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Abstract

We develop the theory of cryptographic nondeterministic-secure pseudorandomness beyond
the point reached by Rudich’s original work [Rud97], and apply it to draw new consequences in
average-case complexity and proof complexity. Specifically, we show the following:

Demi-bit stretch: Super-bits and demi-bits are variants of cryptographic pseudorandom gen-
erators which are secure against nondeterministic statistical tests [Rud97]. They were intro-
duced to rule out certain approaches to proving strong complexity lower bounds beyond the
limitations set out by the Natural Proofs barrier of Rudich and Razborov [RR97]. Whether
demi-bits are stretchable at all had been an open problem since their introduction. We an-
swer this question affirmatively by showing that: every demi-bit b : {0, 1}n → {0, 1}n+1 can be
stretched into sublinear many demi-bits b′ : {0, 1}n → {0, 1}n+nc

, for every constant 0 < c < 1.

Average-case hardness: Using work by Santhanam [San20], we apply our results to obtain
new average-case Kolmogorov complexity results: we show that Kpoly[n − O(1)] is zero-error
average-case hard against NP/poly machines iff Kpoly[n − o(n)] is, where for a function s(n) :
N → N, Kpoly[s(n)] denotes the languages of all strings x ∈ {0, 1}n for which there are (fixed)
polytime Turing machines of description-length at most s(n) that output x.

Characterising super-bits by nondeterministic unpredictability: In the deterministic
setting, Yao [Yao82] proved that super-polynomial hardness of pseudorandom generators is
equivalent to (“next-bit”) unpredictability. Unpredictability roughly means that given any
strict prefix of a random string, it is infeasible to predict the next bit. We initiate the study of
unpredictability beyond the deterministic setting (in the cryptographic regime), and char-
acterise the nondeterministic hardness of generators from an unpredictability perspective.
Specifically, we propose four stronger notions of unpredictability: NP/poly-unpredictability,
coNP/poly-unpredictability, ∩-unpredictability and ∪-unpredictability, and show that super-
polynomial nondeterministic hardness of generators lies between ∩-unpredictability and ∪-
unpredictability.

Characterising super-bits by nondeterministic hard-core predicates: We introduce a
nondeterministic variant of hard-core predicates, called super-core predicates. We show that
the existence of a super-bit is equivalent to the existence of a super-core of some non-shrinking
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function. This serves as an analogue of the equivalence between the existence of a strong
pseudorandom generator and the existence of a hard-core of some one-way function [GL89,
HILL99], and provides a first alternative characterisation of super-bits. We also prove that a
certain class of functions, which may have hard-cores, cannot possess any super-core.
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1 Introduction

Pseudorandomness is a natural concept allowing to measure the extent to which a resource-bounded
computational machine can identify true random sources. It is an important notion in algorithms,
enabling to derandomize efficient probabilistic algorithms by simulating many true random bits
using fewer random bits. Another important aspect of pseudorandomness lies in computational
complexity and cryptography, and specifically computational lower bounds, where it serves as
the foundation of many results in cryptography, hardness vs. randomness trade-offs, and several
barriers to proving strong computational lower bounds. Here, we will mostly be interested in the
latter aspect of barrier results.

1.1 The theory of nondeterministic-secure pseudorandomness

Razborov and Rudich established a connection between pseudorandomness and the ability to prove
boolean circuit lower bounds in their Natural Proofs paper [RR97]. They showed that most lower
bounds arguments in circuit complexity contain (possibly implicitly) an efficient algorithm for de-
ciding hardness, in the following sense: given the truth table of a boolean function, the algorithm
determines if the function possesses some (combinatorial) properties that imply it is hard for a
certain given circuit class (they called this “constructivity” and “usefulness” of a lower bound
argument). They moreover showed that this algorithm identifies correctly the hardness of a non-
negligible fraction of functions (which is called “largeness” in [RR97]). On the other hand, such an
efficient algorithm for determining the hardness of boolean functions (for general circuits) would
contradict reasonable assumptions in pseudorandomness, namely the existence of strong pseudo-
random generators. This puts a barrier, so to speak, against the ability to prove lower bounds
using natural proofs.

The notion of natural proofs has had a great influence on computational complexity theory.
However, the fact that the plausible nonexistence of certain classes of natural proofs provides an
obstacle against very constructive lower bound arguments (namely, those arguments that implicitly
contain an efficient algorithm to determine when a function is hard) is somewhat less desirable. One
would hope to extend the obstacle to less constructive proofs, for instance, proofs whose arguments
contain implicitly only short witnesses for the hardness of functions.

Indeed, the notion of natural proofs comes to explain the difficulty in proving lower bounds,
not in efficiently deciding hardness of boolean functions. For these reasons, among others, Rudich
[Rud97] set to extend the natural proofs barrier so that they encompass non-constructive arguments,
namely, arguments implicitly using efficient witnesses of the hardness of boolean functions, in
contrast to deterministic algorithms. This was done by extending the notion of pseudorandom
generators so that they are secure against nondeterministic adversaries.

While empirically most known lower bound proofs were shown, at least implicitly, to fall within
the scope of P/poly-constructive natural proofs, it is definitely conceivable and natural to assume
that some lower bound approaches will necessitate NP/poly-constructive natural proofs. In fact, it
is a very interesting open problem in itself to find such an NP/poly-constructive lower bound proof
method. Furthermore, in works in proof complexity the role of nondeterministic-secure pseudoran-
domness is important (cf. recent work by Pich and Santhanam [PS19], as well as Kraj́ıček [Kra04]).
Also, note that when dealing with the notion of barriers we refer to impossibility results and so it
cannot always be expected to come up with good examples of proof methods we wish to rule out.

Accordingly, to extend the natural proofs barrier, Rudich introduced two primitives: super-bits,
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and its weaker variant demi-bits. Super-bits and demi-bits are (non-uniform) nondeterministic
variants of strong pseudorandom generators (PRGs). They are secure against nondeterministic
adversaries (i.e., adversaries in NP/poly). Demi-bits require their nondeterministic adversaries to
break them in a stronger sense than super-bits, and hence their existence constitutes a better (i.e.,
weaker) assumption than the existence of super-bits on which to base barrier results; and this is
one reason why the concept of demi-bits is important.

More specifically, super-bits and demi-bits both require a nondeterministic adversary to mean-
ingfully distinguish truly random strings from pseudorandom ones by certifying truly random ones
(i.e., an adversary outputs 1 if it thinks a given string is an output of a truly random process
and 0 if it is the output of a pseudorandom generator). Thus, a nondeterministic distinguisher
cannot break super-bits nor demi-bits by simply guessing a seed of the generator. Precisely, this
is guaranteed as follows: for demi-bits we insist that strings in the image of the pseudorandom
generator are always rejected, while for super-bits we allow some such pseudorandom strings to be
accepted but we insist that many more strings outside the image of the pseudorandom generator
are accepted (than strings in the image of the pseudorandom generator).

Formally, we have the following (all the distributions we consider in this work are, by default,
uniform, unless otherwise stated, and Un denotes the uniform distribution over {0, 1}n):

Definition 1.1 (Nondeterministic hardness [Rud97]). Let gn : {0, 1}n → {0, 1}l(n), with l(n) > n,
be a function in P/poly. We call such a function a generator. The nondeterministic hardness
Hnh(gn) (also called super-hardness) of gn is the minimal s for which there exists a nondeter-
ministic circuit D of size at most s such that

P
y∈{0,1}l(n)

[D(y) = 1] − P
x∈{0,1}n

[D(gn(x)) = 1] ≥
1
s

. (1)

In contrast to the standard definition of (deterministic) hardness (Definition 3.6), the order of
the two possibilities on the left-hand side is crucial. This order forces a nondeterministic distin-
guisher to certify the randomness of a given input. Reversing the order, or adding an absolute
value to left-hand side, trivializes (as in standard PRGs) the task of breaking g: a distinguisher
D can simply guess a seed x and check if g(x) equals the given input. For such a D, we have
P [D(g(x)) = 1] = 1 and P [D(y) = 1] ≤ 1/2.

Super-bits are exponentially super-hard generators:

Definition 1.2 (Super-bits [Rud97]). A generator g : {0, 1}n → {0, 1}n+c (computable in P/poly),
for some c : N → N, is called c super-bit(s) (or a c-super-bit(s)) if Hnh(g) ≥ 2nε

for some constant
ε > 0 and all sufficiently large n’s. In particular, if c = 1, we call g a super-bit.

Many candidates of strong PRGs (against deterministic machines) were constructed by ex-
ploiting functions conjectured to be one-way and/or their hard-cores (see for example [ACGS88,
Kal05, IN89]). The work [ACGS88] presented PRGs based on the assumption that factoring is
hard, while [Kal05] presented PRGs based on the conjectured hardness of the discrete-logarithm
problem. [IN89] presented PRGs based on the subset sum problem. Similarly, for nondeterministic-
secure PRGs (namely, super-bits), Rudich conjectured the existence of a super-bit generator based
on the hardness of the subset sum problem [IN89]. We are unaware of any additional conjectured
construction of super-bits.

As mentioned above, another hardness measure of generators was introduced by Rudich:
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Definition 1.3 (Demi-hardness [Rud97]). Let gn : {0, 1}n → {0, 1}l(n) be a generator (computable
in P/poly). Then the demi-hardness Hdh(gn) of gn is the minimal s for which there exists a
nondeterministic circuit D of size at most s such that

P
y∈{0,1}l(n)

[D(y) = 1] ≥
1
s

and P
x∈{0,1}n

[D(gn(x)) = 1] = 0. (2)

We note that (2), which requires a distinguisher to make no mistake on generated strings, is a
stronger requirement than (1). Thus, Hnh(g) ≤ Hdh(g) for every generator g.

Demi-bits are exponentially demi-hard generators, where “demi” here stands for “half”:

Definition 1.4 (Demi-bits [Rud97]). g : {0, 1}n → {0, 1}n+c for some c : N → N is called c
demi-bit(s) (or a c-demi-bit(s)) if Hdh(g) ≥ 2nε

for some ε > 0 and all sufficiently large n’s. In
particular, if c = 1, we call g a demi-bit.

It is worth mentioning that demi-bits g as in Definition 1.4 can be viewed as a hitting set
generator against NP/poly (see below Section 2.1.2 and Santhanam [San20]).

The difference between super-bits and demi-bits is that demi-bits require their distinguishers
to break them in a stronger sense: a demi-bit distinguisher must always be correct on the pseu-
dorandom strings (i.e., always output 0 for strings in the image of the generator). Thus, if g is
a super-bit(s) (the plural here denotes that g may have a stretching-length greater than 1; if the
stretching length is exactly 1, we say g is a super-bit), no algorithm in NP/poly can break g in the
weaker sense (1), and hence no algorithm in NP/poly can break g in the stronger sense (2), which
means g is also a demi-bit(s). In other words, the existence of super-bits implies the existence of
demi-bits (although it is open if any of these two exists).

Remark (Cryptographic vs. complexity-theoretic regime). In this work, we are interested only in the
cryptographic regime of pseudorandomness. In this regime, the adversary whom the generator tries
to fool is allowed to be stronger than the generator and specifically has sufficient computational
resources to run the generator. In the complexity-theoretic regime, in which the adversary cannot
simulate the generator, the notion of nondeterministic secure pseudorandomness was developed in
works by, e.g., Klivans and van Melkebeek [KvM02] as well as Shaltiel and Umans [SU05] (see
also the recent work by Sdroievski and van Melkebeek [SvM23] and references therein). These
complexity-theoretic ideas have also found several applications in cryptography (originating from
the work of Barak, Ong and Vadhan [BOV07]). It is also worth mentioning that in the complexity-
theoretic regime, one can use the original definition of the hardness of PRGs (Definition 3.6) even
against nondeterministic adversaries; while this is not the case in the cryptographic regime, in which
a PRG as in Definition 3.6 can never be safe against a nondeterministic adversary who guesses the
seed.

1.2 Relations to barrier results

Recall that natural proofs [RR97] for proving circuit lower bounds are proofs that use a natural
combinatorial property of boolean functions. A combinatorial property (or a property, for short)
C of boolean functions is a set of boolean functions. We say a function f has property C if f is in
C. Let Γ and Λ be complexity classes, and Fn be the set of all f : {0, 1}n → {0, 1}. We say C is
Γ-natural if a subset C ′ ⊆ C satisfies constructivity, that is, it is Γ-decidable whether f is in C ′,
and largeness, that is, C ′ constitutes a non-negligible portion of Fn. We say C is useful against Λ
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if every function family f that has property C infinitely often is not computable in Λ. The idea of
natural proofs is that, if we want to prove some function family f (e.g., the boolean satisfiability
problem SAT) is not in P/poly (or in general, some other complexity class Λ), we identify some
natural combinatorial property C of f and show all function families that have property C are not
in P/poly (i.e., the property is useful against P/poly). If f is NP-complete (e.g., SAT), then such a
proof concludes P 6= NP.

Razborov and Rudich argued that, based on the existence of strong PRGs, no P/poly-natural
proofs can be useful against P/poly. They showed that many known proofs of lower bounds against
(non-monotone) boolean circuits are natural or can be presented as natural in some way.

In this context, the theory of nondeterministic-secure generators allows one to rule out a larger
(arguably more natural) class of lower bound arguments:

Theorem 1.5 ([Rud97]). If super-bits exist, then there are no NP̃/qpoly-natural properties use-
ful against P/poly, where NP̃/qpoly is the class of languages recognised by non-uniform, quasi-
polynomial-size circuit families.

This theorem is proved based on the ability to stretch super-bits, namely, taking a generator
that maps n bits to n + 1 bits, which we refer to as stretching length 1, to a generator that maps n
bits to n + N bits, with N > 1, which we call stretching length N . In the standard theory of pseu-
dorandomness, a hard-bit (i.e., a strong PRG with stretching length 1) is shown to be stretchable
to polynomially many hard-bits (i.e., a polynomial stretching-length) [BM84, Yao82] and can be
exploited to construct hard-to-break pseudorandom function generators (loosely speaking, gener-
ators that generate pseudorandom functions indistinguishable from truly random ones) [GGM86].
As a hard-bit, a super-bit can also be stretched, using similar stretching algorithms, to polyno-
mially many super-bits and to pseudorandom function generators secure against nondeterministic
adversaries [Rud97]. The proofs of the correctness of such stretching algorithms are based on a
technique called the hybrid argument [GM84] reviewed below. In contrast, whether a demi-bit can
be stretched even to two demi-bits was unknown before the current work, since this cannot be
concluded with a direct application of a standard hybrid argument.

