2d)jxj



 ,

for some ciu, aukj ∈ F, for u ∈ [`], k ∈ [2d], j ∈ [n].

We will consider the scalars in the equation above (over all i ∈ [n]) as vectors of the following form:

(
c11, c12, . . . , cn`, a111, a112, . . . , a`(2d)(n−1), a`(2d)n

)
. (5)
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By linearity of S2d, for all i ∈ [n],

∑̀

u=1

ciuS2d




n∑

j=1

au1jxj ,
n∑

j=1

au2jxj , . . . ,
n∑

j=1

au(2d)jxj



 =

∑

j1<j2<...<j2d∈[n]

γij1j2∙∙∙j2d
S2d(xj1 , xj2 , . . . , xj2d

) , for some γij1j2∙∙∙j2d
’s in F. (6)

A polynomial map μ : Fs → Fm of degree d > 0 is a map μ = (μ1, . . . , μm), where each μi is a
(commutative) multivariate polynomial of degree d with s variables.

Claim. Consider the coefficients ciu, aukj , for i ∈ [n], u ∈ [`], k ∈ [2d], j ∈ [n], and the coefficients
γij1j2∙∙∙j2d

in (6), for j1 < j2 < . . . < j2d ∈ [n], i ∈ [n], as variables. Then, (6) defines a degree-

(2d + 1) polynomial map φ : F(2d+1)n` → Fn( n
2d) that maps each vector (5) to a vector

(γij1j2∙∙∙j2d
: j1 < j2 < . . . < j2d ∈ [n], i ∈ [n]) .

We omit the details of the proof of this claim. We have the following lemma by Hrubeš and
Yehudayoff [15]:

Lemma 12 ([15], Lemma 5). For any field F, if μ : Fs → Fm is a polynomial map of degree r > 0,
then |μ(Fs)

⋂
{0, 1}m| ≤ (2r)s.

Using Lemma 12, for the degree-(2d + 1) polynomial map φ : F(2d+1)n` → Fn( n
2d), we have

∣
∣
∣φ(F(2d+1)n`)

⋂
{0, 1}n( n

2d)
∣
∣
∣ ≤ (2(2d + 1))(2d+1)n` .

Denote by γ a 0-1 vector (γ1j1j2∙∙∙j2d
, . . . , γnj1j2∙∙∙j2d

), where γij1j2∙∙∙j2d
∈ {0, 1} , j1 < j2 < . . . <

j2d ∈ [n], i ∈ [n]. Since for every possible γ, the following polynomials are s-polynomials:

∑

j1<j2<...<j2d∈[n]

γ1j1j2∙∙∙j2d
S2d(xj1 , xj2 , . . . , xj2d

), . . . ,
∑

j1<j2<...<j2d∈[n]

γnj1j2∙∙∙j2d
S2d(xj1 , xj2 , . . . , xj2d

),

there exist ` vectors of polynomials Q1, . . . , Q` in F〈X〉, such that

∑

j1<j2<...<j2d∈[n]

γij1j2∙∙∙j2d
S2d(xj1 , xj2 , . . . , xj2d

) ∈
〈
S2d(Q1), . . . , S2d(Q`)

〉
, i ∈ [n].

That is, there exists a vector v =
(
c11, c12, . . . , cn`, a111, a112, . . . , a`(2d)(n−1), a`(2d)n

)
, such that

φ(v) = γ. Hence, every possible γ belongs to φ(F(2d+1)nl)
⋂

{0, 1}n( n
2d) . Further, there are 2n( n

2d)

distinct vectors γ. Therefore,
∣
∣
∣φ(F(2d+1)nl)

⋂
{0, 1}n( n

2d)
∣
∣
∣ ≥ 2n( n

2d).

This implies that
(2(2d + 1))(2d+1)nl ≥ 2n( n

2d).
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Using the ln function on both sides we have

(2d + 1)nl ln(2(2d + 1)) ≥ n

(
n

2d

)

ln 2.

Hence,

l >

(
n
2d

)
ln 2

(2d + 1) ln(4d + 2)
.

Namely,

l > c

(
n

2d

)

= c
n(n − 1) ∙ ∙ ∙ (n − 2d + 1)

(2d)!
= Ω

(
n2d
)

,

(for c a constant independent of n). QED

5.1.2 Combining the Polynomials into One

Here we show that there exists a single polynomial, denoted P ?, such that QS2d
(P ?) = Ω(n2d).

This is done in a manner resembling [12]; however, there is a further complication, that is dealt via
Lemma 14.

Lemma 13. Let P1, . . . , Pn be s-polynomials in n variables x1, . . . , xn, and let z1, . . . , zn be new
variables, different from x1, . . . , xn. Let P ?:=

∑n
i=1 ziPi. Then

QS2d
(P ?) ≥

1
2d + 1

QS2d
(P1, . . . , Pn). (7)

Specifically, for any field F of characteristic 0 and every d ≥ 1, there exists a polynomial with n
variables such that QS2d

(P ?) = Ω(n2d).

Proof. For convenience, we call the new variables z1, . . . , zn the Z-variables. Given a polynomial
f , the Z-homogenous part of degree j of f , denoted (f)(j)Z , is the sum of all monomials where
the total degree of the Z-variables is j. For example if f = z1xy + z2z1 + z3x + 1 + x, then
(f)(1)

Z = z1xy + z3x, (f)(2)
Z = z2z1, (f)(0)

Z = 1 + x. A polynomial that does not contain any
Z-variable is said to be Z-free.

