
One Interface to Rule them All: A Hardware/Software
Co-Design for Disaggregated Computing

Lluís Vilanova
Technion

vilanova@technion.ac.il

Yoav Etsion
Technion

yetsion@technion.ac.il

Mark Silberstein
Technion

mark@ee.technion.ac.il

1. INTRODUCTION
Datacenters are moving towards a paradigm of pool-

ing resources (e.g., CPUs, storage and accelerators) into
separate nodes to lower costs through easier hardware
upgradability and higher resource utilization when run-
ning applications with heterogeneous demands.

A single request to an application can trigger a chain
of accesses to multiple devices, but each device has
wildly different hardware capabilities which expose vastly
different data and control interfaces. As a result, appli-
cations cannot securely span all these devices in a way
that keeps the cost and simplicity benefits of disaggre-
gation while maintaining efficiency.

In this paper, we propose extending NICs to imple-
ment a model of continuation-based computations in-
spired in dataflow, which is used to weave the execu-
tion flow of applications across hardware devices with-
out the need for each device to know each other’s com-
munication protocol. To achieve this, we lean on the
observation that modern technology trends like device
self-virtualization, multi-queue designs, RDMA and re-
mote device transports (e.g., NVMe over fabric [14])
can be extended to allow devices to interact with each
other without the need for intermediate software lay-
ers. Existing NICs can be easily extended to trigger
such continuations as a response to device command
completions, translating a continuation into a request
directed at the next device on the processing pipeline.

2. PROBLEM STATEMENT
Resource disaggregation promises higher datacenter

utilization and upgradability, ultimately leading to lower
total cost of ownership (TCO). While the term was
introduced in the context of decoupling memory and
compute elements in a node [9], the same concept has
already been applied to other types of resources like
storage [14], FPGAs [16], GPUs [4] and TPUs [7]; we
focus on this last case when using the term disaggregated
computing. Nevertheless, there is no established theory
in how to best operate such systems in the presence of
complex applications that span multiple resources.

Let us take an example of an image store that per-
forms simple real-time operations like image resizing

and enhancement, as reported by Flickr [6]. The image
store server performs a lookup in an in-memory cache
for rapid request serving of cached, post-processed im-
ages. On a miss, it looks up the original image in stor-
age (since storing all possible post-processed images re-
quires too much space), reads it out, passes it to an im-
age processing accelerator, caches the result, and sends
it to the requesting client.

With the disaggregated computing paradigm, each
resource (CPU server, storage and accelerator) resides
on a separate node, from which it can be assigned to
different applications on demand, and the whole rack
(or datacenter) can be thought of as a machine that
uses the network to interconnect all its devices.

Unfortunately, existing deployments use general-purpose
CPUs as either a central management point or as an
executor of distributed application logic on each node
(see Figure 1), leading to sub-optimal performance and
higher TCO. In an ideal design, the image store server
would instead send a storage read request, the storage
device would directly place the image on the acceler-
ator and trigger the appropriate processing operators,
and the end of the accelerator processing would forward
the enhanced result straight into the server and trigger
it to respond to the original client.

In existing centralized designs (Figure 1a), the image
server is used as a central point to manage all resources,
where all data is always transferred between the server
node and the storage or accelerator nodes. This pro-
vides very lean storage and accelerator designs (lower
TCO), at the expense of increasing bandwidth require-
ments by 50% (we go from two to three image transfers;
step 2 ), and network latency by 33% (we go from three
one-way messages to two round-trip messages; step 2 ).

In existing designs that co-locate CPUs with every de-
vice (Figure 1b), applications can distribute their logic
on each resource node to avoid the overheads of the cen-
tralized design. Nevertheless, CPUs are known to have
problems scaling request processing to line-rate [3], co-
locating a general-purpose CPU with each device in-
creases the TCO (more so as CPU performance must
scale with the performance of the co-located device),
the OS on each CPU must isolate and multiplex logic
from different applications, and programming the sys-



(a) Centralized logic design with device-aware NICs.

(b) Distributed logic design with CPU replication.

