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Abstract

We prove super-polynomial lower bounds on the size of propositional proof systems operating
with constant-depth algebraic circuits over fields of zero characteristic. Specifically, we show that
the subset-sum variant Zi,j,k,le[n] ZijeTiTTpxe — B = 0, for Boolean variables, does not have
polynomial-size IPS refutations where the refutations are multilinear and written as constant-
depth circuits.

Andrews and Forbes (STOC’22) established recently a constant-depth IPS lower bound, but
their hard instance does not have itself small constant-depth circuits, while our instance is
computable already with small depth-2 circuits.

Our argument relies on extending the recent breakthrough lower bounds against constant-
depth algebraic circuits by Limaye, Srinivasan and Tavenas (FOCS’21) to the functional lower
bound framework of Forbes, Shpilka, Tzameret and Wigderson (ToC’21), and may be of inde-
pendent interest. Specifically, we construct a polynomial f computable with small-size constant-
depth circuits, such that the multilinear polynomial computing !/t over Boolean values and its
appropriate set-multilinear projection are hard for constant-depth circuits.

1 Introduction

Proof complexity predominantly aims to establish lower bounds on proof size in different proof
systems. From the perspective of complexity theory this can be viewed as the dual goal to circuit
complexity. While circuit complexity aims to prove lower bounds on minimal circuit size required
to decide membership in certain languages, e.g., SAT, proof complexity aims to establish lower
bounds on the minimal size of proofs witnessing membership in a certain language, e.g., UNSAT,
the language of unsatisfiable Boolean formulas. Here a proof is simply a witness that can be checked
efficiently.

In circuit complexity it is usual to consider different or restricted types of circuits (e.g., constant-
depth circuits or constant-depth circuits with counting gates modulo a prime). Similarly, in proof
complexity it is standard to consider different or restricted types of proof systems, for example proofs
using a prescribed set of inference rules that derive clauses from existing ones (i.e., resolution).
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The ideal goal of circuit complexity is to prove that the class NP is different from the class of
languages decidable by polynomial-size circuits (and hence NP # P /poly). Similarly, the overarching
view of proof complexity is that of an attempt to prove lower bounds on stronger and stronger proof
systems in the hope to get as close as possible to ruling out the existence of any proof system that
admits short proofs for all unsatisfiable formulas (namely, membership in UNSAT; and similarly
for proving membership in other important languages). A language that admits no short efficiently
verifiable proofs is by definition outside the class NP, from which we conclude, in the case of ruling
out short proofs of UNSAT, that NP # coNP (and hence NP # P). This view of proof complexity
is usually called Cook’s Programme of proof complexity.

1.1 Algebraic Proof Systems

One important strand of proof complexity deals with algebraic proof systems of increasing strength.
Algebraic proof systems prove that a set of multivariate polynomials do not have a common 0-1
root over a field. The arguably canonical algebraic proof system is the relatively weak Polynomial
Calculus (PC for short) [9] in which proofs start from a set of polynomial equations, and proceed to
add and multiply existing polynomials until one reaches the unsatisfiable equation 1 = 0 (proving
that the initial polynomials do not have a common 0-1 solution). The “static” version of the
polynomial calculus is called Nullstellensatz [5]. In Nullstellensatz a proof of the unsatisfiability of
a set of axioms, given as polynomial equations {f;(Z) = 0} over a field, is simply a single polynomial
combination of the axioms that equals 1 as a formal polynomial, namely:

Zgi(f) fi@) =1, (1)

for some polynomials {g;(T)} (it is said to be static because the proof is given as a single polynomial
combination instead of deriving 1 “dynamically” step-by-step as in PC).

The size-complexity of proofs in both PC and Nullstellensatz is sparsity, namely the total
number of monomials in all the polynomials appearing along the proof. The sparsity measure is
what makes these proof systems weak (e.g., even a simple proof-line like (1 —1)--- (2, —1) =0
accounts for an exponential size because the number of monomials in it is 2").

While counting the total number of monomials in algebraic proofs towards their size-complexity
yields comparatively weak proof systems, it is natural to think of stronger algebraic proofs by
representing polynomials in a more compact manner than sparsity. In particular, one can consider
writing polynomials using algebraic circuits. This idea has circulated in proof complexity starting
from Pitassi [24, 25], and subsequently in Grigoriev and Hirsch [15], Raz and Tzameret [28, 27,
35], and finally in the introduction of the Ideal Proof System (IPS) by Grochow and Pitassi [16]
which loosely speaking is the Nullstellensatz proof system in which proofs are written as algebraic
circuits (indeed, [12] showed that IPS is equivalent to Nullstellensatz in which the polynomials g;
in Equation 1 are written as algebraic circuits).

Accordingly, it is natural to consider proof systems that sit between the weak Nullstellensatz on
the one end and the strong IPS on the other end. This is done by writing polynomials in proofs with
restricted kind of algebraic circuits, such as constant-depth circuits [15, 16, 18, 3], noncommutative
formulas [35, 22, 35|, algebraic branching programs [35, 12, 21], multilinear formulas [28, 27, 12]
and very recently algebraic proofs with additional extension variables over large fields [1] or finite
fields [19].



1.2 State of the Art in Algebraic Proof-Size Lower Bounds

For the weaker end of the algebraic proof systems’ hierarchy many size lower bounds are known.
Beginning in the works of Beame et al. [5] and Buss et al. [8] on Nullstellensatz, through the first
Polynomial Calculus (PC) lower bound by Razborov [29], and the PC subset-sum lower bound
by Impagliazzo, Pudlak and Sgall [20] (the simplest form of the subset sum principle, also called
sometimes Knapsack, is the unsatisfiable over 0-1 values equation y ;" , z; — 8 =0, for § > n), as
well as many other results.

Only recently, lower bounds against stronger algebraic proof systems were established. Forbes,
Shpilka, Tzameret and Wigderson [12] considered subsystems of IPS using read-once oblivious
algebraic programs (roABP) and multilinear formulas over large fields. However these subsystems
are not necessarily comparable with constant-depth fragments of TIPS which are the focus of the
current work.

Alekseev [1] established lower bounds against the Polynomial Calculus with additional extension
variables (i.e., variables that abbreviate polynomials with a single fresh variable) over large fields.
This result is quite strong, since the proof system simulates strong propositional-logic systems like
extended Frege!. However, this proof system is (apparently) weaker than IPS. Furthermore, the
complexity of proofs in this system is measured by bit-size (i.e., coefficients of monomials in each
proof-line are written using binary notation; hence, even a short proof using a small number of
steps can incur an exponential blow-up if it uses coefficients of super-exponential magnitude, as
shown by Alekseev). Lastly, the hard instance in [1] uses coefficients of exponential magnitude,
and this is crucial to the lower bound argument.

Very recently, Impagliazzo, Mouli and Pitassi [19] established lower bounds against PC with
restricted number of extension variables over finite fields for CNF formulas. However, this proof
system is apparently weaker (or incomparable to) constant-depth IPS, and is weaker than PC with
proof-lines written as constant-depth circuits, because of the restriction on the number of allowed
extension variables. In a subsequent and more structural approach to lower bounds, Santhanam
and Tzameret [31] established recently conditional lower bounds on IPS proofs of the statement
expressing that there are no short IPS proofs of VP # VNP.

