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Abstract 
Today's complex software systems are neither secure nor 

reliable. The rudimentary software protection primitives pro­

vided by current hardware forces systems to run many distrust­

ing software components (e. g. , procedures, libraries, plug ins, 

modules) in the same protection domain, or otherwise suffer 

degraded peiformance from address space switches. 

We present CODOMs (COde-centric memory DOMains), 

a novel architecture that can provide finer-grained isolation 

between software components with effectively zero run-time 

overhead, all at a fraction of the complexity of other ap­

proaches. An implementation of COD OMs in a cycle-accurate 

full-system x86 simulator demonstrates that with the right 

hardware support, finer-grained protection and run-time per­

formance can peacefully coexist. 

1. Introduction 

The security and reliability of computing systems are ever 
growing concerns in today's networked computing world. 
Complex software systems contain a multitude of mutually 
distrustful or unreliable software components, which can span 
multiple granularities and purposes: individual functions, com­
pilation units, code libraries, application plugins, or device 
drivers. Failing to properly isolate these components can have 
severe effects, malicious and negligent alike, such as privi­
lege escalation, information leakage, denial of service, as well 
as data corruption caused by buffer overflow bugs. System 
security and resiliency thus require that individual software 
components be isolated in separate domains. 

Existing architectures, however, lack efficient support for 
isolation at the software component level. Instead, they only 
support a few coarse-grained protection mechanisms, which 
are translated into two Operating System (OS) concepts: isolat­
ing user processes in separate address spaces, and running the 
OS kernel in a privileged processor mode. Such mechanisms, 
however, impose non-negligible runtime overheads and can 
only be managed by the OS. This makes them unsuitable for 
providing fine-grained isolation between software components 
that share a single address space. 

In this paper we present the COde-centric memory DO­

Mains architecture (CODOMs), which provides efficient sup­
port for protecting multiple, interacting software components 
that share an address space. CODOMs is based on the ob­
servation that the instruction pointer can serve as a capability 
enabling access to memory. Since software components are 
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composed of both code and data, a component's data can 
only be accessed by its code. Therefore, only if the instruc­
tion pointer originates from a component's code, can the con­
stituent instruction access the component's data. 

The CODOMs design is driven by the following guidelines: 
(1) Software is composed of multiple components, both trusted 
and untrusted, that share the same address space. 
(2) Components interact to perform actions. The system must: 
(a) support cross-domain synchronous call/return with low 
overhead; (b) provide protected domain entry points; and (c) 
prevent callers and callees from tampering with each other. 
(3) To avoid buffer copies, interacting domains must be al­
lowed to securely reference each other's internal memory. 
This requires that domains be allowed to efficiently grant and 
revoke permissions to access their memory regions, as well as 
to be able to verify the validity of the pointers they are given. 

CODOMs operates by associating every page with a tag, 
and multiple (not necessarily consecutive) pages can share the 
same tag. Code pages are also associated with a list of tags 
they can access (and how), as well as the ability to execute 
privileged instructions. Domains are thus code-centric and 
the instruction pointer itself determines which pages and priv­
ileged resources it can access. Moreover, control can switch 
between domains using simple call/return instruction at neg­
ligible run-time overheads. To facilitate fast cross-domain 
calls, CODOMs allows in-place sharing of data across do­
mains using application-controlled capability registers. These 
facilitate secure sharing of arbitrary regions (base pointer and 
size). Moreover, CODOMs offers protection against capa­
bility tampering and can perform selective, user-level capa­
bility revocations more efficiently than previously proposed 
systems [30, 19, 5, 28]. Importantly, CODOMs puts special 
emphasis on low-overhead revocation for the common case of 
sharing in synchronous, cross-domain call/return scenarios. 

We have evaluated CODOMs using a cycle-accurate x86 
simulator, showing that switching domains incurs extremely 
low overheads. On a larger scale, we show that CODOMs is 
capable of isolating each module in the Linux kernel into its 
own domain with negligible runtime cost. 

The main contributions of this paper include: 
Code-centric domains / instruction pointer as a capability: 

A hardware-based isolation mechanism where multiple soft­
ware components can share an address space. 
Simple and efficient domain switching: The code-centric or­
ganization facilitates domain management and low-latency 



funeA(argsA): funeC(argsC): 
funeB( ... ) 

PTCaps: domain boundaries APL: x-domain long-term 
capabilities 

A : call into B 
: call into C. write A 

Figure 1: Example domai n setup where com ponents are iso­

lated using CODOMs. 

domain switching using simple call/return instructions. 
Transient access grants: Application-controlled capability 
registers enable fine-grained, secure sharing of memory across 
domains without expensive OS intervention. 
Efficient access grant revocation: CODOMs supports effi­
cient selective capability revocation at user-level. Importantly, 
distinguishing between synchronous and asynchronous ca­
pabilities enables low-overhead revocation of the common 
(synchronous) cross-domain call/return case. 
Mechanism complementarity: CODOMs mechanisms en­
able efficient adaptation to multiple system organizations and 
provide a path for systems to gradually harden their security. 

2. CODOMs Concepts 

The goals of the CODOMs architecture are to provide flexible 
hardware mechanisms to define domains and to support low­
latency transfers of control and data across domains. 

2.1. Code-Centric Isolation of Software Components 

Code-centric isolation embraces the idea of software compo­
nent as a unit, identifying code, data (both dynamic and static) 
and predefined interfaces for cross-component interaction. A 
domain is defined as an arbitrary collection of code and data 
pages, such that only the domain's code is allowed to freely 
access its code and data. This enables the instruction pointer 
to serve as a capability for accessing the domain, which can 
actually contain multiple components. Code-centric isolation 
also enforces domain interactions; if a domain is allowed to 
call into another, it can simply call a predefined entry point in 
the callee domain to transfer control. 

Figure 1 illustrates a simplified example where routines 
from three software components (A, B and C) invoke each 
other. Specifically, routine JuncA from domain A invokes rou­
tine JuncB from domain B. The latter then invokes routine 
juncC (domain C). The figure also illustrates the two mecha­
nisms that CODOMs uses to enforce domain isolation: page 

table capabilities (PTCaps) and access protection lists (APLs). 
PTCaps extend page tables to include per-page tags such 

that all pages that compose a specific domain share a tag 
value. Besides the existing per-page permissions (RfW/X), 
the mechanism also adds two new permission bits to allow 
privileged operations and to store capabilities in memory (P 

and S bits, respectively; see § 4.1.1). In the figure, for example, 
all pages tagged with A compose domain A (data and code). 