2 Contributions, significance and context

We develop the foundations of nondeterministic-secure pseudorandomness. This is the first sys-
tematic investigation into nondeterministic pseudorandomness (in the cryptographic regime) we
are aware of, building on the primitives proposed by Rudich [Rud97]. We provide new under-
standing of the primitives of the theory, namely, super and demi-bits, as well as introducing new
notions and showing how they relate to established ones. We draw several conclusions from these
results in average-case and proof complexity. We also achieve some modest progress on estab-
lishing sounder foundations for barrier results: by showing, for instance, that demi-bits can be
(moderately) stretched, we provide some hope to strengthen the connection between demi-bits and
unprovability results (as of now, it is only known that the existence of a super-bit yields barrier
results, while we hope to show that the weaker assumption of the existence of demi-bits suffices for
that matter).
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2.1 Stretching demi-bits

In Demi-Bit Stretching Algorithm 4.1, we provide an algorithm that achieves a sublinear stretch
for any given demi-bit. This solves the open problem of whether a demi-bit can be stretched to
2-bits [Rud97, Open Problem 2] (see also Santhanam [San20, Question 4]).

Theorem (Informal; Theorem 4.2). Every demi-bit b : {0, 1}n → {0, 1}n+1 can be efficiently
converted (stretched) into demi-bits g : {0, 1}n → {0, 1}n+nc

, for every constant 0 < c < 1.

2.1.1 Discussion and significance of stretching demi-bits to barrier results

Stretching demi-bits can be viewed as a first step towards showing that the existence of a demi-bit
rules out NP̃/qpoly-natural properties useful against P/poly, as we explain below. Providing such
a barrier for NP̃/qpoly-natural properties based on the existence of a demi-bit is important, since
assuming the existence of a demi-bit is a weaker assumption than assuming the existence of a
super-bit.

Why is stretching demi-bits a step towards showing that the existence of a demi-bit would rule
out NP̃/qpoly-natural properties useful against P/poly? The reason is that stretching is the first
step in the argument to base barrier results on the existence of a super-bit, in the following sense:
the existence of a super-bit implies barrier results because one can stretch super-bits to obtain
pseudorandom function generators, from which one gets the barrier result as noted in Theorem 1.5
above (and the text that follows it). More precisely, stretching demi-bits is a first (and necessary)
step towards Rudich’s Open Problem 3, and this problem also implies Rudich’s Open Problem 4:

Open problem (Rudich’s Open Problem 3 [Rud97]). Given a demi-bit, is it possible to build a
pseudorandom function generator with exponential (2nε

) demi-hardness?

Open problem (Rudich’s Open Problem 4 [Rud97]). Does the existence of demi-bits rule out
NP̃/qpoly-natural properties useful against P/poly?

Moreover, the study of the stretchability of demi-bit(s) provides a perspective towards resolving
Rudich’s Open Problem 1 (a positive answer of which would also resolve positively Open Problem
4):

Open problem (Rudich’s Open Problem 1 [Rud97]). Does the existence of a demi-bit imply the
existence of a super-bit?

This is because the stretchability of super-bits is well understood, while previously we did not
know anything about the stretchability of demi-bits. We expect that understanding better basic
properties of demi-bits, such as stretchability, would shed light on the relation between the existence
of demi-bits and the existence of super-bits (Open problem 1).

2.1.2 Applications in average-case complexity

Here we describe an application of Theorem 4.2 to the average-case hardness of time-bounded
Kolmogorov complexity.

As observed by Santhanam [San20], a hitting set generator g : {0, 1}n → {0, 1}n+1 exists iff
there exists a demi-bit b : {0, 1}n → {0, 1}n+1. To recall, a hitting set generator against a
class of decision problems C ⊆ 2{0,1}N

is a function g : {0, 1}n → {0, 1}N , for n < N , such that
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the image of g hits (namely, intersects) every dense enough set A in C (that is, |A| ≥ 2N

NO(1) ). And
we have:

Proposition (Proposition 4.3; [San20]). Let n < N . A hitting set generator g : {0, 1}n → {0, 1}N

computable in the class D against NP/poly exists iff there exists a demi-bit b : {0, 1}n → {0, 1}N

computable in D (against NP/poly).

Santhanam [San20, Proposition 3] established an equivalence between (succinct) hitting set
generators and average-case hardness of MCSP, where MCSP stands for the minimal circuit size
problem. However, as mentioned to us by Santhanam [San22], similar arguments can show an
equivalence between hitting set generators (not-necessarily succinct ones) and polytime bounded
Kolmogorov complexity zero-error average-case hardness against NP/poly machines, as we show in
this work.

We define the t-bounded Kolmogorov complexity of string x, denoted Kt(x), to be the
minimal length of a string D such that the universal Turing machine U(D) (we fix some such
universal machine) runs in time at most t and outputs x. See [ABK+06] for more details about
time-bounded Kolmogorov complexity and Definition 9 there for the definition of time-bounded
Kolmogorov complexity of strings (that definition actually produces the ith bit of the string x
given an index i and D as inputs to U , but this does not change our result).

Definition 2.1 (The language Kt[s] and Kpoly[s(n)]). For a time function t(n) : N → N and a size
function s(n) : N → N, such that s(n) ≤ n, let Kt(n)[s(n)] be the language {x ∈ {0, 1}∗ : |X| =
n ∧ Kt(n)(x) ≤ s(n)}. We define Kpoly[s(n)] to be the language

⋃
c∈N Knc

[s(n)].

We also need to define the concept of zero-error average-case hardness against the class NP/poly
(see Definition 4.4). Informally, for a language L to be zero-error average-case easy for NP/poly,
there should be a nondeterministic polytime machine with advice such that given an input x the
machine guesses a witness for x ∈ L or a witness for x 6∈ L, and when the witness is found it
answers accordingly; and moreover we assume that for a polynomial-small fraction of inputs there
are such witnesses (for membership or non-membership in L). If a witness is not found the machine
outputs “Don’t-Know”. (We also assume that there are no pairs of contradicting witnesses for both
x ∈ L and x 6∈ L.) A language is said to be zero-error average-case hard against the class NP/poly
if it is not zero-error average-case easy against the class NP/poly.

In Section 4.1 we show the following:

Theorem (Equivalence for average-case time-bounded Kolmogorov Complexity; Theorem 4.5).
Kpoly[n − O(1)] is zero-error average-case hard against NP/poly machines iff Kpoly[n − o(n)] is
zero-error average-case hard against NP/poly machines.

2.1.3 Applications in proof complexity

In proof complexity, Kraj́ıček [Kra04, Kra10] and Alekhnovich, Ben-Sasson, Razborov and Wigder-
son [ABRW04] developed the theory of proof complexity generators. Given a P/poly mapping
g : {0, 1}n → {0, 1}`, with n < `, and a fixed vector r ∈ {0, 1}`, we denote by τ(g)r the poly(`)-size
propositional formula that encodes naturally the statement r 6∈ Im(g), so that if r is not in the
image of g then τ(g)r is a propositional tautology. For r not in the image of g, the tautology τ(g)r

is called a proof complexity generator, and the hope is that for strong propositional proof systems
one can establish (at least conditionally) that there are no poly(`)-size proofs of τ(g)r, under the
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assumption that the mapping g is sufficiently pseudorandom (see also [Raz15]). Kraj́ıček observed
the connection between proof complexity generators and demi-bits (see [Kra04, Corollary 1.3] and
the discussion that follows there).

An immediate corollary of Theorem 4.2 is the following.

Corollary (Stretching proof complexity generators; Corollary 4.6). Let b : {0, 1}n → {0, 1}n+1 be
a demi-bit computable in P/poly. Let 0 < c < 1 be a constant and ` = n + nc. Then, there is a
proof complexity generator g : {0, 1}n → {0, 1}` in P/poly, such that for every propositional proof
system, with probability at least 1 − 1

`ω(1) over the choice of r ∈ {0, 1}`, there are no poly(n)-size
proofs of the tautology τ(g)r.1

2.1.4 Technique overview

We prove the stretchability of demi-bits by a novel and more flexible use of the hybrid argument
combined with other ideas.

The hybrid argument (a.k.a. the hybrid method, the hybrid technique, etc.) is a common proof
technique originating from the work of Goldwasser and Micali [GM84]. It was named by Leonid
Levin. (See Section 3.1 for notations used below.) When we have a generator g : {0, 1}n →
{0, 1}m(n), a distinguisher D, and a function p (usually a polynomial) such that

P [D(Um) = 1] − P [D(g(Un)) = 1] ≥ 1/p(n), (∗)

where Um stands for the truly random strings and g(Un) stands for the pseudorandom ones, the
standard hybrid argument defines a spectrum (i.e. an ordered set) of random variables Hi’s,
called hybrids, traversing from one extreme, Um, to another, g(Un). A concrete example is
Hi := g(Un)[1...i] ∙ Um−i, 0 ≤ i ≤ m (where ∙ here means concatenation, and for a binary vec-
tor X we denote by X[1 . . . , i] the i leftmost bits of X). In this example, indeed H0 = Um and
Hm = g(Un). Then the inequality (∗) can be written as:

1/p(n) ≤ P [D(Um) = 1] − P [D(g(Un)) = 1]

=
∑

i

(P [D(Hi) = 1] − P [D(Hi+1) = 1]).

Thus, a usual next step is to claim there exists some i such that

P [D(Hi) = 1] − P [D(Hi+1) = 1] ≥
1

k ∙ p(n)
,

where k is the total number of hybrids (in the above example, k = m). In a nutshell, the hybrid
argument now shows that if we can distinguish Um from g(Un) by a 1/p(n) portion, then we
can distinguish some neighbouring pair of hybrids Hi from Hi+1 by a 1/(k ∙ p(n)) portion. See
Lemma A.2 for a simple demonstration of the hybrid argument.

1The points r are taken uniformly from {0, 1}`, and with probability 1 − 1/2`−n the formula τ(g)r is a tautology,
because for all r ∈ {0, 1}` \ Im(g) the formula τ(g)r is a tautology. While in some works, proof complexity generators
are supposed to be hard for every r outside the image of the generator g, in our formulation the hardness is only
with high probability over the r’s. It is unclear whether this makes any difference in the theory of proof complexity
generators, since we are not aware of a case where the property that τ(g)r is hard for every r 6∈ Im(g) is used
(although all cases of provably hard proof complexity generators against weak proof systems we know of, are hard
for every r 6∈ Im(g)).
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As mentioned above, a standard hybrid argument cannot be applied to prove that stretching
a single demi-bit b by some stretching algorithm still constitutes demi-bit(s). We now intuitively
explain the reason for this. A usual proof goes like this: we assume, for a contradiction, g are not
demi-bits. Then there are some distinguisher D of g and a function p such that P [D(Um) = 1] −
P [D(g(Un)) = 1] ≥ 1/p(n), and in particular P [D(g(Un)) = 1] = 0 as D breaks demi-bits, and we
hope to construct a new appropriate distinguisher C of b based on D. However, as we saw above,
a standard hybrid argument only yields that P [D(Hi) = 1] − P [D(Hi+1) = 1] ≥ 1/p′(n) for some
function p′ and cannot deduce that P [D(Hi+1) = 1] = 0. Hence, it is unclear how to continue this
construction.

Our argument for proving Theorem 4.2 proceeds by the contrapositive. We assume there is a
distinguisher D which breaks demi-bits g (stretched from a single demi-bit b by Demi-Bit Stretching
Algorithm 4.1) in the desired sense, and we want to construct a distinguisher C which breaks b.
Rather than applying the hybrid argument directly to D, we apply the hybrid argument to a
new distinguisher D′ defined based on D: the new distinguisher D′ can use nondeterminism to
change the pseudorandom part of the hybrids and thus “amplifies” the probability of certificating
randomness (intuitively, this can be viewed as changing the average-case analysis in the standard
hybrid argument to a worst-case or existence analysis). By applying the hybrid argument to
D′, we are able to identify a non-empty class, denoted by S2 in the proof, of random strings
yi+1 . . . ym, that are not random witnesses (in the sense that, for each yi+1 . . . ym in this class,
there are no seeds x1, . . . , xi such that D(b(x1) . . . b(xi) yi+1 . . . ym) = 1). Thus, for yi+1 . . . ym

in S2, yiyi+1 . . . ym can become a random witness (i.e., there are seeds x1, . . . , xi−1 such that
D(b(x1) . . . b(xi−1) yi . . . ym) = 1) only if yi is truly random (i.e., not equal to b(x) for some seed x).
The hybrid argument also implies a “good” such yi+1 . . . ym in S2, which can identify a sufficient
portion of truly random yi. We can thereby build a new distinguisher C to distinguish truly random
strings from pseudorandom ones.

A key step that makes this proof work is that nondeterministically guessing seeds x1, . . . , xi−1

in b(x1) . . . b(xi−1)zi preserves the “randomness-structure” of b(x1) . . . b(xi−1)zi, in the sense that:
when zi = b(∙) is pseudorandom, the nondeterministic guess preserves the form b(∙) . . . b(∙)b(∙) (i.e.,
i equal-length pseudorandom chunks); and when zi = y is truly random, it preserves the form
b(∙) . . . b(∙)y (i.e., i − 1 equal-length pseudorandom chunks followed by a truly random chunk y of
the same length).

For common stretching algorithms that produce exponentially many new bits (e.g., recursively
applying a one-bit generator), it is unclear how to use nondeterminism in a way that respects the
“randomness-structure” of a given string. Nevertheless, the new proof technique should hopefully
inspire researchers to further explore the stretchability of demi-bits. On the other hand, the fact
could also be that there is a specific demi-bit which cannot be stretched to exponentially many
demi-bits by the standard stretching algorithms which are applied to super-bits and strong PRGs.

2.2 Fine-grained characterisation of nondeterministic security based on unpre-
dictability

Yao [Yao82] defined PRGs as producing sequences that are computationally indistinguishable, by
deterministic adversaries, from uniform sequences and proved that this definition of indistinguisha-
bility is equivalent to deterministic unpredictability, which was used in an earlier definition of PRGs
suggested by Blum and Micali [BM84]. Loosely speaking, unpredictability means, given any strict
prefix of a random string, it is infeasible to predict the next bit.

10



In section 5, we provide a more fine-grained picture of nondeterministic hardness (Defini-
tion 1.1), by introducing the concept of nondeterministic unpredictability. This allows us to es-
tablish new lower and upper bounds to nondeterministic hardness, in the sense that we sandwich
nondeterministic hardness between two unpredictability properties.

Specifically, we propose four notions of unpredictability for probability ensembles:

1. NP/poly-unpredictability: the capacity of being unpredictable by NP/poly predictors.

2. coNP/poly-unpredictability: the capacity of being unpredictable by coNP/poly predictors.

3. ∪-unpredictability: the capacity of being unpredictable by predictors in the union of NP/poly
and coNP/poly.

4. ∩-unpredictability: the capacity of being unpredictable by nondeterministic function-
computing predictors.

The names NP/poly-unpredictability, coNP/poly-unpredictability, and ∪-unpredictability (a
shorthand for NP/poly ∪ coNP/poly-unpredictability) are self-explanatory, while the use of “∩-
unpredictability” is somewhat less intuitive. We will see, in Section 5.2 (where we use nondeter-
ministic function-computing machines2), that a decision problem is in NP/poly ∩ coNP/poly if and
only if it is decidable by a nondeterministic polynomial-size function-computing algorithm.