First, we claim the P ? has the following property:

Claim. For any ` Z-free polynomials G1, G2, . . . , G` ∈ F〈X〉, if

P ? ∈
〈
S2d(G1), . . . , S2d(G`)

〉
,

then
P1, . . . , Pn ∈

〈
S2d(G1), . . . , S2d(G`)

〉
.

Proof of claim : Since P ? ∈
〈
S2d(G1), . . . , S2d(G`)

〉
,

P ? =
n∑

i=1

ziPi =
∑̀

j=1

tj∑

i=1

fjiS2d(Gj)gji ,

for some fji, gji ∈ F〈X〉 and some tj ’s.
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Note that we cannot assume that tj ≤ `, because of non-commutativity: for instance it might
happen that we have two terms like fAg + f ′Ag′ that we cannot join into a single term uAv (for
some u, v).

Now, assign z1 = 1, z2 = z3 = ∙ ∙ ∙ = zn = 0 in P ?. Since G1, . . . , G` do not contain z1, . . . , zn,
the G1, . . . , G` will remain the same. Thus,

P1 =
∑̀

j=1

tj∑

i=1

f ′jiS2d(Gj)g
′
ji ,

where f ′ji = fji|z1←1,z2←0,...,zn←0 and g′ji = gji|z1←1,z2←0,...,zn←0. That is, P1 ∈
〈
S2d(G1), . . . , S2d(G`)

〉
.

Similarly, we can show P2, . . . , Pn ∈
〈
S2d(G1), . . . , S2d(G`)

〉
. Therefore, P1, . . . , Pn ∈〈

S2d(G1), . . . , S2d(G`)
〉
. Claim

Assume QS2d
(P ?) = `. That is, there are k vectors of polynomials G1, G2, . . . , G` such that

P ? ∈
〈
S2d(G1), . . . , S2d(G`)

〉
.

Or in other words

P ? =
n∑

i=1

ziPi =
∑̀

j=1

tj∑

i=1

fjiS2d(Gj)gji, for some fji, gji ∈ F〈X〉 and some tj ’s.

If we can find (2d + 1) ∙ ` Z-free vectors of polynomials G1, G2, . . . , G(2d+1)∙` such that

P ? ∈
〈
S2d(G1), . . . , S2d(G(2d+1)∙`)

〉
,

then, by the above claim

P1, . . . , Pn ∈
〈
S2d(G1), . . . , S2d(G(2d+1)∙`)

〉
,

which is the conclusion we want to prove, that is QS2d
(P1, . . . , Pn) ≤ (2d + 1) ∙ ` .

To find the (2d + 1) ∙ ` Z-free vectors of polynomials G1, G2, . . . , G(2d+1)∙` which generate P ?,
let

J∙K : F〈X,Z〉 → F〈X,Z〉

be the map defined by the following three properties:

1. The map J∙K is linear, namely JαG + βHK = α JGK+β JHK for any polynomials G,H and α, β
∈ F.

2. Let M be a monomial whose Z-homogenous part is of degree 1. Thus, M can be uniquely
written as M1ziM2, zi ∈ Z, where M1,M2 are Z-free. Then

JMK = JM1zM2K = zM2M1 .

3. For a monomial M whose Z-homogenous part is not of degree 1, JMK = 0.

21



For convenience, in what follows, given the polynomials fi, gi and the vector of polynomials

H, we denote (fi)
(0)
Z ,
(
H
)(0)

Z
, (gi)

(0)
Z by F ,H,G, respectively, where

(
H
)(0)

Z
is the result of applying

(∙)(0)
Z on H coordinate-wise. Note that (fi)

(0)
Z , (gi)

(0)
Z and

(
H
)(0)

Z
are Z-free polynomials (vectors of

polynomials, resp.).

Claim. For any sequence of polynomials f1, g1, . . . , fk, gk and vector of polynomials H, with vari-
ables x1, . . . , xn, z1, . . . , zn:

t
k∑

i=1

fiS2d(H)gi

|

∈
〈
S2d(H), S2d

(
H|H1←

∑k
i=1 GiFi

)
, . . . ,

(
H|H2d←

∑k
i=1 GiFi

)〉
.

Proof of claim : Consider the following:

t
k∑

i=1

fiS2d(H)gi

|

=

u

v

(
k∑

i=1

fiS2d(H)gi

)(1)

Z

}

~ (by Property 3 of [∙])

=

u

v
k∑

i=1

(fi)
(1)
Z S2d(H)Gi +

k∑

i=1

2d∑

j=1

FiS2d

(
H|
Hj←(Hj)

(1)
Z

)
Gi +

k∑

i=1

FiS2d(H)(gi)
(1)
Z

}

~

(by linearity of J∙K) =
k∑

i=1

r
(fi)

(1)
Z S2d(H)Gi

z
+

2d∑

j=1

t
k∑

i=1

FiS2d

(
H|
Hj←(Hj)

(1)
Z

)
Gi

|

+

k∑

i=1

r
FiS2d(H)(gi)

(1)
Z

z
.