This also demonstrates that domains can be composed of non­
contiguous memory pages (i.e., a "sparse" memory region). 

APLs maintain the cross-domain access and invocation per­
missions by associating each tag with a list of other tags and 
the operations it can perform on their constituent pages. For 
example, the APLs shown in Figure 1 indicate that code in 
domain A can call into the entry points of domain B and the 
code in domain B can call into domain C as well as write pages 
of domain A (if allowed by the per-page permissions). 

When performing an access, CODOMs checks if: (1) the 
tag of the destination page is present in the APL for the tag 
of the currently executing instruction, and (2) the access is 
compatible with both the permission listed in the APL and the 
regular per-page protection bits. This provides a way to layer 
security at two levels: at domain (APL) and page granularity. 
For example, granting B write access to A does not allow it to 
write into the first memory page, since it is write-protected. 

PTCaps and APLs are set up by the OS when the program 
(or a module thereof) is loaded. Furthermore, consistency 
across cores must be maintained through TLB shootdown 
operations [27]. Nevertheless, since the mechanisms are used 
for long-term access grants, these operations are infrequent. 

The direct benefits of code-centric isolation are that it pro­
vides programmers and administrators simple mechanisms to 
express and enforce cross-domain permissions while incurring 
negligible runtime overheads when crossing domains. In con­
trast, more "traditional" capability systems need to explicitly 
manage capabilities, which work at a much more fine gran­
ularity; for example, domain A would require three different 
capabilities for its own pages (since they are not consecutive), 
plus one capability for every entry point in B. CODOMs thus 
provides higher performance with stronger software security 
and resiliency guarantees without affecting existing software 
design and synthesis methodologies. 

2.2. Transient, Fine-Grained Capabilities 

Software components cOlmnunicate via procedure calls, whose 
arguments are passed either by value (using registers) or by 
reference (using pointers to memory). CODOMs preserves 
synchronous call/return semantics across domains using capa­

bility registers. These enable passing data by reference and 
thus avoiding costly memory copies or page remappings. 

In the example, routine JuncA passes an argument to JuncB, 

which forwards it to Junce. If that argument is a pointer to 
a memory buffer in domain A then JuncC will not be able to 
access it since its APL will not allow it. Pure isolation requires 
that buffers be reassigned their tag or copied across domains. 

CODOMs therefore provides capability registers 

(CapRegs), an application-managed mechanism that tem­
porarily grants access to a domain's memory. CapRegs 
are initialized by the user-level caller code to temporarily 
grant the callee access to an arbitrary memory range (at byte 
granularity). Once the callee is invoked, it is allowed to access 
said buffer until it returns control to the caller. Moreover, the 



callee is allowed to pass the CapRegs down the call chain to 
support call indirection. CODOMs provides instructions to 
"create" (i.e., initialize), copy, "weaken" (a controlled fonn 
of modification), activate/passivize (spill from/to memory), 
revoke, and verify pointers against CapRegs. CapRegs 
and their semantics are described in detail in § 4.1.3. For 
brevity, we will use the term capability when referring to both 
CapRegs and capabilities stored in memory. CODOMs only 
performs checks against active capabilities (CapRegs). 

CODOMs ensures that regular code cannot forge capabil­
ities by capping their authority to that of the instruction that 
created it. When an instruction creates a capability, the APL 
of the instruction's code page is copied into it. For example, 
suppose domain B in Figure 1 creates a capability spanning 
the last four pages. The capability will use B's APL, allowing 
write access to all pages of domain A in the given range but 
not to the pages of domain C, since its APL precludes such 
access (thus capabilities are also "sparse"). § 4.1.3 describes 
how CODOMs maintains in-memory capability integrity. 

Finally, CODOMs optimizes capability revocation by distin­
guishing between synchronous and asynchronous semantics: 
Synchronous capabilities are used in cases where a caller 
only needs to grant temporary access rights to a callee (which 
may further delegate the grant). These are, by far, the most 
common type. Synchronous capabilities are implicitly revoked 
at no cost when the callee returns by ensuring it does not store 
them in memory; once it returns, it can no longer use them. 
Asynchronous capabilities are used to grant accesses that 
outlive the callee. They are useful during asynchronous data 
transfers between domains (e.g., asynchronous disk read), or 
when two threads exchange capabilities through the memory. 
CODOMs provides efficient support to selectively revoke this 
type of capabilities (see § 4.1.5). 

2.3. Usage Model 

CODOMs proposes flexible mechanisms to support multiple 
use-cases where domains require different degrees of isolation, 
allowing systems to tune performance according to their needs. 

The architecture is designed to allow the programmer and 
system administrator to define the desired security and fault 
isolation policies. For programmers, this burden can be as 
minimal as declaring that a compilation unit or a code library 
be used as an isolated domain and annotating its entry points -
the routines that other domains can use to interact with it. For 
administrators, this enables enforcing system-wide policies 
such as using third-party modules in isolation so as to not 
compromise the system or affect its resiliency. 

We envision immediate usefulness of the CODOMs archi­
tecture in structured scenarios where security-aware interfaces 
already exist (e.g., the user/kernel/hypervisor separation), or 
where some domains are a super-set of others (e.g., a pluginlap­
plication relationship). For example, CODOMs can subsume 
the prevalent kernel/user ring protection by implementing the 
kernel's system call interface as a privileged shared library run-

ning in a separate domain, allowing applications to securely 
invoke system calls without a processor trap. 

CODOMs is also able to provide fine-grained component 
isolation in the spirit of capability-based addressing architec­
tures [19, 5]. For example, using capabilities to traverse a 
linked list. Alternatively, the domain owning the linked list 
could provide an iterator interface that takes a callback to 
process each element (similar to std: : for_each in C++). 
Nevertheless, such scenarios are beyond the scope of this 
paper, since they require complex capability register manage­
ment through runtime, compiler and/or language extensions. 

3. The Complexity and Performance of 

Memory Protection and Isolation 

Memory protection and isolation has long been studied as an 
essential primitive for building secure and resilient systems. 
Proposed mechanisms attempt to balance simplicity of use 
with performance overheads. In this section we discuss pre­
viously proposed mechanisms while focusing on the three 
main axes of this tradeoff: (1) the complexity of defining and 
switching domains, (2) the performance of switching domains, 
and (3) the performance of sharing data between domains. 

Existing protection mechanisms either provide complex 
usage semantics or incur substantial performance overheads 
when switching domains (or both). As a result, prograrmners 
typically push multiple semantic domains into a single physi­
cal one, thus compromising software security and resiliency. 