We establish the following characterisation of the nondeterministic hardness of generators from
an unpredictability perspective:

Theorem (Summary 5.9). Here, A ≤ B means that if a generator has property B, then it also has
property A:

≤
P/poly-

≤
-unpredictability ≤ ∩-unpredictability

super-polynomial
nondeterministic hardness

NP/poly-unpredictability ≤

≤

∪-unpredictability

coNP/poly-unpredictability
≤ ≤

Figure 1: Super-polynomial nondeterministic hardness here refers to Definition 1.1. Note that ∪-
unpredictability is at least as strong as NP/poly-unpredictability, because it rules out predictors in
both NP/poly and coNP/poly. And similarly, ∪-unpredictability is at least as strong as coNP/poly-
unpredictability.

2.3 Super-cores: hard-core predicates in the nondeterministic setting

In the deterministic context, the existence of strong PRGs is known to be equivalent to the exis-
tence of central cryptographic primitives such as one-way functions, secure private-key encryption

2We say a nondeterministic algorithm A is a function-computing algorithm, if for every input x ∈ {0, 1}n, every
computation branch yields one of {0, 1, ⊥}, in which ⊥ indicates a failure, and there is always a computation branch
yielding 0 or 1.
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schemes, digital signatures, etc. Liu and Pass [LP20] recently showed that a meta-complexity as-
sumption about mild average-case hardness of the time-bounded Kolmogorov Complexity is also
equivalent to the existence of strong PRGs. On the other hand, in the nondeterministic case we
have no known such equivalent characterisations (of nondeterministic-secure PRGs, namely, super-
bits). In section 6, we introduce a definition of super-cores serving as a nondeterministic variant of
hard-cores. We then use this concept to draw the first equivalent characterisation of super-bits.

We start by reviewing the concepts of one-way functions and hard-core predicates. Loosely
speaking, a one-way function (family) f is a one that is easy to compute but hard to invert on
average (with the probability taken over the domain of f). More precisely, “easy to compute” means
f is in P or P/poly, and “hard to invert” means any efficient deterministic algorithm can only invert
a negligible portion of y = f(x) when x is unseen. By “efficient”, in the uniform setting, we mean an
algorithm in bounded-error probabilistic polynomial time (BPP ), and in the nonuniform setting,
an algorithm in P/poly, and by “invert”, we mean finding an x′ for a given y in range(f) such that
f(x′) = y. A negligible portion for us means a portion that is less than 1/p(n) for any polynomial
p and all large n’s. We say b : {0, 1}n → {0, 1} in P or P/poly is a hard-core of a function f if it is
impossible to efficiently predict b(x) with probability at least 1/2 + 1/poly(n) given f(x).

The existence of hard-core predicates is known (e.g., b(x) = x[−1], the last bit of a string x,
is a hard-core of the function f(x) = x[1], the first bit of x), but the existence of a hard-core
for a one-way function and the existence of any one-way function to begin with are unknown.
Goldreich and Levin [GL89] proved that inner product mod 2 is a hard-core for any function of
the form g(x, r) = (f(x), r), where f is any one-way function and |x| = |r|. Subsequently, H̊astad,
Impagliazzo, Levin, and Luby [HILL99] showed that strong PRGs exist if and only if one-way
functions exist. This theorem can be stated equivalently as: a strong PRG exists if and only if a
hard-core of some one-way function exists.

Since a strong PRG exists if and only if a hard-core of some one-way function exists, and a
super-bit is the nondeterministic analogue of strong PRGs, a meaningful question to ask is:

What are the nondeterministic analogues of one-way functions and hard-cores?

To come up with a reasonable definition of super one-way functions is not an easy task because,
for any function f , a nondeterministic algorithm can always invert a range-element y by guessing
some x and checking if f(x) = y. Similarly, a reasonable definition of super-core predicates is
non-trivial as well: for any function f and predicate b, a nondeterministic algorithm can predict
b(x) when given f(x) as input by guessing x and then applying b.

We propose a definition of super-cores of a function f , which are secure against both NP/poly
and coNP/poly predictors in the sense of Definition 6.7, when f(x) is presented as the input. With
this definition, we can establish the following equivalence (we say a function f : {0, 1}n → {0, 1}m(n)

is non-shrinking if m(n) ≥ n for every n):

Theorem (Informal; Theorem 6.13). There is a super-core of some non-shrinking function if and
only if there is a super-bit.

This result is analogous to the known equivalence between the existence of a hard-core of some
one-way function and the existence of a strong PRG. We also show that a certain class of functions,
which may have hard-cores, cannot possess any super-core. This also suggests that a one-way
function could possibly possess no super-cores. (See the text before Theorem 6.16 for the definition
of “predominantly one-to-one”.)
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Theorem (Informal; Theorem 6.16). If a non-shrinking function f is “predominantly” one-to-one,
then f does not have a super-core.

What we achieve in section 6 provides a step forward to better understand the nondeterministic
hardness of PRGs and develop a sensible definition of one-way functions in the nondeterministic
setting.

2.4 Justification for the existence of demi-bits and PAC-learning

Here we mention the work of Pich [Pic20] who demonstrated the plausibility of the existence of
demi-bits, by showing that if the class of polynomial-size boolean circuits is not PAC-learnable by
sub-exponential circuits then demi-bits exist (where the learner is allowed to generate a nondeter-
ministic or co-nondeterministic algorithm approximating the target function). Thus, if the class of
polynomial-size boolean circuits is not PAC-learnable by sub-exponential circuits and the existence
of demi-bits implies the existence of super-bits, there are no NP̃/qpoly-natural properties useful
against P/poly. We provide an exposition of these results for self-containedness.

Recall that PAC-learning algorithms can be developed from breaking PRGs (e.g., cf.
[BFKL94, OS17]). The model of PAC-learning (an abbreviation of probably approximately correct
learning) was introduced and developed by Valiant in [Val84, VS84, Val85]. In the PAC-learning
model, the goal of a learner is to learn an arbitrary target function f drawn from a target set (e.g.,
the class of decision trees, the class of boolean conjunctions, P/poly, etc.). The target function is
invisible to the learner. The learner receives samples (randomly or by querying) from an f -oracle
and selects a generalization function f ′, called the hypothesis, from some hypothesis class. The
selected function must have low generalization error (the “approximately correct” in “PAC”) with
high probability (the “probably” in “PAC”). Furthermore, the learner is expected to be efficient
and to output hypotheses that can as well be efficiently evaluated on any given input.

Theorem (Informal; Theorem A.3 Pich [Pic20]). Demi-bits exist assuming the class of polynomial-
size boolean circuits is not PAC-learnable by sub-exponential circuits, where the learner is allowed
to generate a nondeterministic or co-nondeterministic circuit approximating the target function.

This result demonstrates the plausibility of the existence of demi-bits because it is widely
believed (e.g., cf. [RS21]) that learning P/poly is hard. And accordingly, it is reasonable to assume
that if the learner is allowed to generate a nondeterministic or co-nondeterministic circuit family,
the task remains hard.

In contrast to demi-bits, it is worth mentioning that it is unknown how to relate the existence
of super-bits to the hardness of PAC-learnable (namely, the proof of Theorem A.3 does not carry
through when we consider super-bits).

3 Preliminaries and basic concepts

3.1 Notations and conventions

We follow the following conventions:

• N denotes the set of positive integers (excluding 0). For n ∈ N, [n] denotes {1, ..., n}. [0] is
the empty set ∅.
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• The size of a Boolean circuit C, denoted as size(C) or |C|, is the total number of gates
(including the input gates). Circuit[s] denotes the Boolean circuits of size at most s. If
s : N → N is a function, Circuit[s] contains all the Boolean circuit families Cn such that
|Cn| ≤ s(n) for all large n’s.

• All the distributions we consider in this work are, by default, uniform. Un denotes the uniform
distribution over {0, 1}n unless stated otherwise.

• For functions f, g : {0, 1}n → {0, 1}, we say g γ-approximates f if Px[f(x) = g(x)] ≥ γ.

• For a string x, where its bits are indexed from left to right by 1 to |x|, x[i] denotes its i-th bit,
and x[i...j] denotes the sub-string indexed from i to j of x (if i > j, x[i...j] = ε, the empty
string). x[−i] denotes its i-th last bit.

• For strings x, y, we may use any of the following to denote the concatenation of x and y: xy,
(x, y), x ∙ y.

• We may not verbally distinguish a function with its string representation (this can be a truth
table, or a string encoding a circuit representation of this function, etc.) when there is no
ambiguity.

We may also follow other common conventions used in the complexity community or literature.

3.2 Computational models

Definition 3.1 (Randomized circuits; equiv. probabilistic circuit). A circuit C is a randomized
circuit (equivalently, a probabilistic circuit) if, in addition to the standard input bits (similar to
the input bits of a non-randomized circuit), it contains zero or more random input bits (i.e., bits
taken from a random distribution). We call {Cn}∞

n=1 a randomized circuit family if for every
n, Cn is a randomized circuit with n standard input bits.

Note that if a randomized circuit family {Cn} is in Circuit[s(n)], it means that for every
sufficiently large n, the randomized circuit Cn has size at most s(n), which automatically constrains
the number of random input bits that Cn is allowed to have.

Definition 3.2 (Nondeterministic and co-nondeterministic circuits). A circuit C(x, r) is a
(co-)nondeterministic circuit if, in addition to the standard input bits x, it contains zero or
more nondeterministic input bits r (namely, bits that are meant to control the nondeterministic
decisions made by the circuit). A nondeterministic circuit with a single output bit is said to accept
an input α ∈ {0, 1}n to x iff there exists an assignment β ∈ {0, 1}|r| to r such that C(α, β) = 1
(and otherwise it is said to reject x). A co-nondeterministic circuit with a single output bit is
said to reject an input α ∈ {0, 1}n to x iff there exists an assignment β ∈ {0, 1}|r| to r such that
C(α, β) = 0 (and otherwise it is said to accept x). We call {Cn} a (co-)nondeterministic circuit
family if for every n, Cn is a (co-)nondeterministic circuit with n standard input bits.

Definition 3.3 (Oracle circuits). C is an oracle circuit if it is allowed to use oracle gates. We
write C as Cf1,...,fk if C has oracle gates computing Boolean functions f1, ..., fk.

We note that an oracle gate computing a Boolean function f : {0, 1}n → {0, 1} has fan-in n,
and in our model, an oracle gate is allowed to appear in any place in the circuit.
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3.3 Natural proofs

Let Fn be the set of all functions f : {0, 1}n → {0, 1} and Γ and Λ be complexity classes. We call
C = (Cn)n∈N a combinatorial property of boolean functions if each Cn ⊆ Fn.

Definition 3.4 (Natural properties [RR97]). We say a combinatorial property C = (Cn)n∈N is
Γ-natural if some C ′ = (C ′

n)n∈N with C ′
n ⊆ Cn for each n satisfies:

• Constructivity. Whether f ∈ C ′
n is computable in Γ when f is encoded by its truth table as

input.

• Largeness. |C ′
n| ≥ 2−O(n) ∙ |Fn| for all large n’s.

We say C is useful against Λ if it satisfies:

• Usefulness. For any function family f = (fn)n∈N, if fn ∈ Cn infinitely often, then f /∈ Λ.

A circuit lower bound proof (that some function family is not in Λ) is called a Γ-natural
proof against Λ if it uses, explicitly or implicitly, some Γ-natural combinatorial property useful
against Λ. Especially, a P/poly-natural proof against P/poly is a proof that uses a P/poly-natural
combinatorial properties useful against P/poly.

We note that the notion of natural proofs, unlike natural combinatorial property, is not defined
in a mathematically rigorous sense. Nevertheless, the use of the terminology “natural proof” in a
statement more intuitively embodies our intention and also does not affect the rigorousness of the
statement: whenever we say Γ-natural proofs against Λ do or do not exist, what we mean, in a
mathematically rigorous sense, is Γ-natural combinatorial properties against Λ do or do not exist.

3.4 Pseudorandom generators

We recall here the basic definition of pseudorandom generators. As mentioned in the introduction,
all the distributions we consider in this work are, by default, uniform, and Un denotes the uniform
distribution over {0, 1}n unless stated otherwise.

Definition 3.5 (Generators). A function family gn : {0, 1}n → {0, 1}l(n) is a generator if gn ∈
P/poly and l(n) > n for every n. We call such an l a stretching function and call l(n) − n the
stretching length of gn (sometimes l(n) is called the stretching length).

We note that all the generators in this work, with the exception of Section 4.1, will be com-
putable in P/poly, although in more general settings, it is not required that generators are P/poly-
computable (cf. [NW94]).

Definition 3.6 (Standard hardness). Let gn : {0, 1}n → {0, 1}l(n) be a generator. Then the
hardness H(gn) of gn is the minimal s for which there exists a (deterministic) circuit D of size
at most s such that

∣
∣
∣
∣ P
y∈{0,1}l(n)

[D(y) = 1] − P
x∈{0,1}n

[D(gn(x)) = 1]
∣
∣
∣
∣ ≥ 1/s(n).

The order of the two terms in the absolute value and the absolute value itself are immaterial
since in the deterministic setting, we can always flip the output bit of a distinguisher D.
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Definition 3.7 ((Strong) pseudorandom generators (PRG)). A generator g : {0, 1}n → {0, 1}l(n)

is called a (strong) PRG if for every D in P/poly, every polynomial p, and all sufficiently large
n’s, ∣

∣
∣
∣ P
y∈{0,1}l(n)

[D(y) = 1] − P
x∈{0,1}n

[D(g(x)) = 1]
∣
∣
∣
∣ < 1/p(n).

In other words, a strong PRG is defined to be a generator safe against all polynomial-size
distinguishers. An alternative definition used in some texts is: a generator with hardness at least
2nε

for some ε > 0 and all large n’s, which defines a stronger PRG.
We shall say that a function f(n) : N → R+ is (at least) exponential if there exists some ε > 0

such that f(n) ≥ 2nε
for all sufficiently large n’s. A function is not (at least) exponential if for

every ε > 0, there exist infinitely many n’s such that f(n) < 2nε
; this latter condition is equivalent

to: there is an infinite monotone sequence (ni) ⊆ N such that f(ni) is sub-exponential in ni (i.e.,

f(ni) = 2n
o(1)
i ).

The existence of a strong PRG is considered quite plausible because many intractable problems
(e.g., factoring) seem to provide a basis for constructing such generators (cf. [Gol01]).

Conjecture. Strong PRGs exist.

Razborov and Rudich showed that the existence of a strong PRG rules out the existence of
P/poly-natural proofs useful against P/poly [RR97].

Concrete examples of strong PRGs are unknown, as the existence of such a PRG implies P 6= NP
in the uniform setting and P/poly 6= NP/poly in the nonuniform setting. Nevertheless, generators
that can fool classes of weaker distinguishers were constructed (e.g., Nisan and Wigderson [NW94]).3

3.5 Super-bits and demi-bits

Here we provide a brief review of the main results and open problems in [Rud97] that are relevant
to our work. (Some of the text is repeated from the introduction.)