For every i ∈ [k], assume (fi)
(1)
Z =

∑n
r=1

∑
j grjzrhrj where grj , hrj are Z-free polynomials (and

z1, . . . , zn are the Z-variables), then

r
(fi)

(1)
Z S2d(H)Gi

z
=

u

v
n∑

r=1

∑

j

grjzrhrjS2d(H)Gr

}

~ =
n∑

r=1

∑

j

zrhrjS2d(H)Grgrj ∈
〈
S2d(H)

〉
,

where the right most equality stems from Property 2 of J∙K. Similarly, for every i ∈ [k], we can
show r

FiS2d(H)(gi)
(1)
Z

z
∈
〈
S2d(H)

〉
.

By Lemma 14, which is proved below, we have
t

k∑

i=1

FiS2d

(
H|
Hj←(Hj)

(1)
Z

)
Gi

|

∈
〈
S2d

(
H|Hj←

∑k
i=1 GiFi

)〉
, for any j ∈ [2d].

Thus,
r∑k

i=1 fiS2d

(
H
)
gi

z
∈
〈
S2d

(
H
)
, S2d

(
H|H1←

∑k
i=1 GiFi

)
, . . . ,

(
H|H2d←

∑k
i=1 GiFi

)〉
.

Claim

Note that P ? = (P ?)(1)
Z . By the properties of J∙K we have:

P ? = JP ?K
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=

u

v
∑̀

j=1

tj∑

i=1

fjiS2d(Hj)gji

}

~

=
∑̀

j=1

u

v
tj∑

i=1

fjiS2d(Hj)gji

}

~

∈

〈

S2d

(
H
)
, S2d

(

Hj |
Hjq←

∑tj
m=1 GjmFjm

)

: j ∈ [`], q ∈ [2d]

〉

.

That is, for P ? =
∑`

j=1

∑tj
i=1 fjiS2d(Hj)gji, we have (2d+1)∙` Z-free polynomials that generate

P ?, concluding the proof of Lemma 13. QED

It remains to prove the following lemma:

Lemma 14. Let X = {x1, . . . , xn} and f1, g1, . . . , fk, gk ∈ F〈X〉. Let Z = {z1, . . . , zn} and assume
that n is an even positive integer, and let P be a vector of polynomials (P1, . . . , Pn) with variable

set X ∪ Z. We denote
(
P
)(0)

Z
, (fi)

(0)
Z , (gi)

(0)
Z by P ,Fi,Gi,, respectively, for i ∈ [k]. Then, for any

δ ∈ [n], it holds that
t

k∑

i=1

FiSn

(
P|
Pδ←(Pδ)

(1)
Z

)
Gi

|

∈
〈
Sn

(
P|Pδ←

∑k
i=1 GiFi

)〉
. (8)

For example, when n = 2, this lemma shows the following:
t

k∑

i=1

FiS2

(
(P1)

(1)
Z ,P2

)
Gi

|

∈

〈

S2

(
k∑

i=1

GiFi, P2

)〉

,

t
k∑

i=1

FiS2

(
P1, (P2)

(1)
Z

)
Gi

|

∈

〈

S2

(

P1,
k∑

i=1

GiFi

)〉

.

Proof. Notice that, for any δ ∈ [n], we have (Pδ)
(1)
Z =

∑n
t=1

∑
w UtwztVtw, where Utw,Vtw ∈ F〈X〉

and Utw,Vtw are Z-free. Then, it suffices to prove that for any δ ∈ [n]
t

k∑

i=1

FiSn

(
P|Pδ←

∑n
t=1

∑
w UtwztVtw

)
Gi

|

= −
n∑

t=1

∑

w

ztVtwSn

(
P|Pδ←

∑k
i=1 GiFi

)
Utw. (9)

This is because,
r∑k

i=1 FiSn

(
P|
Pδ←(Pδ)

(1)
Z

)
Gi

z
=

r∑k
i=1 FiSn

(
P|Pδ←

∑n
t=1

∑
w UtwztVtw

)
Gi

z
and

−
∑n

t=1

∑
w ztVtwSn

(
P|Pδ←

∑k
i=1 GiFi

)
Utw ∈

〈
Sn

(
P|Pδ←

∑k
i=1 GiFi

)〉
, and hence we have (8), which

is the desired result.
To prove (9), it is sufficient to expand

r∑k
i=1 FiSn(P|Pδ←

∑n
t=1

∑
w UtwztVtw

)Gi

z
transforming it

to −
∑n

t=1

∑
w ztVtwSn

(
P|Pδ←

∑k
i=1 GiFi

)
Utw.

