Helping Forensics Analysts to Understand and Attribute Cyber-Attacks

Erisa Karafili

Acknowledgments

This work was supported by the European Union's H2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 746667.

The future is Interconnected ...

... and comes with its own security challenges.

Missing Explanations

- ▷ Effects

Current Solution

- ▷ Secure the systems (e.g., firewalls)
- Data centric solutions (e.g., data sharing agreements)
- ▶ Analyse Risks/Threats
- ▶ Attribution & Forensics of Cyber-Attacks
 - Not enough
 - No explanation

Some Security Solutions with Explanations

Explaining the decision taken for the Firewall Configuration

* Karafili et al. " A framework for automatic firewalls configuration via argumentation reasoning" 2019.

Some Security Solutions with Explanations

Explaining Data Sharing Agreement

- * Karafili, Lupu "Enabling Data Sharing in Contextual Environments: Policy Representation and Analysis" (SACMAT 2017).
- * Karafili et al. "An argumentation reasoning approach for data processing "perial College (Computers in Industry 2018). London

Attributing Cyber-Attacks

Motivations

The growing of connectivity increases the security challenges and the need for efficient countermeasures

Analyzing and attributing cyber-attacks permits efficient attacker-oriented countermeasures

- Digital Forensics techniques help the analysis and attribution
- These techniques suffer from the quantity and quality problem

Further Motivations

- Currently attribution is mainly performed by humans
- It suffers from human errors and is easily biased
- It is a difficult process

There is a need to:

- Help the analyst to deal with the evidence
- Explain to the analyst the provided conclusion
- Explain the used reasoning
- Provide new investigation paths

An Argumentation-Based Solution

Solution

An automatic reasoner (ABR) that helps the forensics analyst during the analysis and attribution process.

- ABR is based on argumentation and abductive reasoning;
- It works with incomplete and conflicting pieces of data;
- ABR works with technical and social evidence.

- Karafili, Wang, Lupu "An Argumentation-Based Reasoner to Assist Digital Investigation and Attribution of Cyber-Attacks" in DFRWS EU 2020.
- Karafili, Wang, Kakas, Lupu "Helping Forensic Analysts to Attribute Cyber-Attacks: An Argumentation-Based Reasoner" in PRIMA 2018.
- Karafili, Kakas, Spanudakis, Lupu "Argumentation-based Security for Social Good" (AAAI Fall Symposium 2017)
 Imperial College London

December 4, 2019

Preference-Based Argumentation Framework

Our solution uses a preference-based argumentation framework

Definition

An argumentation theory is a pair $(\mathcal{T}, \mathcal{P})$ of argument rules \mathcal{T} and preference rules \mathcal{P} .

The argument rules ${\mathcal T}$ are a set of labelled formulas of the form:

$$rule_i: L \leftarrow L_1, \ldots, L_n$$
.

The preference rules are a set of labelled formulas of the form:

$$p: rule_1 > rule_2$$

where $rule_1$, $rule_2$ are labels of rules in \mathcal{T} , and > is higher priority relation between the rules.

A Simple Example

```
Given the argument pair (T, P):
```

$$T = \{r_1 : attackOrig(X, Attack) \leftarrow ipGeoloc(X, IP), attackSourceIP(IP, Attack).$$
 $r_2 : \neg attackOrig(X, Attack) \leftarrow ipGeoloc(X, IP), attackSourceIP(IP, Attack),$
 $spoofedIP(IP).\}$
 $P = \{p_1 : r_2 > r_1\}$

and the following evidence:

$$E = \{attackSourcelP(ip1, attack1), ipGeoloc(countryC, ip1)\}$$

the conclusion is:

If the evidence is:

$$E = \{\textit{attackSourceIP}(\textit{ip2}, \textit{attack2}), \textit{ipGeoloc}(\textit{countryC}, \textit{ip2}), \textit{spoofedIP}(\textit{ip2})\}$$

then the conclusion is

$$\neg attackOrig(countryC, attack2).$$

Social Model used by ABR

- ABR is based on the Q-Model
- The Q-Model represents how the analysts perform the attribution process of cyber-attacks
- The pieces of evidence and the reasoning rules are divided in three layers

Argumentation-Based Reasoner for Attribution

ABR Execution Example (1 of 4)

US bank hack occurred in 2012, where US banks faced denial of service (Dos) attacks.

