
Uniform, Integral and Efficient Proofs for the
Determinant Identities

(Extended Abstract)

Iddo Tzameret
Department of Computer Science

Royal Holloway, University of London
Iddo.Tzameret@rhul.ac.uk

Stephen A. Cook
Department of Computer Science

University of Toronto
sacook@cs.toronto.edu

Abstract—We give a uniform and integral version of the short
propositional proofs for the determinant identities demonstrated
over GF (2) in Hrubeš-Tzameret [9]. Specifically, we show that
the multiplicativity of the determinant function over the integers
is provable in the bounded arithmetic theory VNC2, which
is a first-order theory corresponding to the complexity class
NC2. This also establishes the existence of uniform polynomial-
size and O(log2 n)-depth Circuit-Frege (equivalently, Extended
Frege) proofs over the integers, of the basic determinant identities
(previous proofs hold only overGF (2)).

In doing so, we giveuniform NC2-algorithmsfor homogenizing
algebraic circuits, balancing algebraic circuits (given as input
an upper bound on the syntactic-degree of the circuit), and
converting circuits with divisions into circuits with a single
division gate—all (ΣB

1 -) definable inVNC2. This also implies an
NC2-algorithm for evaluating algebraic circuits of any depth.1

I. I NTRODUCTION

This work fills a basic gap in our understanding of weak
formal theories of arithmetic, namely, bounded arithmetic.
The complexity of linear algebraic operations such as ma-
trix inverse and the determinant is well studied [5]. The
importance of linear algebra in bounded arithmetic and proof
complexity has also been identified in many works, and it
has been conjectured for quite a long time (cf. [14], [15],
[4], [6], as well as [2], [1]) that the determinant identities,
and specifically the multiplicativity of the determinant function
DET(A)∙DET(B) = DET(AB), for two matricesA,B, can be
proved in a formal theory that, loosely speaking, reasons with
NC2 concepts. Here,NC2 is the complexity class consisting
of all languages that can be decided by families ofO(log2 n)-
depth and polynomial-size circuits, and is apparently the
smallest circuit classin the NC hierarchy that cancompute
the determinant.2 This conjecture is aligned with the intuition
that basic properties of many constructions and functions of a
given complexity class can be proved in logical theories using
only concepts from the same class.

1OurNC2 evaluation algorithm is different from the previously known one
by Miller et al. [12]. Our algorithm also requires as input an upper bound on
the syntactic-degree of the circuit, while Milleret al.’s does not.

2Formally, the conjectural smallest circuit class computing integer determi-
nants is the class denoted DET (cf. [6]).

Currently, the weakest theory known to prove the determi-
nant identities isPV (which corresponds to polynomial time
reasoning, by Soltys and Cook [15]). Quite recently, Hruběs
and Tzameret [9] showed that at least in thepropositionalcase,
the determinant identities expressing the multiplicativity of
the determinant overGF (2) can be proved with polynomial-
size propositional proofs operating withNC2-circuits (and
quasipolynomial size Frege proofs). However, this does not
lend itself immediately to the uniform framework of bounded
arithmetic. For example, a short propositional proof may be
shown to exist, but with no way of determining whether it
could be constructed uniformly and in a restricted compu-
tational model such as uniform-NC2 algorithms—making it
thus impossible to carry out directly in bounded arithmetic.
Further, [9] crucially used in their construction elimination of
division gates from algebraic circuits, which we do not know
how to achieve using uniform weak computational models
like uniform-NC2 (since for standard division elimination one
needs to find field assignments that do not nullify a given
polynomial [16]).

The main goal of this work is to prove the determinant
identities in the theoryVNC2 (corresponding to “NC2-
reasoning”; i.e., reasoning with concepts definable in the
complexity classNC2). We will show that similar reasoning
as in [9] can be carried over, with further complications
imposed by uniformity and parallelism, toVNC2. As a result
of working in bounded arithmetic it will also become relatively
simpler to conclude the proofs over the integers (while the
previous propositional proofs considered onlyGF (2)).

a) Organization: The preliminaries for this work are
quite long.For this reason we begin with ahigh-leveloverview
of the results and their proofs in Sec.II (readers who are
unfamiliar with some of the concepts in the overview can
consult the preliminaries section for those). The preliminaries
themselves are given in Sec.III , consisting of basic defini-
tions from bounded arithmetic, the complexity classNC2,
the corresponding theoryVNC2 [4], basic definitions of
algebraic circuits, and proof systems operating with algebraic
circuits establishing polynomial identities (PI-proofs [8], [9]).
In Sec.IV we give a much more detailed guide to the proof
of the determinant identities in the theory, while still leaving978-1-5090-3018-7/17/$31.00c©2017 IEEE

out many of the technical details and proofs. In Sec.V we
discuss some of the parallel (uniform-NC2) algorithms we
construct: division-gates normal forms (moving division gates
to the root of circuits) and balancing of algebraic circuits. As
a result of these algorithms we obtain a parallel algorithm for
evaluating algebraic circuits (of any depth). Sec.VI explains
in some detail how we encode certain algebraic circuits in the
theory.

II. OVERVIEW

Our aim is to prove the determinant identities insideVNC2

(for VNC2 and the logical setting see Sec.III). Specifically,
we want to have aΣB

1 -definable inVNC2 function DET(∙)
whose input is a matrix over the integers, such thatVNC2

proves:
DET(A) ∙ DET(B) = DET(AB) (1)

and
DET(C) = c11 ∙ ∙ ∙ cnn, (2)

for any n × n integer matricesA,B, and anyC an n × n
triangular integer matrix.

Note that these two identities can be considered as the
definingidentities of the determinant polynomial, in the sense
that every polynomial for which these two identities hold is the
determinant polynomial. (One way of seeing this is to observe
that every square matrix is equal to a product of upper and
lower triangular matrices.)

Some clarification on how we represent integers and matri-
ces in the theory is due: integer numbers are presented in
binary asstrings, where the least significant bit (lsb) is 0
(resp. 1) when the integer is positive (resp. negative), and
where the rest of the string is the binary representation of
the absolute value of the integer. Ann × n matrix overZ is
usually encoded as a two-dimensional string (cf. [6]).

It is not hard to show that we can provesimplefacts about
matrices, such as the definability of matrix productAB, the
statement expressing associativity and commutativity of matrix
productsA(BC) = (AB)C andA + B = B + A, resp., and
so forth (see, e.g., [15], [4] and Lemma 28 in [9] about these
basic identities that can be proved already inVNC1).

All circuit classes discussed in this work (except when
otherwise stated) are assumed to be uniform circuit classes
(formally, we require uniformity in the sense that the extended
connection language of the circuit family is inFO; see [4] and
Sec.III-B).

Let us now sketch briefly how wedefine the determinant
function in the theory and how weproveits defining identities
in the theory.

b) Defining the determinant function in the theory:Given
a matrix over the integers of dimensionn × n, the ΣB

1 -
definable string function (recall that we encode integers as
strings) inVNC2 for the determinant is defined roughly as
follows: first, construct anO(log2 n)-depth algebraic circuit
computing the determinant ofn×n integer matrices, and then
evaluate the circuit under the input assignment.

More specifically, the determinant function in the theory
first constructs a recursive algebraic circuit (or equivalently,
a straight-line program) computing the symbolicn × n de-
terminant with division gates(“symbolic” here means that
the algebraic circuit computes the determinant as the formal
polynomial overn2 distinct variables). This is done using
the standard recursive formula of the block-wise determinant
(using “Schur complement”), simulating in a sense Gaussian
elimination (similar to [9]). Then,eliminate the division gates
in the determinant circuit using, among other conversions,
substitutions of power series in the circuit. Then,homogenize
the circuit getting rid of high degrees,balance the circuitto
achieve the squared logarithmic depth, and finallyevaluatethe
result under the input integer matrix.

The function that evaluates a balanced algebraic circuit
in itself consists of several steps, as follows: given as an
input a balanced algebraic circuit, the function: (i) converts
it into a layered circuit (namely, a circuit in which each
node connects only to the subsequent layer); (ii) transforms
it into a Boolean circuitcomputing the same polynomial over
the integers (coded as bit-strings) while taking care that the
negations appear only in the bottom layer; and finally (iii)
evaluates the Boolean circuit using the fact that theNC2-
CIRCUIT EVALUATION PROBLEM is NC2-complete (under
AC0 reductions [4]).