For the sake of convenience we let

P σ[i,j] =

{ ∏j
m=i Pσ(m), i ≤ j;

1, i > j
,
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where σ ∈ Sn, and Sn is the permutation group of order n, and P = (P1, . . . , Pn) is a vector
of polynomials. Then, we have Sn(P ) =

∑
σ∈Sn

sgn(σ)(P σ[1,n]). Furthermore, we use Sn/mδ to
denote the set {σ ∈ Sn | σ(m) = δ}. With the above notation, we have the following expansion

t
k∑

i=1

FiSn

(
P|Pδ←

∑n
t=1

∑
w UtwztVtw

)
Gi

|

=

t
k∑

i=1

Fi

∑

σ∈Sn

sgn(σ)
(
Pσ[1,n]

) ∣∣
Pδ←

∑n
t=1

∑
w UtwztVtw

Gi

|

=

u

w
w
w
w
w
w
v

k∑

i=1

Fi

n∑

m=1

∑

σ ∈ Sn

σ−1(δ) = m

sgn(σ)
(
Pσ[1,m−1]Pσ(m)Pσ[m+1,n]

) ∣∣
Pδ←

∑n
t=1

∑
w UtwztVtw

Gi

}

�
�
�
�
�
�
~

=

u

v
k∑

i=1

Fi

n∑

m=1

∑

σ∈Sn/mδ

sgn(σ)
(
Pσ[1,m−1]PδPσ[m+1,n]

) ∣∣
Pδ←

∑n
t=1

∑
w UtwztVtw

Gi

}

~

=

u

v
k∑

i=1

Fi

n∑

m=1

∑

σ∈Sn/mδ

sgn(σ)

(

Pσ[1,m−1]

n∑

t=1

∑

w

UtwztVtwPσ[m+1,n]

)

Gi

}

~

=
n∑

t=1

∑

w

ztVtw

n∑

m=1

∑

σ∈Sn/mδ

sgn(σ)Pσ[m+1,n]

(
k∑

i=1

GiFi

)

Pσ[1,m−1]Utw .

In the following, we proceed to transform the above formula to
−
∑n

t=1

∑
j ztVtwSn(P|Pδ←

∑k
i=1 GiFi

)Utw, which concludes the proof. That is, we need to
prove

n∑

t=1

∑

w

ztVtw




n∑

m=1

∑

σ∈Sn/mδ

sgn(σ)Pσ[m+1,n]

(
k∑

i=1

GiFi

)

Pσ[1,m−1]



Utw =

−
n∑

t=1

∑

w

ztVtwSn(P|Pδ←
∑k

i=1 GiFi
)Utw.

And therefore, it suffices to prove

n∑

m=1

∑

σ∈Sn/mδ

sgn(σ)Pσ[m+1,n]

(
k∑

i=1

GiFi

)

Pσ[1,m−1] = −Sn(P|Pδ←
∑k

i=1 GiFi
).

Consider the permutation
(

1 2 ... n − m n − m + 1 n − m + 2 ... n
m + 1 m + 2 ... n m 1 ... m − 1

)

,

which is denoted by πm for any m ∈ [n]. Note that, for πm, we have the following facts:
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Fact 15. For any permutation π ∈ Sn, where n is an even integer, sgn(ππ−1
m ) = sgn(π)sgn(πm) =

−sgn(π).

Fact 16. P σ[m+1,n] ∙ P σ[1,m−1] = P σπm[1,n−m] ∙ P σπm[n−m+2,n], for all σ ∈ Sn/mδ.

Fact 17. (Sn/mδ)πm = Sn/(n − m + 1)δ.

Therefore, we have the following

n∑

m=1

∑

σ∈Sn/mδ

sgn(σ)Pσ[m+1,n]

(
k∑

i=1

GiFi

)

Pσ[1,m−1]

=
n∑

m=1

∑

σ∈Sn/mδ

sgn(σ)Pσπm[1,n−m]

(
k∑

i=1

GiFi

)

Pσπm[n−m+2,n] by Fact 16

letting π′ = σπm, then π′ ∈ (Sn/mδ)πm, and σ = π′π−1
m ,

=
n∑

m=1

∑

π′∈(Sn/mδ)πm

sgn(π′π−1
m )Pπ′[1,n−m]

(
k∑

i=1

GiFi

)

Pπ′[n−m+2,n]

=
n∑

m=1

∑

π′∈(Sn/mδ)πm

(−sgn(π′))Pπ′[1,n−m]

(
k∑

i=1

GiFi

)

Pπ′[n−m+2,n] by Fact 15

= −
n∑

m=1

∑

π′∈Sn/(n−m+1)δ

sgn(π′)Pπ′[1,n−m]

(
k∑

i=1

GiFi

)

Pπ′[n−m+2,n], by Fact 17

letting m′ = n − m + 1, then n − m = m′ − 1 and n − m + 2 = m′ + 1,

= −
n∑

m′=1

∑

π′∈Sn/m′
δ

sgn(π′)Pπ′[1,m′−1]

(
k∑

i=1

GiFi

)

Pπ′[m′+1,n]

= − Sn

(
P|Pδ←

∑k
i=1 GiFi

)
.

QED

5.1.3 Concluding the Lower Bound for any Basis

Here we show that the Ω(n2d) lower bound proved in previous sections holds for (every d > 2 and)
every finite basis of the identities of Matd(F), when F is of characteristic 0. To this end, we use
several results from the theory of PI-algebras (for more on PI-theory see the monographs [26, 10]).

A polynomial f ∈ F〈X〉 with d variables is multi-homogenous with degrees (1, . . . , 1) (d times)
if in every monomial the power of every variable x1, . . . , xd is precisely 1. In other words, every
monomial is of the form

∏d
i=1 xσ(i), for some permutation σ of order d. For the sake of simplicity,

we will talk in the sequel about a multi-homogenous polynomial of degree d, when referring
to a multi-homogenous polynomial with degrees (1, . . . , 1) (d times). Thus, any multi-homogenous
polynomial with d variables is homogenous of total-degree d.

