Enabling Cloud-Scale Distributed Capabilities

Otto White
ow20@ic.ac.uk
Imperial College London

Yaoxin Jing
y.jing24@imperial.ac.uk
Imperial College London

Adrien Ghosn
ghosn.adrien@gmail.com
Microsoft Azure Research

Michael Steiner
michael.steiner@intel.com
Intel Labs

Anjo Mona Vij Lluis Vilanova
Vahldiek-Oberwagner mona.vij@intel.com vilanova@imperial.ac.uk
anjovahldiek@gmail.com Intel Labs Imperial College London

Intel Labs
Abstract

Modern applications rely on service-oriented architectures to in-
crease development productivity, cost-effectiveness, and scalability.
However, the growing complexity of cloud stacks, driven by multi-
tenancy, multi-party computations, and dynamic service collabo-
ration, introduces security risks stemming from over-privileged
access. While enforcing the principle of least authority (PoLA)
mitigates these risks, implementing PoLA at scale is prohibitively
complex and costly. If we instead look at existing access control
systems, such as RBAC [25] or ABAC [36] at the application layer
or security groups [14] at the network layer, they rely on exter-
nally defined policies, provide limited abstractions, and require
retrofitting security onto applications, leading to over-privilege.

Conversely, capability-based security offers an application-driven
solution for access control, leading to tight integration of secu-
rity with application semantics, and making PoLA attainable. We
analyse existing capability systems and find that they fall short
at cloud-scale due to limitations in performance, scalability, or
fault tolerance. We present a distributed capability system that
through a sharded, decentralised architecture, capability version-
ing, and application-defined revocability, enables microsecond-scale
delegation and revocation, data center scale scalability, and fault-
tolerance. Our evaluation demonstrates capability operation latency
and system-wide resource consumption scale better than previous
capability systems, at usecond-scale latency.

CCS Concepts

« Security and privacy — Access control; « Computer systems
organization — Cloud computing; Reliability; « General and
reference — Performance.

Keywords

Access Control Systems, Distributed Capabilities, Cloud Computing,
Performance, Scalability, Fault-Tolerance, Reliability

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HCDS °25, March 30, 2025, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-Xxxx-X/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:

Otto White, Yaoxin Jing, Adrien Ghosn, Michael Steiner, Anjo Vahldiek-
Oberwagner, Mona Vij, and Lluis Vilanova. 2025. Enabling Cloud-Scale
Distributed Capabilities. In Proceedings of HCDS 2025 (HCDS ’25). ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Cloud-native applications use service-oriented architectures for
elasticity, productivity, and cost-effectiveness. Standalone services
— such as databases [7, 8, 28], data caching [20], and ML-as-a-
service [1-3] — are composed [10] to rapidly build complex pro-
cessing pipelines and systems with advanced functionalities. For
example, an image-based ML inference application can be rapidly
built by combining a request ingestion service (e.g., Nginx), an in-
ference service using vLLM, and a storage service like Amazon S3
for user input files.

Despite its advantages, service-oriented architectures often lag in
security. Their modularity, flexibility, and composability often lead
to “over-privilege”. Services are granted excessive access without
strict controls on resources or network interactions. This over-
privilege increases security risks, including compromised creden-
tials, insider threats, accidental misuse [23, 24], and cross-party
exposure in multi-tenant environments [15]. For example, in the
ML inference scenario above, the ingestion service may only allow
requests referencing authorized input files. However, an attacker
could craft a malformed inference input to bypass this check, ex-
ploiting an over-privileged inference service, which has access to
the entire storage, to retrieve unauthorized data.

From a security perspective, applications should follow the prin-
ciple of least authority (PoLA) [22], granting services only the
minimum privileges needed to complete their current task. How-
ever, achieving PoLA at cloud scale is currently impractical because:
(i) security is retrofitted onto applications with externally defined
policies, rather than being a first-class citizen of the application
development process; and (ii) it is costly to tightly secure and main-
tain realistic applications using policies developed independently
from the applications [9, 35]. An application-driven PoLA approach
would provide a more effective path to robust security.

Capability-based security is ideal for enforcing application-driven
PoLA, but no existing capability system can operate at cloud scale.
The security benefits of capabilities are well established, includ-
ing privilege minimization, mitigation of confused deputy attacks,
and elimination of ambient authority [18, 21]. Each capability is
an unforgeable token that allows its holder to securely “invoke” a
specific operation. In turn, the holder of a capability can securely

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

HCDS ’25, March 30, 2025, Rotterdam, Netherlands

and dynamically “delegate” it to another party, who then holds a
copy. The original holder remains, however, in control and can later
“revoke” the delegation, ensuring that the delegated permissions are
no longer valid. In the ML inference example, application-driven
PoLA can be implemented by replacing RPCs with capability in-
vocations [29]. The ingestion service would convert authorized
file references into capabilities, delegating them to the inference
service and revoking them after the computation. This approach
enables flexible computations while ensuring security invariants
across services and minimizing per-task privileges.