The following lower bounds form the frontiers of what is known about the complexity of strong
algebraic proof systems most relevant to our work (i.e., IPS of increasing depth, beginning from
Nullstellensatz, which is equivalent to depth-2 IPS, up to unbounded depth IPS):

(i) Conditional lower bounds against IPS proofs for the Binary Value Principle > 7" | 2i=lp; = —1
(a subset sum instance with coefficients of exponential magnitude) by Alekseev, Hirsch, Grig-
oriev and Tzameret [2]. Apart from this result being conditional, the hard instances use
coefficients of exponential magnitude, and this is crucial to the lower bound argument.

(ii) Andrews and Forbes [3] very recently proved constant-depth IPS lower bounds. However, the
hard instance itself cannot be computed by a polynomial-size constant-depth circuit, and this
fact is crucial to the lower bound proof.

Though the hard instance is not a CNF, and so the lower bound in [1] does not imply Extended Frege lower
bounds.



1.3 Our Results

We establish super-polynomial constant-depth IPS lower bounds for a subset sum instance with
small coefficients (i.e., 0-1 coefficients) that is computable by an O(n*)-size depth-2 circuits, and
where the IPS proof is multilinear.

To understand better the proof system we work against, recall the proof shown in Equation 1,
in which the g;’s are written as algebraic circuits—this is (equivalent) to the general IPS system.
We shall work with the proof system multilinear IPSy 1y, following the notation IPSy N/ in [12].
Proofs in multilinear IPSyn+ of the unsatisfiability of {f;(Z) = 0} are (roughly; the actual proof
system is in fact stronger than this, see Definition 2) defined as the following polynomial identity

S 0@ - i@ + Y hi(@) - (22 —zj) =1
( J

where h;(Z) are some polynomials and the g;(T)’s are multilinear polynomials, and the ¢;(Z)’s and
h;j(Z)’s are all written with constant-depth circuits (but not necessarily multilinear formulas, in
contrast to multilinear-formula IPS; s as in [12]).

Theorem 1 (Informal; see Theorem 3). Every constant-depth multilinear IPSy 1 refutation of the
subset sum variant Zi,j,k,fe[n] Zijkeiv; gy — B (for B € {0,...,n*}) requires super-polynomial (in
n) size.

Significance of the Results and Context. This is the first constant-depth IPS lower bound on
an instance that is computable itself with small constant-depth circuits, when the polynomial that
constitutes the IPS proof is multilinear (see Definition 2). Our hard instance has coefficients of small
magnitude, and the lower bound is in the stronger unit cost model of algebraic circuits (i.e., in terms
of the size of the circuits, not the size of the binary representation of the coefficients appearing in
them). Thus, we rectify all the purported shortcomings of previous constant-depth algebraic proofs
lower bounds (while paying by requiring that the IPS proofs are (partially) multilinear).

Theorem 1 contributes to the tradition of showing that simple subset sum variants are hard
for algebraic proofs. While Impagliazzo et al. [20] initially showed that the subset sum principle
requires exponentially many monomials in PC refutations, and Forbes et al. [12] extended this to
roABP and multilinear formulas, we show this hardness holds at least up to constant-depth IPS
(when the proofs are multilinear).

Subset sum variants are not translations of CNF formulas or Boolean formulas more generally.
Hence, algebraic-proofs lower bounds for them do not imply (immediately at least) propositional
logic proof size lower bounds (i.e., Frege-style proofs). However, a major motivation behind investi-
gating the complexity of algebraic proof systems is to understand the power of algebraic reasoning
and proofs (and their algorithmic counterpart, e.g., Grobner basis computations). For this pur-
pose, it is enough to prove lower bounds on hard instances that are not necessarily translations of
CNF's or Boolean formulas. Indeed many works on the complexity of algebraic proof systems are
dedicated to establishing such lower bounds, most prominently the subset sum principle, and its
variants (see also Razborov’s [29] non-CNF pigeonhole principle).

Furthermore, lower bounds on the size of algebraic proofs of subset-sum instances, and generally
instances from the language of unsatisfiable 0-1 multivariate polynomials over a field, are as relevant
to Cook’s programme mentioned above as much as Boolean formulas. The reason is that this
language is coNP-complete, since we can efficiently check if a given 0-1 assignment satisfies all



the polynomials in the system (assuming the polynomials and field elements are written in some
standard way), and Boolean unsatisfiability is easily reducible to this language.

We explain in what follows our main technical contribution, which can be of independent inter-
est.

1.4 Proof Technique

Our proof draws techniques from two sources. We use the methods presented in Limaye, Srinivasan
and Tavenas [23] to prove superpolynomial lower bounds for constant-depth algebraic circuits,
and combine these with the functional lower bound framework of Forbes, Shpilka, Tzameret and
Wigderson [12] for size lower bounds on IPS proofs (see also [11] for the functional lower bound
approach in algebraic circuit complexity in general).

In general, we prove Theorem 1 by reducing the task of lower bounding the size of a constant-
depth algebraic circuit computing the multilinear polynomial that constitutes the IPS proof into
the following task: lower bound the size of a constant-depth set-multilinear circuit computing an
associated set-multilinear polynomial. To get the new associated set-multilinear polynomial from
the original multilinear IPS proof (which is not necessarily set-multilinear by itself) we use a variant
of the functional lower bound approach with some additional arguments that we introduce to deal
with the need to focus on set-multilinear monomials within a polynomial that is not set-multilinear.

Once, we have the associated set-multilinear polynomial we can use the reduction presented in
[23] from constant-depth general circuits to constant-depth set-multilinear circuits. The reduction
loses only a constant-factor in the depth, but pays quite heavily in the size as a function of the
degree of the set-multilinear output polynomial. So in order to keep the size of the obtained
set-multilinear circuit reasonable, we need to restrict the degree of the set-multilinear polynomial
considerably.

Notice that unlike in Limaye et al. [23] (or in circuit complexity in general), we do not work
from the get-go with a set-multilinear polynomial for which we need to prove a lower bound against
constant-depth circuits computing it. In our case, we need to somehow show that this set-multilinear
polynomial is “embedded” in some way in any multilinear IPS proof of our hard instance. This is
the main technical challenge we face in this work.

Another point is that to show our simple degree-5 instance from Theorem 1 is hard we use a
substitution in this simple instance. Specifically, by assigning some of the z;;., and x; variables in
the hard instance, we show that one gets another variant of subset sum denoted ks,, (ks stands for
Knapsack) that is defined with respect to some word w € Z? (in the sense of [23]). The definition
of the subset sum over w is designed so that the multilinear IPS refutation of the simple hard
instance from Theorem Theorem 1 “embeds” P, after applying the substitution to the z;;x, (and
x;) variables, where P, is the word polynomial from [23], which induces a full-rank coefficient
matrix on a set of all set-multilinear monomials that arise from the given word w (a coefficient
matrix of a polynomial is an associated matrix whose rank serves as a complexity measure for the
polynomial’s circuit size, and in which each entry is a coefficient of a specific monomial in the
polynomial).

The meaning of a polynomial “embedding” a set-multilinear polynomial refers to the set-
multilinear polynomial being the set-multilinear projection of the original polynomial. Hence,
we need to consider the projection to the space of all set-multilinear polynomials over a particular
variable-partition of our original polynomial. We extend the evaluation dimension method from



[12] to prove a rank lower bound for the coefficient matrix of this set-multilinear projection, which
yields the set-multilinear circuit lower bound via a lemma from [23].

