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Abstract—We give a uniform and integral version of the short Currently, the weakest theory known to prove the determi-
propositional proofs for the determinant identities demonstrated nant identities iSPV (which corresponds to polynomial time
over GF'(2) in Hrubes-Tzameret P]. Specifically, we show that reasoning, by Soltys and CookH]). Quite recently, Hrube

the multiplicativity of the determinant function over the integers ) -
is provable in the bounded arithmetic theory VINC?, which and Tzameretd] showed that at least in thgropositionalcase,

is a first-order theory corresponding to the complexity class the determinant identities expressing the multiplicativity of
NC2. This also establishes the existence of uniform polynomial- the determinant oveF'(2) can be proved with polynomial-

size and O(log® n)-depth Circuit-Frege (equivalently, Extended sjze propositional proofs operating witN C2-circuits (and
Frege) proofs over the integers, of the basic determinant identities quasipolynomial size Frege proofs). However, this does not

(previous proofs hold only over GF(2)). . . . .
In doing so, we giveuniform NC?2-algorithmsfor homogenizing lend itself immediately to the uniform framework of bounded

algebraic circuits, balancing algebraic circuits (given as input arithmetic. Fpr examp!e, a short propositiona! proof may l_)e
an upper bound on the syntactic-degree of the circuit), and shown to exist, but with no way of determining whether it

converting circuits with divisions into circuits with a single could be constructed uniformly and in a restricted compu-
division gate—all (X£-) definable in VINC?2. This also implies an tational model such as unifor®NC? algorithms—making it
NC?*-algorithm for evaluatingalgebraic circuits of any depth: thus impossible to carry out directly in bounded arithmetic.
Further, P] crucially used in their construction elimination of
division gates from algebraic circuits, which we do not know
This work fills a basic gap in our understanding of weakow to achieve using uniform weak computational models
formal theories of arithmetic, namely, bounded arithmetigke uniform-INC? (since for standard division elimination one
The complexity of linear algebraic operations such as mggeds to find field assignments that do not nullify a given
trix inverse and the determinant is well studiedl.[The polynomial [L6]).
importance of linear algebra in bounded arithmetic and proofThe main goal of this work is to prove the determinant
complexity has also been identified in many works, and jientities in the theoryVINC? (corresponding to NC2-
has been conjectured for quite a long time (<[ [15], reasoning”; i.e., reasoning with concepts definable in the
[4], [6], as well as 2], [1]) that the determinant identities, complexity clasSNC?2). We will show that similar reasoning
and specifically the multiplicativity of the determinant functioryg in P] can be carried over, with further complications
DET(A)-DET(B) = DET(AB), for two matricesA, B, can be imposed by uniformity and parallelism, NC?2. As a result
proved in a formal theory that, loosely speaking, reasons wighworking in bounded arithmetic it will also become relatively
NC? concepts. HereNC? is the complexity class consistingsimpler to conclude the proofs over the integers (while the
of all languages that can be decided by familie©X¢fog® n)-  previous propositional proofs considered ofly7(2)).
depth and polynomial-size circuits, and is apparently the ga) Organization: The preliminaries for this work are
smallest circuit classn the NC hierarchy that cancompute quite long.For this reason we begin with igh-leveloverview
the determinant. This conjecture is aligned with the intuitionof the results and their proofs in Sel. (readers who are
that basic properties of many constructions and functions ofafamiliar with some of the concepts in the overview can
given complexity class can be proved in logical theories usiRgnsult the preliminaries section for those). The preliminaries
only concepts from the same class. themselves are given in Sebl, consisting of basic defini-
tions from bounded arithmetic, the complexity clas<C?,

10ur NC? evaluation algorithm is different from the previously known on ; 2 ; L
by Miller et al. [12]. Our algorithm also requires as input an upper bound (ftnhe CorreSpondmg theorWNC [4]' basic definitions of

I. INTRODUCTION

the syntactic-degree of the circuit, while Millet al’s does not. algebraic circuits, and proof systems operating with algebraic
2Formally, the conjectural smallest circuit class computing integer deterngiircuits establishing polynomial identities (PI-proo,[[9]).
nants is the class denoted DET (d])[ In Sec.lV we give a much more detailed guide to the proof
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out many of the technical details and proofs. In Sécwe More specifically, the determinant function in the theory
discuss some of the parallel (unifo€C?2) algorithms we first constructs a recursive algebraic circuit (or equivalently,
construct: division-gates normal forms (moving division gates straight-line program) computing the symbolicx n de-
to the root of circuits) and balancing of algebraic circuits. Agerminantwith division gates(“symbolic” here means that
a result of these algorithms we obtain a parallel algorithm féine algebraic circuit computes the determinant as the formal
evaluating algebraic circuits (of any depth). S¥t.explains polynomial overn? distinct variables). This is done using
in some detail how we encode certain algebraic circuits in tiiee standard recursive formula of the block-wise determinant
theory. (using “Schur complement”), simulating in a sense Gaussian
elimination (similar to §]). Then, eliminate the division gates
[I. OVERVIEW in the determinant circuit using, among other conversions,

Our aim is to prove the determinant identities insMIB& C? substitutions of power series in the circuit. Th@oemogenize

(for VINC? and the logical setting see Setl). Specifically, the circuit getting rid of high degreebalance the circuitto
we want to have &Z-definable inVNC? function DET.) achieve the squared logarithmic depth, and finaltgluatethe

whose input is a matrix over the integers, such twagC> result under the input integer matrix. o
The function that evaluates a balanced algebraic circuit

proves: o ! 2
DET(A) - DET(B) = DET(AB) @ n itself consists of several steps, as folIovys. given as an
input a balanced algebraic circuit, the function: (i) converts
and it into a layered circuit (namely, a circuit in which each
DET(C) = ¢11 -+ * Can, (2) node connects only to the subsequent layer); (ii) transforms

it into a Boolean circuitcomputing the same polynomial over
. : . the integers (coded as bit-strings) while taking care that the
triangular integer matrix.

Note that these two identities can be considered as tﬂ%gatlons appear only in the bottom layer; and finally (i

definingidentities of the determinant polynomial, in the Sensevaluates the Boolean circuit using the fact that Ne>-
9 Poly ! IRCUIT EVALUATION PROBLEM is NCZ2-complete (under

that every polynomial for which these two identities hold is thic" reductions 4])
determinant polynomial. (One way of seeing this is to observe '

that every square matrix is equal to a product of upper and>Ince we show that the dezterminant. function as defined
lower triangular matrices.) above isXy-definable inVINC*, by [4] it means that this

o ) function is in uniformNC?2.
Some clarification on how we represent integers and matri- c) Proving the determinant equalities in the theory:

ces in the theory is due: integer numbers are presented,ifyrmally, the basic argument formalized in the theory is
binary asstrings where the least significant bit (Isb) is Oinat there exists a balanced Pl-proof (Rolynomial Identity
(resp. 1) when the integer is positive (resp. negative), aB%Of), in symbols, &.(Z)-proof (as in P]; see Sectionll-E),
where the rest of the string is the binary representation gf ihese identities. Thus, by soundness of balarég()-
the absolute value of the integer. Anx n matrix overZz is proofs, which we show is provable NC?, these identities
usually encoded as a two-dimensional string (6f).[ must be true.