Unfortunately, previous capability systems cannot reach cloud
scale because they cannot address the following challenges: (i) critical-
path performance, by introducing excessive capability-related net-
work messages (e.g., during RPC invocation), or slow network recon-
figuration; (ii) scalability, by having capability book-keeping over-
heads that increase quadratically with the system size; or (iii) fault
tolerance, by treating the entire capability system as a single failure
domain. Previous capability systems exhibit one or more of these
problems, either because they were targeting a different scale or as
a trade-off between these three challenges.

In this paper, we present a distributed capability system that, to
the best of our knowledge, is the first to simultaneously address all
three challenges: critical-path performance, scalability, and fault
tolerance. As a result, we achieve constant-complexity capability
operations at the psecond scale, regardless of system size, including
immediate revocation and with minimal, constant-cost manage-
ment overheads. We present the design of this new system, which
provides the following technical contributions (see § 3):

(1) Self-contained guarded capability sets provide critical-
path performance by minimizing costs associated with delegation
and revocation operations. When looking at application semantics,
only a subset of the delegated capabilities is directly revoked. We
therefore introduce the concept of guarded capability sets, wherein
capabilities can be delegated without updating any central struc-
ture. Within a guarded set, the contents of a capability are directly
serialized as part of an application RPC (i.e., capability invocation),
and a revocation is immediately applied to all capabilities within
the same set. We only need to track the creation of such “capability
guards”, which is a much less frequent operation.

(2) Owner-based metadata sharding provides fault tolerance,
ensuring that the failure of one node in the system does not affect
other nodes. We observe that capability authorization can be safely
delayed until invocation, and that invocation should always be
possible as long as the invoked application or the node where
it runs have not failed. We therefore co-locate metadata needed
for invocation authorization (namely capability guards), with the
application that the capability points to (the capability “owner”),
ensuring that failure of any other application or node will not
affect failure tolerance. This sharding also helps naturally distribute
capability operations across nodes, eliminating bottlenecks and
facilitating scalability as well as fault tolerance.

(3) Metadata versioning provides the ability to reach cloud
scale with constant system overheads on each node. Capabilities can
be seen as indices to a global, distributed space, wherein delegation
and revocation provide a second, temporal dimension. We directly
represent this temporal dimension by storing a version number for
the node and guard each capability points to. As a result, we avoid

White et al.

the costly broadcast operations that other systems need to “clean
up” capabilities when they are revoked, or when an application or
node fail. The versions are large enough that version cleanup can
be performed in the background at negligible cost, even at very
large system sizes.

We provide a careful analysis of previous capability systems and
how they fail to deliver on the various challenges we identified
above (see § 2). We also demonstrate how our system delivers on
all three challenges by evaluating a prototype using a small-scale
data center, as well as modelling it on larger-scale systems (see
sections 3 to 5).

2 Motivation

Capabilities have been extensively studied as an effective mech-
anism to enforce PoLA and enable fine-grained security [18]. A
principled shift to a capability-based cloud is now timely, as the
increasing complexity of cloud applications is pushing existing
security approaches to their limits (§ 2.1).

Nevertheless, capability systems have seen little mainstream
adoption. They are not as well understood as other security mecha-
nisms we use today, even though interest in them is growing (§ 2.2).
In addition, adopting capabilities requires careful consideration
of prior designs, leveraging their insights while addressing their
unforeseen limitations when deployed at cloud scale (§ 2.3).

2.1 Limitations of non-capability systems

Traditional security enforcement mechanisms, such as RBAC and
ABAC, fail to achieve PoLA under the scale and complexity of
modern cloud systems. They define policies that are decoupled
from application semantics, leading to independent policy creation,
maintenance, and synchronisation. Their opinionated abstractions
(roles and attributes) either struggle to capture intricate semantics,
dynamicity, and collaboration, or their policies become excessively
complex when doing so (e.g., role-explosion for RBAC [9] or massive
privilege spaces for ABAC [24]). Policy mining attempts to automate
the creation of complex, least-privilege security policies but only
tackles a symptom of decoupled security abstractions.

2.2 A primer on capability systems

Capability systems allow the secure creation of capabilities, pre-
venting forgery and tampering. This is typically achieved by either
using: (i) cryptographic integrity checks [19]; (ii) a partitioned
state maintained by the OS kernel [5, 12] or (iii) a ISA-controlled
in-memory representation [32].

Capability systems also provide the following operations: (i) in-
vocation performs an operation based on the rights encoded in the
capability — e.g., send a message to another process, or access a spe-
cific memory address; (ii) delegation allows a process to delegate the
authority to invoke that capability to another process by sending
it a copy of a capability it holds — this describes a sender/receiver
relationship that is tracked as the capability derivation tree (CDT);
(iii) diminishing permissions allows delegating a capability to one-
self with monotonically decreasing permissions [30]; and (iv) revo-
cation allows the holder of a capability to invalidate all capabilities
within the CDT subtree rooted at the capability being revoked. One

Enabling Cloud-Scale Distributed Capabilities

System Intended scale Critical-path | Scalability Fault
performance tolerance
Barrelfish [11] X X X
SemperOS [13] Distributed OS X v X
Amoeba [19] v (%) v X
CapNet [6] X X X
Frapctos [29] Data center v X X
BlendCAC [34] | World-wide [oT X v v
This work Data center v v v

Table 1: Comparison of various capability systems across the
three challenges for cloud-scale distributed capabilities. (*)
Design limitations only partially fulfill a challenge.

can combine delegation with permission diminishing to, for exam-
ple, delegate read-only permissions for a file capability that is held
with read-write permissions.