- The banks' web hosting services were infected by a malware called *Itsoknoproblembro*
- Itsoknoproblembro hijacked the corporate clouds
- US placed economic sanctions against Iran in February 2012

```
targetCountry (usa, usbankhack).
attackPeriod (usbankhack, [2012, 9]).
malwareUsed (itsoknoproblembro, usbankhack).
hijackCorporateClouds (usbankhack).
imposedSanctions (usa, iran, [2012, 2]).
```

We can assume the following:

```
targetCountry(usa, usbankhack).
attackPeriod(usbankhack, [2012, 9]).
context(political, usbankhack).
specificTarget(usbankhack).
malwareUsed(itsoknoproblembro, usbankhack).
hijackCorporateClouds(usbankhack).
imposedSanctions(usa, iran, [2012, 2]).
```

```
t_{-1}: highLevelSkill(Att) \leftarrow hijackCorporateClouds(Att).
```

```
targetCountry (usa, usbankhack).
attackPeriod (usbankhack, [2012, 9]).
context(political, usbankhack).
specificTarget(usbankhack).
malwareUsed(itsoknoproblembro, usbankhack).
hijackCorporateClouds(usbankhack).
imposedSanctions(usa, iran, [2012, 2]).
```

 $t_{-1}: highLevelSkill(usbankhack) \leftarrow hijackCorporateClouds(usbankhack).$

```
targetCountry (usa, usbankhack).
attackPeriod (usbankhack, [2012, 9]).
context(political, usbankhack).
specificTarget(usbankhack).
malwareUsed(itsoknoproblembro, usbankhack).
hijackCorporateClouds(usbankhack).
imposedSanctions(usa, iran, [2012, 2]).
highLevelSkill(usbankhack).
```

```
t_2: reqHighRes(Att) \leftarrow highLevelSkill(Att).
```

```
targetCountry(usa, usbankhack).
attackPeriod(usbankhack, [2012, 9]).
context(political, usbankhack).
specificTarget(usbankhack).
malwareUsed(itsoknoproblembro, usbankhack).
hijackCorporateClouds(usbankhack).
imposedSanctions(usa, iran, [2012, 2]).
highLevelSkill(usbankhack).
```

$t_2: reqHighRes(usbankhack) \leftarrow highLevelSkill(usbankhack).$

```
targetCountry (usa, usbankhack).
attackPeriod (usbankhack, [2012, 9]).
context (political, usbankhack).
specificTarget (usbankhack).
malwareUsed (itsoknoproblembro, usbankhack).
hijackCorporateClouds (usbankhack).
imposedSanctions (usa, iran, [2012, 2]).
highLevelSkill (usbankhack).
reqHighRes (usbankhack).
```

From the background knowledge, we have that:

cybersuperpower (iran).

 t_3 : $hasResources(X) \leftarrow cybersuperpower(X)$.

 $t_3: hasResources(iran) \leftarrow cybersuperpower(iran).$

```
targetCountry(usa, usbankhack).
attackPeriod(usbankhack, [2012, 9]).
context(political, usbankhack).
specificTarget(usbankhack).
malwareUsed(itsoknoproblembro, usbankhack).
hijackCorporateClouds(usbankhack).
imposedSanctions(usa, iran, [2012, 2]).
highLevelSkill(usbankhack).
reqHighRes(usbankhack).
hasResources(iran).
```

```
hasResources(X).
targetCountry(usa, usbankhack).
attackPeriod(usbankhack, [2012, 9]).
context(political, usbankhack).
specificTarget(usbankhack).
malwareUsed(itsoknoproblembro, usbankhack).
hijackCorporateClouds(usbankhack).
imposedSanctions(usa, iran, [2012, 2]).
highLevelSkill(usbankhack).
regHighRes(usbankhack).
hasResources(iran).
```