To add on the above, our proof diverges from its forbears in some essential ways. Firstly, as
mentioned before, when [23] can work from the get-go with a low-degree set-multilinear polynomial,
the multilinear refutations we consider are not of low-degree nor are they set-multilinear. Thus we
need to find suitable set-multilinear polynomials within the refutations, and consider projections
to the space of set-multilinear polynomials with respect to some variable-partition. Secondly, we
use the method based on partial assignments (or evaluations) from [12] to prove our rank lower
bound. Our use of these partial assignments is, however, more subtle than the evaluation dimension
method of [12].

Forbes et al. [12] showed a rank lower bound against a coefficient matrix of a polynomial by
reducing it to dimension lower bound for the space of all multilinearizations of the polynomials
obtained after appropriate partial assignments (to the gy-variables of a polynomial in both Z and
y variables; see [12]). The dimension lower bound is then proved by showing that enough linearly
independent monomials appear in the space as leading monomials. Such an argument is not enough
in our case, because we need to prove the existence of specific set-multilinear monomials (with
respect to to a words w) in the original polynomial (namely, the IPS proof polynomial). The root
of this difference is that the original argument defines partial assignments over all the monomials in
the hard polynomial, while we try to argue for a rank lower bound for the coefficient matrix of only
a part of the monomials, namely only the set-multilinear monomials within a non-set-multilinear
polynomial—and this corresponds to only a submatriz of the full coefficient matrix. The drawback
here is that this also forces us to consider only multilinear refutations (because multilinearization
as used in [12] does not increase rank but preserves the high rank of the coefficient matrix of the
original polynomial [before multilinearization|, while multilinearization of a polynomial can increase
the rank of the set-multilinear coefficient sub-matrix; e.g., multilinearizing the non-set-multilinear
monomial z3y3 produces z1y2 which is set-multilinear, assuming the variables are partitioned into
T and 7 variables).

Note also that our proof technique is completely different from Andrews and Forbes [3] who
used the hard multiples framework from [12].

2 Preliminaries

2.1 Polynomials and Algebraic Circuits

For excellent treatises on algebraic circuits and their complexity see Shpilka and Yehudayoff [34] as
well as Saptharishi [32]. Let G be a ring. Denote by G[X] the ring of (commutative) polynomials
with coefficients from G and variables X := {z1,22, ... }. A polynomial is a formal linear combi-
nation of monomials, where a monomial is a product of variables. Two polynomials are identical
if all their monomials have the same coefficients.

The (total) degree of a monomial is the sum of all the powers of variables in it. The (total)
degree of a polynomial is the maximal total degree of a monomial in it. The degree of an individual
variable in a monomial is its power. The individual degree of a monomial is the maximal individual
degree of its variables. The individual degree of a polynomial is the maximal individual degree of
its monomials. For a polynomial f in G[X,Y] with X,Y being pairwise disjoint sets of variables,
the individual Y -degree of f is the maximal individual degree of a Y-variable only in f.



Algebraic circuits and formulas over the ring G compute polynomials in G[X] via addition and
multiplication gates, starting from the input variables and constants from the ring. More precisely,
an algebraic circuit C is a finite directed acyclic graph (DAG) with input nodes (i.e., nodes of
in-degree zero) and a single output node (i.e., a node of out-degree zero). Edges are labelled by
ring G elements. Input nodes are labelled with variables or scalars from the underlying ring. In
this work (since we work with constant-depth circuits) all other nodes have unbounded fan-in
(that is, unbounded in-degree) and are labelled by either an addition gate 4+ or a product gate x.
Every node in an algebraic circuit C' computes a polynomial in G[X] as follows: an input node
computes the variable or scalar that labels it. A + gate computes the linear combination of all
the polynomials computed by its incoming nodes, where the coefficients of the linear combination
are determined by the corresponding incoming edge labels. A x gate computes the product of
all the polynomials computed by its incoming nodes (so edge labels in this case are not needed).
The polynomial computed by a node u in an algebraic circuit C is denoted u. Given a circuit C,
we denote by C the polynomial computed by C, that is, the polynomial computed by the output
node of C'. The size of a circuit C' is the number of nodes in it, denoted |C|, and the depth of
a circuit is the length of the longest directed path in it (from an input node to the output node).
The product-depth of the circuit is the maximal number of product gates in a directed path from
an input node to the output node.

We say that a polynomial is homogeneous whenever every monomial in it has the same (total)
degree. We say that a polynomial is multilinear whenever the individual degrees of each of its
variables are at most 1.

Let X = (Xi,...,X4) be a sequence of pairwise disjoint sets of variables, called a variable-
partition. We call a monomial m in the variables Uz’e[d] X, set-multilinear over the variable-partition
X if it contains exactly one variable from each of the sets X, i.e. if there are x; € X; for all i € [d]
such that m = Hie[d] x;. A polynomial f is set-multilinear over X if it is a linear combination of
set-multilinear monomials over X. For a sequence X of sets of variables, we denote by Fgni [7] the
space of all polynomials that are set-multilinear over X.

We say that an algebraic circuit C' is set-multilinear over X if C' computes a polynomial that is
set-multilinear over X, and each internal node of C' computes a polynomial that is set-multilinear
over some sub-sequence of X.

2.2 Strong Algebraic Proof Systems

For a survey about algebraic proof systems and their relations to algebraic complexity see the survey
[26]. Grochow and Pitassi [17] suggested the following algebraic proof system which is essentially a
Nullstellensatz proof system [5] written as an algebraic circuit. A proof in the Ideal Proof System
is given as a single polynomial. We provide below the Boolean version of IPS (which includes
the Boolean axioms), namely the version that establishes the unsatisfiability over 0-1 of a set of
polynomial equations. In what follows we follow the notation in [12]:

Definition 2 (Ideal Proof System (IPS), Grochow-Pitassi [16]). Let fi(T),..., fm(T),p(T) be a
collection of polynomials in Flxy,...,x,] over the field F. An IPS proof of p(z) = 0 from
axzioms {f;j(T) = 0};c(m), showing that p(T) = 0 is semantically implied from the assumptions
{£5(Z) = 0} jepm) over 0-1 assignments, is an algebraic circuit C(T,7,%Z) € F[Z,y1,. .., Ym, 21, - - -, Zn]
such that (the equalities in what follows stand for formal polynomial identities?; recall the notation

2That is, C(%,0,0) computes the zero polynomial and C(Z, f1(Z), ..., fm(T), 2 — z1,..., 22 — x,) computes the



C for the polynomial computed by circuit C):
1. C(z,0,0) = 0;
2. O, 1(@)s- -, fn(@), 22 — 21, 22 — 1) = p(T).

The size of the IPS proof is the size of the circuit C. An IPS proof C(Z,7,Z) of 1 = 0 from
{£i(Z) = 0} jem) is called an IPS refutation of {fj(T) = 0},cpm (note that in this case it must
hold that { f;j(T) = 0}jcpm) have no common solutions in {0,1}"). If C is of individual degree < 1
in each y; and z;, then this is a linear IPS refutation (called Hilbert IPS by Grochow-Pitassi [16]),
which we will abbreviate as 1PSyiN. If C is of individual degree < 1 only in the y;’s then we say
this is an IPSyn refutation (following [12]). If é(f, 7,0) is of individual degree < 1 in each x;
and y; variables, while C (7,0,%) is not necessarily multilinear, then this is a multilinear TPSy 1/
refutation.