Since we show that the determinant function as defined
above isΣB

1 -definable inVNC2, by [4] it means that this
function is in uniform-NC2.

c) Proving the determinant equalities in the theory:
Informally, the basic argument formalized in the theory is
that there exists a balanced PI-proof (forPolynomial Identity
proof), in symbols, aPc(Z)-proof (as in [9]; see SectionIII-E),
of these identities. Thus, by soundness of balancedPc(Z)-
proofs, which we show is provable inVNC2, these identities
must be true.

More precisely, we demonstrate aΣB
1 -definable function in

VNC2 that given an inputn in unary, outputs aPc(Z)-proof of
identities (1) and (2). In thisPc(Z)-proof every proof-line is an
equation between depth-O(log2(n)) algebraic circuits (without
division gates) of a polynomial syntactic-degree. To conclude
the argument, we use the soundness of depth-O(log2(n))
Pc(Z)-proofs: using induction on proof-length we argue that
for every assignment of integers, equations (1) and (2) must
hold.

A. Contributions and Technical Challenges

Showing that the long and nontrivial constructions from [9]
can be carried out inVNC2 and thus proving the determinant
identities, requires quite a lot of work. The main technical
obstacles that we face areparallelism and uniformity as we
explain in what follows.

Parallelismhere means that the construction of the original
propositional proofs from [9] must be done by itself inNC2.
The construction in [9] is quite involved, and to make it
parallel we need to devise severalNC2-algorithms, allΣB

1 -
definable inVNC2, as follows.

2

(i) Parallel division normalization: converting algebraic cir-
cuits with division gates into circuits with a single division
gate at the output gate; (ii) Converting algebraic circuitsC
into the sum of their homogeneous components, given as
input an upper bound on the syntactic-degree ofC; i.e., each
summandC(i) is a homogeneous circuit computing the degree
i homogeneous component ofC; (iii) Balancing an algebraic
circuit of sizes and depthd into a poly(s, d)-size algebraic
circuit of depthO(log s ∙ log d + log2 d), given as input an
upper bound on the syntactic-degree ofC.

By first balancing an input circuit and then evaluating it
(both inNC2) our results give rise to: (iv) anNC2 evaluation
procedure for algebraic circuits of any depth (given as input an
upper bound on their syntactic-degree in unary) that is different
from the previously known algorithm by Milleret al. [12]
(their algorithm does not require the syntactic-degree as input).

The algorithm for (i) above is somewhat nontrivial, while
the algorithm for (ii) follows by observing that the standard
Strassen [16] homogenization procedure is parallel in nature
(assuming one knows the syntactic-degree of the circuit). The
algorithm for (iii) follows by a combination of the original
balancing procedure by Valiantet al. [17] with ideas from
[12]. For (iv) we need again to combine ideas from [12] and
other results and observations.

Proving parallel algorithms for structural results on alge-
braic circuits is however not enough. We moreover need to
show that corresponding constructions also applyon proofs,
in order to conclude thatVNC2 proves the existence of a
(uniform NC2) function that constructs the (low depth PI-)
proofs of the determinant identities. This requires more work.

Uniformity here means that we need the whole proof to
be constructible in uniform-NC2. For instance, we need
to eliminate division gates from certain algebraic circuits
uniformly. To eliminate division gates likeu/v (for two nodes
u, v), one needs to find an assignment to the variables in which
the polynomial computed at nodev is nonzero. In general we
do not know how to do this in the theory. Nevertheless, we
show that for our purposes it is enough to eliminate only those
division gates that occur in some specific circuits. In order
to eliminate division gates we will also need to find ‘inverse
elements’ in the ring of integers, and hence we will show that
for our purpose it is enough to consider only the inverse of 1
in Z.

Apart from uniformity and parallelism, working in bounded
arithmetic allows us to work more easily over the integers,
where previously shortNC2-Frege proofs of the determinant
identities were known only overGF (2) [9].

III. PRELIMINARIES

In this section we present some of the necessary log-
ical setting from bounded arithmetic and algebraic circuit
complexity. Specifically, we describe the two-sorted bounded
arithmetic theoryVNC2 as developed by Cook and Nguyen
[4] and show how to define the evaluation of arithmetic circuits
over the integers in the theory, and then define algebraic
circuits computing formal polynomials and proof systems for

polynomial identities [8], [9] (cf. [13] for a survey). We start
with an exposition of bounded arithmetic.

Bounded arithmeticis a general name for weak systems
of arithmetic, namely, fragments of Peano Arithmetic. The
bounded arithmetic theories we use are first-order two-sorted
theories, having a first-sort for natural numbers and a second-
sort for finite sets of numbers, representing bit-strings via their
characteristic functions (for the originalsingle-sorttreatment
of theories of bounded arithmetic see also [3], [7], [11]). The
theoryV0 corresponds to the complexity class uniformAC0,
and VNC2 corresponds to uniform-NC2. The complexity
classesAC0, NC2, and their corresponding function classes
FAC0 andFNC2 are also defined using a two-sorted universe
(specifically, the first-ordered sort [numbers] are given to the
machines in unary representation and the second-sort as binary
strings).

Definition 1 (Language of two-sorted arithmeticL2
A). The

language of two-sorted arithmetic, denotedL2
A, consists of

the following relation, function and constant symbols:

{+, ∙,≤, 0, 1, | |, =1, =2,∈}.

We describe the intended meaning of the symbols by consid-
ering the standard modelN2 of two-sorted Peano Arithmetic.
It consists of a first-sort universeU1 = N and a second-sort
universeU2 of all finite subsets ofN. The constants0 and
1 are interpreted inN2 as the appropriate natural numbers
zero and one, respectively. The functions+ and ∙ are the
usual addition and multiplication on the universe of natural
numbers, respectively. The relation≤ is the appropriate “less
or equal than” relation on the first-sort universe. The function
| ∙ | maps a finite set of numbers to its largest element plus one.
The relation=1 is interpreted as equality between numbers,
=2 is interpreted as equality between finite sets of numbers.
The relationn ∈ N holds for a numbern and a finite set of
numbersN if and only if n is an element ofN .

We denote the first-sort (number) variables by lower-case
letters x, y, z, . . ., and the second-sort (string) variables by
capital lettersX,Y, Z, We build formulas in the usual way,
using two sorts of quantifiers: number quantifiers and string
quantifiers. A number quantifier is said to beboundedif it is
of the form∃x(x ≤ t∧ . . .) or ∀x(x ≤ t → . . .), respectively,
for somenumber termt that does not containx. We abbreviate
∃x(x ≤ t∧ . . .) and∀x(x ≤ t → . . .) by ∃x ≤ t and∀x ≤ t,
respectively. A string quantifier is said to beboundedif it is
of the form ∃X(|X| ≤ t ∧ . . .) or ∀X(|X| ≤ t → . . .) for
somenumber termt that does not containX. We abbreviate
∃X(|X| ≤ t ∧ . . .) and∀X(|X| ≤ t → . . .) by ∃X ≤ t and
∀X ≤ t, respectively.

A formula is in the class of formulasΣB
0 or ΠB

0 if it uses
no string quantifiersand all number quantifiers are bounded.
A formula is in ΣB

i+1 or ΠB
i+1 if it is of the form ∃X1 ≤

t1 . . . ∃Xm ≤ tmψ or ∀X1 ≤ t1 . . . ∀Xm ≤ tmψ, whereψ ∈
ΠB

i and ψ ∈ ΣB
i , respectively, andti does not containXi,

for all i = 1, . . . ,m. We write ∀ΣB
0 to denote the universal

closure ofΣB
0 (i.e., the class ofΣB

0 -formulas that possibly

3

have [not necessarily bounded] universal quantifiers on their
front [left]). We usually writeT (t) to abbreviatet ∈ T , for a
number termt and a string termT .

As mentioned before, a finite set of natural numbersN
represents a finite stringSN = S0

N . . . S
|N |−1
N such thatSi

N =
1 if and only if i ∈ N . We will abuse notation and identify
N andSN .