For n ≥ 2 polynomials f1, . . . , fn, define the generalized-commutator [f1, . . . , fn] as follows:

[f1, f2] := f1f2 − f2f1, (in case n = 2)
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and [f1, . . . , fn−1, fn] := [[f1, . . . , fn−1], fn], for n > 2.

Definition 9. A polynomial f ∈ F〈X〉 is called a commutator polynomial if it is a linear
combination of products of generalized-commutators. (We assume that 1 is a product of an empty
set of commutator polynomials .)

For example, [x1, x2] ∙ [x3, x4] + [x1, x2, x3] is a commutator polynomial.
We say that a PI-algebra is unitary if the product operation of the PI-algebra has a unit (e.g.,

the identity matrix, for matrix PI-algebras).

Proposition 18 ([10, Proposition 4.3.3]). If R is a unitary PI-algebra over a field F of character-
istic 0, then every identity of R can be generated by multi-homogenous commutator polynomials.8

Corollary 19. Let R be a unitary PI-algebra and let T be the T-ideal consisting of all identities
of R. Then T has a finite basis in which every polynomial is a multi-homogenous commutator
polynomial.

Proof. By Kemer [19], for any F, the identities of any F-algebra has a finite basis. Thus, T has a
finite basis {A1, . . . , Ak}, for some positive integer k. By Proposition 18, each Ai, i ∈ [k], can be
generated by finite many multi-homogenous commutator polynomials. Thus, there is a finite set B
of multi-homogenous commutator polynomials generating the basis {A1, . . . , Ak} of T . Therefore,
B is the desires basis. QED

Lemma 20. Let f ∈ F〈X〉 be a multi-homogenous commutator polynomial with n variables. If xδ

is a constant for some δ ∈ [n], then f(x1, . . . , xn) ≡ 0 (that is, f is the zero polynomial).

Proof. It is easy to check that if we replace a variable by a constant c ∈ F in a generalized-
commutator, then the generalized-commutator becomes 0.

By the definition of a commutator polynomial,

f =
m∑

i=1

ci

ki∏

j=1

Bij ,

where ci ∈ F and m,n ∈ N, and the Bij ’s are generalized-commutators. Since f is a multi-
homogenous polynomial, the variable xδ occurs in every term

∏ki
j=1 Bij in f (i.e., for every i ∈ [m]).

Hence, for every i ∈ [m], xδ must occur in some Bij (for some j ∈ [ki]). But Bij is a generalized-
commutator, and since xδ is constant, Bij = 0. Therefore, every term

∏ki
j=1 Bij in f is 0. QED

By lemma 11 and lemma 13, we know that there exist s-polynomials P1, . . . , Pn in n variables
x1, . . . , xn that are identities of Matd(F), such that putting P ?:=

∑n
i=1 ziPi, where z1, . . . , zn are

new variables, we have:

QS2d
(P ?) ≥

1
2d + 1

∙ QS2d
(P1, . . . , Pn) = Ω(n2d).

The following is the main lemma of this section:

8Multi-homogenous and commutator polynomials, are called multilinear and proper polynomials, respectively, in
[10].
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Lemma 21. Let d > 2, and let B be a basis for the T-ideals of the identities of Matd(F). Then,
there are constants c, c′ such that for any identity P over Matd(F) of degree 2d + 1:

cQS2d
(P ) ≤ QB(P ) ≤ c′QS2d

(P ).

To prove this theorem we need the following two lemmas.

Lemma 22. For any natural number d > 2, every multi-homogenous identity (with any number of
variables) of Matd(F) of degree at most 2d + 1 is a consequence of the standard identity S2d.

Proof. By Leron [21], we know that for any d > 2, every multi-homogenous identity of Matd(F)
with degree exactly 2d + 1 is a consequence of the standard identity S2d. By [10, Exercise 7.1.2],
there are no identities of degree less than 2d in Matd(F) and every multi-homogenous polynomial
identity of degree 2d in Matd(F) is also a consequence of the standard identity S2d. QED

By Corollary 19, there is a basis {A1, . . . , Am} of Matd(F), where A1, . . . , Am are all multi-
homogenous commutator polynomials (Definition 9).

Lemma 23. Let P ∈ F〈X〉 be an identity of Matd(F) of degree 2d + 1 and let G be a basis
{A1, . . . , Am} of Matd(F), where A1, . . . , Am are all multi-homogenous commutator identities of
Matd(F). Assume that QG(P ) = k, that is, k is the minimal number such that there exist k
substitution instances B1, . . . , Bk of A1, . . . , Am, for which:

P ∈ 〈B1, . . . , Bk〉 .

Then, no B`, for ` ∈ [k], is a substitution instance of a basis element Aj with the degree of Aj

greater than 2d + 1.

Proof. Assume there exits an Aj (for j ∈ [m]) in G with degree greater than 2d + 1. We show that
none of B` (` ∈ [k]) is a substitution instance of Aj .