Definition 3.8 (Nondeterministic hardness). Let gn : {0, 1}n → {0, 1}l(n) be a generator. Then
the nondeterministic hardness Hnh(gn) (also called super-hardness) of gn is the minimal s
for which there exists a nondeterministic circuit D of size at most s such that

P
y∈{0,1}l(n)

[D(y) = 1] − P
x∈{0,1}n

[D(gn(x)) = 1] ≥
1
s

. (1)

In contrast to the definition of deterministic hardness, the order of the two possibilities on the
left-hand side is crucial. This order forces a nondeterministic distinguisher to certify the randomness
of a given input. Reversing the order or keeping the absolute value trivialize the task of breaking
g: a distinguisher D can simply guess a seed x and check if g(x) equals the given input. For such
a D, we have P [D(g(x)) = 1] = 1 and P [D(y) = 1] ≤ 1/2.

We call exponentially super-hard generators super-bits:
3For weak models, both complexity-theoretic generators and cryptographic generators are known. Complexity-

theoretic generators fooling AC0 were shown by Nisan (which is the Nisan-Wigderson generator with PARITY as the
hard function, and is earlier than [NW94]). Cryptographic generators are constructed for example in [DVV16]. For
P/poly, both complexity-theoretic generators and cryptographic generators are unknown. However, the assumptions
needed for complexity-theoretic generators (e.g, E requires exponential-size) are much weaker than those needed for
cryptographic generators (e.g., that one way functions exists).
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Definition 3.9 (Super-bits). A generator (in P/poly) gn : {0, 1}n → {0, 1}n+c for some c : N → N
is called c super-bit(s) (or a c-super-bit(s)) if Hnh(gn) ≥ 2nε

for some ε > 0 and all sufficiently
large n’s. In particular, if c = 1, we call gn a super-bit.

The term super-bits thus stands for pseudorandom bits that can fool “super” powerful adver-
saries. Rudich constructed a candidate super-bit based on the subset sum problem and conjectured
that:

Conjecture (Super-bit conjecture). There exists a super-bit.

The main theorem in [Rud97] is the following one, which is proved based on the stretchability
of super-bits as discussed above.

Theorem 3.10 ([Rud97]). If super-bits exist, then there are no NP̃/qpoly-natural properties use-
ful against P/poly, where NP̃/qpoly is the class of languages recognised by non-uniform, quasi-
polynomial-size circuit families (where quasi-polynomial means nlogO(1)(n)).

We remark that, in this theorem, the “largeness” requirement of NP̃/qpoly-natural properties
can in fact be relaxed to |C ′

n| ≥ 2−nO(1)
∙ |Fn| (cf. Definition 3.4).

Rudich also proposed another notion, called demi-hardness, which he considered to be more
intuitive than super-hardness:

Definition 3.11 (Demi-hardness). Let gn : {0, 1}n → {0, 1}l(n) be a generator (in P/poly). Then
the demi-hardness Hdh(gn) of gn is the minimal s for which there exists a nondeterministic circuit
D of size at most s such that

P
y∈{0,1}l(n)

[D(y) = 1] ≥
1
s

and P
x∈{0,1}n

[D(gn(x)) = 1] = 0. (2)

We note that (2), which requires a distinguisher to make no mistakes on any generated strings,
is a stronger requirement than (1). Thus, Hnh(g) ≤ Hdh(g) for every generator g.

We call exponentially demi-hard generators demi-bits, where “demi” is meant to stand for “half”
here:

Definition 3.12 (Demi-bits). A generator (in P/poly) gn : {0, 1}n → {0, 1}n+c for some c : N → N
is called c demi-bit(s) (or a c-demi-bit(s)) if Hdh(gn) ≥ 2nε

for some ε > 0 and all sufficiently
large n’s. In particular, if c = 1, we call gn a demi-bit.

As Hnh(g) ≤ Hdh(g), it is natural to conjecture:

Conjecture (Demi-bit conjecture [Rud97]). There exists a demi-bit.

Accordingly, it is natural to ask:

Open problem ([Rud97]). Does the existence of a demi-bit imply the existence of a super-bit?

As discussed above, a super-bit can be stretched to polynomially many super-bits and to pseu-
dorandom function generators secure against nondeterministic adversaries. In contrast, whether a
demi-bit can be stretched to even two demi-bits was unknown prior to our work:

Open problem ([Rud97]; Resolved in section 4). Given a demi-bit, is it possible to stretch it to
2-demi-bits?
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The question that remains open is:

Open problem ([Rud97]). Given a demi-bit, is it possible to build a pseudorandom function
generator with exponential demi-hardness?

A positive answer to the last problem would answer the following:

Open problem ([Rud97]). Does the existence of a demi-bit rule out the existence of NP̃/qpoly-
natural properties against P/poly?

3.6 Infinitely often super-bits and demi-bits

Here, we formalize a weaker variant of super-bits and demi-bits, that only requires infinitely many
n’s to be “hard” (recall super-bits/demi-bits require hardness for all sufficiently large n’s). This
variant occasionally appears implicitly in the literature but may not have been formally defined.

Definition 3.13 (Infinitely often super-bits/demi-bits). A generator (in P/poly) gn : {0, 1}n →
{0, 1}n+c, for some c : N → N is called c infinitely often (i.o.) super-bit(s)/demi-bit(s), if
Hnh(gn) ≥ 2nε

/Hdh(gn) ≥ 2nε
for some ε > 0 and infinitely many n’s. In particular, if c = 1, we

call gn an i.o. super-bit/demi-bit.

In fact, it is an easy observation that we can construct from a reasonably frequent i.o. super-
bit/demi-bit, a super-bit/demi-bit, by properly choosing a prefix of a given input n and applying
the i.o. algorithm to the prefix. More details follow. However, we are unaware if we can construct
a super-bit/demi-bit from any i.o. super-bit/demi-bit.

Lemma 3.14. Assume gn : {0, 1}n → {0, 1}n+c for some c ∈ N are c i.o. super-bits/demi-
bits. If there exist a polynomial p and an infinite monotone sequence (ni)i∈N ⊆ N such that: (1)
ni+1 ≤ p(ni), and (2) for some ε > 0 and every n ∈ (ni)i∈N, Hnh(gn) ≥ 2nε

/Hdh(gn) ≥ 2nε
, then

there exists a c-super-bits/c-demi-bits constructed from gn.

Proof. We present the proof for constructing super-bits from i.o. super-bits, and the proof for
constructing demi-bits from i.o. demi-bits is almost identical.

Assume g, (ni), p are as given in the lemma statement. Denote m = n + c and mi = ni + c. We
construct a new generator G as follows:

Given xn ∈ {0, 1}n, there is an i such that ni ≤ n < ni+1. Define G(xn) = g(a) ∙ b,
where a = xn[1...ni], b = xn[ni + 1...n]. We note |G(xn)| = |g(a)| + |b| = n + c.

We want to show that G is indeed super-bits. Suppose, for a contradiction, G is not. Then
there exist an infinite monotone sequence S ⊆ N, a sub-exponential function s, and a distinguisher
D of size s such that for every n ∈ S,

1/s(n) ≤ P [D(Um) = 1] − P [D(G(Un)) = 1] = P [D(UmiUm−mi) = 1] − P [D(g(Uni)Um−mi) = 1]

Thus, for every n ∈ S, there exists a fixed string w = w(n) such that

1/s(n) ≤ P [D(Umiw) = 1] − P [D(g(Uni)w) = 1] .

We now construct a new distinguisher D′ for g as follows:
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Given Y ∈ {0, 1}mi as input, if there exists an n ∈ S such that ni ≤ n < ni+1(≤
p(ni)), D′ outputs D(Y w(n)), and otherwise D′ always outputs 0 (which means D′

fails to do anything for such an ni).
Note that the (1) ni+1 ≤ p(ni) assumption guarantees the efficiency of D′. As S is infinite and
every n ∈ S is between some ni and ni+1, there are infinitely many ni’s such that:

P
[
D′(Umi) = 1

]
− P

[
D′(g(Uni)) = 1

]
= P [D(Umiw) = 1] − P [D(g(Uni)w) = 1] ≥ 1/s(n)

This shows, for infinitely many ni’s, Hnh(g(ni)) ≤ 1/s′(n) for some sub-exponential s′, which
contradicts the assumption (2) in the lemma statement.

Remark. Lemma 3.14 is often used implicitly in the constructions of super-bits and demi-bits.

4 Stretching demi-bits

In this section, we answer affirmatively whether a demi-bit is stretchable, which had been an open
problem from the original work of Rudich [Rud97].

We propose Demi-Bit Stretching Algorithm 4.1, which stretches a single demi-bit to nc demi-bits
for any c < 1, and verify the correctness of this stretching algorithm (i.e., verify the exponential
demi-hardness of the new elongated generator). Intuitively, Demi-Bit Stretching Algorithm 4.1
partitions a given seed into disjoint pieces and apply the 1-demi-bit generator to each piece. The
algorithm proposed here is very similar to other stretching or amplification algorithms known in the
literature (e.g., cf. [Yao82, Lub96]). The real difficulty in stretching demi-bits comes from to need
to prove the correctness of the attempted stretch (i.e., to proof the stretching algorithm applied to
preserve exponential demi-hardness).

Demi-Bit Stretching Algorithm 4.1. Suppose bn : {0, 1}n → {0, 1}n+1 is a demi-bit and 0 <
c < 1 is a constant. We define a new generator g : {0, 1}N → {0, 1}N+m with input length
N and stretching length m = dN ce as follows: given input x (of length N), let n = bN

mc and
x = x1x2 . . . xmr, where each xi has length n, and define g(x) = b(x1) . . . b(xm)r.

The correctness proof proceeds by contrapositive. That is, we assume there is a distinguisher D
which breaks demi-bits g (stretched from a single demi-bit b by Demi-Bit Stretching Algorithm 4.1)
in the desired sense, and we want to construct a distinguisher C which breaks b. Rather than
applying the hybrid argument directly to D, we apply the hybrid argument to a new distinguisher D′

defined based on D: the new distinguisher D′ can use nondeterminism to change the pseudorandom
part of the hybrids and thus “amplify” the probability of certificating randomness (intuitively, this
can be viewed as changing the average-case analysis in the standard hybrid argument to a worst-case
or “existence” analysis). By applying the hybrid argument to D′, we are able to identify a non-
empty class S2 of random strings yi+1 . . . ym, which are not random witnesses (in the sense that, for
each yi+1 . . . ym in this class, there are no seeds x1, . . . , xi such that D(b(x1) . . . b(xi) yi+1 . . . ym) =
1). Thus, for yi+1 . . . ym in S2, yiyi+1 . . . ym can become a random witness (i.e., there are seeds
x1, . . . , xi−1 such that D(b(x1) . . . b(xi−1) yi . . . ym) = 1) only if yi is truly random (i.e., not equal
to b(x) for some seed x). The hybrid argument also implies a “good” such yi+1 . . . ym in S2, that
can identify a sufficient portion of truly random yi. We can thereby build a new distinguisher C to
distinguish truly random strings from pseudorandom ones.

In the proof, we reserve the bold face for random variables.

19



Theorem 4.2 (Main theorem for stretching demi-bits). The generator g (with a sub-linear
stretching-length), as defined in Demi-Bit Stretching Algorithm 4.1, has at least exponential demi-
hardness.

Proof. Demi-bit b and constant c are as given in Demi-Bit Stretching Algorithm 4.1. Suppose,
towards contradiction that g does not have exponential demi-hardness. That is, there is a sub-
exponential (in the input length, denoted by N) size nondeterministic circuit D such that, for
infinitely many N ’s (recall m = dN ce and n = bN

mc, and without loss of generality, we may assume
m|N), P [D(y1 . . . ym) = 1] ≥ 1/|D| and P [D(b(x1) . . . b(xm)) = 1] = 0, where x1, . . . , xm are
totally independent length-n random strings and y1, . . . , ym are totally independent length-(n + 1)
random strings. Our aim is to efficiently break b in the desired sense.

We define a new nondeterministic circuit D′ that takes a pair of inputs: the first is the same
input as D’s, that is, an (N + m)-bit string y1 . . . ym, and the second is i ∈ {0, 1, . . . , m} (with i
properly encoded):

Given input (y1 . . . ym, i), D′ guesses n-bit strings x1, . . . , xi and does whatever D does
on b(x1) . . . b(xi) yi+1 . . . ym.

We observe that:

• P [D′(y1 . . . ym, 0) = 1] = P [D(y1 . . . ym) = 1] ≥ 1/|D| (by the definition of D′);

• P [D′(b(x1) . . . b(xm), m) = 1] = P [D(b(x1) . . . b(xm)) = 1] = 0
(by assumption on D; otherwise P [D′(b(x1) . . . b(xm), m) = 1] > 0 would mean there exist
x1, . . . , xm such that D(b(x1) . . . b(xm)) = 1);

• D′ is also of sub-exponential size.

We can now apply the hybrid argument to D′:

1/|D| ≤ P
[
D′(y1 . . . ym, 0) = 1

]
− P

[
D′(b(x1) . . . b(xm), m) = 1

]

=
∑

i

(P
[
D′(b(x1) . . . b(xi−1) yi . . . ym, i − 1)

]
− P

[
D′(b(x1) . . . b(xi) yi+1 . . . ym, i)

]
)

yields there is an i = i(N) (for infinitely many N ’s) such that

Pi−1 − Pi ≥ 1/(m ∙ |D|),

where Pi−1 := P [D′(b(x1) . . . b(xi−1)yiyi+1 . . . ym, i − 1) = 1] and
Pi := P [D′(b(x1) . . . b(xi−1)b(xi)yi+1 . . . ym, i) = 1]. As m is sublinear in n, m ∙ |D| is still sub-
exponential in N .

We denote by S = {0, 1}(n+1)×(m−i) the set of (m − i)-tuples of (n + 1)-bit strings, and let

S1 = {(yi+1, . . . , ym) ∈ S : ∃(x1, . . . , xi) ∈ {0, 1}n×i D(b(x1) . . . b(xi)yi+1 . . . ym) = 1},

and
S2 = S \ S1.

We note that:
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• D′(b(x1) . . . b(xi−1) yiyi+1 . . . ym, i − 1) = 1 if and only if D′(O yiyi+1 . . . ym, i − 1) = 1, where
O = 0(n+1)∙(i−1) (because, by construction, D′(. . . , i − 1) ignores its first i − 1 input strings);

• D′(b(x1) . . . b(xi−1)b(xi) yi+1 . . . ym, i) = 1 if and only if (yi+1, . . . , ym) ∈ S1, and thus
P [yi+1 . . . ym ∈ S1] = Pi.