A. The TheoryV0

The base theoryV0, which corresponds to the com-
putational classAC0, consists of the followingaxioms:

Basic 1. x + 1 6= 0 Basic 2. x + 1 = y + 1 → x = y

Basic 3. x + 0 = x Basic 4. x + (y + 1) = (x + y) + 1

Basic 5. x ∙ 0 = 0 Basic 6. x ∙ (y + 1) = (x ∙ y) + x

Basic 7. (x ≤ y ∧ y ≤ x) → x = y Basic 8. x ≤ x + y

Basic 9. 0 ≤ x Basic 10. x ≤ y ∨ y ≤ x

Basic 11. x ≤ y ↔ x < y + 1

Basic 12. x 6= 0 → ∃y ≤ x(y + 1 = x)

L1. X(y) → y < |X| L2. y + 1 = |X| → X(y)

SE. (|X| = |Y | ∧ ∀i ≤ |X| (X(i) ↔ Y (i))) → X = Y

ΣB
0 -COMP. ∃X ≤ y∀z < y (X(z) ↔ ϕ(z)) , for all ϕ ∈ ΣB

0

whereX does not occur freely inϕ .

Here, the axiomsBasic 1 throughBasic 12are the usual
axioms used to define Peano Arithmetic without induction
(PA−), which settle the basic properties of addition, multipli-
cation, ordering, and of the constants 0 and 1. The AxiomL1
says that the length of a string coding a finite set is an upper
bound to the size of its elements.L2 says that|X| gives the
largest element ofX plus1. SE is the extensionality axiom for
strings which states that two strings are equal if they code the
same sets. Finally,ΣB

0 -COMP is the comprehension axiom
schemefor ΣB

0 -formulas (i.e., it is an axiom for each such
formula) and implies the existence of all sets which contain
exactly the elements that fulfill any givenΣB

0 property.

Proposition 1 (Corollary V.1.8. [4]). The theoryV0 proves
the (number) induction axiom scheme forΣB

0 -formulasΦ:

(Φ(0) ∧ ∀x (Φ(x) → Φ(x + 1))) → ∀z Φ(z).

In the above induction axiom,x is a number variable and
Φ can have additional free variables of both sorts.

We seek to define the determinant function in (some) theory
via a ΣB

1 -formula, where a function is said to bedefined in
a theory if the theory can prove that given an input to the
function there exists a unique output.

B. The Complexity ClassNC2

The uniform complexity classNC2 is defined using an
alternating time-space (nondeterministic) Turing machine.

d) Alternating Turing machines:An alternating Turing
machine is anondeterministicTuring machine in which every
state, except the halting states, is either anexistential state
or a universal state. A computationin such a machine can
be viewed as an (unbounded fan-in) tree of configurations as
follows. A configuration is said to beexistential(resp.univer-
sal) if its state is existential (resp. universal). In a computation
tree of an alternating Turing machine everyexistentialconfig-
uration has one or more children, such that each child is a
configuration reachable in one step from the configuration in
the parent node; and every universal configuration has as its set
of children all configurations reachable in one step from the
configuration on the parent in node. We say that a computation
of an alternating Turing machine isacceptingwhen all the
leaves of the computation tree are accepting configurations.
We say that an alternating Turing machineaccepts an input
x if there existsan accepting computation tree whose root is
the initial configuration with the inputx.

A computation tree is said to havek alternations if the
number of alternations between existential and universal states
in every branch of the tree is at mostk. An alternating Turing
machine is said towork in f(n) alternationsif for every input
x of lengthn the number of alternations ineverycomputation
tree ofx is at mostf(n). A computation tree is said to have
spaces if the working space used in every configuration of
the tree is at mosts. An alternating Turing machine is said to
work in spaceg(n) if for every inputx of lengthn the space
of every computation tree ofx is at mostg(n).

Definition 2 (Uniform NC2). The uniform complexity class
NC2 is defined to be the class of languages that can be
decided by alternating Turing machines withO(log n) space
and O(log2 n) time.

We define the function classFNC2 as the function class
containing all number functionsf(~x, ~X) and string functions
F (~x, ~X), where ~x and ~X are number and string variables,
respectively, such that the relation of the function is defined
(resp. bit-defined) inNC2 (a binary relationR is defined
in NC2 if the language containing the set of pairs inR is
decidable inNC2).

e) NC2 Boolean circuit families: Let {Cn}∞n=1 be a
family of Boolean circuits (with fan-in at most two∨,∧,¬
gates). We say that this family is anNC2 circuit family if
every circuitCn in the family has depthO(log2 n) and size
nO(n). A circuit taken from a given BooleanNC2 circuit
family is said to be anNC2-circuit. It is known that the
NC2 circuit value problem is complete underAC0-reductions
for the classNC2 (Definition 2). We say that{Cn}∞n=1 is
a uniform NC2-circuit family if its extended connection
language is inFO (we refer the reader to [4, page 455] for
the definitions). This definition coincides with Definition2.

For the definition of uniformNC1 (andAC1) we refer the
reader to [4].

4

C. The TheoryVNC2

Here we define the theoryVNC2 as developed in [4].
It is an extension ofAC0 over the languageL2

A where we
add the axiom stating the existence of a sequence of values
that represent the evaluation of monotone Boolean circuits of
O(log2(n)) depth. It is known (cf. [4]) that the Monotone
Boolean Circuit Value problem for circuits ofO(log2(n))-
depth is complete underAC0 reduction forNC2.

The NC2 CIRCUIT VALUE PROBLEM is the problem that
determines the value computed by a BooleanNC2-circuit,
given a 0-1 assignment to its input variables. An input circuit
to the problem is encoded as alayered circuitwith d+1 layers,
namely, a circuit in which every node in layerj is connected
only to zero or more nodes in layerj+1. The actual evaluation
of such an (NC2) circuit within the classNC2 is done in
stages, where we start from layer0 and “compute” (using
alternations and nondeterminism) the values of every node in
every layer. Formally, we define this evaluation process as
follows (see also [4, Chap. IX.5.6]).

The layered monotone Boolean circuit withd + 1 layers is
encoded with a string variableI, with |I| ≤ n, which defines
the (Boolean) input gates to the circuit. Then we have a string
variableG such thatG(x, y), for x ∈ [d], holds iff theyth gate
in layer x is ∧, and is∨ otherwise. Also the wires ofC are
encoded by a three-dimensional array, namely a string variable
E such thatE(z, x, y) holds iff the output of gatex on layerz
is connected to the input of gatey on layerz +1. To compute
the value of each of the gates in the circuitC on input I,
simply compute the values of the gates in each layer, starting
from the input layer, ind + 1 stages, using the values of the
previous layer. The formulaδLMCV (n, d,E,G, I, Y) below
formalises this evaluation procedure (whereLMCV stands for
“layered monotone circuit value”). The two-dimensional array
Y stores the result of computation: for1 ≤ z ≤ d, row Y [z]

contains the gates on layerz that output1.

δLMCV (n, d,E,G, I, Y) ≡

∀x < n∀z < d
(
(Y (0, x) ↔ I(x))∧

(
Y (z + 1, x) ↔

(
G(z + 1, x) ∧ ∀u < n,E(z, u, x) →

Y (z, u)
)
∨(¬G(z + 1, x) ∧ ∃u < n,E(z, u, x) ∧ Y (z, u))

))
.
(3)

The following formula states that the circuit with underlying
graph(n, d,E) has fan-in two:

Fanin2(n, d,E) ≡

∀z < d ∀x < n∃u1 < n∃u2 < n∃v < n(E(z, v, x) →

(v = u1 ∨ v = u2)
)
. (4)

Finally, we arrive at the definition ofVNC2:

Definition 3 (VNC2). The theoryVNC2 has vocabularyL2
A

and is axiomatized byV0 and the axiom:

Fanin2(n, |n|2, E) →

∃Y ≤ 〈|n|2 + 1, n〉δLMCV (n, |n|2, E,G, I, Y). (5)

Theorem 2. ([4, Corollary IX.5.31]) A function is ΣB
1 -

definable inVNC2 iff it is in FNC2.

D. Polynomials and Algebraic Circuits

Let G be a ring. Denote byG[X] the ring of (commutative)
polynomials with coefficients fromG and variablesX :=
{x1, x2, . . . }. A polynomial is a formal linear combination
of monomials, where amonomial is a product of variables.
Two polynomials areidentical if all their monomials have the
same coefficients. Thedegreeof a polynomial is the maximal
total degree of a monomial in it.