Figure 1: Examples of disaggregated designs and how
they relate to resource access orchestration. Equipment
and operation overheads have an orange background.

tem becomes 67% more complex: the application goes
from three components (server, storage and accelera-
tor) to five (for the two added CPUs on the storage and
accelerator nodes; steps 2 and 4 ).

2.1 Requirements
The thesis of this work is that disaggregated com-

puting needs to provide resource composition, resource
authorization and efficient request dispatching.

Resource composition is key to build systems that
can perform complex operations in a decentralized and
efficient way. The idealistic image server design above
is a clear example: the storage node should place its
result on the accelerator and immediately trigger the
necessary image processing operations, while the accel-
erator should likewise send its result to and trigger a
response from the image server.

We cannot simply make the hardware devices aware
of each other’s communication protocols to solve this
problem; this is clearly unfeasible, especially as the num-
ber of hardware and software resources increases.

Resource authorization is key for system security.
For example, the system cannot allow an application to
read a storage block into the memory of another node
that has not been previously assigned to the application.

This is not straightforward to achieve; access con-
trol must be globally orchestrated, and enforced at each
physical device with knowledge of what application is
every request being processed in lieu of.

Efficient interfaces are key to avoid unnecessary
overheads. Using general-purpose CPUs to process the
requests of each device is known to be difficult to scale in
terms of throughput and latency [3]; hardware support
is thus necessary to allow various resources and nodes
to directly interact with each other.

2.2 Opportunities
Fortunately, some existing technologies are already

pointing on the right direction, but we need to general-
ize their mechanisms to solve the larger problem space
of the disaggregated computing paradigm.

Modern NICs offer virtual functions (VFs), so that
applications can use the network without OS media-
tion [15]. NICs also offer multiple concurrent queue
pairs, so that different application threads can use the
network without synchronizing. Similarly, NVMe sup-
ports multiple queues and per-queue block addressing
spaces, allowing applications to directly access local stor-
age. Together, these features provide better through-
put and latency without sacrificing security [1–3]. Some
NICs also have RDMA capabilities, which improve through-
put and latency of data transfers by bypassing the general-
purpose CPU of remote nodes [13]. Similarly, NVMe
over fabrics (NVMeOF) [14] specifies a protocol that
uses RDMA to allow CPU servers to directly operate
NVMe devices over the network. Some vendors provide
programmable NICs [5, 11], which offer a cost-effective
way to support NVMeOF: the target NIC manipulates
a storage read request to point to the target node’s lo-
cal memory, detects when the request finishes, and per-
forms an RDMA write of the result and response queue
entry to the memory on the requesting CPU.

The network is thus a medium shared between dif-
ferent protection domains (different applications). For-
tunately, existing network technologies like VLAN tags
are used by NICs and other networking equipment to
contain network traffic within a set of virtual network
endpoints (i.e., a protection domain).

We can thus argue that existing hardware trends of-
fer partial solutions to the problems raised by the dis-
aggregated computing paradigm. What we still need
to define, though, is a trusted interface that allows set-
ting up all resources and communication channels for
each application, together with a uniform mechanism
that allow all devices (CPUs, storage and accelerators
alike) to directly communicate with each other without
mediation of a trusted layer of software.

3. SYSTEM DESIGN OVERVIEW
We propose the Caladan1 system to solve the prob-

lems cited above. At its core, Caladan uses a homoge-
neous interface based on request/response queue pairs
and a continuation-based dataflow model to execute com-
plex datacenter-scale applications spanning multiple re-
sources (i.e., in a composable manner) efficiently. This
is a model based on hardware/software co-design; ap-
plications directly express resource requests and their
relations, and programmable NICs are extended to en-

1Caladan is an ocean planet in the Dune universe. Its
surface is predominantly covered with water, and its cli-
mate is characterized by much precipitation and strong
winds, but is tolerable enough to make special and ex-
pensive weather control measures unnecessary.



capsulate, transport and trigger these requests and the
resources they reference (similar to what NVMeOF-
capable NICs already do).