Itis not hard to show that we can prosenplefacts about  More precisely, we demonstratessP-definable function in
matrices, such as the definability of matrix produtB, the vNC2 that given an input in unary, outputs &,(Z)-proof of
statement expressing associativity and commutativity of matigentities () and Q). In thisP.(Z)-proof every proof-line is an
productsA(BC) = (AB)C and A + B = B + A, resp., and gquation between deptiiflog?(n)) algebraic circuits (without
so forth (see, e.g.1p], [4] and Lemma 28 ing] about these gjyision gates) of a polynomial syntactic-degree. To conclude
basic identities that can be proved alreadyMiNC'). the argument, we use the soundness of délfiog?(n))

All circuit classes discussed in this work (except whep, (7)-proofs: using induction on proof-length we argue that

otherwise stated) are assumed to be uniform circuit clasggp every assignment of integersquations 1) and @) must
(formally, we require uniformity in the sense that the extendeggq.

connection language of the circuit family isKO; see f] and o .
Sec.llI-B). A. Contributions and Technical Challenges

Let us now sketch briefly how weefinethe determinant  Showing that the long and nontrivial constructions frd [
function in the theory and how weroveits defining identities can be carried out iVNC? and thus proving the determinant
in the theory. identities, requires quite a lot of work. The main technical

b) Defining the determinant function in the theogiven obstacles that we face aparallelism and uniformity as we

a matrix over the integers of dimension x n, the ©2- explain in what follavs.
definable string function (recall that we encode integers asParallelismhere means that the construction of the original
strings) in VINC? for the determinant is defined roughly agropositional proofs fromg] must be done by itself iNC2.
follows: first, construct arO(log2 n)-depth algebraic circuit The construction inq] is quite involved, and to make it
computing the determinant afx n integer matrices, and thenparallel we need to devise sevefsIC2-algorithms, allxf-
evaluate the circuit under the input assignment. definable inVNC?, as follows.

for any n x n integer matricesd, B, and anyC ann x n



(i) Parallel division normalization: converting algebraic cirpolynomial identities §], [9] (cf. [13] for a survey). We start
cuits with division gates into circuits with a single divisionwith an exposition of bounded arithmetic.
gate at the output gateiiX Converting algebraic circuits’ Bounded arithmetids a general name for weak systems
into the sum of their homogeneous components, given @ arithmetic, namely, fragments of Peano Arithmetic. The
input an upper bound on the syntactic-degre€of.e., each bounded arithmetic theories we use are first-order two-sorted
summand”( is a homogeneous circuit computing the degreseories, having a first-sort for natural numbers and a second-
i homogeneous component 6f, (i) Balancing an algebraic sort for finite sets of numbers, representing bit-strings via their
circuit of sizes and depthd into a poly(s, d)-size algebraic characteristic functions (for the originalngle-sorttreatment
circuit of depthO(log s - logd + log” d), given as input an of theories of bounded arithmetic see algh [7], [11]). The
upper bound on the syntactic-degree(af theory V corresponds to the complexity class unifoAC?,

By first balancing an input circuit and then evaluating itnd VINC? corresponds to uniforiNC2. The complexity
(both inNC?) our results give rise toi) anNC? evaluation classesAC", NC?2, and their corresponding function classes
procedure for algebraic circuits of any depth (given as input #AC° andFNC? are also defined using a two-sorted universe
upper bound on their syntactic-degree in unary) that is differegpecifically, the first-ordered sort [numbers] are given to the
from the previously known algorithm by Milleet al. [12] machines in unary representation and the second-sort as binary
(their algorithm does not require the syntactic-degree as inpujrings).

The algorithm for {) above is somewhat nontrivial, while _ i~
the algorithm for if) follows by observing that the standardP€finition 1 (Language of two-sorted arithmeticy;). The
Strassen 16] homogenization procedure is parallel in naturfinguage of two-sorted arithmetic, denotéd,, consists of
(assuming one knows the syntactic-degree of the circuit). THE following relation, function and constant symbols:
algorithm for {ii) follows by a combination of the original {+,-,<,0,1,| |,=1,=2,€}.
balancing procedure by Valiardt al. [17] with ideas from
[12). For (iv) we need again to combine ideas froriZ] and We describe the intended meaning of the symbols by consid-
other results and observations. ering the standard mod&l, of two-sorted Peano Arithmetic.

Proving parallel algorithms for structural results on algdt consists of a first-sort universg; = N and a second-sort
braic circuits is however not enough. We moreover need tiverseU, of all finite subsets ofN. The constant$) and
show that corresponding constructions also applyproofs 1 are interpreted iN, as the appropriate natural numbers
in order to conclude thaWINC? proves the existence of azero and one, respectively. The functioasand - are the
(uniform N'C?) function that constructs the (low depth Pl-usual addition and multiplication on the universe of natural
proofs of the determinant identities. This requires mocekw numbers, respectively. The relatiehis the appropriate “less

Uniformity here means that we need the whole proof 3" equal tha}nj’ relation on the flrst—§ort universe. The function
be constructible in uniforiNC2. For instance, we need |-| maps a finite set of numbers to its largest element plus one.
to eliminate division gates from certain algebraic circuitde relation=, is interpreted as equality between numbers,
uniformly. To eliminate division gates like/v (for two nodes =2 IS interpreted as equality between finite sets of numbers.
u,v), one needs to find an assignment to the variables in whilhe relatlonn €N hOIC,jS fqr a number. and a finite set of
the polynomial computed at nodeis nonzero. In general we "UmbersN'if and only if n is an element ofV.
do not know how to do this in the theory. Nevertheless, we e denote the first-sort (number) variables by lower-case
show that for our purposes it is enough to eliminate only tho&€'s ,, 2, ..., and the second-sort (string) variables by
division gates that occur in some specific circuits. In ord&@Pital lettersX, Y, Z. . ... We build formulas in the usual way,
to eliminate division gates we will also need to find ‘inversd¥Sing two sorts of quantifiers: number quantifiers and string
elements’ in the ring of integers, and hence we will show thgantifiers. A number quantifier is said to beundedif it is
for our purpose it is enough to consider only the inverse of9f the form3z(z < tA...) orve(z <t —...), respectively,
in 7. for somenumber ternt that does not contain. We abbreviate

Apart from uniformity and parallelism, working in bounded®(z < tA...) andVz(z <t —...) by dz <t andvz <+,
arithmetic allows us to work more easily over the integerfeSPectively. A string quantifier is said to beundedif it is
where previously shoiNC2-Frege proofs of the determinant©f the form 3X (|X| < ¢ A...) or vX(|X| < ¢ —...) for

identities were known only oveEF(2) [9]. somenumber term¢ that does not contaifX. We abbreviate
AX(|X| <tA...)andVX(|X|<t—...)by3dX <tand
I1l. PRELIMINARIES VX < t, respectively.