Virtual memory address spaces are the most common 
mechanism for domain isolation [10, 22]. Managed by the OS, 
address spaces isolate arbitrary collections of memory pages 
by providing processes the illusion of using the memory of a 
virtually infinite standalone machine. The process abstraction, 
in turn, provides a convenient programming abstraction. 

Protection rings (or privilege levels) is a common mecha­
nism used to isolate executive code [23]. Rings are used by the 
OS to isolate itself from untrusted user processes, requiring 
the use of system calls for process/OS interaction. 

Capability-based architectures lie on the other end of the 
spectrum [19]. Capabilities are communicable and unforge­
able tokens that identify and authorize access to resources. 
Capabilities allow implementing fine-grained isolation that 
only grants software the minimum set of resources necessary 
to perfonn its task (principle of least authority). 

3.1. Complexity of Defining and Switching Domains 

Figure 2 illustrates notable domain isolation mechanisms. 
Address spaces (Figure 2b) implicitly define domains for 

processes by encoding access permissions in the page table. 
Since the use of page tables (or similar forms of protection 
tables [15, 29]) is transparent to the application, address spaces 
provide a simple programming abstraction. However, as tables 
are privileged resources, managing them is costly and requires 
OS mediation. Furthermore, processes burden the programmer 
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with managing concurrency and data movement/sharing. 
Protection rings (Figure 2a) provide a hierarchical domain 

scheme. All rings (domains) share an address space, and code 
in one ring can access resources of all less privileged rings. 
The totally-ordered hierarchical structure of ring domains is 
less flexible than that of separate address spaces. For example, 
Linux kernel modules do not naturally fit this scheme: placing 
two completely independent modules in separate rings will 
unnecessarily give one full access to the other. 

Capability systems (Figure 2e) grant access to memory re­
sources through a set of "root" capabilities, and a domain is 
defined as the transitive closure of these roots. This requires 
using multiple capabilities to cover all the components that 
conform a single domain, and domain switches require switch­
ing all of them (e.g., in Figure 2e the caller has two "root" 
capabilities). Explicitly managing the roots burdens the pro­
grammer, so such systems have typically embedded high-level 
semantics into the domain-switching hardware. For example, 
protected procedures in the Plessey System 250 [19] defi ne the 
notion of process in hardware, which handles the root capabili­
ties. This design breaks backwards compatibility and imposes 
specific structure and isolation policies to the software. 

CODOMs tries to take the best from each mechanism. A 
page-table system is used to aggregate domain resources, yet it 

allows multiple domains to share an address space, as well as 
invoke privileged operations. Importantly, this design makes 
code-centric domains compatible with existing software. Even 
though domains are managed by the OS they can be switched 
with simple control flow instructions, thereby simplifying their 
use and deployment. Finally, capabilities allow domains to 
share data at arbitrary granularity, thereby obviating expensive 
memory copies and OS-managed page table modifications. 

3.2. Overhead of Switching Domains 

Domain switching reconfigures some architectural resources 
and thus incurs in runtime overheads; at the very least, intro­
ducing a pipeline RAW dependency that affects ILP. 

The overheads are exacerbated in mechanisms that require 
OS intervention to perform the switch, warranting an extra 
round-trip across privileged levels (Address spaces and pro­
tection keys). Protection rings and Mondrix embed additional 
cross-domain semantics in hardware, increasing these over­
heads. Traditional capability systems (Figure 2e) also incur 
extra overheads as they must switch the root capabilities (ei­
ther through software or added hardware semantics). Finally, 
some address space isolation implementations need to flush 
the TLB on switches, on top of the OS intervention overhead. 

CODOMs circumvents all these overheads by having a code­
centric approach to protection. It allows domain switches at 
user-level through regular function calls, without even paying 
the price of a RAW hazard during a domain switch. 

3.3. Sharing Data Between Domains 

Sharing data across domains is critical for effective domain 
interactions, yet the sharing facilities provided by different 
isolation mechanisms impose different runtime overheads. 

Protection rings (Figure 2a) only allow low-privilege rings 
to easily share data with the high-privilege ones. Sharing in the 
opposite direction requires costly buffer copies or changing 
page table permissions. Address spaces (Figure 2b) limit 
sharing to page granularity and require costly OS intervention 
to modify page tables. Similarly, Mondrix (Figure 2c) requires 
OS-mediated table modifications to establish a shared memory 
region. Importantly, revoking or "downgrading" accesses on 
table-based systems imposes costly TLB shootdowns [27]. 

Capabilities (Figure 2e) can be viewed as a special form of 
routine arguments. In order to prevent forgery and tampering 
of capabilities, some systems (e.g., Plessey System 250 [19]) 
used typed segments to distinguish regular data from capa­
bilities. Others (e.g., IBM System/38 [19]) allowed mixing 
data and capabilities by tagging memory at the word-level, 
thereby affecting memory and bandwidth utilization. In all 
cases, capabilities grant access to consecutive regions, and 
sharing non-consecutive regions requires setting up multiple 
capabilities (e.g., cap3 and cap4 in Figure 2e). To avoid this, 
data must be carefully laid out in memory, which is not al­
ways feasible for dynamic data structures. Finally, capability 
systems incur overheads when revoking capabilities. Since 
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dellocated memory can be reused, a domain must revoke capa­
bilities to unused memory regions to avoid leaking information. 
Various revocation methods have been proposed [19], many of 
which require OS intervention: (a) releasing entire segments 
and revoking all capabilities to said segment; (b) avoiding 
memory reuse until capabilities are garbage collected, which 
imposes expensive memory sweeps; or (c) using indirection 
tables that impose additional latency every time a capability 
is used. In all but the last case, it is not possible to revoke 
specific capabilities that allow a specific domain to access a 
specific buffer. Instead, all capabilities granting access to said 
buffer must be revoked. 

The code-centric nature of CODOMs requires fewer, dis­
tinct capabilities since those are only needed for accesses 
beyond what is encoded in the APL. Furthermore, CODOMs 
ensures capability integrity without requiring memory tag­
ging nor segmentation (§ 4). Finally, CODOMs optimizes 
revocations for the common synchronous (call/return) pattern. 

4. CODOMs Implementation 

CODOMs is designed to provide both security and perfor­
mance, even in high ILP out-of-order processors. Figure 3 
illustrates the key elements of the CODOMs architecture. As 
described below, some of the architectural elements must be 
managed by the Trusted Computing Base (TCB), which is the 
smallest subset of the OS required to maintain system integrity 
and enforce higher-level isolation policies. 