Revoking a CDT subtree is known as selective revocation and is
key for applications to precisely control delegated authority, but it is
also arguably the most complex operation on any capability system.
Note that some form of revocation is always necessary: reusing
resources authorized through a CDT (e.g., a memory allocation)
before the CDT has been fully revoked will lead to use-after-free
security problems. Due to this complexity, some systems instead
provide non-selective revocation [17] or avoid reuse through a
trusted, global garbage collection pass for capabilities [31, 33].

2.3 Challenges of cloud-scale capabilities

We cannot easily shift previous capability systems into the cloud
because the larger scale, greater networking costs, and higher fail-
ure rates put unanticipated pressure on their design. No existing
design fully resolves the following three challenges simultaneously,
favoring one aspect over another: (i) critical-path performance de-
scribes whether the capability operations in § 2.2 are fast enough
to be used on the hot path of applications; (ii) scalability ensures
that the latency and management overheads of all operations are
constant for each node as we increase the system size (i.e., linear
with system size) — failure to do so leads to centralization and
broadcast bottlenecks, introducing unreasonable inefficiencies for
both applications and operators; and (iii) fault tolerance is critical at
cloud scale, given that capabilities are linked to both security and
system utilization, and that cloud-scale systems are known to have
large aggregate failure rates [4].

The CDT is one of the most important parts of a capability
system with selective revocation, as it is updated during creation,
delegation, and revocation and checked during invocation. As a
result, the specific implementation of a CDT has a fundamental
impact on all three challenges. In the rest of this section, we analyze
how relevant capability systems measure up to these challenges, as
summarized in Tab. 1.

Critical-path performance. Many previous systems cannot per-
form at larger scales; e.g., Barrelfish [5] and SemperOS [13] were
designed to execute within a chip. Networked operations become
orders of magnitude slower, often leading application developers
to avoid them by over-permissioning applications and, therefore,
failing to follow PoLA.

HCDS °25, March 30, 2025, Rotterdam, Netherlands

Interestingly, systems will use a distributed CDT to avoid del-
egation overheads, but distributed CDT traversal leads to slower
revocations and, therefore, to system underutilization as resources
cannot be reused until a revocation is globally consistent (e.g., Bar-
relfish and SemperOS). For a subtree of size C, selective revocation
has complexity O(C), leading to up to as many network messages
for CDT traversal.

Other systems rely on technologies that are too slow for critical-
path performance. CapNet [6] enforces delegation and revocation
by updating SDN flow-tables, which can take 10-100 msec [16].
Similarly, BlendCAC [34] relies on blockchain technology with
large and unpredictable latency.

In contrast, FractOS [29] and Amoeba [19, 27] can offer critical-
path performance by embedding capability operations within appli-
cation RPCs. FractOS uses partitioned capabilities and supports all
capability operations with at most one network message. Amoeba
uses cryptographic capabilities; with a poorer permissioning system
(e.g., cannot support diminishing memory ranges), some operations
can require multiple cryptographic passes, and can only prevent
capability forgery at ingress (leading to DoS attacks).

Scalability. With tens or hundreds of thousands of nodes and an
equally large number of applications, in a cloud-scale capability
system with N nodes and K capability ops/sec/node, a centralized
solution is a bottleneck: a single node must process O(NK) op-
erations. This is the case for CapNet, which does central updates
during delegation and revocation.

Distributed solutions such as Barrelfish and FractOS have a
broadcast bottleneck during revocation. Barrelfish uses a two-phase
commit to all nodes, which has quadratic overheads with O(N2K)
messages, and lowers system utilization by delaying resource re-
lease. In contrast, FractOS uses an indirection table to immediately
release resources but needs a broadcast operation to (eventually)
reuse table entries, again with quadratic overheads of O(N2K).

Some systems exist that can reach cloud-scale. BlendCAC lever-
ages blockchain, which requires excessive computation with long
latencies, while the number of miners can further degrade its effi-
ciency. Amoeba employs cryptographic capabilities checked by the
serving application when invoked, which naturally avoids central-
ization and broadcast bottlenecks. SemperOS distributes its CDT
across multiple micro-kernel instances and avoids broadcast bottle-
necks for selective revocation via distributed traversal.

Fault tolerance. A centralized design such as CapNet puts the
entire system in a single failure domain, whereas a distributed CDT
such as in Barrelfish and SemperOS puts multiple nodes in a single
failure domain. This is because failure on any node along the CDT
will partition the data structure and strand its resources. FractOS
uses CDT sharding to avoid both problems but cannot handle node
failures reliably, whereas Amoeba has similar reliability problems.

Replication is not adequate either, as it reduces critical-path
performance; e.g., BlendCAC leverages blockchain, which is orders
of magnitude slower than an application RPC.