Algebraic circuits and formulas over the ringG compute
polynomials inG[X] via addition and multiplication gates,
starting from the input variables and constants from the field.
More precisely, analgebraic circuit C is a finite directed
acyclic graph (DAG) withinput nodes(i.e., nodes of in-degree
zero) and a singleoutput node(i.e., a node of out-degree
zero). Input nodes are labeled with either a variable or a field
element inF. All the other nodes have in-degree two (unless
otherwise stated) and are labeled by either an addition gate
+ or a product gate×. An input node is said tocomputethe
variable or scalar that labels itself. A+ (or ×) gate is said
to compute the addition (product, resp.) of the (commutative)
polynomials computed by its incoming nodes. An algebraic
circuit is called aformula, if the underlying directed acyclic
graph is a tree (that is, every node has at most one outgoing
edge). Thesizeof a circuit C is the number of nodes in it,
denoted|C|, and thedepth of a circuit is the length of the
longest directed path in it.

We say that a polynomial ishomogeneouswhenever every
monomial in it has the same (total) degree.

Definition 4 (Syntactic-degreedeg(∙)). Let C be a circuit and
v a node inC. Thesyntactic-degreedeg(v) of v is defined as
follows:

1) If v is a field element or a variable, thendeg(v) := 0
and deg(v) := 1, respectively;

2) If v = u + w thendeg(v) := max{deg(u), deg(w)};
3) If v = u ∙ w thendeg(v) := deg(u) + deg(w).

An algebraic circuit is said to besyntactic-homogeneousif
for every plus gateu + v, deg(u) = deg(v).

For an algebraic circuitF we denote byF̂ the polynomial
computed byF . We say that two algebraic circuitsF, F ′ are
similar if F andF ′ are syntactically identical when both are
un-winded intoformulas(a circuit is un-winded into a formula
by duplicating every node in the directed acyclic graph that has
a fan-out bigger than one, obtaining a tree instead of a DAG).
The similarity relation can be decided in polynomial time
(cf. [10]). For example, the following two circuits are similar,
since the formula to the left is obtained by “un-winding” the
circuit to the right into a formula (cf. [9]):

1�
�

+
@@x5

��×
A
AAx5 1�

�
+
@@x5

��×

�
�

5

E. Polynomial Identities (PI) Proofs

In this section we give the necessary background on the
PI proof systemPc. This proof was first introduced in [8]
(under the name “arithmetic proofs” and for algebraic formulas
instead of algebraic circuits), and was subsequently studied in
[9].

PI-proofs, as originally introduced in [8], denotedPc (and
Pc(G) when we wish to be explicit about the ringG), are
sound and complete proof systems for the set of polynomial
identities ofG, written as equations between algebraic circuits.
A PI-proof starts from axioms like associativity, commuta-
tivity of addition and product, distributivity of product over
addition, unit element axioms, etc., and derives new equations
between algebraic circuitsF = G using rules for adding
and multiplying two previous identities. The axioms ofPc

express reflexivity of equality, commutativity and associativity
of addition and product, distributivity, zero element, unit
element, and true identities in the field.

Algebraic circuits in PI proofs are treated as purely syntactic
objects (similar to the way a propositional formula is a syntac-
tic object in propositional proofs). Thus, simple computations
such as multiplying out brackets, are done explicitly, step by
step.

Definition 5 (PI-proofs; SystemPc(G), [8], [9]). The system
Pc(G) proves equations of the formF = G over the ringG,
whereF,G are algebraic circuits overG. The inference rules
of Pc are (with F,G,H ranging over all algebraic circuits,
and where an equation below a line can be inferred from the
one above the line):

R1
F = G

G = F
R2

F = G G = H

F = H

R3
F1 = G1 F2 = G2

F1 + F2 = G1 + G2
R4

F1 = G1 F2 = G2

F1 ∙ F2 = G1 ∙ G2
.

The axioms are equations of the following form, withF,G,H
formulas:

A1 F = F
A2 F + G = G + F
A3 F + (G + H) = (F + G) + H
A4 F ∙ G = G ∙ F
A5 F ∙ (G ∙ H) = (F ∙ G) ∙ H
A6 F ∙ (G + H) = F ∙ G + F ∙ H
A7 F + 0 = F
A8 F ∙ 0 = 0
A9 F ∙ 1 = F
A10 a = b + c , a′ = b′ ∙ c′ (if a, b, c, a′, b′, c′ ∈ G,

are such that the equations hold inG);
A11 F = F ′ (whenF, F ′ are similar circuits).

A Pc proof is a sequence of equations, calledproof-lines,
F1 = G1, F2 = G2, . . . , Fk = Gk, with Fi, Gi circuits, such
that every equation is either an axiom or was obtained from
previous equations by one of the inference rules. Thesizeof
a proof is the total size of all circuits appearing in the proof.

The number of stepsin a proof is the number of proof-lines
in it.

A PI-proof can be easily verified for correctness in deter-
ministic polynomial-time (assuming the field (or ring) has
efficient representation; e.g., the field of rational numbers
or the the ringZ), simply by syntactically checking that
each proof line is derived from previous lines by one of the
inference rules.

F. Circuits and Proofs with Division

We denote byG(X) the field of formal rational functions in
the variablesX, where a formal rational fraction is a fraction
of two formal polynomials with coefficients fromG. In this
work we will considerG to be the ring of integersZ. We
will not be interested in ‘inverse elements’ inZ (excluding
the element 1), nor in the completeness or soundness of proof
systems for rational functions (likeP−1

c (Z) described below),
because the theory will only provesyntacticalproperties of
these proof systems (hence, no actual ‘division’ is performed
over the integers.

It is possible to extend the notion of a circuit so that it
computes rational functions inG(X) ([9]). This is done in the
following way: acircuit with division F is an algebraic circuit
which may contain an additional type of gate with fan-in1,
called aninverseor a division gate, denoted(∙)−1. A division
gate v−1 (i.e., a division gate whose incoming circuit isv)
computes the rational function1/v̂ ∈ G(X), assumingv does
not compute the zero polynomial. If the circuit with division
F contains some division gatev−1 such thatv computes the
zero polynomial, then we say that the circuitF is not well-
defined, and otherwise iswell-defined. Note, for instance, that
the circuit(x2+x)−1 overGF (2) is well-defined, sincex2+x
is not the zero rational function (although it vanishes as a
function overGF (2)).

We define the systemP−1
c (G), operating with equations

F = G where F and G are circuits with division [9], as
follows: first, we extend the axioms ofPc(G) to apply to well-
defined circuits with division. Second, we add the following
new axiom:

D F ∙ F−1 = 1 , provided thatF−1 is well-defined.

IV. CARRYING THE PROOF IN THETHEORY

Here we describe in details how to prove the determinant
identities in the theory, as highlighted before in SectionII . We
also explain where our construction in the theory differs from
[9].

We assume all polynomials are over the ring of integers
Z. We reason insideVNC2 aboutP−1

c (Z)- andPc(Z)-proofs
(Definition 5 and Sec.III-F). We use the followingreflection
principle, stating that if an equation has a proof then the
equation is true:

Theorem 3 (Pc(Z)-reflection principle; InVNC2). Let π be
an O(log2 n)-depthPc(Z)-proof of the equationF = G. Then
F = G is true in Z (that is, theO(log2 n)-depth algebraic
circuitsF andG compute the same function over the integers).

6

Theorem3 is proved as follows. We define theevalua-
tion function for O(log2 n)-depth algebraic circuits overZ
as the function that receives an integer assignmentA and
an O(log2 n)-depth algebraic circuitC. The algorithm then
convertsC into a Boolean NC2 circuit, where the inputs
are the bit-strings corresponding toA. And then evaluates
the Boolean circuit using evaluation ofNC2 circuits (ΣB

1 -
definable inVNC2), and finally outputs the result.

We also need to show inVNC2 that the rules and axioms
of O(log2 n)-depthPc(Z) are sound with respect to the above
evaluation function. This is proved by inspection of each of
the axioms and rules.

f) The determinant functionDET (in the theory): The
(uniform-NC2) determinant function DET is defined in the
theory via the algorithm below. Each step in the algorithm
corresponds to a (more involved) step in the algorithm that
constructs the final PI-proof of the determinant identities in
the theory. We will defer the more detailed explanation of
each step in the algorithm to the sequel, in which we explain
the corresponding steps of the PI-proofconstruction.

Algorithm DET (in VNC2)
Input: an n × n integer matrixA.

Output: z ∈ Z, wherez is the determinant ofA.