Continuations are a well-known abstraction used
to represent the state of a computation [17]. Many
languages expose them as data structures that can be
passed as function arguments, which in turn can invoke
these arguments to continue the execution of said com-
putation (e.g., event-based frameworks like NodeJS use
them in the form of lambda callbacks). In Caladan,
continuations are at the core of resource composi-
tion; they are sent as part of a resource request, and
triggered by a remote NIC as a response to the comple-
tion signal of such request. Continuations encapsulate a
regular resource request and can be nested within other
continuations, so that computations across different re-
sources can be composed into complex patterns without
involving any additional software layers.

The result is an emergent dataflow model of compu-
tation [19]. A response is created only after a request’s
result has been generated, immediately triggering the
computation represented by the continuation. Interest-
ingly, this makes existing hardware and software designs
indistinguishable: hardware devices will process a re-
quest when it has been published on a request queue,
whereas software services will trigger a computation
when they read a request from their network queue pair.

Finally, Caladan uses object-capabilities [12] to ex-
press the resources available to an application (a protec-
tion domain) in a secure way, providing resource au-
thorization. Capabilities are protected handles that
identify and authorize access to resources, which cor-
respond to request/response queues in Caladan. Cal-
adan’s trusted computing base (TCB) is composed of a
trusted OS that controls the creation of capabilities (the
control plane), and the NIC and network infrastructure
that controls how capabilities can be communicated and
operated to access physical resources (the data plane).

A key observation is that Caladan can lean on ex-
isting datacenter-grade hardware that already supports
RDMA, allowing efficient memory transfers to/from re-
mote devices, and NVMeOF, allowing transport of re-
quest/response queue entries across the network in a
secure way (i.e., an NVMeOF request cannot write into
memory not available to the requesting application).

Caladan is designed around four core concepts, exem-
plified in Figure 2: (1) virtual resources, (2) namespaces,
(3) the invoke operation, which accepts virtual resources
as arguments, and (4) continuations, which can be used
to chain requests across virtual resources.

Virtual Resources.
Virtual resources encapsulate any portion of a physi-

cal resource, like memory, virtual storage (i.e., protected
through NVMe namespaces), a virtual accelerator (i.e.,
providing a small storage area for incoming requests and
the ability to process them), or even a regular process.
They are managed by the TCB, and references to them

Figure 2: Example of the main elements in Caladan.
Gray boxes represent references to object-capabilities
available in a namespace.

are therefore capabilities.

Namespaces.
Namespaces are an interface to manage and authorize

access to virtual resources. Every virtual resource ex-
ists on its own namespace, and on the namespace used
to create that resource. Resources are referenced as
an index into a namespace, can be transferred across
namespaces as part of the arguments of a request to
another virtual resource (thus preventing the confused
deputy problem [8]), and are invalidated on the target
namespace after a request has been responded to (pro-
viding a form of distributed and dynamic access control
that solves the scalability problem of dynamic changes
to translation and authorization structures [10, 21]).

Namespaces are implemented by the NIC as a table
mapping virtual resources to the corresponding remote
queue pairs of a target device, and are exposed as a
regular hardware device through its own queue pairs.

The Invoke Operation.
Namespaces support a single invoke operation with a

known format, allowing the NIC to inspect and forward
it to the relevant resource. The invoke operation has
a target resource, a continuation (see below), an argu-
ment description field, and a sequence of immediate and
virtual resource arguments.

The NIC uses the virtual resource table to look up the
destination queue of the target resource. The trusted
OS is also a virtual resource, used for control plane op-
erations (e.g., virtual resource creation).

The argument description field identifies which argu-
ments are virtual resources, so that the NIC can prop-



erly translate them into values that the remote device
can use. After translation, the NIC copies the argu-
ments as an entry into the request queue of the remote
device, and signals the arrival of a new request on it.

Arguments referencing memory are expressed as the
memory’s resource index and an offset into it, which
the NIC translates into an address that a remote device
can use for RDMA. This approach is similar to what
NVMeOF-capable systems already do; a local request
entry is copied into the request queue of the remote
NVMe device, and the NICs use RDMA to transport the
data between the device and the local memory buffer
addresses set by the CPU on the request.

Continuations.
Continuations are created by invoking a special con-

tinuation factory, and its arguments represent an invoke
operation (a target resource, continuation, etc.). This
produces a new virtual resource that can be used as the
continuation of a future invocation (a namespace can be
used as a continuation to get the result of a request).