3 Design

We now describe the design of our distributed capability system,
which simultaneously addresses all three cloud-scale challenges
(see § 2.3). Our system is an extension of FractOS [29], a distributed

HCDS ’25, March 30, 2025, Rotterdam, Netherlands

multi-kernel capability system that targets heterogeneous, disag-
gregated data centers. It is only able to provide critical path perfor-
mance, and we modify it to address all three challenges.

3.1 Application-visible interface

As depicted in Fig. 1, the kernel is deployed as per-node kernel in-
stances known as controllers. Each process can only interact with the
capabilities it holds via its assigned controller, which implements
partitioned capabilities; i.e., capabilities are indices to a per-process
capability table (see userspace application in Fig. 1, and § 2.2).

A capability invocation is routed through the controller network
and into the “owner” process that created the root of that capabil-
ity’s CDT. For example, the Application in Fig. 1 invokes Cap7 to
send a message to SSD Service, who is the owner of that capabil-
ity as well as the SSD1 object it refers to, which is routed through
controllers 2 and 3 (the invoking and the owning controllers, re-
spectively).

Our system provides the same capability types as FractOS: mem-
ory and request. A memory capability represents a memory region
within the owning process and provides remote access to it. It en-
codes an access mode and address range, which can be diminished
(e.g., go from read/write to read-only, or authorize a smaller mem-
ory buffer). A request capability represents the ability to invoke
some remote functionality, such as an access to SSD1 for Cap7 in Fig.
1. Request invocations can be parameterised with other capabilities
that are delegated to the owning process, as well as with a series
of data buffers whose contents are sent as part of an invocation.
These request “arguments” are always received by an invocation
handler function in the capability’s owning process; they can be
used not only to delegate access to other services but also to specify
a “continuation” request to be executed upon completion of the in-
vocation handler. This can be used by applications to implement any
communication model, such as unidirectional RPCs, synchronous
RPCs, or even distributed dataflow.

3.2 Capability system key design ideas

Self-contained guarded capability sets. Capabilities can be de-
rived, invoked, and delegated without contacting additional pro-
cesses or controllers. The internal representation of a capability
(e.g., the arguments in a request) is entirely self-contained within
the controller assigned to the process holding that capability. Every
delegation creates a new copy of that representation (with modified
contents when diminishing it or when adding request arguments).

To avoid the cost and complexity of selective revocation, we
provide it only when applications need it, as exemplified in Fig.
2. Instead of representing the full CDT, processes can explicitly
identify which capabilities need to be selectively revocable (the
root of each subtree on the left of Fig. 2). We call these potential re-
vocation points capability guards (or guards, for short), and replace
the traditional CDT with a guard derivation tree (GDT), as shown
on the right of Fig. 2. The GDT is never updated when capabilities
are derived or delegated (unlike a CDT); instead, the GDT is only
updated when a new revocable capability (i.e., a guard) is explicitly
requested by an application (e.g., c1 and c2 are revocable capabil-
ities with respective guards g1 and g2). This ensures the GDT is
embedded within the conceptual CDT, while being a lot smaller as

White et al.

it describes only the guards needed by applications, instead of all
delegations.

During the invocation of Cap7 (top-center of Fig. 1), Contro-
1ler2vVer1 holds a reference to the owner’s GDT (owning con-
troller/guard tuple (Controller3Ver2, Guard2Ver3)), which is
used to send a message to the owning Controller3Ver2, who in
turn uses its GDT to send the invocation information to the owning
process via Guard2Ver3. Revoking the root capability of a guarded
subtree (e.g., c2 in Fig. 2) effectively revokes all derived capabili-
ties (c4, c5) that point to the same guard (g2). Note that when a
guard is revoked, the owning controller will reject invocations for
it and recursively revoke its child guards, effectively providing the
revocation semantics of a CDT.

Owner-based metadata sharding. A GDT is stored within the
owning controller, which is co-located with the owning process.
Any controller holding a capability (on behalf of one of its processes)
that is owned by another controller simply holds a guard reference
(the bottom-left Cap circle in Fig. 1).

This naturally shards physical resources used by processes, to-
gether with capability metadata. GDTs are distributed across the
system, but all invocations can always be checked for revocation
against the owning controller, which must always be contacted for
an invocation (e.g., to deliver a request invocation).

Metadata versioning. All guards owned by a controller are stored
in its guard table, a finite-size data structure in memory. A guard is
globally referenced by other controllers using a tuple that contains
a controller identifier (using the owning node’s address) and a guard
identifier (using an index to the owner’s guard table).

Without delegation tracking or revocation broadcasts (which
fail to address the challenges in § 2.3), naively reusing a guard table
entry, or rebooting a node, will result to the same use-after-free
problems we face with traditional CDTs (see § 2.2).

We therefore introduce guard and controller versioning. Guard
identifiers have a 64-bit unsigned version that is incremented before
a guard table entry is reused, and controller identifier versions are
similarly incremented each time a node is (re)booted (e.g., after a
node failure). Invocation of a revoked capability (or after a node
reboot) will therefore be rejected as the versions will not match.