In this section we present some of the necessary log-A formula is in the class of formula&% or TI¥ if it uses
ical setting from bounded arithmetic and algebraic circuito string quantifiersand all number quantifiers are bounded.
complexity. Specifically, we describe the two-sorted bounded formula is in Eﬁl or Hﬁl if it is of the form 3X; <
arithmetic theoryVNC2 as developed by Cook and Nguyert; ...3X,, <t ¥ orVX; <t;...VX,, <t,v, wherey €
[4] and show how to define the evaluation of arithmetic circuit§? and ¢ € %5, respectively, and; does not contain;,
over the integers in the theory, and then define algebrdar all i = 1,...,m. We write VX to denote the universal
circuits computing formal polynomials and proof systems falosure of £ (i.e., the class oftf-formulas that possibly



have [not necessarily bounded] universal quantifiers on their d) Alternating Turing machinesAn alternating Turing
front [left]). We usually writeT'(¢) to abbreviate € T, for a machine is anondeterministicTuring machine in which every

number term¢ and a string ternY'. state, except the halting states, is eitherexistential state
As mentioned before, a finite set of natural numb@fs or a universal state A computationin such a machine can
represents a finite strinfy = S% . .. S%VH such thatSi, = be viewed as an (unbounded fan-in) tree of configurations as
1 if and only if i € N. We will abuse notation and identify follows. A configuration is said to bexistential(resp.univer-
N and Sy. sal) if its state is existential (resp. universal). In a computation
tree of an alternating Turing machine eveistentialconfig-
A. The Theory? uration has one or more children, such that each child is a

configuration reachable in one step from the configuration in
The base theoryV®, which corresponds to the COM-the parent node: and every universal configuration has as its set
putational classAC’, consists of the followingaxioms: of childrenall configurations reachable in one step from the
configuration on the parent in node. We say that a computation
Basic 1 2 +1#0 Basic2 t+1=y+1—az=y of an alternating Turing machine 'm;cceptingwhen a_lll the_
leaves of the computation tree are accepting configurations.
We say that an alternating Turing machiaecepts an input

Basic3 z+0==x Basic4d z+ (y+1)=(z+y)+1

Basic 5 z-0=0 Basic 6 z- (y+1)=(z-y)+2 2 if there existsan accepting computation tree whose root is
Basic 7 (x <yAy<z)—a=y Basic 8 z <z +y the initial configuration with the input.

Basic9 0 <= Basic 10z <yVy<z A computation tree is said to have alternationsif the
Basic llz<y<—x<y+1 number of alternations between existential and universal states

Basic 12  #0 — 3y < a(y + 1 = x) in every pranc_h of the j[ree is at mdstAn qlternatmg 'I_'unng
machine is said tavork in f(n) alternationsif for every input
L1 X(y) —y <|X] L2.y+1=|X| = X(y) ,of lengthn the number of alternations Everycomputation
SE. (|X| = |[Y|AVi < |X|(X() - Y(E) = X =Y tree ofx_fishat mosli_f(n). A compu(’;a_tion tree is s?id to _have]c
B < p Spaces if the working space used in every configuration o
g -COMP. 3X <yvz <y (X(2) « ¢(2)), forallpe ;0 the tree is at most. An alternating Turing machine is said to
where X' does not occur freely irp. \ork in spacey(n) if for every inputz of lengthn the space
of every computation tree af is at mostg(n).

Here, the axiomdBasic 1throughBasic 12are the usual
axioms used to define Peano Arithmetic without induction
(PA™), which settle the basic properties of addition, multipliDefinition 2 (Uniform NC?). The uniform complexity class
cation, ordering, and of the constants 0 and 1. The Axidm NC? is defined to be the class of languages that can be
says that the length of a string coding a finite set is an upp@gcided by alternating Turing machines with(log ) space
bound to the size of its elements2 says that X| gives the and O(log”n) time.
largest element oK plus1. SEis the extensionality axiom for
strings which states that two strings are equal if they code theWe define the function clasENC? as the function class
same sets. FinallyoZ-COMP is the comprehension axiomcontaining all number functiong(z, X) and string functions
schemefor ©53-formulas (i.e., it is an axiom for each suchf'(Z; X), where# and X are number and string variables,
formula) and implies the existence of all sets which contal§spectively, such that the relation of the function is defined

exactly the elements that fulfill any giveR? property. (resp. bit-defined) inNC? (a binary relationR is defined
. in NC? if the language containing the set of pairs fihis
Proposition 1 (Corollary V.1.8. f]). The theoryV® proves gecidable iNNC2).

the (number) induction axiom scheme 0 -formulas ®:
e) NC? Boolean circuit families: Let {C,,}°, be a

(®(0) AV (@(2) — (z +1))) — ¥z (2). family of Boolean circuits (with fan-in at most twe, A, -
gates). We say that this family is @&C? circuit family if
every circuitC,, in the family has depttO(log® n) and size
n®™) A circuit taken from a given BoolealNC? circuit
We seek to define the determinant function in (some) theofré(m”y is said to be arNC2-circuit. It is known that the
via a Xf'-formula, where a function is said to tefined in N2 circuit value problem is complete undAiC’-reductions
a theoryif the theory can prove that given an input to thgy, the classNC?2 (Definition 2). We say that{C,}52, is

In the above induction axiony; is a number variable and
® can have additional free variables of both sorts.

function there exists a unique output. a uniform NC?2-circuit family if its extended connection
language is INFO (we refer the reader to4[ page 455] for
B. The Complexity ClasdiC? the definitions). This definition coincides with Definitidh

The uniform complexity clas?NC? is defined using an  For the definition of unifornrNC?! (and AC') we refer the
alternating time-space (nondeterministic) Turing machine. reader to 4].



C. The Theory!WNC? Theorem 2. ([4, Corollary 1X.5.31]) A function is XP-

Here we define the theor’NC? as developed in4]. definable inVNC? iff it is in FNC?.
It is an extension ofAC° over the language’y where we ) S
add the axiom stating the existence of a sequence of vallsPolynomials and Algebraic Circuits
that represent the evaluation of monotone Boolean circuits ofiet G be a ring. Denote bg[X] the ring of (commutative)
O(log®(n)) depth. It is known (cf. 4]) that the Monotone polynomials with coefficients fromG and variablesX :=
Boolean Circuit Value problem for circuits ab(log?(n))- {x1,22, ... }. A polynomialis a formal linear combination
depth is complete undekC° reduction forNC2. of monomials, where anonomialis a product of variables.
The NC? CIRCUIT VALUE PROBLEM is the problem that Two polynomials arédenticalif all their monomials have the
determines the value computed by a Bool@d©2-circuit, same coefficients. Theegreeof a polynomial is the maximal
given a 0-1 assignment to its input variables. An input circuibtal degree of a monomial in it.
to the problem is encoded asagered circuitwith d+1 layers,  Algebraic circuits and formulas over the rirg compute
namely, a circuit in which every node in laygris connected polynomials in G[X] via addition and multiplication gates,
only to zero or more nodes in layg#-1. The actual evaluation starting from the input variables and constants from the field.
of such an NC?) circuit within the classNC? is done in More precisely, analgebraic circuit C' is a finite directed
stages, where we start from layerand “compute” (using acyclic graph (DAG) withinput nodegi.e., nodes of in-degree
alternations and nondeterminism) the values of every nodezgro) and a singleutput node(i.e., a node of out-degree
every layer. Formally, we define this evaluation process @gro). Input nodes are labeled with either a variable or a field
follows (see also4, Chap. IX.5.6]). element inF. All the other nodes have in-degree two (unless
The layered monotone Boolean circuit witht- 1 layers is  otherwise stated) and are labeled by either an addition gate
encoded with a string variablg with [I| < n, which defines | or a product gate<. An input node is said teomputethe
the (Boolean) input gates to the circuit. Then we have a striQgiriable or scalar that labels itself. A (or x) gate is said
variableG such thaiG(z, y), for z € [d], holds iff theyth gate to compute the addition (product, resp.) of the (commutative)
in layerz is A, and isV otherwise. Also the wires of’ are polynomials computed by its incoming nodes. An algebraic
encoded by a three-dimensional array, namely a string variablgeuit is called aformula if the underlying directed acyclic
E such thatE(z, z, y) holds iff the output of gate on layerz  graph is a tree (that is, every node has at most one outgoing
is connected to the input of gateon layerz + 1. To compute edge). Thesizeof a circuit C' is the number of nodes in it,
the value of each of the gates in the circiton input, denoted|C|, and thedepthof a circuit is the length of the
simply compute the values of the gates in each layer, startipggest directed path in it.
from the input layer, ind + 1 stages, using the values of the e say that a polynomial isomogeneoushenever every

previous layer. The formuldycv(n,d, E,G,1,Y) below  monomial in it has the same (total) degree.
formalises this evaluation procedure (whé&MCV stands for