4.1. Hardware Elements and Protection Primitives 

4.1.1. Page Table Capabilities (PTCaps) are implemented 
as page table extensions, which include a tag (64 bits) and tag 

presence (T ), privileged capability (P) and capability storage 

(S) bits. The latter are stored in unused bits of the page table 
entries, and tags are stored in a page physically contiguous 
to the page directory they extend. The T bit allows tags to 
be set for entire page table sub-trees, minimizing space and 
management overheads for the page table. The P bit indicates 
whether privileged operations are allowed in a code page, 
ensuring regular code cannot execute them. The S bit identifies 
pages that can be used to store capabilities. 
4.1.2. Access Protection Levels specify four totally ordered 
values: None, Use, Read (including execute) and Write. Use 

is overloaded based on the target page: 
• Capability storage pages: allows load/store of capabilities 

from/to memory and disallows regular loads/stores. 
• Code pages: enables domain entry points. Permits calling 

into an address aligned to a system-configurable value. If 
accessed through a capability with size zero indicates an un­
aligned address and enables using arbitrary return addresses 
and function pointers across domains. 

4.1.3. Capability Registers (CapRegs) store the per-core 
active capabilities. Capabilities occupy 256 bits (32 B) when 
stored in memory, and include a base address and size (2 x 48 
bits), a 2-bit access protection level, a revocation counter 

address (48 bits), a revocation counter value (46 bits) and a tag 

(64 bits). CapRegs are managed by the following operations: 
Create initializes a CapReg. The application must provide all 
the fields but the tag. The tag is set by the hardware (based on 
the PC) to prevent forgery, and the tag's APL is cached into 
the CapReg (see § 4.2). If a revocation counter is not provided, 
the capability is synchronous. 
Modify is only allowed to weaken the access protection level 
and to shrink the address range of the capability. 
Spill is only permitted at 32 B-aligned addresses and if the the 
target page is marked as capability storage and is accessible 
with (at least) a Use level. Synchronous capabilities can only 
be spilled into the DCS, and capability push/pop instructions 
are also provided to interact with the DCS (§ 4.1.4). Since 
a Use level ensures code cannot directly read or modify the 
memory contents, this ensures the integrity and unforgeability 
of passive capabilities. 
Probe checks if dereferencing a pointer fails using a CapReg. 
Usage only works with active capabilities. Two usage models 
are supported: Implicit use validates memory accesses against 
all active capabilities. This simplifies compiler support and 
enables transparently adding capability use to existing codel. 
Explicit use is provided trough separate instructions that iden­
tify which CapReg to use. Compilers can use this to minimize 
the number of CapReg checks, improving energy efficiency. 

1 An approach similar to the sidecar registers in Mondrix [30] could also 
be used to automatically bound the number of implicit capability checks. 



4.1.4. Domain Control Stack (DCS) provides memory that 
can be used to spill capabilities. The DCS is a private per­
thread memory structure with capability storage pages. Since 
it is private, all capabilities (synchronous and asynchronous) 
can be spilled into it without breaking synchronous capability 
revocation. The DCS is bounded by the dcsb and dcsp 

registers (Figure 3), and code is implicitly granted Use access 
to that range. Unprivileged code modifies the dcsp register 
only indirectly using capability push/pop instructions. The 
dcsb register controls DCS frames. It can only be modified 
by the TCB, and the hardware ensures pop operations never 
cross DCS frames. § 5.4 further describes the DCS operation. 
4.1.5. Asynchronous Capability Revocation is based on the 
revocation fields set when a capability was created. Setting 
these fields is a privileged operation, since the hardware uses 
them to access memory. The revocation counter address points 
to a "revocation counter" stored in memory. A capability is 
considered valid as long as its counter value matches that 
stored in the revocation counter. When a revocation instruction 
is executed, CODOMs first verifies that the instruction's tag 
matches that stored on the capability. This ensures that only 
the domain that created a capability can revoke it. CODOMs 
then increments the revocation counter, thereby invalidating 
all capabilities that use the same counter address by setting 
their protection level to None. Selective revocation is possible 
by associating different capabilities to different counters. 

Passive (stored in memory) asynchronous capabilities are 
lazily invalidated when loaded from memory if their counter 
value does not match the one in memory. 

Active asynchronous capabilities that share a revocation 
counter are immediately invalidated. One possible implemen­
tation uses a central directory [27] to track the active asyn­
chronous capabilities. In this case, the revoking core signals 
the directory, which in turn invalidates all capabilities that use 
the same revocation counter. Since most capabilities are syn­
chronous (and not asynchronous), this operation is infrequent. 

A revocation counter can be reused 246 
- 1 times until it 

overflows (raising an exception), and 248 different counters 
can exist in the system. When a counter is reused after an 
overflow, the system must ensure all capabilities that use the 
overflowed counter and are stored in capability storage pages 
of the current address space are invalidated. Nevertheless, 
the magnitude of the revocation counter (246 

- 1) makes such 
events extremely infrequent. More importantly, the system 
does not have to track the data capabilities grant access to. 

4.2. Implementing Access Protection Lists in Hardware 

The APLs of the recently used tags are cached in the per-CPU 
APL cache (see Figure 3). This cache is managed by the OS 
and allows multiplexing the unbounded spaces of tags and 
APLs (0) in Figure 3). The cache maps PTCaps tags to its 
hardware version HwTag and a portion of the corresponding 
APL (HwAPL). HwAPLs contain the 2-bit protection levels 
corresponding to cached tags (using None if not present). 
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Figure 4: Access protection check logic on a memory access. 

On a TLB miss, CODOMs caches the tag's APL entry in 
the TLB (0 in Figure 3). The iTLB is extended with the 
Tag, HwTag and HwAPL from the APL cache entry and the 
privileged capability bit from the page table entry. The dTLB 
is extended with the HwTag and the capability storage bit. This 
information can be stored on a separate structure to optimize 
energy and delay, since it is only needed after a TLB hit. 

When an instruction is fetched, the relevant information 
from the iTLB is stored in the currdom register (8 in Fig­
ure 3), which encodes the information of the current domain. 

Since many instruction sequences reside in the same page, 
this can be optimized to reduce the number of iTLB lookups 
and the amount of storage required to pass that information. 
Whenever the contents of the currdom register are modified, 
its previous value is copied to the prevdom register, provid­
ing the identity of the previously executing domain (c. in 
Figure 3). When a capability is created, the Tag and HwAPL 

of the currdom register are copied into the CapReg (e in 
Figure 3). The HwAPL in an active capability is never stored 
into memory, and is instead restored from the APL cache when 
it is activated (loaded from memory; "Figure 3). 

