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Abstract

Planning is an active research field based on intelligent decision making for autonomous
systems. To plan is to have an agent reach a goal state given an initial situation.
However, we may want to specify temporally extended goals on the execution structure
of a plan.

In this project, we specify temporally extended goals with a much greater degree of
expressivity than what is currently possible. We do this by specifying goals using the
full branching-time temporal logic ctl* (Full Computation Tree Logic).

We initially specify a formal correspondence between a representative model of a plan-
ning problem and an interpreted system. We then document the design and construction
of a compiler to translate between the two models. Along with this, we investigate the
challenges involved in planning for multiple agents and planning under partial observ-
ability.
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Chapter 1

Introduction

Model checking is a method used for verifying the correctness of certain properties of a

system, specified in some modal language. It is possible to construct a representative

model M of a real system using states, transitions and Boolean propositions. Given a

specification represented as a formula φ, one can algorithmically verify that the property

expressed by the formula holds true in the model. This is of great value in mission-

critical systems, especially in the case where human health is at risk, taking the case of

the Therac-25 disaster [30] as an example.

Planning is one of the ways in addressing one of the key problems of intelligent behaviour.

To find a plan is to find a sequence of executable actions in a planning domain which

can lead an agent from a initial situation to a desired goal. In current literature, we find

that a direct correspondence between solving planning problems and model checking can

be drawn, allowing us to efficiently plan for goals expressed in a rich variety of ways.

We now wish to extend the current work in the field of planning via model-checking, by

exploring methods of planning for more complex goals, where we specify properties about

the execution structure of a plan. We examine the branching-time logic Computation

Tree Logic (ctl), which is commonly used for specifying temporally-extended goals,

and study how we can instead exploit the expressive power of the more general full

branching-time logic ctl*, which supersedes ctl, to formulate more complex goals.

One example of the expressivity of ctl* can be seen in the formula E [GFp] for some

atomic formula p, which can be interpreted as “there is a path along which p is infinitely

often true. We examine how this cannot be expressed in either ctl or the Linear-Time

Logic Ltl. We find that ctl* gives us much greater flexibility in the properties we wish

to express for a goal, compared to what is currently possible with the tools and logics

seen in the current state-of-the-art.
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CHAPTER 1. INTRODUCTION

1.1 Primary Objectives

This project presents a formal correspondence between planning problems with tempo-

rally extended goals expressed in ctl* to model checking input. A tool will then be built

allowing for planning with such properties, which is currently not possible in existing

planners. Support will also be provided for partially observable domain specifications.

From the perspective of an agent in the system, the agent will have incomplete infor-

mation about the planning domain during the execution of the plan. To facilitate this,

a compiler will be built, translating domains specified in a standard planning language

into model checking input.

The planning language we will use is the Planning Domain Definition Language (pddl).

A non-deterministic version of this language also exists, called Npddl. This can be used

for planning with incomplete information. We will be using a model checking toolkit for

the verification of Multi Agent Systems (mcmas) [32].

The input of the model checker is based on Interpreted Systems (ISs), which are de-

scribed in detail in the Background section. The IS is encoded in an ispl file. The

outline of the project is as follows:

• Build the first planner for temporally extended goals specified in ctl* with in-

complete information.

• Draw a formal correspondence between such domains expressed in pddl, and

interpreted systems.

• Build a compiler to translate planning domain descriptions in pddl to model

checking input. The model checking input will be written in ispl, the input

language to the mcmas model checker.

1.2 Challenges

• There is currently very limited material for our specific use case of planning with

ctl*, as well as planning with incomplete information.

• There is a potentially high computational cost of synthesizing such complex plans

along with planning incomplete information. Optimisations may have to be made

directly in mcmas and/or in the parsing phase of compilation.

• We must effectively work with a large legacy codebase (mcmas) which does not

have an existing test suite already set up. Any changes to the source code need

to have a guarantee of not altering existing behaviour. Acceptance tests need to

be written to check the end-to-end behaviour of the solution.

• Testing the output of the generated plans may have to be done manual inspection,

which is not a scalable solution. A separate tool which will read the plan may

12



CHAPTER 1. INTRODUCTION

have to be created in order to deal with this. (mcmas)

1.3 Contributions

The main contributions of our work are as follows:

• Develop algorithms for planning for temporally extended goals with incomplete

information via model checking.

• Prove the correctness of such planning algorithms, with attention given to their

computational complexities.