“layered monotone circuit value”). The two-dimensional arralefinition 4 (Syntactic-degreéeg(-)). LetC' be a circuit and
Y stores the result of computation: for< z < d, row Y2l v a node inC. Thesyntactic-degredeg(v) of v is defined as

contains the gates on layerthat outputl. follows:
1) If v is a field element or a variable, theteg(v) := 0
dpmev(nd, E,G, 1Y) = and deg(v) := 1, respectively;
Vo <nVz < d((Y(0,2) < I(z)) A 2) If v = u+ w thendeg(v) := max{deg(u), deg(w)};
(Y(z +1,z) (G(z +1,2) AVu < n, E(z,u,x) — 3) If v =u-w thendeg(v) := deg(u) + deg(w).
Y (z,u))V(-G(z + 1,2) AJu < n, E(z,u,x) A Y (2,u)))). An algebraic circuit is said to bsyntactic-homogeneotifs

(3) for every plus gate: + v, deg(u) = deg(v).
The following formula states that the circuit with underlying FOr an algebraic circuif” we denote by the polynomial

graph(n, d, E) has fan-in two: computed byF. We say that two algebraic circuifs, F’ are
similar if F and F’ are syntactically identical when both are
Fanin2(n,d, E) = un-winded intoformulas(a circuit is un-winded into a formula
Vz < dVz < nduy < ndus < nJv < n(E(z,v,2) — by duplicating every node in the directed acyclic graph that has

a fan-out bigger than one, obtaining a tree instead of a DAG).
The similarity relation can be decided in polynomial time
Finally, we arrive at the definition oWNC?: (cf. [10Q)). For example, the following two circuits are similar,
since the formula to the left is obtained by “un-winding” the
circuit to the right into a formula (cf.9]):

(v=ui Vv=us)). (4)

Definition 3 (VINC?). The theoryW NC? has vocabulary’?
and is axiomatized by and the axiom:

X X
Fanin2(n, |n|?, E) — 1/+<x\ 1/+</
5 L5

3y < {|n]* + 1,0 mcv (n, |n*, E,G,1,Y). (5) T5



E. Polynomial Identities (PI) Proofs The number of stepsn a proof is the number of proof-lines

In this section we give the necessary background on it

PI proof systemP.. This proof was first introduced in8[ A Pl-proof can be easily verified for correctness in deter-

(under the name “arithmetic proofs” and for algebraic formulaginistic polynomial-time (assuming the field (or ring) has

instead of algebraic circuits), and was subsequently studiedeifficient representation; e.g., the field of rational numbers

(9. or the the ringZ), simply by syntactically checking that
Pl-proofs as originally introduced ingd], denotedP. (and each proof line is derived from previous lines by one of the

P.(G) when we wish to be explicit about the ring), are inference rules.

sound and complete proof systems for the set of polynomial = | _ L

identities ofG, written as equations between algebraic circuit§: Circuits and Proofs with Division

A Pl-proof starts from axioms like associativity, commuta- We denote byG(X) the field of formal rational functions in

tivity of addition and product, distributivity of product overthe variablesX, where a formal rational fraction is a fraction

addition, unit element axioms, etc., and derives new equatig¥fstwo formal polynomials with coefficients fror. In this

between algebraic circuité® = G using rules for adding Work we will considerG to be the ring of integerZ. We

and multiplying two previous identities. The axioms Bf Will not be interested in ‘inverse elements’ i (excluding

express reflexivity of equality, commutativity and associativithe element 1), nor in the completeness or soundness of proof

of addition and product, distributivity, zero element, unisystems for rational functions (lik&;'(Z) described below),

element, and true identities in the field. because the theory will only provgyntactical properties of
Algebraic circuits in Pl proofs are treated as purely syntactiBese proof systems (hence, no actual ‘division’ is performed

objects (similar to the way a propositional formula is a syntagver the integers.

tic object in propositional proofs). Thus, simple computations It is possible to extend the notion of a circuit so that it

such as multiplying out brackets, are done explicitly, step Wpmputes rational functions i&(X) ([9]). This is done in the
step. following way: acircuit with division F' is an algebraic circuit

o which may contain an additional type of gate with faniin
Definition 5 (PI-proofs; SystemP.(G), [8], [9]). The system c4jeq aninverseor adivision gate, denoted-)~". A division

P.(G) proves equations of the forl = G over the ringG, ga1e4-1 (je., a division gate whose incoming circuit i$
where F, G are algebraic circuits ovef:. The inference rules computes the rational functiolys € G(X), assuming does
of P, are (with I, G, H ranging over all algebraic Circuits, ot compute the zero polynomial. If the circuit with division
and where an equation below a line can be inferred from the .qntains some division gate ! such thaty computes the

one above the line): zero polynomial, then we say that the circifitis not well-
R1 F=G R2 F=G G=H defined and otherwise isvell-defined Note, for instance, that
G=F F=H the circuit(z2+x) ! over GF(2) is well-defined, since?+x
R3 =Gy F=G R4 =G F=0G is not the zero rational function (although it vanishes as a
F1 —+ F2 = G1 + G2 F1 . F2 = Gl . G2 ’ function 0V€|’GF(2)).

We define the systen;!(G), operating with equations

The axioms are equations of the following form, withG, H /o : A
formulas: F = G where F and G are circuits with division 9], as
follows: first, we extend the axioms &.(G) to apply to well-
Al F—F defined circuits with division. Second, we add the following
A2 F+G=G+F new axiom:
A3 F+(G+H)=(F+G)+H D F-F~1 =1, provided thatF—! is well-defined.
AA F.-G=G-F
A5 F.(G-H)=(F-G) -H V. CARRYING THE PROOF IN THETHEORY
A6 F-(G+H)=F-G+F-H Here we describe in details how to prove the determinant
A7 F+0=F identities in the theory, as highlighted before in Sectiotwe
A8 F-0=0 also explain where our construction in the theory differs from
A9 F-1=F [9]-
A0 a=b+c,d =b-¢ (fabecdb,decG, We assume all polynomials are over the ring of integers
are such that the equations hold @); Z. We reason insid& NC? aboutP; !(Z)- andP,(Z)-proofs
All F =F' (whenF,F’ are similar circuits). (Definition 5 and Seclll-F). We use the followingeflection

principle, stating that if an equation has a proof then the
equation is true:

A P, proofis a sequence of equations, callptbof-lines,
Fy = Gy, F» = Ga,. .., F, = G, with F;, G, circuits, such Theorem 3 (P.(Z)-reflection principle; InVNCQ). Let 7w be
that every equation is either an axiom or was obtained froam O(log? n)-depthP, (Z)-proof of the equatior¥’ = G. Then
previous equations by one of the inference rules. 3ikeof F = G is true in Z (that is, theO(log® n)-depth algebraic
a proof is the total size of all circuits appearing in the proofcircuits F' and G compute the same function over the integers).