Suppose otherwise, that is, suppose that there is a Bδ, δ ∈ [k], such that Bδ is the substitution
instance of Aj . Since Aj is homogeneous, every monomial in Aj is of degree greater than 2d + 1.
We consider the following two cases:

Case 1: Every monomial in Aj(Q) is of degree greater than 2d + 1.
For convenience, given a polynomial f , we denote by f≤j the polynomial

∑j
i=0 (f)(i), namely

the sum of all homogenous parts of f of degree at most j. We consider the 2d+1 homogenous part,
that is:

P = (P )(2d+1)

∈
〈
(h)(2d+1)

∣
∣ h ∈ 〈B1, . . . , Bk〉

〉
⊆
〈
(B1)

(≤2d+1) , . . . , (Bk)
(≤2d+1)

〉
.

But (Bδ)
(≤2d+1) =

(
Aj(Q)

)(≤2d+1)
= 0, because by assumption every monomial in Aj(Q) is of

degree greater than 2d+1. So P belongs to the ideal generated by
{

(B1)
(≤2d+1) , . . . , (Bk)

(≤2d+1)
}
\

(Bδ)
(≤2d+1). This means QG(P ) = k − 1, which contradicts QG(P ) = k. Thus, the assumption is

false.
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Case 2: There is a monomial of degree at most 2d + 1 in Aj(Q).
But since Aj(x) is homogenous of degree greater than 2d + 1, it contains only monomials of

degree greater than 2d + 1. This means one of the coordinates of Q is a constant. By Lemma
20, this means that Aj(Q) = 0. Again, this means that P can be generated by {B1, . . . , Bk} \ Bδ.
Hence, QG(P ) = k − 1, which contradicts QG(P ) = k. Thus the assumption is false. QED

We are now ready to prove Lemma 21.

Proof of Lemma 21. Let B be a basis {A1, . . . , Am} of Matd(F), where A1, . . . , Am are all multi-
homogenous commutator identities of Matd(F). Let

(B)(≤2d+1) := {Ai ∈ B | the degree of Ai is no more than 2d + 1}.

For any identity P of Matd(F) of degree 2d + 1, by Lemma 23,

Q
(B)(≤2d+1)(P ) = QB(P ).

This also means that every identity of Matd(F) of degree at most 2d + 1 can be gener-
ated by (B)(≤2d+1). Thus, S2d can be generated by (B)(≤2d+1). Write (B)(≤2d+1) as the set
{A′1, . . . , A

′
m′}, m′ ≤ m, where the degree of A′i (∀i ∈ [m′]) is at most 2d + 1. By Lemma 22,

A′1, . . . , Am′ is generated by S2d. Then, by Equation 3 in Proposition 3, for any identity P of
Matd(F) with degree 2d + 1:9

1
Q

(B)(≤2d+1)(S2d)
QS2d

(P ) ≤ Q
(B)(≤2d+1)(P ) ≤

(

max
B∈(B)(≤2d+1)

QS2d
(B)

)

∙ QS2d
(P ) , d > 2. (10)

Namely, for every identity P of Matd(F) of degree 2d + 1, there are constants c, c′ such that

cQS2d
(P ) ≤ QB(P ) ≤ c′QS2d

(P ), d > 2.

QED

This concludes the main theorem of this section, Theorem 4.

Note on the case of d = 2. When d = 2, Lemma 21 is not true. For example, the polynomial
f = [[x1, x2][x3, x4] + [x3, x4][x1, x2], x5] is an identity of Mat2(F), but in [21] it is proved that f
cannot be generated by S4. Namely the restriction d > 2 in Lemma 21, and also in Theorem 4, is
essential for our proof.

6 Open Problems

Here we consider two open problems of independent interest, one about non-commutative algebraic
circuit complexity and the other about proof complexity. Based on these open problems, up to

9Note that in Proposition 3 we can substitute the bases B0, B1 by any pair of sets of identities (not necessarily a
pair of bases), as long as the identities in B1 are consequences of the identities in B0, and vice versa.
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exponential-size lower bounds on PI proofs (in terms of the (non-commutative)10 circuit-size of the
identity proved) follow.

Informally, the two problems are as follows:

Informal open problem I. There exist non-commutative algebraic circuits of small size that
compute matrix identities of high generative complexity.

Informal open problem II. Proving matrix identities by reasoning with polynomials whose vari-
ables X1, . . . , Xn range over matrices is as efficient as proving matrix identities using polynomials
whose variables range over the entries of the matrices X1, . . . , Xn?

6.1 Matrix Proof Lower Bounds in Terms of Algebraic Circuit Size

In Theorem 5 we established polynomial Ω(n2d) lower bounds on the number of steps (and hence
size) in matrix proofs of matrix identities with n variables. The hard instances we used in Theorem 5
were non-explicit, and so we do not know their algebraic circuit size. However, it is more interesting
from the (proof) complexity perspective to have size lower bounds on PIMatd

(F) proofs in terms
of the algebraic circuit size of the identities proved. For this purpose, we need to assume the
existence of non-commutative algebraic circuits of small size that compute matrix identities of high
generative complexity:

Open problem I. Prove that for some fixed r > d ≥ 1 and a fixed basis B of the identities
of Matd(F), there exists a family of identities fn ∈ F〈X〉 of Matd(F), with n variables,
such that QB(fn) = Ω(nd), and fn has a non-commutative algebraic circuit of size O(nr).