Therefore,

Pi−1 = P
[
D′(b(x1) . . . b(xi−1)yiyi+1 . . . ym, i − 1) = 1

]

= P
[
D′(b(x1) . . . b(xi−1)yiyi+1 . . . ym, i − 1) = 1|yi+1 . . . ym ∈ S1

]
∙ P [yi+1 . . . ym ∈ S1] +

P
[
D′(b(x1) . . . b(xi−1)yiyi+1 . . . ym, i − 1) = 1|yi+1 . . . ym ∈ S2

]
∙ P [yi+1 . . . ym ∈ S2]

≤ 1 ∙ P [yi+1 . . . ym ∈ S1] +

P
[
D′(O yiyi+1 . . . ym, i − 1) = 1|yi+1 . . . ym ∈ S2

]
∙ P [yi+1 . . . ym ∈ S2]

= Pi + P
[
D′(O yiyi+1 . . . ym, i − 1) = 1|yi+1 . . . ym ∈ S2

]
∙ P [yi+1 . . . ym ∈ S2] ,

and thus

P
[
D′(O yiyi+1 . . . ym, i − 1) = 1|yi+1 . . . ym ∈ S2

]
∙ P [yi+1 . . . ym ∈ S2] ≥ Pi−1 − Pi ≥ 1/(m ∙ |D|).

In particular, P [yi+1 . . . ym ∈ S2] > 0 and P [D′(O yi yi+1 . . . ym, i − 1) = 1|yi+1 . . . ym ∈ S2] ≥
1/(m ∙ |D|), which imply there is a fixed (yi+1 . . . ym) ∈ S2 such that

P
[
D′(O yi yi+1 . . . ym, i − 1) = 1

]
≥ 1/(m ∙ |D|).

We now define another nondeterministic circuit C by C(yi) := D′(O yiyi+1 . . . ym, i − 1) with
yi ∈ {0, 1}n+1 as the input variable. As D′ is of sub-exponential size in N and n is polynomially
related to N , C is of sub-exponential size in n.

We now argue that C breaks b in the desired sense. For infinitely many n’s,

(1) P [C(yi) = 1] = P [D′(O yi yi+1 . . . ym, i − 1) = 1] ≥ 1/(m ∙ |D|), where m ∙ |D| is sub-
exponential in n;

(2) P [C(b(xi)) = 1] = P [D′(O b(xi) yi+1 . . . ym, i − 1) = 1] = 0, because yi+1 . . . ym ∈ S2 implies
there is no x1, . . . , xi such that D(b(x1) . . . b(xi)yi+1 . . . ym) = 1.

Since C breaks b in the above sense, we reach a contradiction with the assumption that b is a
demi-bit.

The condition c < 1 in Demi-Bit Stretching Algorithm 4.1 guarantees n = N1−c is polynomially
related to N and an infinite monotone sequence of N yields an infinite monotone sequence of n.

A key step that makes this proof work is that nondeterministically guessing seeds x1, . . . , xi−1

in b(x1) . . . b(xi−1)zi preserves the “randomness-structure” of b(x1) . . . b(xi−1)zi, in the sense that:
when zi = b(∙) is pseudorandom, the nondeterministic guess preserves the form b(∙) . . . b(∙)b(∙) (i.e.,
i equal-length pseudorandom chunks); and when zi = y is truly random, it preserves the form
b(∙) . . . b(∙)y (i.e., i − 1 equal-length pseudorandom chunks followed by a truly random chunk y of
the same length). For common stretching algorithms that produce exponentially many new bits
(e.g., recursively applying a one-bit generator), it is unclear how to use nondeterminism in a way
that respects the “randomness-structure” of a given string. Nevertheless, the new proof technique
may inspire researchers to further explore the stretchability of demi-bits. On the other hand, the
fact could also be that there is a specific demi-bit which cannot be stretched to exponentially many
demi-bits by the standard stretching algorithms which are applied to super-bits and strong PRGs.
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4.1 Applications in average-case complexity

In this section we show that Theorem 4.2 implies an equivalence between two different paramet-
ric regimes of zero-error average-case hardness of time-bounded Kolmogorov complexity against
NP/poly machines.

We need the following: a hitting set generator against a class of decision problems
C ⊆ 2{0,1}N

is a function g : {0, 1}n → {0, 1}N , for n < N , such that the image of g hits (namely,
intersects) every dense enough set A in C (that is, |A| ≥ 2N

NO(1) ).
As observed by Santhanam [San20]:

Proposition 4.3 ([San20]). Let n < N . A hitting set generator g : {0, 1}n → {0, 1}N computable
in the class D against NP/poly exists iff there exists a demi-bit b : {0, 1}n → {0, 1}N computable in
D (against NP/poly).

Proof. If g : {0, 1}n → {0, 1}N is a hitting set generator against the class C of decision problems
decidable by nondeterministic polynomial-size circuits, it is also a demi-bit in the sense that no
machine C ∈ C of polynomial-size |C| = NO(1) can break g, since otherwise P[C(UN ) = 1] ≥

1/NO(1) and P[C(g(Un)) = 1] = 0, contradicting the assumption that g is a hitting set generator

against C. Conversely, if b is a demi-bit, than it is also a hitting set generator against C, because if
a circuit C in C outputs 1 to a dense enough set of inputs it must also output 1 on a string in the
image of b, or else C would break the demi-bit.

Note that Demi-Bit Stretching Algorithm 4.1 applies also to demi-bits computable in uniform
polynomial-time (the stretching algorithm is uniform, assuming the original demi-bit is, since it
simply applies the demi-bit on different parts of the input). This is important for us, since to talk
about Kolmogorov complexity we need machines to be of fixed size, even when the input length
changes. Notice, on the other hand, that the proof that the stretching algorithm preserves its
hardness necessitates that the adversary D is non-uniform (this is the reason in Theorem 4.5 we
work against NP/poly adversaries).

We define the t-bounded Kolmogorov complexity of string x, denoted Kt(x), to be the
minimal length of a string D such that the universal Turing machine U(D) (we fix some such
universal machine) runs in time at most t and outputs x. See [ABK+06] for more details about
time-bounded Kolmogorov complexity and Definition 9 there for the definition of time-bounded
Kolmogorov complexity of strings (that definition actually produces the ith bit of the string x
given an index i and D as inputs to U , but this does not change our result).

Recall Definition 2.1 of the languages Kt[s] and Kpoly[s(n)].
We also need to define precisely the concept of zero-error average-case hardness against the

class NP/poly (equivalently, nondeterministic circuits as in Definition 3.2).

Definition 4.4 (Zero-error average-case hardness against NP/poly). We say that a language L ∈
{0, 1}∗ is zero-error average-case easy for NP/poly if there is an NP/poly machine for which
all the following hold: (i) every computation-path terminates with either a Yes, No or Don’t-Know
state; (ii) for a given input x no two distinct computation-paths terminates with both Yes and
No; (iii) we say that the machine answers Yes (No) on input x if there exists a computation-path
terminating in Yes (resp. No) given x; (iv) otherwise (namely, all computation-paths given input x
terminate in Don’t-Know) we say that the machine does not know the answer for x; (v) the machine
never makes a mistake when answering Yes or No (on the other hand, it can answer Don’t-Know
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on either members of L or non-members); and (vi) the machine (correctly) answers Yes or No
on at least a polynomial fraction of inputs in L (i.e., at least 2n/nc of strings in L ∩ {0, 1}n, for
every sufficiently large n and for some fixed constant c independent of n). If L is not zero-error
average-case easy for NP/poly we say that L is zero-error average-case hard against NP/poly.

The main equivalence is the following:

Theorem 4.5 (Equivalence for average-case time-bounded Kolmogorov complexity).
Kpoly[n − O(1)] is zero-error average-case hard against NP/poly machines iff Kpoly[n − o(n)]
is zero-error average-case hard against NP/poly machines.

Proof. By Theorem 4.2 and the equivalence of (uniform polytime computable) demi-bits and hitting
set generators (HSGs) against NP/poly (Proposition 4.3), it suffices to show that for a size function
s : N → N with s(n) < n − O(1), Kpoly[s(n)] is zero-error average-case hard against NP/poly
machines iff there is a HSG computable in uniform polytime H : {0, 1}s(n) → {0, 1}n against
NP/poly.

(⇐=) Assume that H : {0, 1}s(n) → {0, 1}n is a HSG, computable in uniform polytime, against
NP/poly. Then, for every constant k (independent of n) and sufficiently large n, Im(H) ∩ {0, 1}n

intersects all NP/poly-computable sets An ⊆ {0, 1}n for which |An| ≥ 2n/nk for all n. We need
to show that for every constant c, Knc

[s(n)] ⊆ {0, 1}n is zero-error average-case hard for NP/poly.
We show that there is no NP/poly machine that answers (correctly) one of Yes or No answers on
at least 2n/nk input strings from {0, 1}n, and on the rest input strings in {0, 1}n answers Don’t-
Know, and moreover makes no mistakes. Assume otherwise, then there is an NP/poly machine that
answers (correctly) No for at least 2n/nO(k) input strings from {0, 1}n; this is because most input
strings do not have short time-bounded Kolmogorov complexity, that is, a polynomial fraction of
the inputs x ∈ {0, 1}n, for every n, are not in Kpoly[s(n)], for s(n) between |x|ε and |x| (for a
constant 0 < ε < 1; see [ABK+06, Section 2.6] and references therein). Hence, there is an NP/poly
machine that accepts (correctly) at least 2n/nO(k) “hard strings” from {0, 1}n (namely, strings not
in Kpoly[n]), and rejects all other strings in {0, 1}n: in particular, the NP/poly machine guesses
a witness to the effect that the input string is hard, and if the witness is correct it accepts, and
otherwise it rejects.

We thus get a contradiction to H being a HSG against NP: there is a dense NP-language
containing at least 2n/nO(k) “hard strings” from {0, 1}n. But if D is such an NP machine for this
language, then D breaks the HSG H: for every string in Im(H) the machine D Rejects, since it has
a small Kpoly complexity by the assumption that H is computable in uniform polytime (in other
words, every string x of length n in Im(H) is such that x ∈ Knr

[s(n) + O(1)], for some constant r
independent of n, by assumption that H is computable in uniform polytime). Hence, H does not
hit the dense NP/poly-set defined by D, a contradiction.

(=⇒) We assume that Kpoly[s(n)] is zero-error average-case hard against NP/poly. Let H :
{0, 1}s(n) → {0, 1}n be a mapping defined so that the input x ∈ {0, 1}s(n) is fed into a univer-
sal Turing machine to be ran in time nk, for some constant k independent of n, and the output of
the universal machine is a string of length n (or the string 0 ∙ ∙ ∙ 0 of n zeros if the algorithm does
not terminate after nk steps). We show that H is a HSG against NP/poly (computable in uniform
nO(1)-time, by assumption).
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Assume by way of contradiction that H is not a HSG against NP/poly. Then, there is an
NP/poly machine D that accepts at least 2n/nO(1) strings in {0, 1}n, but rejects every string in
Im(H). Therefore, there is an NP/poly machine D that correctly accepts at least 2n/nO(1) strings
x ∈ {0, 1}n with x 6∈ Kpoly[s(|x|)], and rejects all other strings in {0, 1}n. This contradicts our
assumption, because we can construct an NP/poly machine D′ that zero-error decides on average
Kpoly[s(|x|)]: in D simply replace an Accept state with a Yes state, and a Reject state with a
Don’t-Know state.

4.2 Application to proof complexity generators

Corollary 4.6 (Stretching proof complexity generators). Let b : {0, 1}n → {0, 1}n+1 be a demi-
bit computable in P/poly. Let 0 < c < 1 be a constant and ` = n + nc. Then, there is a proof
complexity generator g : {0, 1}n → {0, 1}` in P/poly, such that for every propositional proof system,
with probability at least 1 − 1

`ω(1) over the choice of r ∈ {0, 1}`, there are no poly(n)-size proofs of
the tautology τ(g)r.

Proof. By Theorem 4.2, we can stretch the demi-bit b to yield new demi-bits g : {0, 1}n → {0, 1}`.
By assumption, b is computable in P/poly, and by Demi-Bit Stretching Algorithm 4.1 (namely, the
algorithm that stretches the demi-bit, which by inspection involves only applications of the original
demi-bit function on different sub-parts of the seed) g is also in P/poly.

Assume by way of contradiction that there is a constant k and a propositional proof system R
that admits poly(n)-size proofs of the tautology τ(g)r, for all r in the set S ⊆ {0, 1}` \ Im(g) where
|S| ≥ 2`/`k (namely, it is not true that the tautology τ(g)r does not have polynomial-size R-proofs
for all r in {0, 1}` \ (Im(g) ] T ) for some T with |T | ≥ 2`/`ω(1); note that |{0, 1}` \ (Im(g) ] T )| =
2`(1 − 1/`ω(1) − 1/2`−n) = 2`(1 − 1/`ω(1))).

Since g is computable in P/poly, the tautology τ(g)r is also of size poly(n). Let D be a nonde-
terministic circuit that gets an input r ∈ S, “guesses” an R-proof of τ(g)r and verifies it is a correct
proof. Then D is of size nO(1), and we have

P
y∈{0,1}`

[D(y) = 1] ≥
1
`k

and P
x∈{0,1}n

[D(g(x)) = 1] = 0, (3)

which contradicts our assumption that g are demi-bits.

5 Nondeterministic predictability

In Section 5.1, we review the notion of predictability in the deterministic setting. In Section 5.2, we
introduce new notions of predictability beyond the deterministic setting and study nondeterministic
hardness from a predictability aspect.

In this and the next section, we will use a slightly modified definition of super-bits, which is
analogous to Definition 3.7 in the deterministic setting: a generator g : {0, 1}n → {0, 1}m(n) is
called super-bits if for every D in NP/poly, every polynomial p, and all sufficiently large n’s,

P
[
D(Um(n)) = 1

]
− P [D(g(Un)) = 1] < 1/p(n).

Namely, g is super-bits if g is safe against all NP/poly-distinguishers (the difference from the original
definition of super-bits is that security is defined against all sub-exponential-size nondeterministic
circuits, while here we define it against all polynomial-size nondeterministic circuits).
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The contribution of this section provides progress in our understanding of the nondeterministic
hardness of generators.

5.1 Basic deterministic predictability

We first review the notion of predictability in the deterministic setting and the equivalence between
deterministic unpredictability and super-polynomial hardness of generators. The results reviewed
in Section 5.1 are adapted from [Gol08].

Definition 5.1 (Probability ensembles). A probability ensemble (or ensemble for short) is
an infinite sequence of random variables (Zn)n∈N. Each Zn ranges over {0, 1}l(n), where l(n) is
polynomially related to n (i.e., there is a polynomial p such that for every n it holds that l(n) ≤ p(n)
and p(l(n)) ≥ n.

We say an ensemble is polynomially generated if there is g ∈ P/poly such that g(Un) = Zn. In
this paper, we are only interested in polynomially generated ensembles because they are easy to
generate to imitate other probability ensembles (e.g., the uniform ensemble, as we will see in the
next definition) from a cryptography perspective. Thus, every ensemble we consider from now on
will be implicitly assumed to be polynomially generated if not specified otherwise.

Definition 5.2 (Strong-pseudorandom ensembles). The probability ensemble (Zn)n∈N is strongly
pseudorandom if for every algorithm D in P/poly, every polynomial p, and all sufficiently large
n’s,

|PUm(n)
[D(Um(n), 1n) = 1] − PZn [D(Zn, 1n) = 1]| ≤ 1/p(n),

where m = |Zn| and Um is the uniform distribution

The input 1n allows D is run polytime in n and informs D of the value n. But for the sake of
notation simplicity, 1n is often omitted and will be omitted from now on.