Theorem3 is proved as follows. We define thevalua- defined above iS&3P-definable in the theory (namely, totally
tion function for O(log® n)-depth algebraic circuits oveZ recursive).
as the function that receives an integer assignménand
an O(log® n)-depth algebraic circuiC. The algorithm then
convertsC into a Boolean NC?2 circuit, where the inputs
are the bit-strings corresponding t4. And then evaluates _ . ] o .
the Boolean circuit using evaluation ®C?2 circuits (£5- EXIstence of proofs with division gatesF; (Z)é We show
definable inVINC?), and finally outputs the resuit. in VNC the existence of a fyncuon (i.e., By -definable
We also need to show iWNC? that the rules and axiomsfuncuon) that given a numbe in unary outputs gp;l(z)-
of O(log® n)-depthP.(Z) are sound with respect to the abov@rOOf ™o of equations 1) and @) (these are equations be-

evaluation function. This is proved by inspection of each {/¢€n algebraic circuits ovef). This is a proof in which
the axioms and rules. circuits have exponential syntactic-degrees (though the theory

cannot express this fact). The circuits in the proof are not
f) The determinant functio®ET (in the theory): The necessarily homogeneous, and have division gates. Note that
(uniform-NC?) determinant function DET is defined in theDet,;..-1(X) computes the determinant as a rational function
theory via the algorithm below. Each step in the algorith@@nd not as a polynomial).
corresponds to a (more involved) step in the algorithm th . .
constructs the final Pl-proof of the determinant identities i;he determinant as a polynomial Let Detrayo,(X) be

the theory. We will defer the more detailed explanation oPe circuit computing thenth term of the Taylor expansion

each step in the algorithm to the sequel, in which we expla?r]; Detejpe-1(In + 2X) aroundz = 0. We argue that the

. i ; . ‘Inverse”) ring element needed to be used for this Taylor
the corresponding steps of the PI-pr struction. expansion is the element 1 (and thus it has an invergg).in

The circuit Detrg,y0-(X) thus computes the determinant
Algorithm DET (in VNC?) function (intuitive_ly, s_incgz multiplies. every variablex;;), _
and by construction it will have no division gates. Hence, it
computes the determinaiis a polynomial We show that
VINC? proves the existence of a function that given a number
1) Write down an unbalanced algebraic cirdbitt, ;... (X) 7 in unary outputs aP_'(Z)-proof of Detrayior(X) =
with division gates that computes the symboticx Det,;..-1(X). Thus, combined with the previous paNC
n determinant polynomial, over the variable§ = proves the existence of B, *(Z)-proof, denotedr;, of the
{2ij}i jem)- This circuit captures the standard recursivdeterminant identitieslj, (2), where the determinant DET is
block-wise formula for computing the determinant ofiow replaced byDetr,,, in the identities.

matrices, using . SChl.” _corr_1p|ement (intuitively, it (.:ap'Reducing the syntactic-degree of the determinant poly-
tures the Gaussian elimination procedure). For details

see . L ) d
Sec.VI-A. &Gmial. The circuit Detrqy0-(X) has exponential syntactic-

. _ . degreé. However, for the next step, we ne@itrqyior (X)
2) ansujer the cwcu@et_m;,.cfl(ln + ZX). as computlng 4 to have a polynomial syntactic-degree. We showMiNC?,
univariate polynomial in the new variable Using this

circuit, construct a new circuibet (X) computing that there exists aP; '(Z)-proof of Detrayior(X) =
; Taylor Det, X), whereDet, X) has syntactic-degree.
the nth term of the Taylor expansion ddet;, .1 (I, + €T ayior (X), WhereDetz,,,,, (X) has syntactic-degree

2X) aroundz = 0. Thus, by previous partSYyNC~ proves the existence of a

I . . .
3) Convert the circuiDetzq, 10, (X) into a circuit that has P~ (Z)-proof of the determinant identitied)( (2), where the

. . y L
2 syntactic-degres, denotedDetyy, (X). clgobrae e with no Gidon gates and of ynictic cegree
4) ConvertDetr,,,,, into a circuit with a single division g 9 Y 9

gate at the top, denoteet’r, , . n. Denote this proof byr.
5) Eliminate the division gate~" from Det’/ll"aylor by sub- Bringing division gates to the top (Shown in details below;
stituting u with a truncated power series of ' around Sec.V-A). We say that a circuitC’ has a division at the
a point defined by the identity matrix. Denote the newop wheneverC is of the formF - (G)~! or (G)~! - F, for
circuit by Detg;c. two circuits F,G. If F,G do not have division gates we say
6) BalanceDet.;,. via the (uniform) balancing algorithm. that C' has a single division gate at the tof\Ve need our
Denote byDetyqianced the resultingO(log2 n)-depth and circuits to have such a structure, because if we have circuits

Given the function DET we now sketch the proofWiNC?
of the two equationslj), (2) above.

Input ann x n integer matrixA.
Output z € Z, wherez is the determinant ofi.

poly(n)-size circuit. with nested divisions we cannot replace division gates by an
7) Evaluate the circuiDetyqqnccq With the input assignment “approximating” power series in the next step.
A, using the evaluation function as defined adbov We devise arlNC? algorithm that takes an algebraic circuit

with division, of any depth and outputs an algebraic circuit

S'nce we ShPW that all t2he ConStrUCt'QnS above Eh% 3Here, we shall differ fromg], since we do not know how to formulate
definable functions inVNC*, the determinant function asanNC2-algorithm for eliminating 0 nodes in general algebraic circuits.



computing the same rational function that hasregledivision Eliminating high degrees Here we eliminate the high

gate at the top of the circuit, i.e., the root (this is a slight abusgntactic-degrees>(n) parts in the circuits appearing iry.

of notation; see Sed/-A). This is done by homogenizing the prosf. Specifically, we
This algorithm is not entirely trivial due to the need teshow in VNC? the existence of a function that receives an

work in NC2. We moreover show that this algorithm%P-  algebraic circuitG of syntactic-degreé and converts it into a

definable inVNC?2. sum ofk +1 syntactic-homogeneous circuﬁsjf:0 G% (com-
Then, using this algorithm, we show IWNC? how to puting the same polynomial), whef&® denotes a syntactic-

convert theP,!(Z)-proof 7, into a proof in which every homogeneous circuit of syntactic-degrieeomputing the sum

circuit has a single division gate at the top. Denote the resulteflall degreei monomials inG.

proof by 73 Moreover, we show tha¥ NC? can prove the existence of

Eliminating division gates. We now wish to eliminate the & function that given &.(Z)-proof of a syntactic-degree

division gates from th@(Z)-proofs, to obtairP,(Z)-proofs €duationt” = G, decomposes the proof into+ 1 F.(Z)-
without divisions. Standard division elimination by Strasseffoofs of P = G, fori =0,...,n, each proof having
[16] requires finding a (total) assignment to the variableSyntactic-degree at most Combining these proofs gives a
such that no division gate in the circuit equals zero under tHV Syntactic-degree version af;. S
assignment. However, we do not know how to uniformly find Th|_s also fixes the problem caused by division elimination
such assignments, and so we do not know how to uniformfiigScribed at end of the previous step. We thus obt&@in()-
eliminate division gates from general algebraic circuits iArCCf, denotedrs, of (the degreen syntactic-homogeneous
VNC?2. Our division elimination will work only for those Parts of) equationslj and @).