1) Write down an unbalanced algebraic circuitDetcirc−1(X)
with division gates that computes the symbolicn ×
n determinant polynomial, over the variablesX =
{xij}i,j∈[n]. This circuit captures the standard recursive
block-wise formula for computing the determinant of
matrices, using “Schur complement” (intuitively, it cap-
tures the Gaussian elimination procedure). For details see
Sec.VI-A .

2) Consider the circuitDetcirc−1(In + zX) as computing a
univariate polynomial in the new variablez. Using this
circuit, construct a new circuitDetTaylor(X) computing
the nth term of the Taylor expansion ofDetcirc−1(In +
zX) aroundz = 0.

3) Convert the circuitDetTaylor(X) into a circuit that has
a syntactic-degreen, denotedDet′Taylor(X).

4) ConvertDet′Taylor into a circuit with a single division
gate at the top, denotedDet′′Taylor.

5) Eliminate the division gateu−1 from Det′′Taylor by sub-
stituting u with a truncated power series ofu−1 around
a point defined by the identity matrix. Denote the new
circuit by Detcirc.

6) BalanceDetcirc via the (uniform) balancing algorithm.
Denote byDetbalanced the resultingO(log2 n)-depth and
poly(n)-size circuit.

7) Evaluate the circuitDetbalanced with the input assignment
A, using the evaluation function as defined above.

Since we show that all the constructions above areΣB
1 -

definable functions inVNC2, the determinant function as

defined above isΣB
1 -definable in the theory (namely, totally

recursive).

Given the function DET we now sketch the proof inVNC2

of the two equations (1), (2) above.

Existence of proofs with division gatesP−1
c (Z). We show

in VNC2 the existence of a function (i.e., aΣB
1 -definable

function) that given a numbern in unary outputs aP−1
c (Z)-

proof π0 of equations (1) and (2) (these are equations be-
tween algebraic circuits overZ). This is a proof in which
circuits have exponential syntactic-degrees (though the theory
cannot express this fact). The circuits in the proof are not
necessarily homogeneous, and have division gates. Note that
Detcirc−1(X) computes the determinant as a rational function
(and not as a polynomial).

The determinant as a polynomial. Let DetTaylor(X) be
the circuit computing thenth term of the Taylor expansion
of Detcirc−1(In + zX) around z = 0. We argue that the
(“inverse”) ring element needed to be used for this Taylor
expansion is the element 1 (and thus it has an inverse inZ).

The circuit DetTaylor(X) thus computes the determinant
function (intuitively, sincez multiplies every variablexij),
and by construction it will have no division gates. Hence, it
computes the determinantas a polynomial. We show that
VNC2 proves the existence of a function that given a number
n in unary outputs aP−1

c (Z)-proof of DetTaylor(X) =
Detcirc−1(X). Thus, combined with the previous part,VNC2

proves the existence of aP−1
c (Z)-proof, denotedπ1, of the

determinant identities (1), (2), where the determinant DET is
now replaced byDetTaylor in the identities.

Reducing the syntactic-degree of the determinant poly-
nomial. The circuitDetTaylor(X) has exponential syntactic-
degree3. However, for the next step, we needDetTaylor(X)
to have a polynomial syntactic-degree. We show inVNC2,
that there exists aP−1

c (Z)-proof of DetTaylor(X) =
Det′Taylor(X), whereDet′Taylor(X) has syntactic-degreen.

Thus, by previous parts,VNC2 proves the existence of a
P−1

c (Z)-proof of the determinant identities (1), (2), where the
determinant DET is now replaced byDet′Taylor which is an
algebraic circuit with no division gates and of syntactic-degree
n. Denote this proof byπ2.

Bringing division gates to the top (Shown in details below;
Sec. V-A). We say that a circuitC has a division at the
top wheneverC is of the formF ∙ (G)−1 or (G)−1 ∙ F , for
two circuits F,G. If F,G do not have division gates we say
that C has a single division gate at the top. We need our
circuits to have such a structure, because if we have circuits
with nested divisions we cannot replace division gates by an
“approximating” power series in the next step.

We devise anNC2 algorithm that takes an algebraic circuit
with division, of any depth, and outputs an algebraic circuit

3Here, we shall differ from [9], since we do not know how to formulate
an NC2-algorithm for eliminating 0 nodes in general algebraic circuits.

7

computing the same rational function that has asingledivision
gate at the top of the circuit, i.e., the root (this is a slight abuse
of notation; see Sec.V-A).

This algorithm is not entirely trivial due to the need to
work in NC2. We moreover show that this algorithm isΣB

1 -
definable inVNC2.

Then, using this algorithm, we show inVNC2 how to
convert theP−1

c (Z)-proof π2 into a proof in which every
circuit has a single division gate at the top. Denote the resulted
proof by π3

Eliminating division gates. We now wish to eliminate the
division gates from theP−1

c (Z)-proofs, to obtainPc(Z)-proofs
without divisions. Standard division elimination by Strassen
[16] requires finding a (total) assignment to the variables,
such that no division gate in the circuit equals zero under this
assignment. However, we do not know how to uniformly find
such assignments, and so we do not know how to uniformly
eliminate division gates from general algebraic circuits in
VNC2. Our division elimination will work only for those
circuits in π3.

First, we show that the assignment of identity matrices to the
(matrix) variablesA = {aij}, B = {bij}, C = {cij} (i, j ∈
[n]), in the proofπ3 of equations (1), (2) does not nullify any
division gate inπ3 (though this statement is not expressed in
the theory).

Assuming for simplicity thatwi (for i ∈ J) are all the
variables inπ3 and letb be the assignment of identity matrices
to the variables inπ3. Then, substitute inπ3 the term(bi −
yi) for eachwi (for all i ∈ J) denoting the obtained proof
by π′

3. Then the all zeroassignment0 to the yi variables in
π′

3 does not nullify any division gate inπ′
3. Furthermore, we

show that under this assignment every division gate computes
the polynomial1 (and thus has an inverse inZ). Therefore,
in the theory, we simply construct this (substitution instance)
P−1

c (Z)-proof π′
3 (though, again, we do not express in the

theory the argument just discussed).
Let Invk(H) be the truncated power series ofH−1 over

the point determined by the identity matrix (loosely speaking,
serving as the inverse polynomial ofH “up to thekth power”).
Specifically,Ĥ ∙ ̂Invk(H) = 1 + [terms of degree> k].4

For every circuitC with a top division gateH−1, VNC2

proves there exists a corresponding division-free circuitC ′,
obtained by replacing the division gateH−1 in C by Invk(H).

Let π4 be the corresponding division-free proof-sequence
obtained fromπ′

3 by replacing every circuit with the corre-
sponding division-free circuit as above. By itselfπ4 is not
a legalPc(Z)-proof, since the axiom of division inP−1

c (Z)
does not translate into an axiom inPc(Z). In other words,
the axiom of division D,F ∙ F−1 = 1 (provided thatF−1

is defined5; see Definition5), translates intoF ∙ Invn(F) =
1+ [terms of degree> n]. We fix this problem in the next step.

4Though, again,VNC2 cannot prove this equality, since general evaluation
of (unrestricted depth) algebraic circuits is not known to be defined in the
theory.

5F−1 is definedwhenever the polynomial computed by any division gate
is nonzero.

Eliminating high degrees. Here we eliminate the high
syntactic-degrees (> n) parts in the circuits appearing inπ4.
This is done by homogenizing the proofπ4. Specifically, we
show in VNC2 the existence of a function that receives an
algebraic circuitG of syntactic-degreek and converts it into a
sum ofk+1 syntactic-homogeneous circuits

∑k
i=0 G(i) (com-

puting the same polynomial), whereG(i) denotes a syntactic-
homogeneous circuit of syntactic-degreei computing the sum
of all degreei monomials inG.

Moreover, we show thatVNC2 can prove the existence of
a function that given aPc(Z)-proof of a syntactic-degreen
equationF = G, decomposes the proof inton + 1 Pc(Z)-
proofs of F (i) = G(i), for i = 0, . . . , n, each proof having
syntactic-degree at mosti. Combining these proofs gives a
low syntactic-degree version ofπ4.

This also fixes the problem caused by division elimination
described at end of the previous step. We thus obtain aPc(Z)-
proof, denotedπ5, of (the degreen syntactic-homogeneous
parts of) equations (1) and (2).