The contents of a continuation are transferred to the
target NIC together with the request, but are not writ-
ten into the target resource’s queue. Later on, when
the target resource signals a request completion (e.g.,
through an interrupt), the NIC captures that event and
reifies the continuation as a new invoke operation. Note
that capturing a device’s request completion is already
part of NVMeOF-capable NICs.

Since a continuation can have arbitrary contents, this
can be used to trigger the next stage of a complex com-
putation without having to know its interface.

3.1 Example Usage
Let us now look at how to implement the image store

example in Caladan. When the server has a miss on its
cache, it will prepare the image post-processing pipeline
using continuations. Note that the steps are described
in the application’s logical order, but the continuations
must be constructed on the reverse order (last to first;
simple language support can be used to simplify this).

The server will lookup the storage location of the orig-
inal image, and build a request for the storage resource
(target resource) to read a certain offset and size (imme-
diate arguments) into the accelerator’s memory (virtual
resource). This request is shown at the top of Figure 2,
where the gray boxes indicate references to virtual re-
sources located on the server’s namespace. When en-
queued, the operation and the resources it references
are transferred into the storage’s namespace (left side of
Figure 2), and the NIC translates and copies the request
into the target device request queue (bottom, similar to
NVMeOF-capable NICs). The continuation field will
be triggered when the NVMe device signals a response
to the request (bottom).

The server will build the storage’s continuation as
a request to the accelerator (target resource) to read
the original image from the accelerator’s memory (vir-

tual resource), with a given size and list of operators to
apply (immediate arguments), and the image server’s
memory to write the post-processed image to (virtual
resource). The continuation field will be triggered when
the accelerator device signals a response to the request.

The server will then build the accelerator’s contin-
uation as a request to one of its namespace’s queues
(target resource) with a pointer to the client’s request
context (immediate argument). When the continuation
is triggered, the server will use the client context pointer
on the response message to resume the request, adding
the post-processed image into its cache and sending it
out to the client.

4. CONCLUSIONS
Caladan provides a continuation-based dataflow model

to build complex large-scale applications under the dis-
aggregated computing paradigm. It extends existing
techniques like device self-virtualization, multiple queue
pairs, RDMA and NVMeOF protocols to compose com-
putations across unrelated devices without involving ad-
ditional software layers. Caladan uses the concept of
continuations as self-contained requests to other devices,
such that a requesting device does not need to know
the protocol of the next device on the computation
pipeline. Given their simplicity and the maturity of
existing technologies like programmable and NVMeOF-
capable NICs, continuations and remote device opera-
tion can be efficiently implemented in modern NICs.

Works like LegoOS [18] and OmniX [20] describe solu-
tions to very related problem spaces. LegoOS provides
a distributed OS design for disaggregated memory sys-
tems, but does not concern itself with the composition
of computations across resources. OmniX does look
at the problem of near-data computation by compos-
ing application logic distributed across programmable
hardware in a single node, but does not touch on the
problem of lack of device programmability. Together,
LegoOS and OmniX do not solve the problems covered
by Caladan, but putting all three together could be a
way to realize a full stack for hyper-efficient disaggre-
gated infrastructures.

The design of Caladan still holds many open and in-
teresting questions. It is still not clear whether support
for stream-like transfers is necessary, for cases where the
address or size of a piece of data is not known in ad-
vance. There is no definition of how to support pipelines
with conditional forks, although one could envision us-
ing multiple continuations mapped to different request
completion signals. It is not clear how to support re-
mote operations that would generate various response
signals, like getting one response after posting a kernel
execution on a GPU and later receiving a response after
the computation is finished. There is no clear way to
define reusable computation pipelines, where an appli-
cation can simply tweak some of the argument values to
trigger a new computation. Nevertheless, the proposed



design is an interesting first step towards efficient, com-
posable computations in disaggregated infrastructures.

References
[1] Data plane development kit (DPDK). https://

www.dpdk.org/.

[2] Storage performance development kit (SPDK).
https://spdk.io/.