We note that if g is a strong PRG, then g(Un) is a strong-pseudorandom ensemble. We will see,
for g(Un), being strongly pseudorandom is equivalent to being unpredictable.

Definition 5.3 ((Deterministic) predictability). An ensemble (Zn)n∈N is called predictable or
P/poly-predictable is there exist an algorithm A in P/poly, a polynomial p, infinitely many n’s,
and an i(n) < |Zn| for each of those n’s such that

P [A(Zn[1 . . . i]) = Zn[i + 1]] ≥
1
2

+ 1/p(n).

An ensemble (Zn)n∈N is unpredictable if it is not predictable.

Theorem 5.4. An ensemble is strong-pseudorandom if and only if it is unpredictable.

We will see in the next section a nondeterministic variant of the last theorem.

5.2 Nondeterministic variants

In this section, we propose four new notions of unpredictability beyond the deterministic setting
and characterise super-hardness of generators based on the new notions.

Before we define nondeterministic predictability, we emphasise an important distinction between
a decision problem and a single-bit-output computing problem in the nondeterministic setting.
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We say a nondeterministic algorithm A is a function-computing algorithm, if for every input
x ∈ {0, 1}n, every computation branch yields one of {0, 1, ⊥}, in which ⊥ indicates a failure, and
there is always a computation branch yielding 0 or 1. A(x) = c for some c ∈ {0, 1} if, on input
x, every computation branch either yields c or ⊥; otherwise A(x) = ⊥. Hence, if A(x) = ⊥, then
there are a computation branch yielding 0 and another computation branch yielding 1. We say
A is total if A(x) ∈ {0, 1} for every x ∈ {0, 1}n. Obviously, total function-computing algorithms
constitute a subclass of function-computing algorithms. If we restrict the algorithms to be total
for defining ∩-unpredictability in Definition 5.5, the diagram shown in Summary 5.9 at the end of
this section remains unchanged. The advantage of not putting this restriction is that the property
∩-unpredictability becomes slightly stronger and thus, with this restriction we achieve a tighter
“sandwiched” characterisation of nondeterministic hardness in Summary 5.9.

We also remark that a decision problem is in NP/poly ∩ coNP/poly if and only if it is decidable
by a (total) nondeterministic polynomial-size function-computing algorithm.

Definition 5.5 (Nondeterministic predictability).

NP/poly-predictability. An ensemble (Zn)n∈N is NP/poly-predictable if there exist an algorithm
A in NP/poly, a polynomial p, infinitely many n’s, and an i(n) < |Zn| for each of those n’s
such that

P [A(Zn[1 . . . i]) = Zn[i + 1]] ≥ 1/2 + 1/p(n).

An ensemble (Zn)n∈N is NP/poly-unpredictable if it is not NP/poly-predictable.

coNP/poly-predictability. An ensemble (Zn)n∈N is coNP/poly-predictable if there exist an algo-
rithm A in coNP/poly, a polynomial p, infinitely many n’s, and an i(n) < |Zn| for each of
those n’s such that

P [A(Zn[1 . . . i]) = Zn[i + 1]] ≥ 1/2 + 1/p(n).

An ensemble (Zn)n∈N is coNP/poly-unpredictable if it is not coNP/poly-predictable.

∪-predictability. An ensemble (Zn)n∈N is called ∪-predictable (a short for (NP/poly∪coNP/poly)-
predictable) if it is NP/poly-predictable or coNP/poly-predictable. An ensemble (Zn)n∈N is
∪-unpredictable if it is not ∪-predictable.

∩-predictability. An ensemble (Zn)n∈N is called ∩-predictable (a short for (NP/poly∩coNP/poly)-
predictable) if there exist a polytime nondeterministic function-computing algorithm A, a
polynomial p, infinitely many n’s, and an i(n) < |Zn| for each of those n’s such that

P [A(Zn[1 . . . i]) = Zn[i + 1]] ≥ 1/2 + 1/p(n).

An ensemble (Zn)n∈N is ∩-unpredictable if it is not ∩-predictable.

Remark. A reader should not mistake the definition of being ∩-predictable as being NP/poly-
predictable ∧ coNP/poly-predictable. In fact, being ∩-predictable is a stronger assumption than
being NP/poly-predictable ∧ coNP/poly-predictable (see Lemma Lemma 5.6). In other words, for
an ensemble (Zn), being ∩-unpredictable is a weaker property than being NP/poly-unpredictable
∨ coNP/poly-unpredictable. Nevertheless, being ∩-unpredictable is still a non-trivial property
because it is stronger than being P/poly-unpredictable (a deterministic algorithm is a total function-
computing algorithm).
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Lemma 5.6. If an ensemble (Zn) is ∩-predictable, it is both NP/poly-predictable and coNP/poly-
predictable.

Proof. Suppose there exist a polytime nondeterministic function-computing algorithm A, a poly-
nomial p, infinitely many n’s, and an i(n) < |Zn| for each of those n’s such that

P [A(Zn[1 . . . i]) = Zn[i + 1]] ≥ 1/2 + 1/p(n).

We define A1 in NP/poly and A0 in coNP/poly as follows:

Given input Y ∈ {0, 1}i, Aj(j = 0, 1) mimics A on input Y to get an output bit c. If
c = ⊥, Aj outputs 1 − j, and otherwise Aj outputs c.

By the definition of Aj , if A(Y ) ∈ {0, 1}, Aj(Y ) = A(Y ). Thus, for j ∈ {0, 1}, we have

P [Aj(Zn[1 . . . i]) = Zn[i + 1]] ≥ P [Aj(Zn[1 . . . i]) = Zn[i + 1] ∧ A(Zn[1 . . . i]) ∈ {0, 1}]

= P [A(Zn[1 . . . i]) = Zn[i + 1] ∧ A(Zn[1 . . . i]) ∈ {0, 1}]

= P [A(Zn[1 . . . i]) = Zn[i + 1]]

≥ 1/2 + 1/p(n).

Proposition 5.7. If g : {0, 1}n → {0, 1}m(n) is super-bit(s), then g(Un) is ∩-unpredictable.

Proof. Suppose, for a contradiction, g(Un) is ∩-predictable. there exist a polytime nondeterministic
function-computing algorithm A, a polynomial p, infinitely many n’s, and an i(n) < |g(Un)| for
each of those n’s such that

P [A(Zi) = z] ≥ 1/2 + 1/p(n),

where Zi = g(Un)[1 . . . i] and z = g(Un)[i + 1].

We construct nondeterministic algorithm D to distinguish Um from g(Un):

Given input Y ∈ {0, 1}m, D runs A on Y [1 . . . i] to obtain an output bit c. If c = ⊥, D
outputs 0. When c ∈ {0, 1}, if c 6= Y [i + 1], D outputs 1; else, D outputs 0.

For a fixed n, we let f = P [A(Ui) = ⊥] and use b to denote a random bit. Recall that A(Ui) = ⊥
implies the computation tree of A on Ui has both 0 and 1 as leaves. Then by the definition of D,
we have:

P [D(Um) = 1] = P [A(Ui) = ⊥] + P [A(Ui) ∈ {0, 1} ∧ A(Ui) 6= b]

= P [A(Ui) = ⊥] + P [A(Ui) ∈ {0, 1}] ∙ P [A(Ui) 6= b|A(Ui) ∈ {0, 1}]

= f + (1 − f) ∙ 1/2

≥ 1/2.

On the other hand:

P [D(g(Un)) = 1] = P [A(Zi) = ⊥] + P [A(Zi) ∈ {0, 1} ∧ A(Zi) 6= z]

= P [A(Zi) = ⊥] + (P [A(Zi) ∈ {0, 1}] − P [A(Zi) ∈ {0, 1} ∧ A(Zi) = z])

= P [A(Zi) = ⊥] + P [A(Zi) ∈ {0, 1}] − P [A(Zi) = z]

= 1 − P [A(Zi) = z]

≤ 1/2 − 1/p(n).
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Therefore,

P [D(Um) = 1] − P [D(g(Un)) = 1] ≥ 1/p(n).

Proposition 5.8. If g(Un) is ∪-unpredictable (i.e., NP/poly-unpredictable ∧ coNP/poly-
unpredictable), where g : {0, 1}n → {0, 1}m(n) ∈ P/poly and m(n) > n, then g is super-bit(s).

Proof. Suppose, for a contradiction, g is not super-bits. For any fixed n, define hybrids Hi =
g(Un)[0 . . . i] ∙ Um[i + 1 . . . m] and denote Zi = g(Un)[1 . . . i] and zi = g(Un)[i]. Then, by the hybrid
argument, there exist an algorithm D in NP/poly, a polynomial p, infinitely many n’s, and an i for
each of these n’s such that

P [D(Hi) = 1] − P [D(Hi+1) = 1] ≥ 1/p(n).

Therefore, for each such n, there is a fixed string w such that

P [D(Zib, w) = 1] − P [D(Zi+1, w) = 1] ≥ 1/p(n), (∗)

where we use b to denote a random bit. We may omit writing w from now on.
We construct an algorithm A1 in NP/poly and A2 in coNP/poly to predict zi+1 based Zi as

follows:
Given Yi ∈ {0, 1}i as input, A1 does whatever D does on Yi0w; A2 does whatever D
does on Yi1w but then flip the bit got.

The definitions of A1, A2 imply that A1(Yi) = D(Yi0) and A2(Yi) = D(Yi1) (w omitted). Hence,

(1) := P [A1(Zi) = zi+1]

= P [D(Zi0) = zi+1]

= P [D(Zi0) = 0 ∧ zi+1 = 0] + P [D(Zi0) = 1 ∧ zi+1 = 1]

= P [D(Zizi+1) = 0 ∧ zi+1 = 0] + P [D(Zizi+1) = 1 ∧ zi+1 = 1] ,

and

(2) := P [A2(Zi) = zi+1]

= P [D(Zi1) 6= zi+1]

= P [D(Zi1) = 0 ∧ zi+1 = 1] + P [D(Zi1) = 1 ∧ zi+1 = 0]

= P [D(Zizi+1) = 0 ∧ zi+1 = 1] + P [D(Zizi+1) = 1 ∧ zi+1 = 0] .

Therefore,

(1) + (2) = P [D(Zizi+1) = 0] + P [D(Zizi+1) = 1] .

As
P [D(Zizi+1) = 0] = 1 − P [D(Zi+1) = 1]

and

2P [D(Zi, b) = 1] = 2P [D(Zi, b) = 1 ∧ b = zi+1] + 2P [D(Zi, b) = 1 ∧ b 6= zi+1]

= 2P [b = zi+1]P [D(Zi, b) = 1|b = zi+1] + 2P [b 6= zi+1]P [D(Zi, b) = 1|b 6= zi+1]

= P [D(Zi, zi+1) = 1] + P [D(Zi, zi+1) = 1] ,
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(1) + (2) = (1 − P [D(Zi+1) = 1]) + (2P [D(Zib) = 1] − P [D(Zi+1) = 1])

= 1 + 2(P [D(Zib) = 1] − P [D(Zi+1) = 1])

≥ 1 + 2/p(n) by (∗).

Hence, either (1) = P [A1(Zi) = zi+1] ≥ 1/2 + 1/p(n) for infinitely many n’s or (2) =
P [A2(Zi) = zi+1] ≥ 1/2 + 1/p(n) for infinitely many n’s. That is, the ensemble (Zn) is either
NP/poly-predictable or coNP/poly-predictable.

Summary 5.9. We summarise Lemma 5.6, Proposition 5.7, and Proposition 5.8 together as the
following chain of inequalities. Here, A ≤ B means, if an ensemble g(Un) has property B, then it
also has property A (see introduction Section 2.2 for a more pictorial version of these inequalities):

P/poly-unpredictability ≤ ∩-unpredictability (4)

∩ -unpredictability ≤ super-polynomial nondeterministic hardness ≤ ∪-unpredictability (5)

∩ -unpredictability ≤ NP/poly-unpredictability ≤ ∪-unpredictability. (6)

∩ -unpredictability ≤ coNP/poly-unpredictability ≤ ∪-unpredictability. (7)

In contrast to Theorem 5.4, which is a precise characterization of standard hardness from
a predictability perspective, we have so far only obtained inaccurate characterizations of super-
hardness in the nondeterministic setting. I am inclined to the viewpoint that we might be unable
to obtain an exact characterization of super-hardness in terms of predictability, because we will
see in Section 6.2, super-hardness is not just about algorithm (e.g., algorithms used to witness
randomness or used to predict) behaviour on the range elements (i.e., y such that P [Zn = y] > 0)
but may also concern behaviour on the non-range elements (i.e., y such that P [Zn = y] = 0). In
other words, it is very possible that at least some of the inequalities above are strict.

Open problem. Could the inequalities in Summary be further refined or classified? For example,
is there any relation between super-hardness and NP/poly-unpredictable ∨ coNP/poly-unpredictable?

6 Super-core predicates

In the next subsection we review the concepts of one-way functions and hard-core predicates as
well as their known connections to strong PRGs. In Section 6.2 we introduce the concept of a
super-core predicate, and investigate its connections to super-bits. This provides a step forward for
suggesting a sensible definition of one-way functions in the nondeterministic setting.

6.1 One-way functions and hard-core predicates

We start by reviewing the standard concepts of one-way functions and hard-core predicates and
the equivalence between the existence of a strong PRG and the existence of a hard-core of some
one-way function (see [Gol08] for more details).

Definition 6.1 (One-way functions). A function f : {0, 1}∗ → {0, 1}∗ in P/poly is called one-way
if for every A in P/poly, every polynomial p(∙), and all sufficiently large n’s,

P
x∈{0,1}n

[A(f(x), 1n) ∈ f−1(f(x))] <
1

p(n)
.
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The input 1n is for technical reason. It allows the algorithm A to run in polynomial time in
n = |x|, which is important when f dramatically shrinks its input (e.g., when |f(x)| = O(log|x|)).
When the auxiliary input 1n is not necessary (e.g., when f is length-preserving), we may omit it.
Intuitively, a function f in P/poly is one-way if it is “typically” hard to invert, when the probability
is taken over the input distribution, for all efficient algorithms.

It is known that the existence of one-way functions and the existence of strong PRGs are
equivalent:

Theorem 6.2. One-way functions exist if and only if strong PRGs exist.

Since we can construct a length-preserving one-way function from an arbitrary one-way function,
Theorem 6.2 can alternatively be stated as:

Theorem 6.3. Length-preserving one-way functions exist if and only if strong PRGs exist.

The converse implication of Theorem 6.2 is rather straightforward, while the forward implica-
tion, in fact, relies on a concept closely related to one-way functions, called hard-core predicates.
Even when assuming that a hard-core predicate can produce one more bit from a seed x, the known
proof of the forward implication in Theorem 6.3 is still rather involved.