When an APL cache entry is modified, the HwTag and 
HwAPL values in the CapRegs and TLB entries of that CPU 
need to be reloaded. No TLB shootdown-like operations are 
required, since there is one independent APL cache per CPU, 
and its information does not leak into passive capabilities. 

Figure 4 depicts CODOMs access checks (e in Figure 3). 
The HwTag in the dTLB is used to index the HwAPL of the 
currdom register and retrieve the protection level for the tar­
get address. Conversely, the HwTag in the currdom register 
is used to check control flow instructions. For example, an 
APL cache with 32 entries requires a 5-bit HwTag and a 64-bit 
HwAPL (32 entries of 2 bits). The same applies to capabilities, 
except that weakened capabilities are implemented by using 
the stricter of the capability and the HwAPL access protection 
level. The protection checks are performed in parallel to the 
actual cache access to hide their latency. 

4.3. Domain Switches and Out-of-Order Execution 

4.3.1. Protection Domain Checks and Switches on out­
of-order processors are efficiently implemented through the 



currdom register. The information provided by the iTLB is 
sent to the rename stage. The cur rdom register is renamed 
every time a domain switch occurs (when its contents change). 
Since the register is not changed beyond that stage, the rename 
stage itself can set the new value and mark the register as ready. 
This eliminates RAW hazards during domain switches and al­
lows maintaining instructions from different domains in-flight. 
Experimental measurements show that 6 physical currdom 

registers are sufficient to eliminate all RAW hazards. 
4.3.2. Capability Registers may also generate RAW hazards 
when modified. CODOMs alleviates this by providing a 2-
wide register window for active capabilities. Register capX is 
used by the current instruction sequence, and capXn for the 
"next" window. Writing into capX also writes into capXn. 

The windows are swapped on protection domain switches, 
thus allowing software to eliminate RAW hazards on capX. 

5. System Software: 

Gradual Security Hardening 

CODOMs primitives support multiple isolation granularities, 
ranging from simple user/kernel isolation to fine-grained iso­
lation, with a performance profile tuned for each specific 
case. The degree of software component isolation depends on 
whether code can be modified to fully exploit CODOMs and 
the trust relationship between each pair of domains. 

5.1. Domain Management 

PTCaps and APLs are managed by the TCB. As domains are 
identified by their tag, domain creation takes an unused tag and 
constructs an APL for it. The APL initially contains a single 
Write grant to its own tag. Long-term cross-domain grants add 
entries into other APLs, while short-term grants can be directly 
handled through capabilities. By managing the PTCaps, the 
TCB can accurately control which pages store capabilities and 
which ones have access to privileged instructions. 

5.2. Domain Boundaries 

System policies dictate the desired domain boundaries: which 
software components are grouped into a single domain, and 
what type of isolation is required between domains. To that 
end, dynamically-loaded components can serve as the base 
isolation unit; current systems make extensive use of dynamic 
loading and linking, and applications (including the OS ker­
nel) comprise a patchwork of loadable modules. Domains 
can consist of groups of tightly-coupled dynamically linked 
components (e.g., a plugin and its utility libraries) and interact 
by invoking each other's routines. 

A simple approach is to create a new domain for each pro­
cess, which can then invoke the TCB to create more domains. 
The OS could also provide mechanisms to declare components 
that are always isolated from user code. For example, the user­
level binary loader can be part of the TCB and can use cues 
encoded as binary format extensions, file system permissions 
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Figure 5: Example coarse-g rained domai n setup. 

or mandatory access control systems like AppArmor [1]. This 
applies both to domain relationships and their entry points. 

Existing loaders identify the public entry points of a dy­
namic module through its Procedure Linkage Table (PLT [18]). 

The PLT is an array of function trampolines (generated by the 
loader) that interfaces the entry points with the code that in­
vokes them. The loader can harness this to enforce these entry 
points by giving a caller only Use access to the PLT (which, 
in turn, is given full access to the callee). 

5.3. Example: Coarse-Grained Isolation 

The code-centric approach enables coarse-grained isolation 
with minimal or no changes in the code. For example, Figure 5 
shows a User that is isolated from the kernel, and Network 

and Disk subsystems that are isolated from each other. 
CODOMs subsumes the implementation of privilege levels 

by: (1) giving User only Use access to call Tramp, a system 
call trampoline that then jumps into Kernel (similar to the 
vdso in Linux, or the KIP in L4 [16]); (2) setting the privi­
leged capability bit on the Kernel code pages; and (3) giving 
all kernel-level domains full access to User (a simple return 
can resume execution at the user). Unlike privilege levels, 
CODOMs can also encode hierarchical domain relationships 
that are not totally ordered. For example, the Network and Disk 

subsystems in the example can be isolated from each other. 
Since they are dynamically loaded as Linux kernel modules, 
a PLT can be used to control their access to Kernel, provided 
that it uses capabilities when passing data to them. Given the 
flexibility of CODOMs, a backwards-compatible alternative 
that ensures subsystem isolation exists: give subsystems full 
access to Kernel, but not among themselves. 

The same technique can also be applied at user-level. For 
example, an application can be granted only Use access to 
a an encryption component, which in turn has full access to 
the application. This allows the use of encryption without 
exposing the encryption keys to the application. 

5.4. Example: Fine-Grained Isolation 

In more fine-grained scenarios where relationships are not 
hierarchical, further actions are required: (1) both parties have 
to use capabilities to pass references to data, and the pointers 
should be verified against them; (2) since the same stack is 
used across domains, capabilities are used to grant access to 



portions of them; (3) some of the architectural state in the 
caller or callee might need to be hidden to the other party; 
and (4) caller and callee might need to use different DCS 
frames. As policies are software-provided (rather than being 
hardwired), other organizations are also possible. Furthermore, 
their requirements depend on the domain trust relationships. 

We have developed a proof-of-concept compiler and linker 
support that leverages existing ABIs to handle these cases. The 
developer can tag functions and data to place them on specific 
domains. This information is embedded into the ELF binaries, 
together with domain trust relationships. Additionally, an 
interface compiler generates caller/callee stubs for a list of 
domain entry points. The routines are specialized according 
to the trust relationship between domains (up to the extreme 
of empty stubs if domains fully trust each other). Even though 
it could be generated by the linker, for simplicity the interface 
compiler also generates the PLT code (the "gate"). Like in 
other systems, the lack of advanced compiler support forces 
the programmer to explicitly manage pointer verification and 
capabilities for data beyond stack arguments. 