circuitsin 7. Balancing algebraic circuits is definable in the theory This
First, we show that the assignment of identity matrices to th§llows the algorithm discussed in Sew-B. Moreover we
(matrix) variablesA = {a;;}, B = {b;;},C = {ci;} (1,5 € show in VNC? the existence of a function that receives a
[n]), in the proofr; of equations 1), (2) does not nullify any p_(7)-proof of F = G with syntactic-degred, and outputs a
division gate inms (though this statement is not expressed iPC(Z)_prOOf of [F] = [G] in which every circuit is of depth-
the theory). O(log s -log d+1log? d) and the size of the proof is pdly, d).
Assuming for simplicity thatw; (for i € J) are all the  Applying this function tors, we obtain aX?Z-definable
variables inrs and letb be the assignment of identity matrice§ynction in VINC?, that givenn in unary outputs a depth-
to the variables inr3. Then, substitu'.te inr3 the te_rm(bi —  O(log?n) P.(F)-proof 74 of the determinant identitiesl),
yi) for eachw; (for all i € J) denoting the obtained proof 2) (where DET is replaced by the appropriate balanced circuit

by m4. Then the all zerassignmend to they; variables in computing the determinant, denotBdtyqanced) -
w5 does not nullify any division gate imn}. Furthermore, we

show that under this assignment every division gate compuf¥@Plying the reflection principle. We now reason it NC?
the polynomiall (and thus has an inverse i). Therefore, as follows: for everyn and every pair of matricesl, B
in the theory, we simply construct this (substitution instanc€y€r Z of dimensionn x n, by the definition of DET,
P-1(Z)-proof x4 (though, again, we do not express in th&ET(AB), DET(A) and DETB) equals the value of applying
theory the argument just discussed). the evaluation function to the circutetyq;qneeq With the input
Let Inv,(H) be the truncated power series &' over @assignmentdB, A, B, resp. (where the matrix produet’3 is
the point determined by the identity matrix (loosely speakin§€finable inVNC?; cf. [6]).
serving as the inverse polynomial Bf “up to thekth power”). By the arguments above, there exists a depthog®n)
Specifically, H - hm) = 1+ [terms of degree> k].* Pc(Z)-proof of Detyaiancea(XY') = D?tbalanced(X) -
For every circuitC' with a top division gatel/—', VNC?  Detbatancea(Y') for the two symbolic matricesY,Y" of di-
proves there exists a corresponding division-free cir¢ifit Mensionn x n. But by Theorem3 this means that for every
obtained by replacing the division gat&~! in C by Inv;,(F). INPut matrices ovetZ, Detyaianced(AB) = Detpatancea(4) -
Let 7, be the corresponding division-free proof-sequendgetiatanced(B). Therefore, by the above, DEAB) =
obtained fromr by replacing every circuit with the corre-DET(A) - DET(B). Similar reasoning applies to the proof of
sponding division-free circuit as above. By itseff is not determinant identity3).
a legal P.(Z)-proof, since the axiom of division it *(Z)

does not translate into an axiom #.(Z). In other words, ) _ 2 )
the axiom of division D,F - F~! = 1 (provided thatF~! Here we describe some of the unifofC#-algorithms we

develop for the construction of the Pl-proofs in the theory
and for proving the soundness of Pl-proofs in the theory. In
particular, we focus oulivision normalizatiorof both circuits

“4Though, againV’NC? cannot prove this equality, since general evaluatiomnd proofs—namely, converting an algebraic circuit (PI-proof,

of (unrestricted depth) algebraic circuits is not known to be defined in tr}%sp ) with division gates into a circuit with only one division
theory. ’

5F—1 is definedwhenever the polynomial computed by any division gatQate at.the. top i.(?.,. ?‘t the output gate (Pl-proof in- which
is nonzero. every circuit has division only at the top, resp.). One reason we

V. THE UNIFORM NC? ALGORITHMS

is defined; see Definition5), translates intaF - Inv,,(F) =
1+ [terms of degree> n]. We fix this problem in the next step.



focus on this construction here, is that both homogenization o2) (Sequentially For everyi = [log(d)],...,2,1, whered
proofs (and circuits) and balancing of proofs (and circuits) in is the depth ofC' (starting withi = [log(d)]), do:

the theory follows to a certain extent the division normalization a) Consider the (layered) circuit as divided itablocks.
scheme we describe here. We then describe in general terms (A block thus contains all the subcircuits whose roots

the NC2-algorithms for balancing circuits. are at the top of the block and leaves are at the bottom
FurtherNC?2-constructions that we skip due to lack of space of the block.)

are breaking circuits (and proofs) into their homogeneous In parallel, for eachpair of consecutive blockgjo:

components (the standard Strasseh@ glgorithm lends itself + (At this stage, each block possibly contains division

quite immediately to a parallel execution, but constructing gates only at its top.) Move all division gates in the

- 2 .

the homogenizecproofs needs some care), and teC=- top of the lower block to the top of the upper block.

algorithm for thealgebraicINC? circuit evaluation problem

(over Z). Step (a) in the algorithm above ends with all division gates

occurring at the top of the upper block of each of the pairs
A. Parallel Division Normalization of Circuits and Proofs  considered.

Here we show the parallel algorithm that receives an al- Since the above algorithm h&¥(log d) steps, to conclude
gebraic circuit with division gates and normalizes it, that ighat the above algorithm is iNC?, it suffices to show that
converts it into a circuit with a single division gate at the toﬁteP* can be implemented iNC*:

(i-e., output gate), and similarly fqPrc—l-proofs. For simplicity, nc1-algorithm for moving all division gates in the top of
we shall s'o'm'etlmes abuse notation and assume in thI'S sectiofwer block to the top of an upper block

that the division gates has fan4wo, so that a circuit with a
division gate at the top can be written &s: G, where—- is

a division gate.

For every node in a circuit F' with division introduce two
nodes Defw) and Nunfv) that will compute the numerator
and denominator of the rational function computed 4y
respectively, as follows:

1) If v is an input node ofF’, let Numv) := v and

Input C a layered algebraic circuit with division gates, parti-
tioned into two halves: anpper blockconsisting of the
layers in the upper half and lawer block consisting of
the layers in the lower half, where division gates may
occur only in the top layer of each block. R

Output An algebraic circuit with division computing’ with
all division gates at the top of the upper block.

Den(v) := 1. 1) Syntacticallymultiply all nodes inC' (in both blocks) by

2) If v = u~t, let Numv) := Den(u) and Defv) := the producta of all denominatorsy; occurring in the top
Num(u). level of the lower block (ag; + a;, for someg;).

3) If v = uy - ug, let Num(v) := Num(vy;) - Num(vy) and  2) Cancel accordingly the denominators of all top-layer
Den(v) := Den(vy) - Den(vs). nodes in the lower block, so that now all gates in lower

4) If v = uy + ug, let Num(v) := Num(uq) - Den(uz) + and upper blocks haveo denominatorsexcept for the
Num(usz) - Den(u;) and Detfv) := Den(uy) - Den(us). top layer nodes in the upper block.

Let Num(F) and DeriF) be the circuits with the output 3) Add a denominatokx (i.e., syntactically divide by the

node Nunfw) and Derfw), respectively, where is the output sub-circuita) to all the gates in the top layer of the upper
node of . We want to show the following: block. It is easy to check that the new circuit we get

computesC'.

Theorem 4(in VNC?). (i) If F is a circuit with division, then Notes on the above algorithm: when adding products dike
F' = Num(F) - Den(F)~" has aP_(F) proof. (ii) Let ;G e just add edges to a single sub-circuit computinghhen
be circuits with division. Assume thdt = G has aP_'(F) \ye add edges in the above algorithm we always preserve the
proof. Then Nurfi”) - Den(F)~! = Num(G) - Den(G) ™" has  cjreyit being layeredso we may need to add sufficiently many
aP_1(F) such that every division gate in every circuit in th%lummy edges to preserve the “layerness” of the circuit).
proof occurs only at the top. We now turn to the proof of Theore# (i).