The system can rarely run out of version numbers. Guard ver-
sions increments are independent between nodes, and a node re-
voking capabilities at line rate will run out guard versions after
4 x 102 years (10° revocations/sec, with a guard table of 8 x 210
entries and 64-bit versions). Similarly, a node with a typical 0.1%
failure rate will run out of controller versions after 2 x 108 years
(64-bit versions). We split the guard version space of a controller
into ranges, select live guards in the oldest version range, assign
them new versions in the youngest available range, broadcast this
change to all controllers as a version upgrade request, and finally
mark the range as free (the same approach applies for node ver-
sions). This results in negligible CPU and network overheads since
guards are often revoked before an upgrade is needed, and we can
pace upgrade messages across a vast timeline.

Enabling Cloud-Scale Distributed Capabilities

GPU Service Application SSD Service
Application @ @ Application
Managed GPU1 Managed SSD1

Userspace
....................................... SR T R PP T T T PP P SESTRPI

Controller{Ver1 Controller2Ver1 Controller3VerR e
Kernel: Capability| Metadat: Capapility Capability Metadata~”

LIl 1] AT]| Oy]

AA R
Network | | r >~ r — -

references - -
— magnifies

Figure 1: FractOS distributed capabilities architecture

3.3 Discussion on cloud-scale challenges

Given the three key design ideas of our capability system, we can
now discuss how they fully address the three challenges for building
a cloud-scale distributed capability system.

Critical-path performance. Our system has constant CPU com-
plexity and no additional network messages for invocation and
delegation, since capabilities are self-contained with their remote
guard references (there are no CDT updates), and piggy-back on
application RPCs. Capability creation is always local and has a
constant cost. Furthermore, the use of guards allows processes to
locally “close” their capabilities without performing any revocation
(i.e., remove a capability from the process’ capability table). When a
single guard is revoked, a network roundtrip message to the owning
node is required, which simply invalidates a guard table entry.

Scalability. Our system eliminates both centralisation and broad-
cast bottlenecks, unlike most of the previous systems. Using guards
ensures that delegation never updates the corresponding GDT.
Owner-based GDT sharding brings various benefits: (i) localizes
GDT management on each owning controller (as opposed to other
systems with distributed CDT management); (ii) provides a simple
serialization point for managing and checking authorization; and
(iii) gracefully distributes load between controllers according to the
load served by their respective processes. Finally, guard versioning
ensures that immediate and selective revocation can be done with a
single network roundtrip to the guard’s owning controller (unlike
previous work, which uses broadcast operations or system-wide
garbage collection).

Fault tolerance. Our system maintains per-node failure domains
and handles failure in a secure way. Owner-based metadata shard-
ing stores all capability metadata, and handles all capability oper-
ations for a resource on the owning controller. This reduces the
failure domain for the resource to a single node. Existing systems
either expand failure domains to all nodes that participate in a
distributed CDT [13], or treat the entire system as a failure domain
[5]. Although node failure is inevitable and can still affect service
availability, controller versioning in guard references ensures that
applications perceive node failure equivalently to if the failed con-
troller revoked all of its capabilities. This enables applications to
safely handle the expected behaviour that their capability was re-
voked, and trigger error handling code such as re-acquiring a new
capability from an available service. Nevertheless, this does not
degrade the system’s fault tolerance, as handling such errors is
up to the applications, similar to how they must already handle
network connection errors today.

iguard = Guard2Ver3
object = SSD1

ctrl = Coniroller3Ver2
lguard = Guard2Ver3

HCDS °25, March 30, 2025, Rotterdam, Netherlands

C* = revocable capability
Subtree 1
- - ~

Figure 2: Relationship between CDT and GDT.

4 Implementation

To build our system, we extended FractOS [29] to address all three
cloud-scale challenges. Processes can only issue controller syscalls
via asynchronous local network messages; both are deployed as
Linux processes, and controller instances are cataloged by a cluster
manager. We modified the controllers and manager to introduce
64-bit versions to both controller identifiers and guard table en-
tries/references (making capability references globally unique and
versioned). To decrease the frequency of guard version increments,
we batch guard table entry releases and monotonically increase
a guard version counter with each batch. We also modified the
controllers to move all control plane operations to a separate thread
(e.g., handling guard batches or remote node failures), which im-
proves application tail latency.

5 Evaluation

We evaluate the critical-path performance of our system, and study
its scalability using both a small prototype cluster and a mathe-
matical model for larger cluster sizes. We do not quantify fault
tolerance; as discussed in § 3 and § 4, the design provides per-node
failure domains, and enables applications to handle service failures
as expected behaviour (equivalent to revocations).

5.1 Methodology

We perform all measurements in a 7-node cluster where nodes have
2x Intel Xeon E5-2630 v4 CPUs, 64-92GB DRAM and 1x 100 Gbps
Mellanox ConnectX-4. Our larger 63-node cluster is emulated by
deploying up to 63 FractOS controllers across all physical nodes,
and pinning all system and application threads to separate CPUs
and NUMA-aware allocations.