Balancing algebraic circuits is definable in the theory. This
follows the algorithm discussed in Sec.V-B. Moreover we
show in VNC2 the existence of a function that receives a
Pc(Z)-proof of F = G with syntactic-degreed, and outputs a
Pc(Z)-proof of [F] = [G] in which every circuit is of depth-
O(log s ∙ log d+log2 d) and the size of the proof is poly(s, d).

Applying this function toπ5, we obtain aΣB
1 -definable

function in VNC2, that givenn in unary outputs a depth-
O(log2 n) Pc(F)-proof π6 of the determinant identities (1),
(2) (where DET is replaced by the appropriate balanced circuit
computing the determinant, denotedDetbalanced) .

Applying the reflection principle. We now reason inVNC2

as follows: for everyn and every pair of matricesA,B
over Z of dimension n × n, by the definition of DET,
DET(AB), DET(A) and DET(B) equals the value of applying
the evaluation function to the circuitDetbalanced with the input
assignmentAB,A,B, resp. (where the matrix productAB is
definable inVNC2; cf. [6]).

By the arguments above, there exists a depth-O(log2 n)
Pc(Z)-proof of Detbalanced(XY) = Detbalanced(X) ∙
Detbalanced(Y) for the two symbolic matricesX,Y of di-
mensionn × n. But by Theorem3 this means that for every
input matrices overZ, Detbalanced(AB) = Detbalanced(A) ∙
Detbalanced(B). Therefore, by the above, DET(AB) =
DET(A) ∙ DET(B). Similar reasoning applies to the proof of
determinant identity (2).

V. THE UNIFORM NC2 ALGORITHMS

Here we describe some of the uniformNC2-algorithms we
develop for the construction of the PI-proofs in the theory
and for proving the soundness of PI-proofs in the theory. In
particular, we focus ondivision normalizationof both circuits
and proofs—namely, converting an algebraic circuit (PI-proof,
resp.) with division gates into a circuit with only one division
gate at the top, i.e., at the output gate (PI-proof in which
every circuit has division only at the top, resp.). One reason we

8

focus on this construction here, is that both homogenization of
proofs (and circuits) and balancing of proofs (and circuits) in
the theory follows to a certain extent the division normalization
scheme we describe here. We then describe in general terms
the NC2-algorithms for balancing circuits.

FurtherNC2-constructions that we skip due to lack of space
are breaking circuits (and proofs) into their homogeneous
components (the standard Strassen’s [16] algorithm lends itself
quite immediately to a parallel execution, but constructing
the homogenizedproofs needs some care), and theNC2-
algorithm for thealgebraic-NC2 circuit evaluation problem
(overZ).

A. Parallel Division Normalization of Circuits and Proofs

Here we show the parallel algorithm that receives an al-
gebraic circuit with division gates and normalizes it, that is,
converts it into a circuit with a single division gate at the top
(i.e., output gate), and similarly forP−1

c -proofs. For simplicity,
we shall sometimes abuse notation and assume in this section
that the division gates has fan-intwo, so that a circuit with a
division gate at the top can be written asF ÷ G, where÷ is
a division gate.

For every nodev in a circuitF with division introduce two
nodes Den(v) and Num(v) that will compute the numerator
and denominator of the rational function computed byv,
respectively, as follows:

1) If v is an input node ofF , let Num(v) := v and
Den(v) := 1.

2) If v = u−1, let Num(v) := Den(u) and Den(v) :=
Num(u).

3) If v = u1 ∙ u2, let Num(v) := Num(v1) ∙ Num(v2) and
Den(v) := Den(v1) ∙ Den(v2).

4) If v = u1 + u2, let Num(v) := Num(u1) ∙ Den(u2) +
Num(u2) ∙ Den(u1) and Den(v) := Den(u1) ∙ Den(u2).

Let Num(F) and Den(F) be the circuits with the output
node Num(w) and Den(w), respectively, wherew is the output
node ofF . We want to show the following:

Theorem 4(in VNC2). (i) If F is a circuit with division, then
F = Num(F) ∙ Den(F)−1 has aP−1

c (F) proof. (ii) Let F,G
be circuits with division. Assume thatF = G has aP−1

c (F)
proof. Then Num(F) ∙ Den(F)−1 = Num(G) ∙ Den(G)−1 has
a P−1

c (F) such that every division gate in every circuit in the
proof occurs only at the top.

We prove only part (i), that exemplifies the main idea. To
prove this we first describe theNC2-algorithm that normalizes
circuits with divisions, as follows (we ignore encoding issues):

NC2-Algorithm for Normalizing Circuits with Divisions

Input: C an algebraic circuit with division gates.
Output: An algebraic circuit computinĝC with a single divi-

sion gate at the top.

1) ConvertC into a layered algebraic circuitC ′. This can
be done inNC1 (we skip this procedure due to lack of
space).

2) (Sequentially) For every i = dlog(d)e, . . . , 2, 1, whered
is the depth ofC (starting withi = dlog(d)e), do:

a) Consider the (layered) circuit as divided into2i blocks.
(A block thus contains all the subcircuits whose roots
are at the top of the block and leaves are at the bottom
of the block.)
In parallel , for eachpair of consecutive blocks,do:

= (At this stage, each block possibly contains division
gates only at its top.) Move all division gates in the
top of the lower block to the top of the upper block.

Step (a) in the algorithm above ends with all division gates
occurring at the top of the upper block of each of the pairs
considered.

Since the above algorithm hasO(log d) steps, to conclude
that the above algorithm is inNC2, it suffices to show that
step= can be implemented inNC1:

NC1-algorithm for moving all division gates in the top of
a lower block to the top of an upper block
Input: C a layered algebraic circuit with division gates, parti-

tioned into two halves: anupper blockconsisting of the
layers in the upper half and alower blockconsisting of
the layers in the lower half, where division gates may
occur only in the top layer of each block.

Output: An algebraic circuit with division computinĝC with
all division gates at the top of the upper block.

1) Syntacticallymultiply all nodes inC (in both blocks) by
theproductα of all denominatorsαj occurring in the top
level of the lower block (asβj ÷ αj , for someβj).

2) Cancel accordingly the denominators of all top-layer
nodes in the lower block, so that now all gates in lower
and upper blocks haveno denominators, except for the
top layer nodes in the upper block.

3) Add a denominatorα (i.e., syntactically divide by the
sub-circuitα) to all the gates in the top layer of the upper
block. It is easy to check that the new circuit we get
computesĈ.

Notes on the above algorithm: when adding products likeα
we just add edges to a single sub-circuit computingα. When
we add edges in the above algorithm we always preserve the
circuit being layered(so we may need to add sufficiently many
dummy edges to preserve the “layerness” of the circuit).

We now turn to the proof of Theorem4 (i).

Proof sketch of Theorem4 (i). In the “NC2-Algorithm for
Normalizing Circuits with Divisions” we had dlog de steps,
for d the depth of the input circuit. Similarly, we describe
anNC2-algorithm for constructing theP−1

c (Z)-proof of F =
Num(F) ÷ Den(F).

In each stepi = dlog de, . . . , 2, 1, whered is the depth ofF ,
we construct (in parallel) aP−1

c (Z)-proof for the correctness
of step=, for every pair of consecutive blocks inF , using:

Claim 5 (in VNC2; in fact in VNC1). Let C,C ′ be two
layered circuits with division gates, of depthk each. Assume

9

that C ′ is the result of applying step= in the division
normalization above on circuitC. Then there is aP−1

c (Z)-
proof of C = C ′.

We omit the proof of thisclaim.

B. Balancing Algebraic Circuits (and Proofs) in Uniform-
NC2 and in VNC2

Here we provide some overview of theNC2-algorithm for
constructing the balanced circuit, given as an input an upper
bound (in unary) on the syntactic-degree of the input circuit.
Due to lack of space we focus only on some of the differences
between our algorithm and the standard Valiantet al. [17]
algorithm.

NC2-algorithm for balancing circuits (overview)

Input: C, d whereC is a syntactic-homogeneous circuit and
d is the syntactic-degree ofC in unary (we can as-
sume thatC is a syntactic-homogeneous circuit because
we can transform in parallel a circuit into a syntactic-
homogeneous circuit; we can also assume that we getd
as an input because of this homogenization algorithm).

Output: A balanced circuit[C] computing the polynomial
Ĉ. That is, if C has sizes, then the depth of[C] is
O(log s log d + log2 d) and the size of[C] is poly(s, d).