Figure 6 shows the organization of two domains using the 
aforementioned tools. The stack is placed on a separate do­
main and is only accessible through a synchronous capability 
(CapRego). This ensures other threads will not be able to 
tamper with the return address after a cross-domain call. The 
gate code has the privileged capability bit (to manage DCS 
frames) and Write access to all domains. Since user code 
cannot access previous DCS frames, those can be safely used 
to store cross-domain information. The steps required to per­
form a full calVreturn in a completely isolated scenario (upper 
bound overheads for hybrid software/hardware isolation) are: 
1) Caller: The caller stub starts by pushing into the stack 
and zeroing all registers not used as arguments, concealing 
from the callee all unnecessary information. The same applies 
to capabilities (pushed to the DCS). The stub then pushes 
any procedure arguments into the stack (if necessary), and 
grants them access by deriving CapRegl from CapRego, 

and adjusts CapRego to forbid access to previous frames. 
Finally, it calls into the PLT, which executes the gate code. 
2) Gate (call path): The gate code saves the regular stack 
pointers and dcsb register into the DCS and creates a new 
DCS frame by adjusting the dcsb and dcsp registers. It then 
injects itself in the callee's return path by saving the caller's 
return address to the DCS, replacing it with a pointer to its own 
return path address, and creating a capability for the callee to 
return into that address (CapReg2 at the top of Figure 6; note 
the use of size zero to avoid alignment checks). Finally, the 
gate jumps into the callee stub. Note that this jump already 
exists in the PLT of dynamically loaded objects. 
3) Callee: The callee stub conceals its state from the caller by 
zeroing all registers and capabilities that are not results, and 
then returns to the injected gate (thanks to CapReg2). 

4) Gate (return path): The gate restores the state it saved, 
unrolls the DCS frame, and jumps back to the caller's return 

Processor speed 2.4 GHz 
Processor width 4 (insts in fetch; ,uops for the rest) 
Register file 1 60 (int), 144 (float) 
Load/Store/Ins!. queue entries 48/32/36 
ROB entries 128 
i/d TLB 64 entries, 4-way 
i/d Cache 32 KB, 8-way, 4 cycles 
L2 cache 256 KB, 8-way, 7 cycles 
L3 cache 6 MB . 1 2-way, 30 cycles 
RAM latency 65 ns 

Capability registers 8 
APL cache entries 32 
currdom/prevdom registers 6 

Table 1: Simulator configuration 

address. Unrolling the DCS frame ensures all synchronous 
capabilities stored in it are implicitly revoked. 

5.5. Miscellaneous 

5.5.1. Shared Libraries can be mapped to different domains 
by mapping their physical pages into multiple virtual ad­
dresses, one for each domain that uses them. All copies 
point to the same physical memory, which eliminates memory 
and cache performance overheads but increases TLB pressure 
(much like Mondrix [30] and Koldinger et al. [15]). 
5.5.2. Ambient Authority is a concept on which the POSIX 
interface relies, as some operations require the OS to be aware 
of the caller's identity. For example, memory allocations must 
be assigned to the requesting domain. This is handled by 
inspecting the prevdom register or, alternatively, providing a 
software capability-based interface (e.g., file descriptors). 
5.5.3. Function pointers can be passed using a capability. 
If the caller is considered potentially malicious, the address 
must be verified against the provided capability. In order to 
execute the callee outside the caller's DCS frame, the TCB 
can provide a trampoline that creates a new frame and then 
calls the function (similar to the gate code above). 

6. Evaluation 

We have evaluated CODOMs using the cycle-accurate GEMS 
simulator [4] running in full-system out-of-order mode with 
version 2.6.27.62 of the Linux kernel. Our simulation parame­
ters, listed in Table 1, mimic an Intel Nehalem processor. 

6.1. Micro-Benchmarks 

We compare the performance of domain switching in 
CODOMs and other mechanisms (see Figure 2 and §§ 3 and 7) 
by calling a procedure on a different domain for 10K times. 
Every benchmark tests a combination of mechanism, number 
of procedure arguments, and randomly generated caller and 
callee workloads (see Table 2). We compare these against a 
regular call/return, taking the second of two repetitions. 
6.1.1. Alternative Isolation Mechanisms are evaluated using 
micro-benchmarks that measure the following: 
Syscall: The overhead of using an empty system call. 
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show the domai n that wrote i nto that memory. 

Parameter Values 

Number of arguments 0. 5, 10  
CaUer/caUee workload insts . 0, 25, 50, 100, 1000 
Workload distribution 60% integer I 20% read I 20% write 

Table 2: Micro-benchmark execution parameters. 

Address Spaces: The cost of switching address spaces by 
communicating data using a POSIX pipe. 
NaCi [31]: The callee switches segments (cs, ds es and 
gs) at user-level before and after perfonning its workload, 
imitating a naively optimistic implementation. The technique 
has also been applied at the kernel level [21J . 
Memory Keys (kernel) [15, 12, 14]: An approximation of a 
key-based memory protection switch, used to isolate kernel 
components. A system call implements the callee, switching 
keys before and after the call. Optimistically assumes that the 
cost of switching keys is equivalent to an instruction barrier. 
Memory Keys (user) [15, 12, 14]: Like the previous one, but 
used to isolate user components. Before and after its workload, 
the callee invokes a system call that switches the keys. 
Mondrix [30]: Implicitly switching domains using call/return 
instructions. The benchmark optimistically approximates the 
cost of a domain switch using an instruction barrier, and it 
does not model the OS intervention and TLB-shootdown-Iike 
costs associated to grants and revocations (see § 7). 

Figure 7 depicts the mechanisms overhead. The figure show 
that CODOMs and Mondrix provide the lowest overheads. 
Nevertheless, experiments on a real machine (not presented 
for brevity) show that the overheads of our coarse Mondrix 

approximation are over an order of magnitude higher than 
eODOMs. The figure shows the None (leak GPR) setting for 
eODOMs (Figure 8), slightly more secure than Mondrix. 

Other mechanisms incur substantially higher overheads. All 
but CODOMs, Mondrix and NaCI require intermediate system 
calls (i.e., switching domains is privileged). In addition, all 
mechanisms but COD OMs hinder pipeline throughput by in­
troducing RAW hazards on a domain switch. Thus, eODOMs 
is the only system to eliminate both sources of overheads. 
6.1.2. Domain Trust Relationship defines the overhead of 
gate and stub codes (§ 5.4). We evaluate the following settings: 
All: Both domains trust each other, and the callee can access 
the caller (to avoid using a return capability); no state is con-

386 3 5 CI..---_� 6 1 6  7 2 8 7  

(a) Avg . of a l l  workloads 

,.... ____ -� 614 7070  

(b) Avg . of empty-body workloads 

Figure 7:  Domain switch overhead for the eval uated systems. 