If C is of depth at most d, then this is called a depth-d IPS refutation, and further called a
depth-d TPSyNrefutation if C is linear in Y, Z, and a depth-d IPS; s refutation if C is linear in Y,
and depth-d multilinear TPS; 1 refutation if C (7,7,0) is linear in T,7.

Notice that the definition above adds the equations {xf —x; = 0}, called the Boolean
axioms denoted T2 — 7, to the system {f;(T) = 0}7;. This allows to refute over {0,1}" un-
satisfiable systems of equations. The variables ¥,z are called the placeholder variables since they
are used as placeholders for the axioms. Also, note that the first equality in the definition of IPS
means that the polynomial computed by C' is in the ideal generated by y,Zz, which in turn, fol-
lowing the second equality, means that C' witnesses the fact that 1 is in the ideal generated by
A@), ..., fm(@), 22 — 21,..., 72 — 3, (the existence of this witness, for unsatisfiable set of polyno-
mials, stems from the Nullstellensatz [5]).

In this work we focus on multilinear IPSy s refutations. This proof system is complete because
its weaker subsystem multilinear-formula IPSy 1+ was shown in [12, Corollary 4.12] to be complete
(and to simulate Nullstellensatz with respect to sparsity by already depth-2 multilinear TIPSy
proofs).

To build an intuition for multilinear IPS; 1 it is useful to consider a subsystem of it in which
refutations are written as

C(Tv Y, E) = Zgl(f) “Yi + C,(T,E),

where C'(Z,0) = 0 and the g;’s are multilinear. Note indeed that C(%,0,0) = 0 so that the first
condition of IPS proofs holds, and that C(zZ,7,0) is indeed multilinear in T, 7.

Important remark: Unlike the multilinear-formula TIPSy in [12], in multilinear TPSy
refutations C'(Z,7,z) we do not require that the refutations are written as multilinear formulas or

multilinear circuits, only that the polynomial computed by C(Z,7,0) is multilinear, hence the latter
proof system easily simulates the former.

polynomial p(T).



2.3 Set-Multilinear Monomials over a Word

We recall some notation from [23]. Let w € Z? be a word. For a subset S C [d] denote by wg the
sum ) ;g w;, and by w|s the subword of w indexed by the set S. Let?

P, :={iel[d:w; >0}
be the set of positive indices of w and let
Ny :={i€[d]:w; <0}

be the set of negative indices of w.

Given a word w, we associate with it a sequence X (w) = (X (w1), ..., X (wq)) of sets of variables,
where for each i € [d] the size of X (w;) is 2/“il. We call a monomial set-multilinear over a word w
if it is set-multilinear over the sequence X (w).

For a word w, let II,, denote the projection onto the space Fy[X(w)] that maps the set-
multilinear monomials over w identically to themselves and all other monomials to 0.

2.4 Relative Rank

Let MP and M[Y denote the set-multilinear monomials over w|p, and w|y,,, respectively. Let
f € Fg[X (w)] and denote by M,,(f) the matrix with rows indexed by M} and columns indexed
by MY, whose (m,m/)th entry is the coefficient of the monomial mm’ in f.

For any f € Fgp[X (w)] define the relative rank with respect to w as follows

k(M,
relrky, (f) = %

2.5 Monomial Orders

Finally we recall some basic notions related to monomial orders. For an in-depth introduction see
[10]. A monomial order (in a polynomial ring F[X]) is a well-order < on the set of all monomials
that respects multiplication:

if m1 < mo, then myms < mams for any ms.

It is not hard to see that any monomial order extends the submonomial relation: if mime = mg
for some monomials mi, mo and ms, then m; < mg. This is essentially the only property we need
of monomial orderings, and thus our results work for any monomial ordering. Given a polynomial
f € F[X], the leading monomial of f, denoted LM(f), is the highest monomial with respect to <
that appears in f with a non-zero coefficient.

3 The Lower Bound

Our main theorem is as follows:

3The P, here is not to be confused with the canonical full-rank set-multilinear polynomial in [23] denoted as well
by P, mentioned in the introduction.



Theorem 3 (Main). Let n,A € Nywith A < 1/slogloglogn, and assume that char(F) = 0.
Then any product-depth at most A multilinear IPSyy refutation of the subset sum wariant

i sk Fiketiziaxte — B (for B ¢ {0,...,n*} ) is of size at least n0oEM™ 0,

Note that, when A > Q(logloglogn) ***Omega or omega??***, the lower bound above becomes
trivial. To prove Theorem 3 we need the following theorem, which is proved in the sequel:

Theorem 4. Let n, A € Nywith A < 1/4logloglogn, and assume that char(F) = 0. Let f be the
multilinear polynomial such that

1

D i eteln] ZijkeTiTTRTL —

f=

over Boolean assignments.

Then, any circuit of product-depth at most A computing f has size at least

xp(~0(A))
nllogn)=P )

Proof of Theorem 3 from Theorem /. Let C(Z,y,w) be a multilinear IPS;;y refutation of
Z@ e, 0c[n] ZijktTiTjTRTe — B = 0 (where here for notational clarity we renamed the Boolean axioms
placeholder variables from Z to w). Since there is only one non-Boolean axiom, C' has in fact only
a single  variable denoted y (i.e., ¥ = {y}). Note that C(Z,y,0) = ¢g(T) - y, for some polynomial
¢(Z) € F[z], because by assumption C is linear in the 7 variables (and since C(%,0,0) = 0). There-
fore, C(Z,1,0) computes the polynomial g(Z). Thus, the minimal product-depth-A circuit-size
of g(T) lower bounds the minimal product-depth-A circuit-size of C(Z,y,w). It remains to lower
bound the size of product depth at most A circuits computing ¢(Z).
Notice first that R R
C(@,yw) =C@,y.0)+ Y _ hi-w;,
(2

for some polynomials h; in T, y,w. Thus, 6(@, y, W) = g(T) -y + Y, hi - w;.
By definition of an IPS refutation

_ 2
C |7, g ZijeTiTjrpxe — 3,727 —T | =1
l’.y’k’ée[n]

and so

9(T) - Z ZijltTi%Tpre — B | + Z(hi (af — @) = 1.

i7j7k?£€ [n}

From this we get that over the Boolean cube ¢(7)-), Jkten) ZijkexiT;xpxe—3 = 1 (as a function, not
1

— over the Boolean
i,4,k,0€[n) Zijklwzmjkal_ﬁ

necessarily as a polynomial identity), and hence ¢(T) = >
cube. This shows that the size of C(Z,y,w) must be at least n(1°8 n)@P(=O(4) by Theorem 4. O

The rest of section 3 is devoted to proving Theorem 4.

We shall use the tight degree lower bound proved in [12] for functions defined by f(Z) = /(@)
for simple polynomials f(T). Specifically, we use the fact that any multilinear polynomial agreeing
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with 1/f(z), where f(T) is the subset-sum axiom . ; ; — 3 (where § is such that the axiom has no
Boolean roots) must have degree n. We note that a degree lower bound of [7/2] 4+ 1 was established
by Impagliazzo, Pudldk, and Sgall [20]. However, similar to [12], we need the tight bound of n here
as it will be used crucially in the proof of Lemma 6 to obtain the rank lower bound, which is a
stronger notion than degree lower bound. Recall the notation Z? — % for the Boolean axioms of the
z-variables.