We prove only part (i), that exemplifies the main idea. TBroof sketch of Theorem (i). In the “NCZ2-Algorithm for

prove this we first describe ti§ C2-algorithm that normalizes F‘

ireuits with divisi oll ) ding | lormalizing Circuits with Divisionswe had [logd] steps,
circuits with divisions, as follows (we ignore encoding issuesy, - ; yq depth of the input circuit. Similarly, we describe

NC2-Algorithm for Normalizing Circuits with Divisions ~ anNC?-algorithm for constructing th&; ' (Z)-proof of F =

Input C' an algebraic circuit with division gates. Num(F) + Den(F).

Output An algebraic circuit computingf with a single divi- In eacrt1 st?pi_: [log Iclﬂl’ ‘ @ﬁ’% Wher?i{ IS me depth ?F’
sion gate at the top. we construct (in parallel) &_'(Z)-proof for the correctness

i L i of step*, for every pair of consecutive blocks i, using:
1) ConvertC into alayeredalgebraic circuitC’. This can

be done iNNC?! (we skip this procedure due to lack ofClaim 5 (in VNC?; in fact in VNC!). Let C,C’ be two
space). layered circuits with division gates, of deptheach. Assume



that C’ is the result of applying step*' in the division syntactic-degree of the circuits obtained after the replacement

normalization above on circuiC. Then there is @, !(Z)- of ring elements by new variables is still polynomialsin

proof of C = C". When we compute circuits of syntactic-degfien the base

case of the construction, there will be no scalars in the circuits

(since we replaced scalars by variables in advance), namely,

B. Balancing Algebraic Circuits (and Proofs) in Uniform—CirCUirt]S of sygtactic—dlegree Wi:: C°F“a".‘ only p!uhs gelttes.l

NC2 and in VNG2 We thus need to evaluate arithmetic circuits with only plus

gates (note that the circuits are not necessarily balanced). As

Here we provide some overview of tiéC2-algorithm for mentioned above, to do this iNC2 we follow a similar

constructing the balanced circuit, given as an input an uppgsproach to that in1p).

bound (in unary) on the syntactic-degree of the input circuit.

Due to lack of space we focus only on some of the differences V1. ENCODING CIRCUITS AND PROOFS THE

between our algorithm and the standard Valiantal. [17] DETERMINANT CIRCUIT IN THE THEORY

algorithm.

We omit the proof of thisclaim. O

Here we give some details on how to encode and construct
NC?2-algorithm for balancing circuits (overview) the required circuits (and proofs) MNC?. We focus on the

Input C,d whereC' is a syntactic-homogeneous circuit andlready non-trivial construction of the determinant circuit with
d is the syntactic-degree of in unary (we can as- division Det,.;,..-1 in the theory; encoding and constructing
sume that”' is a syntactic-homogeneous circuit becaudd00fs in the theory follow similar lines.
we can transform in parallel a circuit into a syntactic- o L .
homogeneous circuit; we can also assume that welgeft: Circuit with Division for the Determinant
as an input because of this homogenization algorithm). First we need to define the determinairtuit with division

Output A balanced circuit[C] computing the polynomial denotedDet,;,.—1. Similar to ], this is done using block-
C. That is, if C' has sizes, then the depth ofC] is wise inversion: by considering the symbolic matrix =
O(log slog d + log? d) and the size ofC] is poly(s, d). {i;}i jem)» consisting ofn? distinct variables, defining the

/1] 1 o .

Algorithmt The algorithm proceeds via the general schenge}amx inverse X~ of X and. then, by partitioning¥’ |nt(_)

of [17] in [logd] stages, combining it with a case of the c.)CkS’ we _formulate arecursive dg_fmnmn of the (_:Ietermlnant,

Miller et al. [12] algorithm (the Milleret al. algorithm is an using matrix inverse. This definition can be viewed as a

NC2-algorithm for evaluatingan algebraic circuit under anformula'u.on of Gau55|.an elimination. o1 .
assignment). Specifically, we define an x n matrix X —' whose entries

are circuits with divisions, computing the inverse &f, as
We list some of the specific features of NIC? balancing follows:
algorithm: 1) fn=1let X' :=(z}).
1) The notion of degree in the original constructidtv] 2) If n > 1, write X as follows:
is replaced in our algorithm with that of syntactic-degree

Because neither syntactic-degrees (nor degrees) can be com- X = < X ) , (6)

puted (apparently) ilNC2, we need to supply it as an input to V2 Tnn

the algorithm; the syntactic-degréds used in the algorithm, where X1 = {zi}ijem-1) 1 = (@10, Tn-1)n)

because we balance the circuit[itog d] stages. and vy = (Zp1,...,Tp(n_1))- ASSuming we have con-
2) Another difference between our construction add] [ structedel, let

is implied by the need to evaluatmbalancedconstant alge- 5(X) = Tpn — 02 X7 0L @

braic circuits (i.e., circuits with no variables) in the original

construction. Specifically, in the base case of our construction, d(X) computes a single non-zero rational function and

when we are given a circuit computing a linear form we need SO §(X)~" is well-defined. Finally, let

to compute the coefficients of the linear form. However, we 1

cannot directly compute these coefficients since the (variable- XT=

free) circuit computing the linear form may be a circuit beyond (Xfl (In—1 4+ 6(X) " Molve X7 ) —6(X) 71X od >

NC? (e.g., a circuit of linear depth) and so it may not be —6(X) "t X o(x)

possible to directly evaluate it withilNC2. (8)
One way of solving this problem is to replace each field The circuit Det.;,..-1(X) is defined as follows (using

element: € Z that occurs in the circuit with a new variabte, “Schur complement”):

and by that making sure that all sub-circuits computing linearyy |f , — 1, let Det,;,..-1 (X) := 21;.

forms will contain only variables; and hence, there will remain2y |f 5, > 1, partition X as in §) and let§(X) be as in 7).

no unbalanced variable-free sub-circuits in the circuit (when | et Det,;,.1(X) :=

we balance all syntactic-degrdesub-circuits in the circuit). s

For this replacement to be useful we need to make sure that the Deteire-2(X1)-6(X) = Deteire—1 (X1)-(2nn—v2 X1 07) -

10



The definition in 8) should be understood as a circuisome/, according to the definition in8j. We will use the
with n? outputs which takesX; ', v, vs, x,,, as inputsand following notation and functions in the theory.
moreover, such that the inputs fro, ' occur exactly once

Altogether, we obtain a polynomial-size circuit fof —! and o . . : .
. . S . Let F' be some “simple” arithmetic function, such as inner
the determinant function oX. The circuits obtained are un- )
L : roduct of twon-element vectors over the integers, or one of
balanced, have division gates and are of exponential syntacfjc-

degree (see Definitiod). The fact thatDet,;,, +(X) indeed e functions in §) used to define a minor or the matrix inverse

computes the determinant (as a rational function) stems eX_l’ such agi(X) . We will denote bywrite (n, d, 41,0)
P . y : i ifla following string function: the inputare I, serving as the
from the fact (shown in this work, or in9]) that P, '(Z)

: . . .__input nodes to the circu#ndO the output nodes of the circuit
can prove the two identities that characterize the determma%fr.) F dis the index “Ieveﬁ (used ?o record the recursive

That X! computes the matrix inverse is also proved in thI%vel of recursive circuit constructions as @) and/ is the
theory. B S . .