The overhead is depicted as additional cycles over a proce­

dure call/return.  Mondrix and Memory Keys are opti mistically 

approximated by an instruction barrier. Our Mondrix approxi­

mation does not simulate the added costs of g rants and revo­

cations. CODOMs uses setting " None (leak GPR)" in Figure 8.  

cealed and gate code is equivalent to a resolved PLT entry. 
Caller: The callee trusts the caller, but the caller conceals its 
state from the callee (e.g., kernel-tmodule). 
Callee: The opposite trust relationship (e.g., module-tkernel). 
None: Domains do not trust each other (:=:::; Caller + Callee). 

None (leak GPR): Similar to None, but general-purpose reg­
isters are not concealed. Slightly more secure than Mondrix 
(which provides read access to the whole stack). 
None (leak all): Similar to None, but no register is concealed 
(e.g., guard against dangling pointers and stack smashing). 

Figure 8 depicts the overhead of switches for the different 
trust relationships. The figure shows that All delivers the 
best performance by avoiding RAW hazards, and only incurs 
in the overhead of the jump in the gate code. In contrast, 
None shows the highest overhead since it implements all the 
operations described in § 5.4. Still, its overhead is lower than 
other mechanisms. The rest show intermediate overheads 
whose main factors are the DeS frame management, the gate's 
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Figure 8: Cycles added to domain switch operations over a 

procedure cal l/return,  for different domai n trust relationsh i ps. 

Benchmark CODOMs Code Total 

CODOMs: All 0.45 0.09 0.54 
CODOMs: Callee 0.47 2.41 2 .88 
CODOMs: Caller 0.49 6.69 7 . 1 8  
CODOMs: None 0.50 7 .57 8 .07 
CODOMs: None (leak GPR) 0.48 3 .54 4.02 
CODOMs: None (leak all) 0.47 3 .01  3 .48 
Address Spaces 1280.83 
NaCI - - 40.75 
Syscall 29.42 

Table 3: Average energy overheads (%), relative to a procedu re 

cal l/return.  I ncludes setups in Figure 8 and x86 mechanisms. 

return address injection, and the safeguard of the caller's stack 
pointers (this last not present in Callee). These results show 
that separating mechanisms from policies allows tuning the 
performance to the desired isolation properties. 

6.2. Hardware Overheads 

We have modeled CODOMs using McPAT [20] (32nm pro­
cess), which estimates CODOMs incurs a l . 89% per-core area 
overhead. Table 3 shows CODOMs energy overheads com­
pared to other x86 mechanisms. The CODOMs overheads are 
decomposed into the hardware structures and the execution 
of the additional policy-specific code. The table shows that 
CODOMs energy overheads are practically negligible. 

6.3. Macro-Benchmarks 

We have evaluated the system-wide impact of CODOMs by 
considering all Linux kernel modules as separate domains. 
The overall system overhead was measured for two macro­
benchmarks: a parallel Linux kernel compilation, and netper! 

using the TCP bulk transfer test. 
Since detailed full-system simulation is too slow, we have 

extrapolated the macro-benchmarks' timing by injecting the 
domain switch overheads (obtained by the micro-benchmarks) 
to the runtime of a native execution. The number of domain 
switches was measured using a modified version of QEMU [2], 

Domains Switches 
Instructions 

-+ +-
kernel / ext2 6403400 1029 1 6  
kernel / scsi 1 777834 200 1 9  
kernel / Iibata 1 638960 360 26 

� kernel / cfq-iosched 1 1 87 1 54 390 3 1  .� kernel / unix 149 170 234 13 

a scsi / scsi-sd 105444 2 1  48 
libata / scsi 63270 I I I  1 3  

Others 1 14327 - -

Total 1 1439559 - -

't:> kernel / e 1000 22098737 26 1 41  '" 
Others 14048 -E;. -

'" 
Total 22 1 12785 - -s:: 

Table 4: Number of domain switches (cal ls & returns) during 

the benchmarks' execution. The two rig htmost col umns show 

the arithmetic mean of i nstructions executed in a domain be­

fore switching i nto the other. 

Isolation model 

None 
None (Ieak-GPR) 

Compile (%) 

0.10 ± 0.01 
0 .03 ± 0.01 

netpeif (%) 

0.15 ± 0.02 
0.05 ± 0.02 

Table 5: Runtime overheads incurred when considering each 

kernel module a separate domain.  

considering every module as a separate domain by inspecting 
their load addresses. 

Table 4 shows that modules typically perform short bursts 
of operations. This demonstrates the adequacy of providing 
unsupervised domain switching and access grant primitives 
with a low impact on ILP. Furthermore, more than 99.6% of 
the domain switches involve no more than 8 domains. 

Table 5 depicts the system slowdown. In all cases, the 
overheads are effectively negligible (less than 1 %), although 
replacing system calls with CODOMs would actually improve 
system performance. Even though our Mondrix approxima­
tion provides similar raw performance, it still requires OS 
intervention and operations similar to a TLB shootdown (GLB 
and PLB tables) for grants and revocations. 

Figure 9 shows the memory access distribution of the do­
mains, according to the owner of that memory. Dynamically 
allocated memory is owned by the domain requesting the al­
location, or the one creating an allocation pool. Most of the 
non-stack accesses go to "remote" memory (of some other 
domain) in the call chain ("Synch. *" accesses), suggesting 
these can be handled with synchronous capabilities: the owner 
is (indirectly) calling into the domain that uses that memory. 
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OJ) CD Asynch .  read � [IT] Synch .  wr ite (other) 
� _ Synch .  read (other) 
u '" 
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Figure 9 :  Domain memory access distri bution,  accord ing to 

the owner of the accessed memory. 