Algorithm: The algorithm proceeds via the general scheme
of [17] in dlog de stages, combining it with a case of the
Miller et al. [12] algorithm (the Miller et al. algorithm is an
NC2-algorithm for evaluatingan algebraic circuit under an
assignment).

We list some of the specific features of ourNC2 balancing
algorithm:

1) The notion of degree in the original construction [17]
is replaced in our algorithm with that of asyntactic-degree.
Because neither syntactic-degrees (nor degrees) can be com-
puted (apparently) inNC2, we need to supply it as an input to
the algorithm; the syntactic-degreed is used in the algorithm,
because we balance the circuit indlog de stages.

2) Another difference between our construction and [17]
is implied by the need to evaluateunbalancedconstant alge-
braic circuits (i.e., circuits with no variables) in the original
construction. Specifically, in the base case of our construction,
when we are given a circuit computing a linear form we need
to compute the coefficients of the linear form. However, we
cannot directly compute these coefficients since the (variable-
free) circuit computing the linear form may be a circuit beyond
NC2 (e.g., a circuit of linear depth) and so it may not be
possible to directly evaluate it withinNC2.

One way of solving this problem is to replace each field
elementc ∈ Z that occurs in the circuit with a new variablexc,
and by that making sure that all sub-circuits computing linear
forms will contain only variables; and hence, there will remain
no unbalanced variable-free sub-circuits in the circuit (when
we balance all syntactic-degree1 sub-circuits in the circuit).
For this replacement to be useful we need to make sure that the

syntactic-degree of the circuits obtained after the replacement
of ring elements by new variables is still polynomial inn.

When we compute circuits of syntactic-degree1 in the base
case of the construction, there will be no scalars in the circuits
(since we replaced scalars by variables in advance), namely,
circuits of syntactic-degree1 will contain only plus gates.
We thus need to evaluate arithmetic circuits with only plus
gates (note that the circuits are not necessarily balanced). As
mentioned above, to do this inNC2 we follow a similar
approach to that in [12].

VI. ENCODING CIRCUITS AND PROOFS: THE

DETERMINANT CIRCUIT IN THE THEORY

Here we give some details on how to encode and construct
the required circuits (and proofs) inVNC2. We focus on the
already non-trivial construction of the determinant circuit with
division Detcirc−1 in the theory; encoding and constructing
proofs in the theory follow similar lines.

A. Circuit with Division for the Determinant

First we need to define the determinantcircuit with division
denotedDetcirc−1 . Similar to [9], this is done using block-
wise inversion: by considering the symbolic matrixX =
{xij}i,j∈[n], consisting ofn2 distinct variables, defining the
matrix inverseX−1 of X and then, by partitioningX into
blocks, we formulate a recursive definition of the determinant,
using matrix inverse. This definition can be viewed as a
formulation of Gaussian elimination.

Specifically, we define ann×n matrix X−1 whose entries
are circuits with divisions, computing the inverse ofX, as
follows:

1) If n = 1, let X−1 := (x−1
11).

2) If n > 1, write X as follows:

X =

(
X1 vt

1

v2 xnn

)

, (6)

where X1 = {xij}i,j∈[n−1], v1 = (x1n, . . . , x(n−1)n)
and v2 = (xn1, . . . , xn(n−1)). Assuming we have con-
structedX−1

1 , let
δ(X) := xnn − v2X

−1
1 vt

1 . (7)

δ(X) computes a single non-zero rational function and
so δ(X)−1 is well-defined. Finally, let

X−1 :=
(

X−1
1

(
In−1 + δ(X)−1vt

1v2X
−1
1

)
−δ(X)−1X−1

1 vt
1

−δ(X)−1v2X
−1
1 δ(X)−1

)

(8)
The circuit Detcirc−1(X) is defined as follows (using

“Schur complement”):

1) If n = 1, let Detcirc−1(X) := x11.
2) If n > 1, partitionX as in (6) and letδ(X) be as in (7).

Let Detcirc−1(X) :=

Detcirc−1(X1)∙δ(X) = Detcirc−1(X1)∙(xnn−v2X
−1
1 vt

1) .

10

The definition in (8) should be understood as a circuit
with n2 outputs which takesX−1

1 , v1, v2, xnn as inputsand
moreover, such that the inputs fromX−1

1 occur exactly once.
Altogether, we obtain a polynomial-size circuit forX−1 and
the determinant function ofX. The circuits obtained are un-
balanced, have division gates and are of exponential syntactic-
degree (see Definition4). The fact thatDetcirc−1(X) indeed
computes the determinant (as a rational function) stems, e.g.,
from the fact (shown in this work, or in [9]) that P−1

c (Z)
can prove the two identities that characterize the determinant.
That X−1 computes the matrix inverse is also proved in the
theory.

B. Constructing the CircuitDetcirc−1 in V0

Here we show aΣB
0 -definable string function inVNC2

(in fact in V0), denotedwriteX−1 , that outputs the multi-
output circuitX−1 ((8) above) given as input a unary integer
n (among other parameters).

Unlike (8), the functionwriteX−1 is not recursive, as the
circuit is of depthΩ(n) and we do not have inV0, nor in
VNC2, the induction axiom forΣB

1 -formulas. Fortunately,
we need the theory only to construct the circuit syntactically.

The circuit for X−1 is encoded as follows. It is a multi-
output circuit. The stringV encodes the nodes in the circuit.
For every layerd = 1, . . . , n in the inductive definition of
X−1, we have a set of nodes(d, (i, j), `) ∈ V , where(i, j),
for i, j ∈ [d], is an entry in ad × d matrix, meaning that the
node(d, (i, j), `) is part of a sub-circuit ofX−1 that computes
the (i, j)th entry in thedth inductive-step;̀ is the running
index of the nodes in that part, where` = 0 iff the node is
what we consider anoutput node of the givend and the given
entry (i, j). Nodes of the form(0, (i, j), 0) stand for theinput
variable xij of the matrix X; therefore, these are the input
variables of the circuitX−1.

For example,(1, (1, 1), 0) is the node computingx−1
11 ,

because the first coordinated = 1 refers to the “recursive”
level 1 in (8) above, the second is(1, 1), meaning the(1, 1)-
entry from the circuit computing the inverse ofx11, and the
last coordinate is 0, meaning this is theoutput node of the
inverse ofx11.

Additionally, we have a stringG encoding the gate-type of
each node inV , excluding the input nodes(0, (i, j), 0). That
is, (d, (i, j), `, g) ∈ G means that node(d, (i, j), `) ∈ V is of
type + if g = 0, × if g = 1 and division÷ if g = 2, and
an input variablexij if g = (i, j), where(∙, ∙) is the pairing
function (note that the pairing function is monotone increasing
and that(1, 1) > 2, so we can distinguish between the case
of an arithmetic gate and an input gate). Finally, the string
E encodes the edges between nodes in the circuit. That is,
(d, (i, j), `, d′, (i′, j′), `′) means that there is a directed edge
from node(d, (i, j), `) to node(d′, (i′, j′), `′).

Using the above encoding scheme it is possible now to bit-
define the string functionwriteX−1 as aΣB

0 -definable function
in VNC2. We only need to construct, given some fixed
d, (i, j), the sub-circuits whose nodes will be(d, (i, j), `), for

some`, according to the definition in (8). We will use the
following notation and functions in the theory.

Notations and basic functions for constructing sub-circuits
Let F be some “simple” arithmetic function, such as inner
product of twon-element vectors over the integers, or one of
the functions in (8) used to define a minor or the matrix inverse
X−1, such asδ(X)−1. We will denote bywriteF (n, d, `, I, O)
the following string function: the inputsare I, serving as the
input nodes to the circuitandO the output nodes of the circuit
for F , d is the index “level” (used to record the recursive
level of recursive circuit constructions as in (8)) and ` is the
“running” index of a node in a given leveld, and n stands
for the “dimension” of the operation defined byF (e.g., inner
product of vectors of sizen, or matrix product of twon × n
matrices has dimensionn). The output is a string, but we abuse
notation and assume it isthree separate strings encoding the
(output) circuit, for simplicity, as follows:E, V,G as described
above.