Lemma 5 (Proposition 5.3 in [12]). Let n > 1 and F be a field with char(F) > n (or char(F) =0).
Suppose that f € F\{0,...,n}. Let f € Flxy,...,zy,] be a multilinear polynomial such that

f(@) (lef}) =1 modZ>—7Z.
Then deg f = n.

3.1 Subset-Sum Based on a Word w

In this section we define an auxiliary polynomial we use to prove Theorem 4. It is a variant of the
subset-sum that is defined from a given word w. Let w € Z% be arbitrary word, and consider the
sequence X (w) = (X (w1),..., X (wq)) of sets of variables. We fix now a useful representation of
the variables in X (w).

For any i € P,, we write the variables of X (w;) in the form x((,i), where o is a binary string
indexed by the set (formally, a binary string indezed by a set A is a function from A to {0,1}):

Hence, the size of Aq(j) is precisely w; and binary strings on the interval AS]j) (i.e., {0, 1}‘45’?)), allows

(%) . . . . .
2l4w’| — owi pogsible strings, each corresponds to a different variable in X (wj).

Similarly, for any j € N,,, we write the variables of X (w;) in the form y((,J ), where o is a binary

string indexed by the set

BY = | > fwpl+1, Y fwyl

J' €Ny J'ENy

J'<i J'<i
We call the variables in xgl ) the positive variables, or simply T-variables, and the variables yc(,j ) the
negative variables, or simply y-variables. We write A;?) for the set (J;cg Ag) for any S C P,, and
BT for the set Ujer BY for any T C N,,.

Each monomial that is set-multilinear on w|g for some S C P, corresponds to a binary string
indexed by the set AY and any monomial that is set-multilinear on w|y for some T° C N,
corresponds to a binary string indexed by the set BL. For any set-multilinear monomial m on some
w|g with S C P, we denote by o(m) the corresponding binary string indexed by A2 and for any
binary string ¢ indexed by Af; we denote by m(o) the monomial it defines, and similarly for strings

11



50 [w0] 50 | 0 [ 59]

Figure 1: An example of an unbalanced word w € Z¢, and where each w; is written as a box with its
corresponding binary string index set inside it, such that |A1(j)| = w; for ¢ € P, and |B1(j )| = wj for j € N,,.
A word is balanced if for every positive box ¢ € P,,, there exists some overlapping negative box, i.e., a j € N,
such that A 0 BY # (), and vice versa. Here, however, B® n (Aq(f) uAP U Ag})) = 0.

| 4O | 406) | A6) |

w w

| 80 [ 9] B® | 80 | BY]

Figure 2: An example of a balanced word. The construction of the knapsack polynomial ks,, makes use of
a balanced word w.

and monomials on the negative variables. Thus notice that for a (negative or positive) monomial m
we have m(o(m)) = m. Moreover, if m is a negative monomial and S C P,,, we write m(o(m)|s)
to denote the positive monomial determined by the string o(m)|4s which is a substring of o(m)
restricted to A2,

Therefore, every set-multilinear monomial on w is of degree d with each T-variable picked
uniquely from the X (w;)-variables, for ¢ € P, the positive indices in w, and each y-variable is
picked uniquely from the X (wj)-variables, for j € N,, the negative indices in w, and moreover the
monomial corresponds to a binary string of length Zle |w].

We call the word w balanced if for every ¢ € P, there is some j € N,, such that Ag) ﬂBfg ) # )
and for every j € Ny, there is some i € P, such that A&f) N vaj ) # (). This means that any positive
variable as defined above has some overlap with some negative variable within the given indexing
scheme, and vice versa. Figure 1 and Figure 2 give examples of unbalanced and balanced words,
respectively.

Our notion of a balanced word is different from, but related to, the notion of a b-unbiased word
in [23]: a word w € Z% is b-unbiased if |wyy| < b for every ¢ < d. If a balanced word w € Z% has all
its entries bounded by b in absolute value, i.e., |w;| < b for every i € [d], then the sum of all entries
of w is bounded by b in the sense that ]w[dﬂ < b. The notion of balance is more relaxed than that of
unbiased in the sense that we do not need the property that all initial segments are also bounded
by b. On the other hand the construction and proof in [23] does not require a balanced word, when
this property is essential for us in the proof of Lemma 6.

We define the polynomial ks, as follows. Below we suppose that |wy,| > |wp,|, so that the
negative monomials are determined by longer binary strings than the positive ones. Otherwise we
flip the roles of the negative and positive variables in the definition below.

- . . (4) .
For a positive index i € P, and o € {0,1}4* , define the polynomial

=1 > ¥, (2)

JENw: g
i ; i€{0,1}Pw
AD B 29 €O

where the sum ranges over all those o; that agree with o on Ag) N Bg ). The degree of fy) equals

12



T o[ ]
B B® BW B]('“/) BS?)

w w w

Figure 3: Here * represents either 0 or 1. In the construction of the polynomial ks,, for i = 2 and
2 1 3 4 4 4
o = 011001, we have f§11o01 = y1s - 0~ (Uioho + Yiobs + - + ¥i1h)-

the number of those Bq(uj ) that overlap with Ag). Note that the degree is always at least 1. Now

define the polynomial
kSw = Z Z »’ng)f(gz) - Ba
1€Py, :

where [ is any field F element so that the polynomial ks,, has no Boolean roots (here we use the
fact that char(IF) = 0). Figure 3 gives an example of the construction.

The basic idea behind the above construction is simple. Given a monomial m that is set-
multilinear over w|y,,, consider the partial assignment 7, to the negative variables that sends any
negative variable in m to 1 and all other negative variables to 0. Now after applying 7, to ks,, we
are left with a simple subset sum instance

Z $g? - B,

1€P,,
(4)

where o; is the binary string indexed by Ag) that agrees with o(m) on Ay’ . Similarly for any
monomial that is set-multilinear over w|r for some T' C N, the polynomial 7,,(ks,) is the subset

sum instance ‘
> bl -5
S
where S is the maximal subset of P, such that Afj C Bg . With Lemma 5 we have a very good

understanding of the multilinear IPS refutations of such subset sum instances, namely we know
that the multilinear polynomial f that equals

-
ZieS x‘(;i) - 5

over Boolean assignments

)

has as its leading monomials the product [[;c g mﬁfz . This observation allows us to prove our rank
lower bound in the following section. Figure 5 in subsection 3.2 illustrates the way assignments to

the negative variables give rise to simple subset sum instances.

3.2 Rank Lower Bound Lemma

In this section we prove the main technical lemma of this paper—a rank lower bound for subset
sum over any balanced word. Let w € Z% be any word, and let f be a multilinear polynomial in
the variables X (w). Denote by M (f) the coefficient matrix of f with rows indexed by all multi-
linear monomials (of any degree) in the positive variables and columns indexed by all multilinear

13



multilinear monomial o .
set-multilinear monomials
over y-variables
over w|y

multilinear monomial R ,J:‘
. m
over z-variables _

set-multilinear monomials

over w|p,

w M)

Y coefficient of m - m' in f

Figure 4: The coefficient matrix M (f) with rows and columns indexed by the multilinear monomials over
the ZT-variables and F-variables respectively; and its submatrix M, (f) with rows and columns indexed by the
set-multilinear monomials over w|p, and w|y, respectively. If w is a balanced word and f is a multilinear
polynomial agreeing with 1/ks,, over boolean assignments, then M, (f) has full-rank

monomials (again, of any degree) in the negative variables, and denote by M, (f) its submatrix
with rows indexed by all monomials that are set-multilinear over w|p, and columns indexed by all
monomials that are set-multilinear over w|y,, .