5.2 Critical-path performance: Capability
operations

We have measured the latency of core capability operations on
our system to determine if they are suitable for the critical path
of applications. The results are summarized as a breakdown of the
main operations in Fig. 3, with experiments repeated until having
a standard deviation below 3% of the mean, with 20 confidence.
They include creation of a single capability (Create), invocation of
a two-way RPC that goes across two controllers (Empty RPC), and
two more RPC variants where a single capability is delegated (RPC
w/ delegate) and where a capability is created, delegated and finally
revoked at the end of the RPC (RPC w/ delegate+revoke).

HCDS ’25, March 30, 2025, Rotterdam, Netherlands

RPC w/ delegate
+revoke

RPC w/ delegate

Empty RPC
(invoke)

Network Il

Syscall I

ontroller data plane I
T

0 10 20 30
Latency [us]

Create

Figure 3: Latency of core capability operations.

@ 55 “ 1000

= — BBR @ —— BBR (20% ctrl

> 45 == Versioned cap. — —| BBR (10% ctyfs)

E 35 - - |deal E 500 17— Versioned

ot 'S

B8 25 =i

= =

8 15 7 T T T O O B T T T T

:% 0 20 40 60 % 020k 60k 100k
DC size [#ctrls] = DC size [#ctrls]

Figure 4: Application latency and network overheads for the
prototype cluster (left) and large-scale model (right).

The last variant is particularly important as it allows us to per-
form a secure RPC that can only be responded to once. This ap-
proach strictly follows PoLA and has performance independent of
system size (see below), while providing well within existing (unse-
cured) RPC solutions [26]. These results hold at the 99th percentile
with 10K ops/sec on each node for the more complex RPC, and
with 200K ops/sec for the empty RPC (not shown for brevity).

Conclusions: All operations have performance within existing
application-level RPC solutions. Unlike other capability systems
with a distributed CDT, we can efficiently piggyback all capability
operations on existing application RPCs without impacting their
performance.

5.3 Scalability: Capability revocation

We have measured the performance of our versioned capability
implementation, and compared it against an implementation on
the same system using broadcast-based revocation (BBR; present in
Barrelfish and FractOS); we do not compare against other designs
with centralized or distributed CDTs, as they impact fault tolerance
(see § 2).

Latency measurements: The results for both designs are shown
in Fig. 4 (left), together with an ideal design where revocations
have no performance impact. Revocation is the most important
operation for scalability on these designs, and we measure the
interference it introduces on a simple application that executed
empty syscalls at 10K ops/sec; on the same node, we place an
application that continuously delegates and revokes a capability to
another application in a remote node, also at 10K ops/sec.

We can observe that the revocation overheads of BBR increase
with system size and cannot reach data center scale, since the
controller is increasingly busy doing broadcasts. In comparison,
versioned capabilities have a constant cost regardless of system

White et al.

size, only slightly above the ideal case (due to sub-optimal cache
coherency traffic in the controller). A similar measure on all other
controllers shows that BBR has a constant application-visible over-
head for processing the incoming broadcasts, whereas we have
negligible overhead.

Network Transmission: We have also measured the network traf-
fic introduced by revocations using our virtual cluster and used
that as a base to model a cloud-scale system. The results are shown
in Fig. 4 (right), using the same application configuration and revo-
cation protocols, and show the aggregate network traffic used by
the revocation operations as we vary the number of nodes doing
revocations concurrently.

We can see that traffic with BBR increases quadratically with
the system size, and reaches close to 1,000 TB/sec with only 20% of
the nodes doing revocations. In comparison, versioned capabilities
introduce no network traffic whatsoever.

CPU Overheads: Similarly, CPU time for BBR increases quadrati-
cally with system size, whereas for versioned capabilities, it grows
linearly with the number of revocations.

Conclusions: Capability versioning provides support for selec-
tive revocation at constant, negligible cost per node, regardless of
system size. This is unlike other approaches such as BBR, while at
the same time, versioning provides strong fault tolerance properties.

6 Conclusions

We discussed the necessity of adopting cloud-scale PoLA to build
secure cloud applications, how capabilities are key to effectively
achieve that, and tackled the challenges that such a distributed capa-
bility system faces. We analyzed existing systems, identifying their
shortcomings in critical-path performance, scalability, and fault
tolerance, and presented a new capability system that (to the best
of our knowledge) is the first to simultaneously address all three.
Our evaluation shows microsecond-scale capability operations and
low system overheads that remain constant regardless of data cen-
tre size. While transitioning cloud applications to capability-based
security is non-trivial, this work seeks to reduce access control as a
barrier to cloud-scale PoLA.

References

[1] [n.d]. Machine Learning Service - Amazon Sagemaker AI - AWS.
https://aws.amazon.com/sagemaker-ai/.

[2] [n.d.]. Vertex AI Studio. https://cloud.google.com/generative-ai-studio.

[3] Microsoft Azure. 2025. Azure OpenAl Service. https://azure.microsoft.com/en-
us/products/ai-services/openai-service

[4] Luiz André Barroso, Jimmy Clidaras, and Urs Hélzle. 2013. The Datacenter as
a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second
Edition. Morgan and Claypool Publishers.