Definition 6.4 (Hard-core predicates). A predicate b : {0, 1}∗ → {0, 1} in P/poly is called a hard-
core of a function f if there do not exist an algorithm A in P/poly, a polynomial p(∙), and infinitely
many n’s such that

P
x∈{0,1}n

[A(f(x), 1n) = b(x)] ≥
1
2

+
1

p(n)
.

In other words, b is a hard-core of f if it is safe against (in terms of prediction) all P/poly
algorithms, which may be due to an information loss of f (e.g, b(x) = x[n] is a hard-core of
f(x) = x[1 . . . (n − 1)]) or to the difficulty of inverting f .

If b is a hard-core of any f , then P [b(x) = 0] ≈ P [b(x) = 1] ≈ 1/2 (otherwise, we can predict b
by outputting the constant argmaxb∈{0,1}(P [b(x) = b])).

One-way functions and hard-core predicates are “paired” by the construction of a “generic”
hard-core:

Theorem 6.5. For any one-way function f , the inner-product mod 2 of x and y, denoted as 〈x, y〉,
is a hard-core of f ′(x, y) := (f(x), y).

In particular, if f is length-preserving, so is f ′. Indeed, in the theorem, we should also define f ′

and b on the odd length inputs (x, y, b), where |x| = |y| and b is a single bit, but this case is often
omitted as we can trivially “ignore” the last bit (use the same idea as in Lemma 3.14) and define
f ′(x, y, b) = (f(x), y, b) and b(x, y, b) = 〈x, y〉.

This theorem states that every one-way function f “essentially” has the same hard-core predicate
(where here it’s not f itself that has the hard-core predicate, rather f ′ as above). It is an easy
exercise to show that there does not exist a predicate b that is hard core for every one-way function.

Therefore, Theorem 6.3 can be reformulated as:

Theorem 6.6. There is a hard-core b of some length-preserving one-way function if and only if
there is a strong PRG g.

We will develop a nondeterministic variant (Theorem 6.13) of the last theorem in the following
section.
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6.2 Nondeterministic variants

In this section, we introduce the concept of super-core predicates and investigate its connection to
super-bits as well as which functions may or may not have super-cores.

Definition 6.7 (Super-core predicates). A predicate b : {0, 1}n → {0, 1} in P/poly is called a
super-core of a function f : {0, 1}n → {0, 1}m(n) if there do not exist an algorithm A1 in NP/poly,
an algorithm A2 in coNP/poly, polynomial p(∙), and infinitely many n’s such that

Px∈{0,1}n [A1(f(x), 1n) = b(x) = 0] +
1
2
Py∈{0,1}m [A1(y, 1n) = 1] ≥

1
2

+
1

p(n)
(?)

nor

Px∈{0,1}n [A2(f(x), 1n) = b(x) = 1] +
1
2
Py∈{0,1}m [A2(y, 1n) = 0] ≥

1
2

+
1

p(n)
. (�)

For convenience, we define some abbreviations for the formulas above (the input 1n is omitted):

1 (A1) := Px∈{0,1}n [A1(f(x)) = b(x) = 0],

2 (A2) := Px∈{0,1}n [A2(f(x)) = b(x) = 1],

3 (A1) := 1
2Py∈{0,1}m(n) [A1(y) = 1],

4 (A2) := 1
2Py∈{0,1}m(n) [A2(y) = 0].

Our intention here is to come up with a nondeterministic variant of hard-core predicates and
to build a relation between the existence of super-bits and the existence of this nondeterministic
variant. A super-core is safe against both nondeterministic and co-nondeterministic predictors in
the above-prescribed sense. Inequality (?) can be re-written as

Px∈{0,1}n [A1(f(x), 1n)b(x) = 0] ≥
1
2
Py∈{0,1}m [A1(y, 1n) = 0] +

1
p(n)

,

and splitting the left-hand side in terms of conditional probability on b(x) = 0 yields

Px∈{0,1}n [b(x) = 0]Px∈{0,1}n [A1(f(x), 1n) = 0|b(x) = 0] ≥
1
2
Py∈{0,1}m [A1(y, 1n) = 0] +

1
p(n)

.

As we will see in Lemma 6.8, a super-core is also a hard-core, which implies Px∈{0,1}n [b(x) = 0] ≈
1/2. Thus, for an NP/poly-predictor A1 to satisfy (?), it has to satisfy the following equivalent
condition for some polynomial p(n):

Px∈{0,1}n [A1(f(x), 1n) = 0|b(x) = 0] ≥ Py∈{0,1}m [A1(y, 1n) = 0] +
1

p(n)
.

This condition intuitively means that if the input y given to the NP/poly-predictor A1 indeed
represents some f(x) such that b(x) = 0, the NP/poly-predictor A1 has to be more sensitive to
detect it by outputting 0 (than when receiving a random input). (�) is dual to (?). Note that,
under this definition, nondeterministic and co-nondeterministic adversaries are unable to satisfy
their corresponding inequality in any trivial way (e.g., by outputting the constant 0 or 1).

We observe that if b is a super-core of f , then b is also a super-core of any “shortened” f .
Precisely, if i : N → N is such that i(n) ≤ |f(1n)| for every n, then b is a super-core of f ′(x) :=
f(x)[1 . . . i(|x|)] because f ′(x) provides less information than f(x).

Just as a super-bit is also a strong PRG, we have:
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Lemma 6.8. If b is a super-core of function f : {0, 1}n → {0, 1}m(n), b is a hard-core of f .

Proof. Suppose for a contradiction that b is not a hard-core of f . Then there exist C in P/poly, a
polynomial p, and infinitely many n’s such that P [C(f(Un)) = b(Un)] ≥ 1/2 + 1/p(n). We note C
is in both NP/poly and coNP/poly. As

1 (C) + 2 (C) + 3 (C) + 4 (C) = P [C(f(Un)) = b(Un)] + 1/2 ≥ 1 + 1/p(n),

either 1 (C) + 3 (C) ≥ 1/2 + 1/(2p(n)) or 2 (C) + 4 (C) ≥ 1/2 + 1/(2p(n)).

We now show that we can construct a super-bit from a super-core for some length-preserving
function:

Proposition 6.9. If b is a super-core of function f : {0, 1}n → {0, 1}n in P/poly, then g(x) :=
f(x)b(x) is a super-bit.

Proof. Suppose, for a contradiction, g is not a super-bit. Then there exist a distinguisher D in
NP/poly, a polynomial p, and infinitely many n’s such that:

P [D(Un+1) = 1] − P [D(g(Un)) = 1] ≥ 1/p(n).

We define algorithm A1 in NP/poly and algorithm A2 in coNP/poly to predict b as follows:
Assume Y ∈ {0, 1}n is given as input. A1 runs D on Y 0 and accepts when D accepts.
A2 runs D on Y 1 and accepts when D rejects.

The definitions of A1, A2 means that A1(Y ) = D(Y 0) and A2(Y ) = D(Y 1). Now, we have:

1 (A1) + 2 (A2) = P [A1(f(Un)) = b(Un) = 0] + P [A2(f(Un)) = b(Un) = 1]

= P [D(f(Un)0) = 0 ∧ b(Un) = 0] + P [D(f(Un)1) = 0 ∧ b(Un) = 1]

= P [D(f(Un)b(Un)) = 0 ∧ b(Un) = 0] + P [D(f(Un)b(Un)) = 0 ∧ b(Un) = 1]

= P [D(f(Un)b(Un)) = 0]

= 1 − P [D(g(Un)) = 1] ,

and

3 (A1) + 4 (A2) =
1
2
P [A1(Un) = 1] +

1
2
P [A2(Un) = 0]

=
1
2
P [D(Un0) = 1] +

1
2
P [D(Un1) = 1]

= P [D(Un+1) = 1] .

Therefore, for infinitely many n’s,

1 (A1) + 2 (A2) + 3 (A1) + 4 (A2) = 1 + P [D(Un+1) = 1] − P [D(g(Un)) = 1] ≥ 1 + 1/p(n),

which implies that either 1 (A1) + 3 (A1) ≥ 1/2 + 1/(2p(n)) for infinitely many n’s or 2 (A2) +
4 (A2) ≥ 1/2+1/(2p(n)) for infinitely many n’s, contradicting the assumption that b is a super-core

of f .

Before we establish Proposition 6.11, which is the converse of Proposition 6.9, we need the
following auxiliary lemma:
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Lemma 6.10. If g : {0, 1}n → {0, 1}n+1 is a strong PRG and define f(x)b(x) := g(x), where b(x)
is the last bit of g(x), then b is a hard-core of f ∈ P/poly.

Proof. Suppose for contradiction, b is not a hard-core of f . Then there exist A in P/poly, a
polynomial p, and infinitely many n’s such that

P [A(f(Un)) = b(Un)] ≥ 1/2 + 1/p(n).

We construct D to break g as follows:
Given Y ∈ {0, 1}n+1 as input, D outputs 1 if and only if A(Y [1..n]) = Y [n + 1].

Let b denote a random bit. Then, for infinitely many n’s,

P [D(g(Un)) = 1] − P [D(Un+1) = 1] = P [A(f(Un)) = b(Un)] − P [b = A(Un)]

≥ 1/2 + 1/p(n) − 1/2

= 1/p(n).

Now, we are able to show:

Proposition 6.11. If g : {0, 1}n → {0, 1}n+1 is a super-bit and define f(x)b(x) := g(x), where
b(x) is the last bit of g(x), then b is a super-core of f ∈ P/poly.

Proof. Suppose, for a contradiction, b is not a super-core of f . We present a proof for the case
in which there exist an A ∈ NP/poly, a polynomial p, and infinitely many n’s such that 1 (A) +
3 (A) ≥ 1/2 + 1/p(n). The proof for the other case is similar.

We define a distinguisher D to break g as follow:
Given Y ∈ {0, 1}n+1 as input, D runs A on Y [1 . . . n] to get one output bit c of A.
D then outputs 1 if and only if Y [n + 1] = 0 and c = 1.

Then, for infinitely many n’s, we have

P [D(Un+1) = 1] − P [D(f(Un)b(Un)) = 1]

= P [A(Un) = 1 ∧ U1 = 0] − P [A(f(Un)) = 1 ∧ b(Un) = 0]

= 1/2 ∙ P [A(Un) = 1] − (P [b(Un) = 0] − P [A(f(Un)) = 0 ∧ b(Un) = 0])

= 1 (A) + 3 (A) − P [b(Un) = 0]

≥ 1/2 + 1/p(n) − P [b(Un) = 0] .

Let 1/s(n) = |P [b(Un) = 0] − 1/2|. As g is a strong PRG, b is a hard-core of g by Lemma 6.10.
Thus, for every polynomial q (in particular, for q(n) = 2p(n)) and every sufficiently large n,
1/s(n) ≤ 1/q(n). Therefore, for infinitely many n’s,

P [D(Un+1) = 1] − P [D(f(Un)b(Un)) = 1] ≥ 1/2 + 1/p(n) − P [b(Un) = 0] ≥ 1/2p(n).

By combining Proposition 6.9 and Proposition 6.11, we establish the following nondeterministic
variant of Theorem 6.6.
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Theorem 6.12. There is a super-core b of some length-preserving f ∈ P/poly if and only if there
is a super-bit g.

We say a function f : {0, 1}n → {0, 1}m(n) is non-shrinking if m(n) ≥ n for every n. Because
(1) b is a super-core of some length-preserving function if and only if b is a super-core of some
non-shrinking function, and (2) there exists a super-bit if and only if there exist super-bits (i.e., we
can stretch super-bits by [Rud97], we can alternatively state Theorem 6.12 as:

Theorem 6.13. There is a super-core of some non-shrinking function in P/poly if and only if
there are super-bits.

Although we can relax the condition “length-preserving” to “non-shrinking”, the requirement
“non-shrinking” is not redundant because there is an easy construction of a super-core b of some
function f which shrinks its input, but whether a super-bit exists is unknown. Define f(x) = x[1]
and b(x) = x[−1], then b is a super-core of f as there are only four functions from {0, 1} to {0, 1},
and none of them can predict b given f(x) ∈ {0, 1} in the required sense (indeed, 1 (c) + 3 (c) =
2 (c) + 4 (c) = 1/2 for any c : {0, 1} → {0, 1}).

At this point, we may want to understand more about the relation between being one-way and
having a super-core for a function f . Let’s recall what we know in the deterministic setting: (1)
if f has a hard-core b, f is not necessarily one-way because the possession of a hard-core can be
due to an information loss of f , and (2) if f is one-way, then we can construct a hard-core b of
f ′(x, y) = (f(x), y).

The first point is the same in the nondeterministic setting. The aforementioned f(x) = x[1]
is clearly not one-way but has a super-core b(x) = x[−1], which is due to a dramatic loss of
information. A more interesting question is whether the f constructed in Proposition 6.11 from a
super-bit g (we have shown f possesses a super-core b(x) = g(x)[−1]) is one-way or not.

Open problem 6.14. If g is a super-bit, is f(x) := g(x)[1 . . . n] (n = |x|) a one-way function?

As for the second point, however, since being a super-core is stronger requirement than being
a hard-core, it is not necessarily true that there is a “universal” super-core in the sense that some
predicate b (e.g., b(x, y) = 〈x, y〉) is a super-core for every f ′(x, y) = (f(x), y), where f : {0, 1}n →
{0, 1}m(n) is a one-way function. Then, a natural question to ask is:

Open problem 6.15. Suppose f is a one-way function. If we want 〈x, y〉 to be a super-core of
f ′(x, y) = (f(x), y), what other properties does f need to have if any?

Rather, as for the second point, we can show that it is impossible for certain f ’s to have a super-
core, even if they are possibly one-way. Such f ’s include certain functions which are “predominantly
1-1” infinitely often. To state this more precisely, we say x is of type 1 if |f−1(f(x))| = 1 and x
is of type 2 otherwise. We define T1(n) to be the set of x ∈ {0, 1}n of type 1 and T2(n) to be the
set of x ∈ {0, 1}n of type 2 . Now, we establish:

Theorem 6.16. Given constant integer c ≥ 0 and f : {0, 1}n → {0, 1}n+c in P/poly, if there exists
infinitely many n’s and a polynomial p such that,

|T1|
2n

≥
21+c

21+c + 1
+

1
p(n)

,

then f does not have a super-core.
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In particular, when f is length-preserving (i.e., c = 0), the inequality becomes:

|T1|
2n

≥
2
3

+
1

p(n)
.

Proof. Assume f has the stated property. Suppose, for a contradiction, b is a super-bit of f . We
construct as follows two algorithms Aj(j = 0, 1), in which A0 is co-nondeterministic and A1 is
nondeterministic, to predict b:

Given y ∈ {0, 1}n as input, Aj guesses x′ such that f(x′) = y. If Aj fails to guess
such an x′, it outputs 1 − j. Otherwise, it outputs b(x′).