Lemma 6. Let w € Z% be a balanced word, and let f be the multi-linear polynomial so that

1
f= P over Boolean assignments.
w

Then My (f) is full-rank.

Proof. Without loss of generality we assume that |wy, | > |wp,|, so that our notation matches that

of subsection 3.1. Write
=Y gm(@m, (3)

where the sum ranges over all multilinear monomials m in the y-variables and g,,(Z) is some
multilinear polynomial in the Z-variables (note that here we include all multilinear monomials and
not only the set-multilinear ones). We show that for any m that is set-multilinear on w|y,, the
leading monomial of gy, () is the set-multilinear monomial m(o(m)|,r. ). This is where we focus on
the submatrix of set-multilinear monomials within the bigger matrix of all multilinear monomials,
as depicted in Figure 4. To prove this we need the following claim.

Claim 7. For any monomial m set-multilinear on some w|p, where T'C Ny, the leading monomial
of gm(T) is less or equal to

m (o(m)lag )

where S is the maximal subset of P, such that A3 C BI.
Moreover if m is set-multilinear on w|y,,, then the leading monomial of g, (T) equals

m (a(m)]A5w> .

14



A2 AG) A®

w

| |0/0|101101|

|100| |1001|0110|11|
B[(‘_l) B((ﬁ) BW B Bz(f)

w w

Figure 5: In this example, T = {1,4,7,8} C N,, and m = y%é . y%)m . y(()?lo . yﬁ) is a set-multilinear
monomial over w|p. As S = {5,6} is the maximal subset of P, such that AS C BT we therefore have that
the leading monomial of g,,(Z) (from (3)) is less than or equal to xé%) ~x§%)1101. Moreover, in the polynomial
ks,,, the partial assignment setting the y-variables in m to 1 and the remaining y-variables to 0 results in

the polynomial x(()SO) + 335%)1101 - f.

Proof of Claim. Proof by induction on the size of T'.

Base case: If T = (), the only monomial set-multilinear on wly is the empty monomial 1. Now
consider the partial assignment 71 that maps all the y-variables to 0. Now 7i(f) = ¢1(%), where
91(T) is the coefficient of the empty monomial 1. On the other hand, since

1
f = — over Boolean assignments,
ks
we have that 7 (f) = —1/0 over Boolean assignments. As ¢;(T) is multilinear, ¢1(Z) = —1/3 as a

polynomial identity and so the leading monomial of g;(Z) is the empty monomial 1.

Induction step: Suppose then that T is non-empty, and let m be a set-multilinear monomial on
w|r. Now consider the partial assignment 7, that maps any y-variable in m to 1 and any other
y-variable to 0. By (3)

Tm(f) = Z 9m/ (f)7 (4)

where m’ ranges over all submonomials of m. On the other hand, by the construction of ks,

1
Tm(f) = ———— over Boolean assignments,

Zm((f) -3
(4)

where the sum in the denominator ranges over those i and o such that Ay’ C Bl and o agrees with

o(m) on the interval Aq(ﬁ). Note that for any ¢ € P, there is at most one ¢ such that x((f ) appears

in the sum (because Ag) C Bg , and by construction of ks, x((f ) for a fixed o is multiplied in ks,,
by all products ijg.) such that the concatenation of the p;’s extends the string o; but since we
assigned 0-1 to all the y-variables there is a single such concatenation, induced by our assignment
of 1’s; see Figure 3).

It follows by Lemma 5 that the leading monomial of 7,,,(f) is the product of all the 3:((; ) appearing
in the sum in the denominator above, and thus the leading monomial equals

m <U(m)\A§U> , (5)

where S is the maximal subset of P, such that AS C BT. By (4), this means that either the leading
monomial of g, (7) is less than or equal to (5), or otherwise is greater than (5) but is cancelled
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out in (4) by some monomial in g, (Z) for m’ a proper submonomial of m. But by induction
assumption, for a proper submonomial m’ of m with 7" C T and m’ set-multilinear on w|7, the

leading monomial of g,,,/(Z) is less or equal to m (a(m’ )| AS/)’ where S’ is the maximal subset of P,
such that A5 C BI'. Since, m’ is a submonomial of m the monomial m (o(m’ )| AS') is less than

or equal to m (O’( )| As) and so the above mentioned cancellation cannot occur, and we conclude

that the leading monomial of ¢,,(Z) is less than or equal to (5).

It remains to show that the leading monomial of g,,(Z) is precisely (5), when m is a set-
multilinear monomial on w|y, . Let m’ be a proper submonomial of m that is set-multilinear over
w|p for some T' C N,,. By the assumption that w is balanced there is some i € P, such that

A ¢ BL, and thus the leading monomial of g,/ () is properly smaller than m (o (m)| aPw)- Hence,
by (5) (and the sentence preceding it) the leading monomial of ¢,,,(Z) must equal m(o(m )] APw)- O

By the claim for any m that is set-multilinear on w|y,, the leading monomial of g,,(Z) is the
monomial m(o(m)| ,r, ), and these include all the set-multilinear monomials on w|p,. Thus the
column space of M, EU f) spans the space of all set-multilinear polynomials on w|p,, and My(f) is
full-rank (where a column in M, (f) determines a polynomial that is a linear combination of the
positive monomials in its rows). Ol

Corollary 8. Let w € Z% be a balanced word with |w;| < b for all i € [d], and let f be the
multi-linear polynomial so that

1
f = — over Boolean assignments.
KSqw

Then relrk, (f) > 27/2.

Proof. Assume again without a loss of generality that |wy,| > |wp,|.- By the “balanced-ness” and

the assumption that |w;| < b for all ¢ € [d], we know that |wp, | —|wn, | > —b. By Lemma 6, M,,(f)
is of rank |M}|, and so

— V/2lwpy l-lwny, | > 27b/2,

relrk,, (f) =

\MN

3.3 Lower Bound for Constant-Depth Set-Multilinear Circuits
In this section we prove the following lower bound on bounded-depth set-multilinear circuits.

Lemma 9. Let d,k,A € Ny with k > 10d. Let w € Z% be a balanced word in the vocabulary
{lak|,—k}, where o = 1/v2, and let f be the multilinear polynomial which equals 1/ks., over Boolean
assignments. Then any set-multilinear circuit of product-depth A computing the set-multilinear

projection I, (f) has size at least
k(dl/(zA—l)fzo)
A

Proof. We prove the lemma by using the following claim from [23].
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Claim 10 ([23] Claim 16). Let k > 10d. Let w be any word of length d with entries in {|ak|, —k},
where o = 1/v2. Then for any A > 1, any set-multilinear formula C' of product-depth A of size at
most s satisfies
/22 -1)
relrk,, (C) < s - 27 20

Let C be a set-multilinear circuit of size s and product-depth A computing II,,(f). We can
transform C' into a set-multilinear formula F of size s> and product-depth A computing IL,(f).

Now by Lemma 6 and Claim 10, we have that

_ka'/(22 1)
27F < relrky, (I, (f)) < 24 - 2 5 ,

and thus
k(d1/<2A*1>—20)
SQA 2 2 20

)

from which the claim follows. OJ

3.4 Lower Bound for Constant-Depth Circuits

Finally in this section we prove Theorem 4. To prove this theorem we reduce the task of computing
f in Theorem 4 to computing the set-multilinear projection IT,,(f’) of the multilinear f’ that equals
1/ks,, over the Boolean values for a suitable word w. For this we require the following lemma which
can be proved in a manner similar to Proposition 9 in [23].