[5] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schiipbach, and Akhilesh Singhania.
2009. The Multikernel: A New OS Architecture for Scalable Multicore Systems.
In ACM SIGOPS Symposium on Operating Systems Principles. https://doi.org/10.
1145/1629575.1629579

[6] Anton Burtsev, David Johnson, Josh Kunz, Eric Eide, and Jacobus Van Der Merwe.
2017. CapNet: Security and Least Authority in a Capability-Enabled Cloud. In
Symposium on Cloud Computing. https://doi.org/10.1145/3127479.3131209

[7] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed
Database. ACM Trans. Comput. Syst. 31, 3 (Aug. 2013), 8:1-8:22. https://doi.org/
10.1145/2491245

https://azure.microsoft.com/en-us/products/ai-services/openai-service
https://azure.microsoft.com/en-us/products/ai-services/openai-service
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/3127479.3131209
https://doi.org/10.1145/2491245
https://doi.org/10.1145/2491245

Enabling Cloud-Scale Distributed Capabilities

(8]

[9

=

[10

[11

[12

[13

[14]

[15

[16

(17
[18]

[19

[20]

[21]

[22]

[23

[24]

[25

[26

[27

S
&

[29]

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner.
2016. The Snowflake Elastic Data Warehouse. In International Conference on
Management of Data. https://doi.org/10.1145/2882903.2903741

Aaron Elliott and S. Knight. 2010. Role Explosion: Acknowledging the Problem.
In Software Engineering Research and Practice.

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud & Edge
Systems. In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). https://doi.org/10.1145/3297858.
3304013

Simon Gerber. 2018. Authorization, Protection, and Allocation of Memory in a
Large System. (2018).

Gernot Heiser and Kevin Elphinstone. 2016. L4 Microkernels: The Lessons from
20 Years of Research and Deployment. ACM Transactions on Computer Systems
34, 1 (April 2016), 1-29. https://doi.org/10.1145/2893177

Matthias Hille, Nils Asmussen, Pramod Bhatotia, and Hermann Hértig. 2019. Sem-
perOS: A Distributed Capability System. In USENIX Annual Technical Conference
(ATC).

Cheng Jin, Abhinav Srivastava, Yu Jin, and Zhi-Li Zhang. 2014. Secgras: Security
Group Analysis as a Cloud Service. In 2014 IEEE 22nd International Conference on
Network Protocols. 215-220. https://doi.org/10.1109/ICNP.2014.42

Cheng Jin, Abhinav Srivastava, and Zhi-Li Zhang. 2016. Understanding Security
Group Usage in a Public IaaS Cloud. In IEEE International Conference on Computer
Communications (INFOCOM). https://doi.org/10.1109/INFOCOM.2016.7524508
Maciej Kuzniar, Peter Peresini, and Dejan Kostic. 2015. What You Need to Know
About SDN Flow Tables. In Intl. Conf. on Passive and Active Measurements (PAM).
Henry M. Levy. 1984. Capability-Based Computer Systems. John Wiley & Sons.
Mark S. Miller, Ka-Ping Yee, and Jonathan S. Shapiro. 2003. Capability Myths
Demolished. Technical Report SRL2003-02. John Hopkins University.

S.J. Mullender and A. S. Tanenbaum. 1986. The Design of a Capability-Based
Distributed Operating System. Comput. §. 29, 4 (Jan. 1986), 289-299. https:
//doi.org/10.1093/comjnl/29.4.289

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling Memcache at
Facebook. In USENIX Conference on Networked Systems Design and Implementa-
tion.

Vineet Rajani, Deepak Garg, and Tamara Rezk. 2016. On Access Control, Ca-
pabilities, Their Equivalence, and Confused Deputy Attacks. In 2016 IEEE 29th
Computer Security Foundations Symposium (CSF). 150-163. https://doi.org/10.
1109/CSF.2016.18

J.H. Saltzer and M.D. Schroeder. 1975. The Protection of Information in Computer
Systems. Proc. IEEE 63, 9 (Sept. 1975), 1278-1308. https://doi.org/10.1109/PROC.
1975.9939

Matthew Sanders and Chuan Yue. 2017. Automated Least Privileges in Cloud-
Based Web Services. In ACM/IEEE on Hot Topics in Web Systems and Technologies.
https://doi.org/10.1145/3132465.3132470

Matthew W Sanders and Chuan Yue. 2019. Mining Least Privilege Attribute Based
Access Control Policies. In Annual Computer Security Applications Conference.
https://doi.org/10.1145/3359789.3359805

Ravi Sandhu, David Ferraiolo, and Richard Kuhn. 2000. The NIST Model for Role-
Based Access Control: Towards a Unified Standard. In Proceedings of the Fifth ACM
Workshop on Role-based Access Control (RBAC "00). Association for Computing
Machinery, New York, NY, USA, 47-63. https://doi.org/10.1145/344287.344301
Korakit Seemakhupt, Brent E. Stephens, Samira Khan, Sihang Liu, Hassan Wassel,
Soheil Hassas Yeganeh, Alex C. Snoeren, Arvind Krishnamurthy, David E. Culler,
and Henry M. Levy. 2023. A Cloud-Scale Characterization of Remote Procedure
Calls. In Symp. on Operating Systems Principles (SOSP).