Polynomial lower bounds on PIMatd
(F)-proofs (assuming Open problem I): There exists

a family of identities fn of Matd(F) whose non-commutative algebraic circuit-size is sn, but every
PIMatd

(F)-proof of fn has size Ω(sd−r
n ).

Note that we do know by Theorem 4 that the lower bound in Open problem I is true for all d > 2
and for some (non-explicit) family fn. But we do not know whether fn has small non-commutative
circuits, as required in Open problem I.

6.2 Polynomial-Size Lower Bounds on PI Proofs

Here we propose the possibility that any polynomial-size lower bounds on matrix identities proofs
PIMatd

(F) (Definition 3) can be lifted to lower bounds on PI proofs PIc(F) (Definition 1).
Consider a nonzero identity f ∈ F〈X〉 of Matd(F), for some d > 1. If we substitute each

(matrix) variable x` in f by a d× d matrix of entry-variables {x`jk}j,k∈[d] (and consider product as
matrix product and addition as entry-wise addition), then f corresponds to d2 commutative zero
polynomials (in case F is not big enough, these may be nonzero commutative polynomials that
compute the zero function over F), each computing an entry of the d× d zero matrix computed by
f (see the example below and Proposition 25).

10PI proofs operate with equations between (commutative) algebraic circuits. However, since these algebraic circuits
are written as purely syntactic objects in PI proofs, implicitly we have an order on children of product gates. Hence,
we can consider algebraic circuits in PI proofs as non-commutative circuits.
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Accordingly, assume that F is a sufficiently big field, and let F be a non-commutative circuit
computing f . Then under the above substitution of d2 entry-variables to each variable in F , we get
d2 non-commutative circuits, each computing the zero polynomial when considered as commutative
polynomials (see Definition 10).11 We denote the set of d2 circuits corresponding to the identity F
by JF Kd (and we extend it naturally to equations between circuits: JF = GKd).

Example: Let d = 2 and let f = x1x2 −x2x1 (it is not an identity of Mat2(F), but we use it only
for the sake of example). And let F = x1x2 − x2x1 be the corresponding circuit (in fact, formula)
computing f . Then we substitute entry variables for x1, x2 to get:

(
x111 x112

x121 x122

)

∙

(
x211 x212

x221 x222

)

−

(
x211 x212

x221 x222

)

∙

(
x111 x112

x121 x122

)

.

And the (1, 1)-entry non-commutative circuit (formula) in JF Kd, is:

(x111x211 + x112x221) − (x211x111 + x212x121).

Formally, we define the set of d2 non-commutative circuits corresponding to the non-
commutative circuit F as follows:

Definition 10 (JF Kd). Let F be a non-commutative circuit computing the polynomial f ∈ F〈X〉,
such that f is an identity of Matd(F). We define JF Kd as the set of d2 (commutative) circuits that
are generated from bottom to top in the circuit F as follows:

1. Every variable x` in F corresponds to d2 new variables x`ij , i, j ∈ [d];

2. Every plus gate X ⊕ Y in F , where X,Y are two circuits, corresponds to d2 plus gates
⊕ij , i, j ∈ [d] where each plus gate ⊕ij connects the corresponding circuit Xij and Yij (that
were generated before);

3. Every multiplication gate X ⊗ Y in F corresponds to d2 plus gates ⊕ij, for i, j ∈ [d], where
each plus gate ⊕ij is connected to d multiplication gates ⊗k, for k ∈ [d], each a product of
Xik and Ykj. (Formally, plus gates have fan-in two, and so ⊕ij is the root of a binary tree
whose internal nodes are all plus gates and whose d leaves are the product gates ⊗k, k ∈ [d].)

Denote by JF = 0Kd the set of equations between circuits, where each circuit in JF Kd equals the
circuit 0.

Fact 24. Since every gate in F corresponds to at most d3 gates in JF Kd, we have:
∣
∣JF Kd

∣
∣ = O

(
d3|F |

)

(where |F | denotes the size of F and
∣
∣JF Kd

∣
∣ denotes the sum of sizes of all circuits in JF Kd). Thus,

when the dimension d of a matrix is constant, we have |JfKd| = O(|f |).

For a set of identities S we say that PIc(F) proves S, in symbols `PIc(F) S, if there exists a
PIc(F) proof that contains all the identities in S. We denote by | `PIc(F) S| the minimal size of a
PIc(F) proof of S.

11Recall that the same algebraic circuit, assuming it has order on children of product gates, can be considered as
both a commutative and a non-commutative circuit.
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Proposition 25. For large enough fields F (specifically, for characteristic 0 fields), f ∈ F〈X〉 is
an identity of Matd(F) iff JF = 0Kd has a PIc(F) proof, where F is any non-commutative algebraic
circuit computing f .