• Implement the algorithms in the mcmas model checker (if necessary).

• Prove the correctness of the output of the pddl–ispl compiler. It must be possible

to prove a bisimulation between the planning domain input into the compiler and

the interpreted system represented by the output of the compiler.

• Evaluate the system on a variety of scalable planning domains with various temporally-

extended goals. Such planning domains should be easy to scale in order to check

the robustness of the models generated by the compiler for large state spaces.

13





Chapter 2

Background

We will now give an overview of the relevant work in the area of Planning and Model

Checking, study the planners and model checkers that are already in existence, and

examine the contexts in which certain logics are used for expressing goals in planning

problems.

2.1 Model Checking

Model checking is the process of determining whether a formula is true in a model [19].

Model checking is based on the following fundamental ideas:

1. A domain of interest is described by a semantic model. Examples of these are a

computer program or a reactive system.

2. A desired property of the domain is described by a logical formula. An example

of this is a safety requirement for a reactive system.

3. The fact that a domain satisfies a desired property is determined by checking

whether the formula is true in the model.

The way in which we formalise domains will be with Kripke Structures.

Definition 2.1 (Kripke Structure). We define a Kripke Structure K as a 4-tuple

〈W,W0, T, L〉, where

1. W is a finite set of states.

2. W0 ⊂W is a set of initial states.

3. T ⊂ W ×W is a binary relation on W , the transition relation, which gives the

possible transitions between states. We require T to be left-total, i.e. for every

state w ∈ W there exists a state w′ ∈ W such that (w,w′) ∈ T . This means that

one can model deadlock by having a state with a single outgoing edge arriving back

15



CHAPTER 2. BACKGROUND

onto itself. Note that although we have initial states, we do not require the notion

of terminating states.

4. L : W 7→ 2P is a labelling function, where P is a set of atomic propositions. L

assigns to each state the set of atomic propositions true in that state.

We shall now formulate a way to encode the possible evolution of the domain.

Definition 2.2 (Path). We define a path as an infinite sequence w0w1w2 . . . of states

in W such that, for each i, (wi, wi+1) ∈ T . We require that paths begin from an initial

state w0 ∈W0. Due to the totality requirement of T from Definition 2.1, it follows that

all paths are infinite.

Example. The corresponding Kripke Model as depicted in in Figure 2.1 is as follows:

• W = {1, 2, 3}

• W0 = {1}

• T = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (3, 2)}

• L(1) = {p, q} , L(2) = {p} , L(3) = {q}

1

2 3

p q

p, q

Figure 2.1: An example Kripke model.

2.2 Symbolic Model Checking

Using symbolic methods to perform model checking is a breakthrough technology based

on the idea of encoding sets of states in a model as bit vectors and using boolean functions

to encode the transitions present in the model. Ordered Binary Decision Diagrams [3]

can then be used as a way of manipulating such boolean functions.

Definition 2.3 (Boolean function). We define boolean functions to be function which

take booleans as inputs and produce booleans as output.

Observe that for a function with n boolean arguments, there are 2n different possible

inputs, since each argument can take either the value 0 or 1. We also see that since

the output of the function must either be 0 or 1, we have 2 outcomes for each input,

meaning that we have a total of 22n different functions altogether.

16



CHAPTER 2. BACKGROUND

2.2.1 Binary Decision Trees

Before we continue to defining a binary decision diagram, we must first explore the

concept of a binary decision tree. A binary decision tree (Bdt) is similar to a binary

trie. Let the input to a function be the boolean variables x1, . . . , xn.

At the root of the tree, we test one of the variables, which produces two subtrees. One

subtree corresponds to the case where xi = 0 and other corresponds to xi = 1 for some i

where 1 ≤ i ≤ n. We continue testing variables in each subtree to create more subtrees,

until we eventually find ourselves at the leaf nodes where we have either 0 or 1. This will

be the output of the function. Traversing a root–leaf path through the tree is analogous

to evaluating the value of each variable of the function’s input.

Let us consider the boolean function x1 ∧ x2 as an example. We can interpret this as

the following function in familiar C-style syntax:

bool and(bool x1, bool x2) {

return x1 && x2;

}

The corresponding binary decision tree would be that represented in Fig. 2.2. We will

use a certain convention for the trees when testing the variable xi for some i, 1 ≤ i ≤ n.