More formally, we definewriteF (n, d, `, I, O) = (E, V,G)
as follows (similar to the above notation).V is a string
describing the vertices in an algebraic circuit.E is a string
describing the edges between vertices inV . G is a string
describing the gate-types of vertices inV . Every vertex is of
the form(d, (i, j), `) with d the recursive level in the definition
of X−1 in (8), (i, j) means that the node is in the(i, j)’s part
of the definition ofX−1, and` is the running index of nodes
in the same leveld and same part(i, j), where` = 0 iff the
node is an output node ofthat leveld (it is not necessarily
the output node of the whole circuit). Assume thatF (I) is
some algebraic function withm0 integer inputs I and m1

integeroutputsO. Then, we supplywriteF (n, d, `, I, O) with
the nodes indices (as encoded inV) to be used as input nodes
and output nodes for the (sub-)circuit computingF .

Example: ConsiderF1 := X−1
1 (In−1 + δ(X)−1vt

1v2X
−1
1)

from (8). This is a recursive function in the sense that it uses
the outputX−1

1 which is computed in the previous recursive
level d − 1 as input, together with the “new” nodes in row
d and columnd in X. Therefore, the inputs ofF1 are the
following nodes:(d−1)2 input nodes forX−1

1 , 2(d−1) input
nodes forvt

1 and v2, and finally one input nodexdd (needed
for computingδ(X)−1), which sums up tod2 input nodes.
The number of output nodes forF1 is (d − 1)2, as it defines
a (d − 1) × (d − 1) minor of X−1. Thus, in our encoding
scheme, the input nodes (viewed as ad × d matrix) are:








(d − 1, (1, 1), 0) . . . (d − 1, (1, d − 1), 0) (0, (1, d), 0)
...

. . .
...

(d − 1, (d − 1, 1), 0) . . . (d − 1, (d − 1, d − 1), 0) (0, (d − 1, d), 0)
(0, (d, 1), 0) . . . (0, (d, d − 1), 0) (0, (d, d), 0)








and the output nodes (viewed as a(d − 1) × (d − 1) matrix)
are: 




(d, (1, 1), 0) . . . (d, (1, d − 1), 0)
...

. . .
...

(d, (d − 1, 1), 0) . . . (d, (d − 1, d − 1), 0)




 .

Let F1, F3, F4 be the other three functions used in the

11

definition of X−1 (8) (for the other three minors). We can
define similarlywriteFi functions for theseFi’s.

To actually show thatwriteX−1 is a ΣB
0 -definable function

in V0 we need to show, e.g., how to bit-definewritev∙u using
a ΣB

0 -formula, given twon-element vectors of integersv, u
representingnodesin the circuit. This is quite easy to show:
simply output a binary tree with the correct plus and products
nodes, and plug the input nodesv, u to the leaves accordingly.

Similarly, we haveΣB
0 -formulas for constructing other

formulas likewritevA andwriteAvt , given the input nodes for
an n × n matrix A, and the input nodes for ann-elements
vector v. Similarly, given a nodez it is trivial to output a
circuit computingz−1 or −z, and given two matricesA,B
(i.e., 2n2 nodes) it is trivial toΣB

0 -definewriteA+B in V0.

Now that we set up the notation and the functions for
constructing sub-circuits, we canΣB

0 -definewriteX−1 in V0

as follows. First, for i = 1, . . . , 4, define InpFi
(d) and

OutFi
(d) as the string functions that output the sequence of

input- (output-, respectively) nodes of thedth recursive level
of X−1 for each of theFi’s, as shown forF1 in the example
above. They are all definable string-functions inVNC2. We
can now bit-definewriteX−1 as follows:

writeX−1(n, `, I, O)(i) ≡

∃2 ≤ d ≤ n
(
writelevel(X−1)

(
n, d, 1, InpFi

(d), OutFi(d)
)
(i)
)
∧

writex−1
11

(n, 1, 0, ((0, (1, 1), 0)), ((1, (1, 1), 0))) (i)
)
,

wherewritelevel(X−1)(n, d, `, I, O) outputs(E, V,G) encoding
a (sub-)circuit that is thedth inductive level ofX−1, and
writex−1

11

(
n, 1, 0, ((0, (1, 1), 0)), ((1, (1, 1), 0))

)
is the string

function that outputs the encoding of the circuit “x−1
11 ”.

VII. C ONCLUSIONS

We establish a uniform proof, in what may be considered the
weakest logical theory possible, of the basic determinant iden-
tities. This answers an open question of, e.g., [4]. We achieve
this by formalizing in the theoryVNC2 the construction of
the propositional proofs from Hrubeš-Tzameret [9], and using
a reflection principle for PI-proofs in the theory, devising along
the way parallel (NC2) algorithms for basic algebraic-circuit
constructions, provably total inVNC2. Due to the central role
of linear algebra and the determinant function, these results
are expected to be relevant to further basic work in bounded
arithmetic.

As for theVNC2-provability of theCayley-Hamiltontheo-
rem and theco-factor expansionof the determinant, we believe
that these should follow relatively easy from our results.

ACKNOWLEDGEMENTS

We thank Pavel Hrubeš for useful discussions related to [9].

REFERENCES

[1] Paul Beame and Toniann Pitassi. Propositional proof complexity: past,
present, and future. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS,
(65):66–89, 1998.

[2] Maria Luisa Bonet, Samuel R. Buss, and Toniann Pitassi. Are there
hard examples for Frege systems? InFeasible mathematics, II (Ithaca,
NY, 1992), volume 13 ofProgr. Comput. Sci. Appl. Logic, pages 30–56.
Birkhäuser Boston, Boston, MA, 1995.

[3] Samuel R. Buss.Bounded Arithmetic, volume 3 of Studies in Proof
Theory. Bibliopolis, 1986.

[4] Stephen Cook and Phuong Nguyen.Logical Foundations of Proof
Complexity. ASL Perspectives in Logic. Cambridge University Press,
2010.

[5] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms.
Information and Control, 64(1-3):2–21, 1985.

[6] Stephen A. Cook and Lila Fontes. Formal theories for linear algebra. In
24th International Workshop on Computer Science Logic, pages 245–
259, 2010.

[7] P. Hájek and P. Pudlák. Metamathematics of First-order Arithmetic.
Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1993.

[8] Pavel Hruběs and Iddo Tzameret. The proof complexity of polynomial
identities. In Proceedings of the 24th Annual IEEE Conference on
Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009,
pages 41–51, 2009.

[9] Pavel Hruběs and Iddo Tzameret. Short proofs for the determinant
identities. SIAM J. Comput., 44(2):340–383, 2015. (A preliminary
version appeared in Proceedings of the 44th Annual ACM Symposium
on the Theory of Computing (STOC’12)).

[10] Emil Jěrábek. Dual weak pigeonhole principle, Boolean complexity, and
derandomization.Ann. Pure Appl. Logic, 129(1-3):1–37, 2004.

[11] Jan Kraj́ıček. Bounded arithmetic, propositional logic, and complexity
theory, volume 60 ofEncyclopedia of Mathematics and its Applications.
Cambridge University Press, Cambridge, 1995.

[12] Gary L. Miller, Vijaya Ramachandran, and Erich Kaltofen. Efficient
parallel evaluation of straight-line code and arithmetic circuits.SIAM J.
Comput., 17(4):687–695, 1988.

[13] Tonnian Pitassi and Iddo Tzameret. Algebraic proof complexity:
Progress, frontiers and challenges.ACM SIGLOG News, 3(3), 2016.

[14] Michael Soltys.The complexity of derivations of matrix identities. PhD
thesis, University of Toronto, Toronto, Canada, 2001.

[15] Michael Soltys and Stephen Cook. The proof complexity of linear
algebra.Ann. Pure Appl. Logic, 130(1-3):277–323, 2004.

[16] Volker Strassen. Vermeidung von divisionen.J. Reine Angew. Math.,
264:182–202, 1973. (in German).

[17] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast
parallel computation of polynomials using few processors.SIAM J.
Comput., 12(4):641–644, 1983.

12

	Introduction
	Overview
	Contributions and Technical Challenges

	Preliminaries
	The Theory V0
	The Complexity Class NC2
	The Theory VNC2
	Polynomials and Algebraic Circuits
	Polynomial Identities (PI) Proofs
	Circuits and Proofs with Division

	Carrying the Proof in the Theory
	The Uniform NC2 Algorithms
	Parallel Division Normalization of Circuits and Proofs
	Balancing Algebraic Circuits (and Proofs) in Uniform-NC2 and in VNC2

	Encoding Circuits and Proofs: The Determinant Circuit in the Theory
	Circuit with Division for the Determinant
	Constructing the Circuit Detcirc-1 in V0

	Conclusions
	References