running” index of a node in a given level, andn stands
for the “dimension” of the operation defined By (e.g., inner
product of vectors of size, or matrix product of twon x n

Here we show ax}-definable string function ilvNC? matrices has dimensior). The output is a string, but we abuse
(in fact in V), denotedwritex—1, that outputs the multi- hotation and assume it three separate strings encoding the
output circuitX —! ((8) above) given as input a unary integefoutput) circuit, for simplicity, as followsE, V, G as described
n (@among other parameters). above. _

Unlike (8), the functionwritex—: is not recursive as the ~ More formally, we definewriter(n,d,/, I,0) = (E,V,G)
circuit is of depthQ(n) and we do not have iV°, nor in @S follows (similar to the above notation) is a string
VNC?, the induction axiom forsB-formulas. Fortunately, describing the vertices in an algebraic circuit.is a string
we need the theory only to construct the circuit syntacticalljescribing the edges between verticesVin G is a string

The circuit for X! is encoded as follows. It is a multi- 4&scribing the gate-types of verticeslin Every vertex is of
output circuit. The string/ encodes the nodes in the circuit!® forlm(d, (i’j?’@ with d the recursive level in the definition
For every layerd = 1,...,n in the inductive definition of Of X in (8), (,j) means that the node is in tlig j)'s part
X-1, we have a set of noded, (i,7),¢) € V, where (i, j), pf the definition of X1, and? is thg runnlng index qf nodes
for i,j € [d], is an entry in al x d matrix, meaning that the " the same leveil and same parti, j), where/ = 0 iff the
node(d, (4, j), ) is part of a sub-circuit of¢ ~! that computes node is an output node dhat Ie\_/elc_l (it is not necegsa_rlly
the (i, j)th entry in thedth inductive-step is the running the output node of the whole circuit). Assume thatl) is
index of the nodes in that part, whefe= 0 iff the node is SOMe algebraic function witln, integer inputs 7 and mn;
what we consider aoutput node of the giver and the given Nt€geroutputsO. Then, we supplyriter(n, d, ¢, 1, 0) with
entry (i, ). Nodes of the form(0, (i, j), 0) stand for theinput the nodes indices (as encodedwm.to pe used as input nodes
variable z;; of the matrix X; therefore, these are the inpuf@Nd output nodes for the (sub-)circuit computifig
variables of the circuit —'. Example: Consider Fy := X;'(I,_1 + 0(X) tolv X;1)

For example,(1,(1,1),0) is the node computings;;', from (8). This is a recursive function in the sense that it uses
because the first coordinate= 1 refers to the “recursive” the outputX; ' which is computed in the previous recursive
level 1 in @) above, the second id, 1), meaning the(1,1)- level d — 1 as input, together with the “new” nodes in row
entry from the circuit computing the inverse of;, and the d and columnd in X. Therefore, the inputs of’, are the
last coordinate is 0, meaning this is tbetput node of the following nodes:(d—1)? input nodes forX; !, 2(d—1) input
inverse ofxy;. nodes forv! andwvs, and finally one input node,, (needed

Additionally, we have a strings encoding the gate-type of for computing§(X)~1), which sums up tad? input nodes.
each node iV, excluding the input node®), (i, ),0). That The number of output nodes fdf, is (d — 1)?, as it defines
is, (d, (i,7),¢,9) € G means that nodéd, (i,5),¢) € Visof a (d—1) x (d — 1) minor of X~!. Thus, in our encoding
type + if ¢ = 0, x if ¢ = 1 and division=- if ¢ = 2, and scheme, the input nodes (viewed ad & d matrix) are:
an input variablez;; if g = (¢,j), where(.,-) is the pairing

Notations and basic functions for constructing sub-circuits

B. Constructing the CircuiDet,;,.—1 in V°

function (note that the pairing function is monotone increasjag(d — 1,(1,1),0) ... (d—1,(1,d—1),0) (0,(1,d),0)
and that(1,1) > 2, so we can distinguish between the cdse : ;
of an arithmetic gate and an input gate). Finally, the string — 1,(d.— 1,1),0) ... (d—1,(d—1,d—1),0) (0,(d —'1,d),0)
E encodes the edges between nodes in the circuit. That is, (0,(d,1),0) (0,(d,d —1),0) (0,(d,d),0)
(d, (i,4), ¢, d', (i",j"),¢') means that there is a directed edggnd the output nodes (viewed agda— 1) x (d — 1) matrix)
from node(d, (i,7),¢) to node(d’, (i',j'), ). are: (€. (11).0) @, (Ld—1),0)

Using the above encoding scheme it is possible now to bit- T I
define the string functiomrite x -1 as a~-definable function ( : : )
in VNC?. We only need to construct, given some fixed (d(d-1,1),0) ... (d(d-1,d-1)0)

d, (i,7), the sub-circuits whose nodes will §é, (¢, j), £), for Let Fy, F3, Fy be the other three functions used in the
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definition of X~ (8) (for the other three minors). We can [2]
define similarlywriter, functions for theser;’s.

To actually show thatritex -1 is a ¥ -definable function
in V° we need to show, e.g., how to bit-defineite,., using [3]
a X-formula, given twon-element vectors of integers u n
representingnodesin the circuit. This is quite easy to show:
simply output a binary tree with the correct plus and products
nodes, and plug the input nodesu to the leaves accordingly. [5)

Similarly, we have ¥¥-formulas for constructing other 6]
formulas likewrite, 4 andwrite 4,¢, given the input nodes for
an n x n matrix A, and the input nodes for an-elements
vector v. Similarly, given a nodez it is trivial to output a
circuit computingz—! or —z, and given two matricest, B
(i.e., 2n? nodes) it is trivial toXF-definewrite 4, 5 in VO.

(7]
(8]

Now that we set up the notation and the functions for
constructing sub-circuits, we caiZ-definewritex -1 in V° [°]
as follows. First, fori 1,...,4, define Inpg, (d) and
Outr, (d) as the string functions that output the sequence of
input- (output-, respectively) nodes of théh recursive level (10]
of X~! for each of theF;’s, as shown forF; in the example [11]
above. They are all definable string-functionsWiNC?. We
can now bit-definevritex -1 as follows:

writex—1(n, ¢, 1,0)(i) =
2<d<n (write|e\,e|(X71) (n,d, 1,Inpg, (d), Outp, (d)) (Z)) A
write, 1 (n,1,0,((0,(1,1),0)), (1, (1,1),0))) (1)) .
wherewritejeye x-1)(n, d, £,1,0) outputs(E, V, G) encoding
a (sub-)circuit that is thelth inductive level of X!, and
write, 1 (n,1,0,((0,(1,1),0)),((1,(1,1),0))) is the string
function that outputs the encoding of the circuit;}"".

(12]

(13]
(14]
(18]
(16]

(17]

VIl. CONCLUSIONS

We establish a uniform proof, in what may be considered the
weakest logical theory possible, of the basic determinant iden-
tities. This answers an open question of, e 4., We achieve
this by formalizing in the theorf’?NC? the construction of
the propositional proofs from HrubeTzameret9], and using
a reflection principle for Pl-proofs in the theory, devising along
the way parallel INC?) algorithms for basic algebraic-circuit
constructions, provably total IWNC?Z. Due to the central role
of linear algebra and the determinant function, these results
are expected to be relevant to further basic work in bounded
arithmetic.

As for the VINC?2-provability of theCayley-Hamiltortheo-
rem and theco-factor expansionf the determinant, we believe
that these should follow relatively easy from our results.
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