Number of Domain switch Grant / revocation 
Hardware 

Mechanism hardware Runtime User- Mech- User-
Granularity Sparse Costs 

domains overhead level anism level 

Common 
Address spaces 00 tt X PT X Page X -

Privilege levels -U t X - - - -

NaCI [3 1 ]  t* t .I PT X Page X -

Nooks [26] 00 tt X PT X Page X -

Virtual Fides [25] 00 ttt X PT X Page X -

Memory- Small spaces [2 1 ]  t* t X PT X Page X -

based Memory keys --+* t X PT X Page/key .I t 
PLB [ 1 5] t* t· X PT X Page X t 
Mondrix [30] 00 t· .I PTt xt Range X tt 

Encryption 
SP [ 1 7] -U t X PT X Page X t 
Bastion [7] t ttt X PT X Page X tt 

Capabilities 
Guarded ptrs. [5] 00 t .I Reg. X Range X tt 
CHERI [28] 00 t .I Reg. X Range X tt 

. CODOMs --+* t-U .I I Reg. .1- I Hybnd 1 .1  --+ 
t-U / -U / t / --+ / t / tt / ttt / 00: Extremely low / Very low / Low / Medium / High / Very high / Extremely high / Unlimited 

* Software multiplexing can be used to provide more domains • Uses tagged associative TLB-Iike structures 
t HW-support for transient read-only access permissions to stack area + "Asynchronous" capabilities (§ 4 . 1 .5) may require supervision 

Table 6: Summary of some hardware-assisted domain isolation mechanisms (PT=Page tabl e ;  Reg= Reg ister). 

Of these, most accesses point to memory owned by the Some systems build on top of existing virtual memory primi-
main kernel ("Synch. * (kernel)"). This is primarily due to tives. Nooks [26] and Fides [25] are susceptible to high domain 
structures allocated at its generic layers, later accessed by switching overheads, while Small Spaces [21] relies on scarce 
the device- or protocol-specific modules. A rewrite of the resources like segment registers. Still, these mechanisms are 
system could minimize these accesses, as could having the privileged and thus require costly OS intervention. 
core Kernel accessible from all domains, while retaining inter- PA-RISC, Itanium and POWER 6 use key-based memory 
module isolation. Still, "remote" accesses are an intrinsic protection [15, 12, 14] (Figure 2d). Page table entries contain 
property of fine-grained isolation. a tag identifier, and a small key set describes the tags that can 

Most "remote" accesses can be handled with synchronous be accessed at any given time. The key set is a privileged 
capabilities ("Async. , *" is small), showing the convenience resource, requiring costly OS intervention, and multiplexing 
of distinguishing between capability types in CODOMs. the tags requires expensive TLB shootdown operations. 

7. Related Work 

The security and reliability issues that plague the software 
world have revitalized interest in more efficient and finer-
grained memory isolation mechanisms. 

Table 6 summarizes proposed domain isolation mechanisms, 
starting with Common primitives such as virtual address spaces 
and privilege levels. While effective, these primitives are 
tuned for application-level isolation. They incur high over­
heads when switching protection domains, require costly OS 
intervention [26, 25] and are limited to page granularity. 

Software Fault Isolation (SFI) techniques provide fine­
grained isolation by enforcing policies in software. They 
require non-trivial additions to the TCB, increasing the at­
tack surface. Some rely on specific languages and trusted 
too1chains (e.g., Singularity [13] or BGI [6]), or rely on a 
trusted VM (e.g., SPIN [3] or Java [11]). Others verify bina­
ries at load-time using proof-carrying code [24], or rely on 
dynamic binary translation [8, 9]. Imposing languages and 
tools makes it harder for third-parties to develop and distribute 
their software. Furthermore, SFI has overheads on safe purely 
computational code [24]. Systems like NaCI [31] mix SFI with 
existing mechanisms like segmentation [31, 9] or paging [8]. 
Nevertheless, this hybridization only serves as a measure to 
partially alleviate the overheads of SFI. 

Koldinger et al. [15] decouple protection and translation 
by running all processes on a single address space, instead 
adding a Protection Lookaside Buffer (PLB); a separate TLB­
like structure that maps virtual page addresses and protection 
domains to access rights. The PLB is a privileged resource, 
requiring expensive OS intervention. 

Mondrix [30] builds on the PLB concepts (Figure 2c), pro­
viding protection at arbitrary granularities. Unsupervised do­
main switches are supported by adding a table that controls the 
ability to switch domains at call/return boundaries (separately 
cached in hardware, the GLB). Both PLB and Mondrix use 
tables that are managed by the OS, require expensive highly­
associative hardware caches, and revoking grants requires 
expensive operations akin to TLB shootdowns [27] . Mon­

drix alleviates some of these costs by adding domain switch 
semantics that control read-only grants to the stack. 

Bastion [7] protects components in untrusted software 
stacks using extended hardware virtualization. The hypervisor 
adds a domain tag to pages of protected components. When­
ever the processor interacts with external memory, tagged 
pages are encrypted and their contents verified. The use of 
a hypervisor incurs in high overheads, while encryption and 
hashing (interspersed with code and data) can delay memory 
accesses and induce poor memory bandwidth utilization. 

Several newer capability architectures have been proposed, 



such as Carter et al. [5] and CHERI [28]. The main advantage 
of Carter et al. [5] lies in its integration of capabilities as pro­
tected pointers, while CHERI [28] provides a more classical 
approach that avoids high-level hardware constructs. Still, 
both suffer from most of the problems on previous systems: 
capabilities are not sparse, do not support efficient revoca­
tion, use word-level memory tagging, and (after switching) a 
domain must explicitly configure the set of capabilities that 
define its "root" grants. 

8. Conclusions and Future Work 

This paper presents CODOMs, an architecture that enables 
software components to be isolated using separate protection 
domains that coexist on the same address space. These isola­
tion domains can efficiently interact through regular procedure 
calls. CODOMs draws from previous works on memory pro­
tection keys and capability architectures to hybridize their 
ideas in a novel architecture. 

CODOMs provides the novel concept of code-centric pro­
tection domains, which simplifies the management of domains, 
provides very low overheads (even in 000 processors), and 
enables transparent integration. CODOMs also provides tran­
sient capabilities that do not require expensive memory tag­
ging. In addition, CODOMs capabilities support efficient 
access grant and selective revocation operations. 

The compos able nature of CODOMs primitives avoids hard­
wiring semantics into the hardware, allowing systems to tune 
performance according to their needs, and enabling software 
developers to gradually harden system security and resiliency. 

Our evaluation shows that CODOMs incurs low latency 
protection domain switches and provides efficient access 
grants and revocations. Furthermore, it can maintain pipeline 
throughput even in out-of-order processors. Some of the con­
tributed techniques can also be applied to other systems. 

CODOMs is a first step towards restructuring the hardware/­
software interfaces to support modular, exokernel-like hyper­
visors and OSes. To this end, we plan to extend CODOMs 
to support device I/O protection in order to allow arbitrary 
protection domains to safely and directly operate with devices. 
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