 $op_1: hasCapability(X, Att) \leftarrow regHighRes(Att),$

```
op_{-1}: hasCapability(iran, usbankhack) \leftarrow reqHighRes(usbankhack), 
 hasResources(iran).
```

```
targetCountry(usa, usbankhack).
attackPeriod(usbankhack, [2012, 9]).
context(political, usbankhack).
specificTarget(usbankhack).
malwareUsed(itsoknoproblembro, usbankhack).
hijackCorporateClouds(usbankhack).
imposedSanctions(usa, iran, [2012, 2]).
highLevelSkill(usbankhack).
hasResources(iran).
hasCapability(iran, usbankhack).
```

```
op\_2: hasPolMotive(C, T, Date) \leftarrow imposedSanctions(T, C, Date).
```

```
targetCountry (usa, usbankhack).
attackPeriod (usbankhack, [2012, 9]).
context(political, usbankhack).
specificTarget(usbankhack).
malwareUsed(itsoknoproblembro, usbankhack).
hijackCorporateClouds(usbankhack).
imposedSanctions(usa, iran, [2012, 2]).
highLevelSkill(usbankhack).
hasResources(iran).
hasCapability(iran, usbankhack).
```

```
op_2: hasPolMotive(iran, usa, [2012, 2]) \leftarrow imposedSanctions(usa, iran, [2012, 2]).
          targetCountry(usa, usbankhack).
          attackPeriod(usbankhack, [2012, 9]).
          context(political, usbankhack).
          specific Target (usbankhack).
          malwareUsed(itsoknoproblembro, usbankhack).
          hijackCorporateClouds(usbankhack).
          imposedSanctions(usa, iran, [2012, 2]).
          highLevelSkill(usbankhack).
          hasResources(iran).
          hasCapability(iran, usbankhack).
```

Imperial College London

hasPolMotive(iran, usa, [2012, 2]).

```
op\_3: hasMotive(C, Att) \leftarrow targetCountry(T, Att), \\ attackPeriod(Att, Date1), \\ hasPolMotive(C, T, Date2), \\ dateApplicable(Date1, Date2), \\ context(political, Att), \\ specificTarget(T).
```

```
op\_3: hasMotive(iran, usbankhack) \leftarrow
```

targetCountry(usa, usbankhack), attackPeriod(usbankhack, [2012, 9]), hasPolMotive(iran, usa, [2012, 2]), dateApplicable([2012, 9], [2012, 2]), context(political, usbankhack), specificTarget(usbankhack).

```
targetCountry(usa, usbankhack). ...
highLevelSkill(usbankhack).
reqHighRes(usbankhack).
hasResources(iran).
hasPolMotive(iran, usa, [2012, 2]).
hasCapability(iran, usbankhack).
hasMotive(iran, usbankhack).
```

```
str_1: isCulprit(X, Att) \leftarrow hasMotive(X, Att), hasCapability(X, Att).
                 targetCountry(usa, usbankhack).
                 highLevelSkill(usbankhack).
                 regHighRes(usbankhack).
                 hasResources(iran).
                 hasPolMotive(iran, usa, [2012, 2]).
                 hasCapability(iran, usbankhack).
                 hasMotive(iran, usbankhack).
```

```
str_1 : isCulprit(iran, usbankhack) \leftarrow
                                        hasMotive(iran, usbankhack),
                                        hasCapability(iran, usbankhack).
                targetCountry(usa, usbankhack).
                highLevelSkill(usbankhack).
                reqHighRes(usbankhack).
                hasResources(iran).
                hasPolMotive(iran, usa, [2012, 2]).
                hasCapability(iran, usbankhack).
                hasMotive(iran, usbankhack).
                isCulprit(iran, usbankhack).
```

Helping the Analyst

The output of ABR is the answer of the query together with:

- The used evidence and applied rules
- The abduced evidence
- Suggestions of rules and possible evidence that can prove the abduced one
- Graphical representation of the derivation
- A numerical score for the result
- The used argumentation tree

Graphical Representation

- A derivation tree, where the root is the conclusion and the leaves are the evidence
- The derivation tree is color coded

Scoring System

ABR provides numerical scores together with the result.

The score is calculated by summing the used evidence's score

- Score 3 to every specific-case evidence
- Score 1 to every evidence from the background knowledge
- Score 0 to the abduced evidence

The scoring system uses the *specificity criteria*.