Proof. Since PIc(F) is a complete proof system for (commutative) polynomial identities written as
equations between algebraic circuits, it suffices to show that every circuit in JF Kd computes (as a
commutative circuit) the zero polynomial (i.e., the zero in F[X]). Suppose that f is an identity
of Matd(F) and assume by a way of contradiction that there is a nonzero polynomial g ∈ F[X] in
JF Kd. Then, there must be an assignment α of field elements such that g(α) 6= 0 (this follows since
the field is infinite, and so every nonzero polynomial has an assignment that does not nullifies the
polynomial). Extend the assignment α in any way to all the entry-variables in JF Kd and denote
this extended assignment by α′. Thus, the set of Matd(F) matrices determined by this α′ cannot
nullify f , contradicting the assumption that f is an identity of Matd(F). The converse direction is
similar. QED

Open problem II. Let d be a positive natural number and let B be a finite basis of the
identities of Matd(F). Assume that f ∈ F〈X〉 is an identity of Matd(F), and let F be a
non-commutative algebraic circuit computing f . Prove that

∣
∣ `PIc(F) JF = 0Kd

∣
∣ = Ω(QB(f)). (11)

The conditional lower bound we get now is similar to that in Section 6.1, except that it holds
for PIc(F) and not only for matrix proofs:

Polynomial lower bounds on PI proofs PIc(F) (assuming Open problems I and II):
There exists a family of identities fn of Matd(F) whose non-commutative algebraic circuit-size is
sn but every PIc(F)-proof of fn has size Ω(sd−r

n ).

6.3 The Propositional Case

We now discuss the applicability of our suggested framework to obtaining lower bounds on the size
of propositional proofs.

Given a commutative algebraic circuit C over GF (2), we can think of the circuit equation C = 0
as a Boolean circuit computing a tautology, instead of an algebraic circuit: interpreting + as XOR,
∙ as ∧, and = as logical equivalence ≡ (that is, ↔). Accordingly, if we augment to the PIc(F) proof
system, where F = GF(2), the axioms x2

i + xi = 0, for every variable xi, we obtain a propositional
proof system which formally is an Extended Frege proof system (see [14]). Denote this system by
PIc(F) + {x2

i + xi = 0 : xi ∈ X}.

Propositional version of open problem I. Let F = GF(2), let d be a positive natural
number and let B be a (finite) basis of the identities of Matd(F). Assume that f ∈ F〈X〉
is an identity of Matd(F), and let F be a non-commutative algebraic circuit computing f .
Then, ∣

∣ `PIc(F)+{x2
i +xi=0 : xi∈X} JF = 0Kd

∣
∣ = Ω(QB(f)). (12)

As before,
∣
∣ `PIc(F)+{x2

i +xi =0: xi∈X} JF = 0Kd
∣
∣ is the minimal size of a PIc(F) + {x2

i + xi =
0 : xi ∈ X} proof of JF = 0Kd (which by the above mentioned, is the minimal Extended
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Frege proof size of JF = 0Kd up to polynomial factors). In other words, the minimal size in a
PIc(F) + {x2

i + xi = 0 : xi ∈ X} proof of the collection of d2 (entry-wise) equations JF = 0Kd
corresponding to F is lower bounded (up to a constant factor) by QB(f).

Comment: One can consider the same propositional version of the main open problem, with F
being the rational numbers, and hence of characteristic 0 (for we which we have more knowledge
about QB(∙), as obtained in our work). However, the way to translate PI proofs PIc over the
rationals is less immediate than the same translation for the case of GF(2).

6.4 Exponential-Size Lower Bounds

Assuming Open problem II (Equation (11)) is settled, we show under which parameters one gets
exponential-size lower bounds on PIc(F) proofs. The idea is to let the dimension d of the matrix
algebras grow with n (the number of variables in the hard instances). Therefore, if the growth
rate of the minimal proof size of the hard instances is exponential in d (like the non-explicit hard
instances in Theorem 5), while the growth rate of the algebraic circuit size of the hard instances is
only polynomial d, we obtain an exponential lower bound.

For this approach we need to set up the assumptions more carefully:

Refinement of Open problems I and II:

1. Open problem II : For any d and any basis Bd of the identities of Matd(F) the size
of any PIc(F) proof of JF = 0Kd is at least CBd

∙ QBd
(f), where CBd

is a number
depending on Bd and F is a non-commutative algebraic circuit computing f (this is
the same as Open problem II except that here we explicitly show CBd

).

2. Assume that for any sufficiently large d and any basis Bd of the identities of Matd(F),
there exists a number cBd

, such that for all sufficiently large n there exists an identity
fn,d with QBd

(fn,d) ≥ cBd
∙ n2d. (The existence of such identities are known from our

unconditional lower bound in Theorem 5.)

3. Assume that for the cBd
in item 2 above: cBd

∙ CBd
= Ω

(
1

poly(d)

)
.

4. Refinement of Open problem I : Assume there exist non-commutative algebraic cir-
cuits Fn,d computing fn,d from item 2 of size poly(n, d).

Corollary (assuming assumptions 1 to 4 above hold): There exists a polynomial size (in n)
family of identities between algebraic circuits, for which any PIc(F) proof requires 2Ω(n) number of
proof-lines.

Proof. By the assumptions, every PIc(F) proof of JFn,d = 0Kd has size at least CBd
∙ QBd

(fn,d) =
CBd

∙ cBd
∙ n2d. Consider the family {fn,d}∞n=1, where d is a function of n, and take d = n/4. Then,

we get the following lower bound on the size in any PIc(F) proof of the family {fn,d}∞n=1:

cBd
∙ CBd

∙ n2d =
1

poly(n/4)
∙ nn/2 = 2Ω(n),

which (by assumption 4 and Fact 24) is exponential in the algebraic circuit-size of the identities
JFn,d = 0Kd proved. QED
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