Andrew S Tanenbaum, Sape J Mullender, and Robbert van Renesse. 1995. Using
Sparse Capabilities in a Distributed Operating System. (1995).

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations
for High Throughput Cloud-Native Relational Databases. In ACM International
Conference on Management of Data (SIGMOD). https://doi.org/10.1145/3035918.
3056101

Lluis Vilanova, Lina Maudlej, Shai Bergman, Till Miemietz, Matthias Hille, Nils
Asmussen, Michael Roitzsch, Hermann Hartig, and Mark Silberstein. 2022. Slash-
ing the Disaggregation Tax in Heterogeneous Data Centers with FractOS. In
European Conference on Computer Systems (EuroSys). https://doi.org/10.1145/
3492321.3519569

HCDS °25, March 30, 2025, Rotterdam, Netherlands

[30] Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, and
Munraj Vadera. 2015. CHERI: A Hybrid Capability-System Architecture for
Scalable Software Compartmentalization. In IEEE Symp. on Security and Privacy.
Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff, Sam Ainsworth,
Lucian Paul-Trifu, Brooks Davis, Hongyan Xia, Edward Tomasz Napierala,
Alexander Richardson, John Baldwin, David Chisnall, Jessica Clarke, Khilan
Gudka, Alexandre Joannou, A. Theodore Markettos, Alfredo Mazzinghi, Robert M.
Norton, Michael Roe, Peter Sewell, Stacey Son, Timothy M. Jones, Simon W.
Moore, Peter G. Neumann, and Robert N. M. Watson. 2020. Cornucopia: Tempo-
ral Safety for CHERI Heaps. In IEEE Symp. on Security and Privacy (SP).
Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton,
and Michael Roe. 2014. The CHERI Capability Model: Revisiting RISC in an Age
of Risk. In ACM/IEEE International Symposium on Computer Architecture (ISCA).
https://doi.org/10.1109/ISCA.2014.6853201

Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel W. Filardo, Michael
Roe, Alexander Richardson, Peter Rugg, Peter G. Neumann, Simon W. Moore,
Robert N. M. Watson, and Timothy M. Jones. 2019. CHERIvoke: Characterising
Pointer Revocation using CHERI Capabilities for Temporal Memory Safety. In
IEEE/ACM Intl. Symp. on Microarchitecture (MICRO).

Ronghua Xu, Yu Chen, Erik Blasch, and Genshe Chen. 2018. BlendCAC: A
BLockchain-Enabled Decentralized Capability-Based Access Control for IoTs.
In IEEE International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData). https://doi.org/10.1109/
Cybermatics_2018.2018.00191

Zhongyuan Xu and Scott D. Stoller. 2015. Mining Attribute-Based Access Control
Policies. IEEE Transactions on Dependable and Secure Computing 12, 5 (Sept. 2015),
533-545. https://doi.org/10.1109/TDSC.2014.2369048

E. Yuan and J. Tong. 2005. Attributed Based Access Control (ABAC) for Web
Services. In IEEE International Conference on Web Services (ICWS05). 569. https:
//doi.org/10.1109/ICWS.2005.25

(31

w
S

[33

[34

[35

[36

Received 7 February 2025; accepted 24 February 2025

https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/2893177
https://doi.org/10.1109/ICNP.2014.42
https://doi.org/10.1109/INFOCOM.2016.7524508
https://doi.org/10.1093/comjnl/29.4.289
https://doi.org/10.1093/comjnl/29.4.289
https://doi.org/10.1109/CSF.2016.18
https://doi.org/10.1109/CSF.2016.18
https://doi.org/10.1109/PROC.1975.9939
https://doi.org/10.1109/PROC.1975.9939
https://doi.org/10.1145/3132465.3132470
https://doi.org/10.1145/3359789.3359805
https://doi.org/10.1145/344287.344301
https://doi.org/10.1145/3035918.3056101
https://doi.org/10.1145/3035918.3056101
https://doi.org/10.1145/3492321.3519569
https://doi.org/10.1145/3492321.3519569
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.1109/Cybermatics_2018.2018.00191
https://doi.org/10.1109/Cybermatics_2018.2018.00191
https://doi.org/10.1109/TDSC.2014.2369048
https://doi.org/10.1109/ICWS.2005.25
https://doi.org/10.1109/ICWS.2005.25

	Abstract
	1 Introduction
	2 Motivation
	2.1 Limitations of non-capability systems
	2.2 A primer on capability systems
	2.3 Challenges of cloud-scale capabilities

	3 Design
	3.1 Application-visible interface
	3.2 Capability system key design ideas
	3.3 Discussion on cloud-scale challenges

	4 Implementation
	5 Evaluation
	5.1 Methodology
	5.2 Critical-path performance: Capability operations
	5.3 Scalability: Capability revocation

	6 Conclusions
	References