[3] A. Belay, G. Prekas, , A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A protected
dataplane operating system for high throughput
and low latency. In USENIX Symp. on Operating
Systems Design and Implementation (OSDI), Oct
2014.

[4] J. Duato, A. J. Peña, F. Silla, R. Mayo, and E. S.
Quintana-Ort́ı. rCUDA: Reducing the number of
gpu-based accelerators in high performance clus-
ters. In Intl. Conf. on High Performance Comput-
ing and Simulation (HPCS), Jun 2010.

[5] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat,
V. Bhanu, A. Caulfield, E. Chung, H. K. Chan-
drappa, S. Chaturmohta, M. Humphrey, J. Lavier,
N. Lam, F. Liu, K. Ovtcharov, J. Padhye, G. Pop-
uri, S. Raindel, T. Sapre, M. Shaw, G. Silva,
M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair,
D. Bansal, D. Burger, K. Vaid, D. A. Maltz,
and A. Greenberg. Azure accelerated networking:
SmartNICs in the public cloud. Apr. 2018.

[6] Flickr. A year without a byte, 2017. https://code.
flickr.net/2017/01/05/a-year-without-a-byte/.

[7] Google. Cloud TPU. https://cloud.google.com/
tpu/.

[8] N. hardy. The confused deputy (or why capabilities
might have been invented). ACM SIGOPS Oper-
ating Systems Review, Oct 1988.

[9] K. Lim, J. Chang, T. Mudge, P. Ranganathan,
S. K. Reinhardt, and T. F. Wenisch. Disaggre-
gated memory for expansion and sharing in blade
servers. In Intl. Symp. on Computer Architecture
(ISCA), Jun 2009.

[10] A. Markuze, A. Morrison, and D. Tsafrir. True
IOMMU protection from DMA attacks: When
copy is faster than zero copy. In Intl. Conf. on
Arch. Support for Programming Languages & Op-
erating Systems (ASPLOS), Apr 2016.

[11] Mellanox. BlueField Multicore System on Chip,
2018.

[12] M. S. Miller. Robust composition: towards a unified
approach to access control and concurrency control.
PhD thesis, Johns Hopkins University, 2006.

[13] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi,
and B. Grot. The case for RackOut: Scalable data
serving using rack-scale systems. In ACM Symp.
on Cloud Computing (SoCC), Oct 2016.

[14] NVM Express. NVM Express over Fabrics, Revis-
tion 1.0a, Jul 2018.

[15] PCI-SIG. Single Root I/O virtualization and shar-
ing specification, revision 1.1 edition, Jan. 2010.

[16] A. Putnam, A. Caulfield, E. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh,
J. Fowers, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J.-Y. Kim, S. Lanka, E. Peterson,
A. Smith, J. Thong, P. Y. Xiao, D. Burger,
J. Larus, G. P. Gopal, and S. Pope. A reconfig-
urable fabric for accelerating large-scale datacenter
services. In Intl. Symp. on Computer Architecture
(ISCA), Jun 2014.

[17] J. C. Reynolds. The discoveries of continuations.
Lisp and Symbolic Computation - Special issue on
continuationsâĂŤpart I, Nov. 1993.

[18] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. Le-
goOS: A disaggregated, distributed os for hard-
ware resource disaggregation. In USENIX Symp.
on Operating Systems Design and Implementation
(OSDI), Oct 2018.

[19] R. M. Shapiro and H. Saint. The representation
of algorithms as cyclic partial orderings. Technical
report, NASA, July 1971.

[20] M. Silverstein. OmniX: an accelerator-centric OS
for omni-programmable systems. In Workshop on
Hot Topics in Operating Systems (HotOS), May
2017.

[21] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Et-
sion, and M. Valero. CODOMs: Protecting
software with code-centric memory domains. In
Intl. Symp. on Computer Architecture (ISCA), Jun
2014.

https://www.dpdk.org/
https://www.dpdk.org/
https://spdk.io/
https://code.flickr.net/2017/01/05/a-year-without-a-byte/
https://code.flickr.net/2017/01/05/a-year-without-a-byte/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/

	Introduction
	Problem Statement
	Requirements
	Opportunities

	System Design Overview
	Example Usage

	Conclusions