Lemma 11. Let s,N,d and A be growing parameters with s > Nd. Assume that char(F) = 0
or char(F) > d. Let C be a circuit of size at most s and product-depth at most A computing a
polynomial f. Let X = (X1,...,X4) be a sequence of pairwise disjoint sets of variables, each of size
at most N. Then there is a set multilinear circuit C of size at most do(d)poly( ) and product-depth
at most 2A computing the set-multilinear projection < (f) of f.

With this lemma at hand, we are ready to prove Theorem Theorem 4.

Proof of Theorem /4. Let C be a circuit of size at most s > n and product-depth A computing f.
Now let k = |logn/2] and d = |logn/25], and note that d2¥ < n < s for large enough n. Note also
that & > 10d for large enough n. Let w be a balanced word of length d on the alphabet {|ak|, —k},
where a = 1/v2. One can easily construct such a word by induction on d.

)

Note that the polynomial ks, is now of degree at most 4, as any By’ overlaps at most 3
different ASU) s and any ASU) overlaps at most 2 different BI(U) s. Also, by choice of parameters, ks,
involves less than n many variables. Hence there is some partial assignment 7, to the variables
{zijke, i+ 4,5,k € [n]} that maps Zz‘,j,k,ée[n} Ziike®iT; X2 — [ to the polynomial ks, (up to
renaming of variables). By applying this partial mapping to C, we obtain a circuit C’ of size
at most s and product-depth A that computes the multilinear f’ that equals 1/ks,, over Boolean
assignments. Now, by Lemma 11, there is a set-multilinear circuit C” of size do(d)poly(s) and
product-depth 2A computing the set-multilinear projection IT,,(f’) of f'.

By Lemma 9 any set-multilinear circuit of product-depth 2A computing IT,,(f") has size at least

1/(92A0 _
k<7d e 80;)*20) a2 -1) o
2 >n 2004 )
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Putting everything together we have that

a2 1) g0
do(d)po|y(5) >n 2004

Now, given that A < 1/4logloglogn, by the choice of d, we have that 2A < 1/2loglog 30d. Then
for large enough n we have that

/PR 5y gV10s(d/30)/2

n- 200a Z n, 50loglog 30d ,
and as
21/108(d/30) /2 @
50 1loc loo 30d (%)
n, 50loglog30d 2 d ,
the lower bound follows. O

Comment: We remark that if we make sure that the word w above leans towards the negative
monomials, meaning that |wy, | > |wp,|, we can actually prove the lower bound for the following
degree-4 variant of subset-sum
Z ZijkLiLj L — ﬁ
i.g,k€n]

We have, however, opted for the proof above for simplicity, as it works for any balanced word over
the vocabulary {|ak|,—k} and does not involve any set-up of a suitable word that could distract
from the main idea.

4 Upper Bounds and Relative Strength

In this section we calibrate the strength of the proof system multilinear IPSt s against which we
established our lower bounds. IPS is a very strong proof system (simulating Extended Frege, for
example), accordingly constant-depth IPS is considerably strong (see for example [17], showing
that over positive characteristic this system simulates AC®[p]-Frege). For IPS\ we impose two
restrictions. The first restriction is denoted by the subscript 1y, meaning that the placeholder
variables of the non-Boolean axioms appear with exponent at most 1 in the proof (so that we
cannot freely power axioms). But for general IPS, this was shown in [12] to not be a real restriction,
namely, IPS; v simulates IPS. Hence, in the case of constant-depth proofs this may not be a strong
restriction as well (though we have not checked the details). The second restriction, that is the
multilinearity restriction of multilinear IPStn seems like a more significant restriction.

We also demonstrate that (constant-depth) multilinear IPSy 1 is not a weak proof system, in
the sense that it has exponential speed-up over proof-systems such as PC and SOS.

We start, however, by noting that the multilinearity restrictions is indeed a real restric-
tion. In [12] it was shown that the “vanilla” linear subset sum instance ) ;1% — B does
have polynomial-size constant-depth IPS;y refutations. Now given the small constant-depth
refutation of Zi’j’k’ge[n} Yijke — B of [12], one easily obtains a small constant depth refutation of
Zm-’k’ee[n] 2ijkeTiTTExe — (B via a simple substitution y;jke = 2ijpeviz;287e. The obtained refuta-
tion is far from multilinear, namely, it is of individual degree Q(n?3).
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4.1 Unrestricted depth multilinear IPS; v upper bounds

We observe the following:
e Multilinear-IPS; ;v extends (by definition) multilinear-formula IPS; n from [12].

e Multilinear-IPSy v efficiently proves the (linear “vanilla”) subset-sum principle ), z; —
(this stems from the above item).

e Multilinear-IPSy ;\/ essentially simulates R%(lin) from Raz-Tzameret [28] over char(0). This
is because [28] showed that proofs operating with multilinear formulas over char(0) simulates

RO(lin).

e Multilinear-IPS; i efficiently proves Tseitin mod p formulas, and the pigeonhole principle.
This stems from item above and [28].

4.2 Short Refutations for Tseitin Contradictions in Constant Depth Multilinear
IPSpn

The Tseitin contradictions represent the principle that every graph has an even number of odd
degree vertices. They are known to be hard to refute for suitable classes of graphs e.g. in Polynomial
Calculus over fields of characteristic different from two [7, 20]; in Sums-of-Squares [14, 4], and in
bounded-depth Frege systems [36, 6].

For a graph G = (V, E) let ¢: V — {0, 1} assign a parity to each vertex of G so that )y (v)
is odd. We associate a Boolean variable z, with each edge e € E. The Tseitin contradiction consists
of the parity constraints P, B(v) Te = ©(v) for every v € V.. We represent each of these constraints
by a polynomial p, defined as

IT (20— (-7,

e€E(v)

so that p, = 0 precisely for the {0, 1}-assignments to the z. variables that satisfy the parity
constraint above.

It was shown in [13] that over the Fourier basis, where Boolean values are represented with
+1, Tseitin contradictions are easy to refute even in Nullstellensatz in terms of the number of
monomials needed for the refutation. Constant-depth IPSyn refutations can—as they allow the
polynomials in the refutation to be represented with algebraic formulas rather than just sums of
monomials—straightforwardly simulate the Fourier basis refutation in the usual {0, 1}-basis. Below
we show that this simulation can furthermore be achieved by a multilinear refutation.

Proposition 12. Let G = (V,E) be a graph. Then there exists a depth-3 multilinear TIPS\
refutation of {p, : v € V'} of size polynomial in |V|.

Proof. Enumerate the vertices of V" as v1,...,v,. For each i € [n], we introduce useful short-hands:
let p; = HeeE(Ui)(l —2z,) and ¢; = (—1)5"(”1') so that p,, = pi — qi-
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First note that

- 1La=11r—-{1]pi| o+ |]]oi] o |1]pi| @ e+ | I]oi ] @1-qa+--

i€[n] i€[n] i€[n] Ji>1 Jj>1 J>2 J>2

=1Iei- i —a)+ | [Ipi | @2 (p2—2) + -

j>1 j>2
s ((11s)- (qu) P
i€[n] J>i k<i

Note that Hie[n] pi = [Lep(l — 22.)?, and since (1 — 2z.)? =1 mod 7% — T for every e € E, we
have that [[;c;, pi =1 mod 72 — 7. Also [Licpn @ = —1, because 3, o ¢(v) is odd, and so the
left-hand side of Equation (?7?) equals 2 modulo the Boolean axioms.