□ Given two results, the one that uses more specific information
 has a higher score.

Example of the scoring system (1/2)

```
rule_1: isCulprit(C, A) \leftarrow hasMotive(C, A), attackOrigin(C, A), country(C).

rule_2: isCulprit(C, A) \leftarrow attackOrigin(C, A), country(C).
```

rule₁ should be stronger than rule₂ as

 C and A satisfy that satisfy rule₁ are a proper subset of the ones that satisfy rule₂.

Example of the scoring system (2/2)

```
rule_1 : isCulprit(C, A) \leftarrow hasMotive(C, A), attackOrigin(C, A), country(C).
rule_3 : isCulprit(C, A) \leftarrow existingGroupClaimedResponsibility(C, A).
```

- Difficult to spot any relation between the results of these rules.
- Intuitively, rule₁ should be stronger than rule₃ as
 - rule₃'s body predicate is a single piece of evidence while rule₁ uses three pieces of evidence.
- It depends by the case study.

Scoring Calculation for our Case Study

The score for our case study is 13

```
targetCountry(usa, usbankhack).
             context(political, usbankhack).
             specificTarget(usbankhack).
             attackPeriod(usbankhack, [2012, 9]).
             imposedSanctions(usa, iran, [2012, 2]).
             hasPolMotive(iran, usa, [2012, 2]).
             hasMotive(iran, usbankhack).
3
             hijackCorporateClouds(usbankhack).
             highLevelSkill(usbankhack).
             regHighRes(usbankhack).
             hasResources(iran).
             hasCapability(iran, usbankhack).
```

Different Scores for the same Result for the Case Study

- ABR provides all possible conclusions.
- The same conclusion can have different scores, (19)

isCulprit(iran, usbankhack).

 ABR uses other evidence: malwareUsed(itsoknoproblembro, usbankhack).

Argumentation Tree

An argumentation tree is provided for each result.

```
bgf6(), r.og_lmaResources(ziran), case_[4(), r__lmgRskill(subanthack), r__lmgRssource)(usbanthack), r__op_.hasCapability2(iran asbanthack), sos(epecificTarget(subanthack)), r__op_.dite2(2012.92), case__f0(), r__op__pMotive1(jran_united_states), r__str__motiveAndCapability(iran_asbanthack)

seefer(r__str__weakAttack(x.A), r__str__motiveAndCapability(X.A))

r__str__weakAttack(iran_asbanthack), r__t_negingpSkil(subanthack), r
```

Further Investigation

- ABR provides suggestions of other paths of investigation
- This feature permits to
 - Avoid human bias
 - Share lesson learned

Conclusions

- A technique to help the forensic investigator to analyze the cyber forensics evidence left after an attack.
- The automatic reasoner, which is based on abductive and argumentation reasoning, given the pieces of evidence:
 - Analyzes the evidence and derives new pieces of evidence
 - Provides explainable conclusions to who might be the culprit of an attack

Future Work

- Fully automate the evidence collection/extraction
- Enrich ABR with reasoning rules and background knowledge
- Work with probabilities for the evidence and reasoning rules
- Empirical studies on the tool usability

Questions?

e.karafili@imperial.ac.uk

http://www.imperial.ac.uk/people/e.karafili

http://rissgroup.org/

References

- Karafili, Wang, Lupu "An Argumentation-Based Reasoner to Assist Digital Investigation and Attribution of Cyber-Attacks" in DFRWS EU 2020.
- Karafili, Valenza, Chen, Lupu "A framework for automatic firewalls configuration via argumentation reasoning" 2019.
- Karafili, Wang, Kakas, Lupu "Helping Forensic Analysts to Attribute Cyber-Attacks: An Argumentation-Based Reasoner" in PRIMA 2018.
- Karafili, Spanaki, Lupu "An argumentation reasoning approach for data processing" in Computers in Industry 2018.
- Karafili, Lupu "Enabling Data Sharing in Contextual Environments: Policy Representation and Analysis" in SACMAT 2017.
- Karafili, Kakas, Spanudakis, Lupu "Argumentation-based Security for Social Good" in AAAI Fall Symposium 2017.