We note that if y = f(x) for some x ∈ T1, then there is always exactly one correct guess x′

(i.e., x itself) for Aj such that f(x′) = y = f(x), and whenever such an x′ is guessed, b(x′) = b(x).
Hence, 1 (A1) = P[A1(f(x)) = b(x) = 0] ≥ P[A1(f(x)) = b(x) = 0∧x ∈ T1] = P[b(x) = 0∧x ∈ T1],
and 3 (A1) = 1

2P[A1(y) = 1] ≥ 1
2P[y = f(x) ∧ b(x) = 1 for some x ∈ T1]. Similarly, 2 (A0) ≥

P[b(x) = 1 ∧ x ∈ T1], and 4 (A0) ≥ 1
2P[y = f(x) ∧ b(x) = 0 for some x ∈ T1].

Therefore, 1 (A1) + 2 (A0) + 3 (A1) + 4 (A0) = P [x ∈ T1] + 1
2P [y ∈ f(T1)] = |T1|

2n + 1
2 ∙ |T1|

2n+c =
21+c+1

21+c ∙ |T1|
2n ≥ 1+ 1

p(n) for infinitely many n’s, but this implies that either 1 (A1)+ 3 (A1) ≥ 1
2 + 1

2p(n)

or 2 (A0) + 4 (A0) ≥ 1
2 + 1

2p(n) .

The intuitive reason that such f ’s do not have a super-core is: such an f preserves most of the
information (thus, a unique pre-image can be guessed).In the theorem, we cannot trivially relax c to
an arbitrary polynomial in n, as if we do so, the right-hand side of the inequality in the statement
may exceed 1. This result can alternatively be proved, when f is length-preserving, by making use
of other results mentioned before, as follows. Suppose, for a contradiction, b is a super-core of f ,
then g(x) := f(x)b(x) is a super-bit by Proposition 6.9. However, we can then easily break g as
follows: we witness the randomness of a given y ∈ {0, 1}n+1 by guessing an x ∈ {0, 1}n such that
f(x) = y[1 . . . n] and test if b(x) = y[n + 1]; if b(x) 6= y[n + 1], y is random.

We state a weaker but more concise corollary of Theorem 6.16:

Corollary 6.17. If f ∈ P/poly is length-preserving and 1-1 (or at least 1-1 for infinitely many
n’s), then f does not have a super-core.

This corollary contrasts the result that a length-preserving and 1-1 f ∈ P/poly could have a
hard-core (in fact, if b is a hard-core of a length-preserving and 1-1 f ∈ P/poly, then g(x) :=
f(x)b(x) is a strong PRG [Gol08]). Thus, the corollary suggests there might be strong PRGs which
are not super-bits.

Besides the above investigation on which functions can or cannot have a super-core and the
relation between being a one-way function and having a super-core, another central question is:

Open problem. What is a sensible definition of “nondeterministic one-way functions” if any?

Satisfactory answers to Open problem 6.14 and Open problem 6.15 will shed light on this
question. A possible candidate is “a one-way function that has a super-core”, but this question
needs further exploration.
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7 Conclusion and future directions

The current work is the first systematic investigation into nondeterministic pseudorandomness (in
the cryptographic regime), building on the primitives proposed by Rudich [Rud97]. Our investiga-
tion reveals a fruitful area of potential directions. Here, we propose or summarise some intriguing
future directions and open problems that we deem worth pursuing.

• We have provided an algorithm that achieves a sublinear-stretch for any given demi-bit. If we
are greedier, we may wonder if we can stretch more. Specifically, if we can stretch one demi-bit
to linearly many demi-bits, or to polynomially many demi-bits, or even to a pseudorandom
function generator (PRFG) with exponential demi-hardness. Even if assuming we do have
some n-demi-bits b : {0, 1}n → {0, 1}2n, it is still unclear whether we can construct a PRFG
with exponential demi-hardness by any standard algorithm for constructing PRFGs or a novel
one.

• Can we further refine or classify the inequalities in Summary 5.9? Can we also characterise
demi-hardness in terms of unpredictability (i.e., where is the correct place of demi-hardness
in that lattice)?

• One-way functions are one of the most central cryptographic primitives. Then, a natural
question to ask is, what is a sensible definition of nondeterministic-secure one-way functions?
(A first attempt may be “a one-way function which has a super-core”, but this proposal
demands further verification.)

• If g is a super-bit, is f(x) := g(x)[1...n] (n = |x|) a one-way function?

• Suppose f is a one-way function. If we want 〈x, y〉 to be a super-core of f ′(x, y) = (f(x), y),
what other properties does f need to have, if any?

Better answers to the questions listed above would help us to better understand the hardness
of generators in the nondeterministic setting and shed light on the open problem “whether the
existence of demi-bits implies the existence of super-bits”.

A Demi-bits exist unless PAC-learning of small circuits is feasible

In this section, we provide a full exposition of Pich’s results from [Pic20], who developed PAC-
learning algorithms from breaking PRGs. These results are important for the foundations of pseu-
dorandomness against nondeterministic adversaries since they provide justification for the existence
of demi-bits.

A.1 PAC-learning

We formulate the following nonuniform version of PAC-learning:

Definition A.1 (PAC-learning, nonuniform). A circuit class C is learnable (over the uniform
distribution) by a circuit class D up to error ε with confidence δ if there is a randomized oracle
family L = {Dn} ∈ D such that for every family f : {0, 1}n → {0, 1} computable by C and every
large enough n, we have:
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1. P
w

[Lf (1n, w) (1 − ε)−approximates f ] ≥ δ, where w is the random input bits to Lf and the

output Lf (1n, w) of Lf is a string representation of an approximator f ′ of f . Lf (1n, w) can
be a description of a uniform or nonuniform algorithm of the following types: deterministic,
nondeterministic, co-nondeterministic, and randomized.

2. For every f and w, Lf (1n, w) is D-evaluable: there is another circuit family E ∈ D such
that for every possible output Lf (1n, w) of L and every x ∈ {0, 1}n given as the input to E,
E computes Lf (1n, w) on x. When Lf (1n, w) is (co-)nondeterministic or randomized, E is
allowed to be (co-)nondeterministic or randomized respectively.

For such a learner L, we also say C is learnable by L or every C ∈ C is learnable by L.

Remarks.

1. We say Lf uses membership query if it somehow selects the set of queries made to the oracle
gates. We say Lf uses uniformly distributed random examples if the set of queries made is
sampled uniformly at random. The above learning model is general enough to admit both
kinds of learners and also any kind of mixture. In this work, we will only consider learners
using uniformly distributed random examples. Thus by “learning”, we always mean learning
using uniformly distributed random examples.

2. The defined learning model is also general enough to admit learning over other distributions
(i.e. we change the distribution of w in condition (1)). When D contains P/poly, learn-
ing over any polynomially generated distribution is equivalent to learning over the uniform
distribution.

3. A possible source of confusion is to leave out Condition (2). However, Condition (2) is
indispensable here. The reason is that without this restriction, P/poly can be efficiently
learned, which is widely believed not to be the case (e.g., cf. [RS21]). It is an easy exercise
to prove the learnability of P/poly without the second condition by applying the Occam’s
Razor theorem established in [BEHW87]. Intuitively, a learner can learn P/poly efficiently
by remembering the samples and postponing all the “learning” to the hypothesis evaluation
stage.

4. The confidence δ and accuracy 1 − ε of a learner in D can be efficiently boosted to constants
less than 1 in standard ways (cf. [KV94]) when they are not negligible with respect to
D. For example, when D = P/poly, it is sufficient for δ and 1 − ε to achieve p(n) and
1/2 + q(n) respectively for any polynomials p and q. Beyond the remark here, boosting will
be a digression from the theme of this work.

A.2 Learning based on nonexistence assumptions

We recall a construction from [BFKL94]: for a positive integer m and a circuit C : {0, 1}n →
{0, 1}, define generator Gm,C : {0, 1}mn → {0, 1}mn+m, which maps m n-bit strings x1, ..., xm to
x1, C(x1), ..., xm, C(xm).

We reformulate Theorem 7 on average-case learning in [BFKL94] into our PAC-learning frame-
work as the following lemma:
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Lemma A.2. Given a circuit class C, if there is an m and an s(n)-size circuit D such that for
every C ∈ C

P [D(y) = 1] − P [D(GC(x)) = 1] ≥ 1/s, where GC = Gm,C ,

then there is a randomized polynomial time (in n and |〈D〉|, where 〈D〉 is a given string represen-
tation of D) algorithm L that learns C with confidence 1/2m2s up to error 1/2 − 1/2ms.

In particular, if D is a nondeterministic or co-nondeterministic circuit, the output of L is
allowed to be a nondeterministic or co-nondeterministic algorithm.

Proof. Given any C ∈ C, L randomly chooses an i ∈ [m], bits r1, ..., rm, and n-bit strings x1, ..., xm

except xi, queries C on x1, ..., xi−1 to get C(x1), ..., C(xi−1), and outputs C ′, which predicts C as
follows: given any n-bit input xi, C ′ emulates D on (x1, C(x1), ..., xi−1, C(xi−1), xi, ri, ..., xm, rm)
to get an output bit pi. If pi = 1, C’ outputs r̄i; if pi = 0, C’ outputs ri.

We next want to prove that L indeed learns C in the desired sense. Given random bits r1, ..., rm

and random n-bit strings x1, ..., xm, we define pi := D(x1, C(x1), ..., xi−1, C(xi−1), xi, ri, ..., xm, rm).
Then (note: here we are applying a hybrid argument),

1/s ≤ P [D(x) = 1] − P [D(GC(x)) = 1]

= P [p1 = 1] − P [pm = 1]

=
m−1∑

i=1

(P [pi = 1] − P [pi+1 = 1])

Hence, there exist i such that P [pi = 1]−P [pi+1 = 1] ≥ 1/ms, and therefore the i L chooses satisfies
P [pi = 1]−P [pi+1 = 1] ≥ 1/ms with probability ≥ 1/m. When L has successfully chosen such an i,

P
r1,...,rm
x1,...,xm

[C ′(xi) = C(xi)]

= P [pi = 1, ri 6= C(xi)] + P [pi = 0, ri = C(xi)]

=
1
2
P [pi = 1|ri 6= C(xi)] +

1
2
P [pi = 0|ri = C(xi)]

=
1
2
P [pi = 1|ri 6= C(xi)] +

1
2

(1 − P [pi = 1|ri = C(xi)])

=
1
2

+
1
2
P [pi = 1|ri 6= C(xi)] −

1
2
P [pi = 1|ri = C(xi)]

=
1
2

+
1
2
P [pi = 1|ri 6= C(xi)] + (

1
2
P [pi = 1|ri = C(xi)] − P [pi = 1|ri = C(xi)])

=
1
2

+ (P [pi = 1, ri 6= C(xi)] + P [pi = 1, ri = C(xi)]) − P [pi = 1|ri = C(xi)]

=
1
2

+ P [pi = 1] − P [pi+1 = 1]

≥
1
2

+
1

ms

Let p = P
r1,...,rm

x1,...,xm except xi

[P
xi

[C ′(xi) = C(xi)] >= 1/2 + 1/2ms]. As there exist 0 ≤ a <

1/2 such that 1/2 + 1/2ms + a represents the average accuracy of the predictor C ′ when
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r1, ..., rm, x1, ..., xi−1, xi+1, ..., xm satisfy P
xi

[C ′(xi) = C(xi)] >= 1/2 + 1/2ms, we have

p

(
1
2

+
1

2ms
+ a

)

+ (1 − p)
(

1
2

+
1

2ms

)

≥ P
r1,...,rm
x1,...,xm

[C ′(xi) = C(xi)] ≥
1
2

+
1

ms
,

and thus
p ≥

1
2ms

∙
1
a

≥
1

ms
.

Therefore, L outputs a (1/2 + 1/2ms)-accurate C ′ with confidence 1/m2s.

Comment. When D is nondeterministic: (1) if ri = 0, then the C ′ learned by LC is also nondeter-
ministic; (2) if ri = 0, then the C ′ learned by LC is co-nondeterministic.

In the remaining of this section, we are going to derive learning algorithms based on the as-
sumptions of the nonexistence of i.o. demi-bits and demi-bits respectively. It is obvious that the
non-existence of i.o. demi-bits is a stronger assumption than the non-existence of demi-bits. We
will also see that, given our proof strategy, the stronger assumption yields a better learning result,
in a sense that will be clear later.

A proof of the following theorem was sketch in [Pic20]:

Theorem A.3. Assume the nonexistence of i.o. demi-bits. Then for every c ∈ N, Circuit[nc]
is learnable by Circuit[2no(1)

] (by taking random examples) with confidence 1/2no(1)
up to error

1/2 − 1/2no(1)
, where the learner is allowed to generate a nondeterministic or co-nondeterministic

algorithm approximating the target function.

Proof. Assume the nonexistence of i.o. demi-bits and c ∈ N. There is an encoding scheme for
Circuit[nc] such that every C ∈ Circuit[nc] with n-bit input can be encoded as a string 〈C〉
of length ≤ d = d(n), where d(n) is a polynomial. Set m = nd + 1 and consider a generator
G : {0, 1}mn+nd

→ {0, 1}mn+m, which interprets the last nd input bits as a description of some
C ∈ Circuit[nc] and then computes on the remaining mn bits of input as Gm,C . We note that G
is in P/poly(whenever the encoding scheme for Circuit[nc] is reasonable). Because G is not an i.o.
demi-bit, there is nondeterministic circuit D of sub-exponential size such that for all sufficiently
large n’s

P [D(y) = 1] ≥ 1/|D| and P [D(G(x)) = 1] = 0.

In particular, for every C ∈ Circuit[nc], P [D(G(〈C〉, x) = 1] = 0. That is P [D(Gm,C(x)) = 1] = 0
for every C ∈ Circuit[nc]. Therefore,

P [D(y) = 1] − P [D(Gm,C(x)) = 1] ≥ 1/|D|.

Because m = nd +1 is polynomial in n and |D| is sub-exponential, by Lemma A.2, C can be learned
by a randomized circuit family of size 2no(1)

with confidence 1/2no(1)
up to error 1/2 − 1/2no(1)

.

If we weaken the assumption to the non-existence of demi-bits, with the same proof, we are
able to learn Circuit[nc] in a weaker sense formulated as below:

Theorem A.4. Assume the nonexistence of demi-bits. Then for every c ∈ N, there is an infinite
monotone sequence {ni} ⊆ N such that Circuit[nc] is learnable by Circuit[2no(1)

] (by taking random
examples) with confidence 1/2no(1)

up to error 1/2−1/2no(1)
for every n ∈ {ni}, where the learner is

allowed to generate a nondeterministic or co-nondeterministic algorithm approximating the target
function.
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Because the existence of NP̃/qpoly-natural proofs (a weaker assumption than the existence
assumption of NP/poly-natural proofs) rules out the existence of i.o. super-bits [Rud97], by Theo-
rem A.3, we have:

Corollary A.5. Assume the existence of i.o. demi-bits implies the existence of i.o. super-bits. If
there exists an NP̃/qpoly-natural property useful against P/poly, then for every c ∈ N, Circuit[nc]
is learnable by Circuit[2no(1)

] (by taking random examples) with confidence 1/2no(1)
up to error

1/2 − 1/2no(1)
, where the learner is allowed to generate a nondeterministic or co-nondeterministic

algorithm approximating the target function.
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