Now consider the products || i>i Pj [1:<; @&- They do not necessarily compute multilinear poly-
nomials as they might contain twice a term (1 — 2z.) for some e € E. But as (1 — 2z.)? = 1
mod Z2 — T, these squares can be removed from the product, and we still have that

2= ([Ipillax(pi—q)| modz* -z,

i€ln] \J>1  k<i

where [[;.;p;[[x<; qx denotes the formula obtained from [[;.;p;][;<; qx by removing all the
squares.

The equation above is a depth-3 multilinear TIPSy refutation of {p, : v € V'} that is of size
polynomial in |V | up to the equivalence modulo 2 —Z. We leave it to the reader to verify that the

equivalence modulo Z? — T can also be witnessed by small formulas.
O]

4.2.1 Short refutations for the CNF encoding of Tseitin

Additionally, we show that also the CNF encoding of Tseitin contradiction has short constant-
depth multilinear IPSy 5 refutations. For this we assume that the graphs G = (V, E) have their
degree bounded by some constant 6. Then each of the constraints €. B(v) Te = ©(v) can be
expressed as a J-CNF with O(]|V]) clauses. In more detail we translate each constraint of the form
D.cp() Te = (v) to a CNF of the form

AV o
beB, GEE(”L))
where B, stands for the set of all b € 2E() satisfying @b = ¢(v). For a fixed v € V and b € B,,
the clause \/ o B(v) Te is translated into the polynomial
foo =[] (eme+ (1 —b)(1 - ).
e€E(v)

The following lemma shows how one translates the CNF encoding of Tseitin into the polynomial
encoding used in the previous section.
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Lemma 13. Let G = (V, E) be a graph. Then

2-1)'"F N fop= [ (1220 — (-7 (6)

beBy GEE(”L))

Proof. On a binary string a indexed by E(v), we have that J[.cp(,) (1 — 2ac) = (—1)®66E<v) e
If «a ¢ B, then f,3(a) = 0 for all b € B, We therefore have
> vem, fopla) = (=1)Peerw % _ (_1)¢(") = 0 so Equation 6 holds. If a € B,, then fopla) =1
if @ = band f,p(a) = 0 otherwise. We therefore have 2(—1)17¢() = (—1)1=#() — (—1)#() 5o
Equation 6 again holds. As the polynomials in Equation 6 are multilinear and equality holds for
all binary strings indexed by E(v), we have that it holds as a polynomial identity. ]

Corollary 14. Let G = (V, E) be a graph of degree bounded by a constant §. Then there exists a
depth-3 multilinear IPSt 1\ refutation of {fyp : v € V,b € By} of size polynomial in |V|.

4.3 Short Refutations for Functional Pigeonhole Principle in Constant Depth
Multilinear TIPSy

We show that the functional pigeonhole principle has short refutation in constant-depth multilinear
IPS;n- This gives a further separation between our system and Polynomial Calculus [30]. We use
the encoding used in [30]: the functional pigeonhole principle FPHP]" for m > n is defined over a
set of variables {z;; : i € [m],j € [n]} and consists of the following polynomial constraints:

® > jepm %ij = 1 for every i € [m];
o zijxy; =0 for every i # 14’ € [m] and j € [n].
Proposition 15. There exists a polynomial-size depth-3 multilinear IPSy N refutation of FPHP".

Proof. Again for ease of reading we introduce a shorthand. For j € [n] let p; denote the linear
polynomial Zie[m] x;j. By summing all the constraints of the form Zje[n] x;; we obtain that
Zjé[n] pj =m.

Considering the polynomials p; as formal variables we have that pJQ- = p; by the Boolean axioms
and the constraints of the form z;;x;; = 0.

Now, by [12], there is a depth-3 multilinear formula F (in the variables p;) so that

1=F ij—m mod p% — p.
J€ln]

After applying the assignment p; — Zie[m] x;; to the refutation above we obtain a depth-3
multilinear IPS; n refutation of FPHP]". Ol

5 Conclusions and Open Problems

The main goal of this work is to advance on the frontiers of strong propositional proofs lower bounds.
We provide the first lower bounds against algebraic proof systems operating with constant-depth
circuits, where the hard instance is computable itself with small constant-depth circuits. Our hard
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instances are combinatorial, simple, and have 0-1 coefficients, and the lower bounds work in the
unit-cost model of algebraic circuits, namely, where the size does not depend on the magnitude of
coefficients used in the polynomials appearing in the proof

Thus, our result brings us to the natural and standard setting of proof complexity lower bounds,
while coming closer to CNF hard instances (since the magnitude of coefficients in the hard instances
do not play a role in our lower bound proofs).

On the other hand, establishing lower bounds against CNF formulas in strong algebraic proof
systems stays a remarkable open problem, since it necessitates a lower bound technique that is
different from the functional lower bound approach we used or the bit-complexity /large-coefficients
approach of [1, 2] (or at least a substantially modified technique than those two techniques). Note
that such lower bounds would also imply constant-depth Frege with counting gates (AC°[p]-Frege)
lower bounds, which is an important long-standing open problem in proof complexity. This leads
us to the following set of open problems:

1. CNF hard instances: Can we establish lower bounds against strong algebraic proof systems,
and specifically constant-depth IPS proofs for a family of CNF formulas? As mentioned
above, this is a very challenging problem, or at least one with important consequences in
proof complexity.

Before tackling this difficult open problem, we identify several possibly less challenging ones that
seem to be prerequisites for solving open problem 1 (at least as far as taking the proof complexity
lower bound approach in the current paper):

2. Finite fields: Can we establish lower bounds against strong algebraic proof systems, and
specifically constant-depth IPS proofs over finite fields? Both the functional lower bound
argument from Forbes et al. [12] and the Limaye et al. [23] technique, use the fact that the
fields are sufficiently big, or have characteristic 0. For the former approach, characteristic 0
fields are essential: first, the subset sum instance is not necessarily unsatisfiable over finite
fields. But more crucially, the whole functional lower bound approach for IPS hinges on lower
bounding the size of a circuit computing the function 1/f over the Boolean cube, for some
efficiently computable polynomial f. However, over finite fields 1/r is efficiently computable,
when f is, over the Boolean cube. For the latter [23] approach, the requirement for large
enough or zero characteristic does not seem to be as crucial to the argument (it is used only
in the homogenization procedure to yield low-depth circuits, using polynomial interpolation,
the latter requires a field with sufficiently large or zero characteristic; this homogenization is
based on a generalization of Shpilka and Wigderson [33]). However, there may be a different
way to homogenize constant-depth circuits without increasing too much the depth even over
finite fields.

3. No multilinear requirement: Can we get rid of the requirement for multilinearity of the
IPS refutations in our lower bounds? Namely, can we use a stronger proof system than
multilinear IPS;n? We discussed this requirement in the introduction. It comes from the
requirement in the Limaye et al. [23] technique to consider set-multilinear polynomials, as
well as the use of the functional lower bound approach from [12] which focuses on functions
computed on the Boolean cube alone. A hard set-multilinear polynomial can compute the
same function over the Boolean cube as a polynomial whose set-multilinear projection is in
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fact zero (and hence easy to compute), which breaks our argument. It is unclear at the
moment how to overcome this obstacle.
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