The convention is as follows: if xi is true, we proceed into the right subtree of the

corresponding node in the tree (represented as a solid line). If xi is false, we proceed

into the left subtree of the corresponding node (representation as a dashed line).

x1

x2 x2

0 0 0 1

Figure 2.2: Binary decision tree for the function x1 ∧ x2.

Observe that binary decision trees have the following properties:

• Large size: a formula of n variables leads to 2n−1 nodes in the tree, with 2n leaf

nodes in the lowest level. Clearly, the size of the tree is exponential in n, where n

is the number of variables in the formula.

• Canonicity: The Bdt is unique only if we test variables in a fixed order x1, . . . , xn.

This means that if we want to test whether two boolean functions are logically

equivalent, we can simply perform an equality test between two trees.

• Decision trees can be ordered: If we fix a variable ordering, we denote the

corresponding decision tree as ordered.

17



CHAPTER 2. BACKGROUND

We now desire to obtain a more compact representation of boolean functions while

preserving the canonicity property, in order to make it easier to test the equality of a

pair of boolean functions. This leads us to binary decision diagrams.

2.2.2 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) as proposed in [12], represent Boolean functions

as directed acyclic graphs. Performing operations of boolean functions can then be

efficiently done through the use of graph algorithms on such data structures.

It can be shown that BDDs provide the advantage of testing properties such as satis-

fiability and equivalence, which are of great importance in the field of model checking.

Using BDDs for symbolic model checking is currently used in mcmas and many other

model checkers.

We find that the problem of checking if a formula ϕ is satisfied by a model is reduced to

the problem of checking whether the initial state of the model belongs to the set where

ϕ is satisfied. This can be implemented as a BDD test.

We find that BDDs differ from Bdts in two fundamental ways:

• The redundant testing of boolean variables can be omitted: Observe in

Fig. 2.2 that testing the value of x2 is pointless after we already see that x1 is

false. This means that we can instead construct a Bdt like that seen in Fig. 2.3.

• Identical subtrees can be shared: This reduces the number of nodes present in

the BDD significantly, where for some boolean formula we may see many subtrees

which cannot be distinguished from another.

x1

0

x2

0 1

Figure 2.3: An equivalent binary decision diagram corresponding to the formula x1∧x2.

We find that because of these two properties, the potential for the size of the diagram

to be exponential in the number of variables of the formula are significantly reduced.

Observe that in the worst case, the size of the Bdt will still be exponential in n.

2.2.3 Reduced Ordered Binary Decision Diagrams

If we fix the ordering of the variables, we can obtain a reduced ordered binary decision

diagram (Robdd). Robdd’s are also reduced, meaning that they have the following

18
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properties:

• Irredundancy: The left and right subtrees of each node are distinct

• Uniqueness: There are no two distinct nodes testing the same variable with the

same subtree(s).

Observe also that for a fixed variable ordering, each boolean function corresponds to a

unique Robdd [31]. This is the canonicity property. Two boolean function can therefore

be tested to be equivalent by checking if the corresponding Robdds are the same. As

seen in Fig. 2.4 and in general, Robdds have at most two leaf nodes, 0 and 1.

x1

0

x2

1

Figure 2.4: Robdd corresponding to the formula x1 ∧ x2.

This now brings us to being able to check if a boolean formula is valid or satisfiable.

2.2.4 Validity and Satisfiability

The concepts of validity and satisfiability are fundamental to the field of model checking,

as they allow the efficient determination of properties of a formula given a model.

Definition 2.4 (Validity). We say that a boolean formula is valid if it is equivalent

to true. This mean that we may assign any combination of values to the variables of a

formula, but it will inevitably evaluate to true. In the context of Robdds, this mean

that regardless of where we traverse in the diagram, we always end up at 1.

Definition 2.5 (Satisfiability). We say that a boolean formulate is satisfiable if there is

some assignment of variables which makes the formula evaluate to true. In the context

of Robdds, by looking at the diagram, we can check whether the formula is equivalent to

false in a similar way to checking validity. If this is not the case, this means that there

must exist some assignment of truth values for the variables which makes the formula

evaluate to true.

2.3 Temporal Logics

Model checking is completely based on temporal logic. Temporal logics are used when

formulae are not inherently statically true or false in a model. The difference that we
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have here is that formulae can be true in some states of a model but false in others. We

are essentially replacing the static notion of truth with a dynamic one.

Definition 2.6 (Temporal logic). Temporal logics have a dynamic aspect to them,

where the truth of a formula depends on the time-point inside the model. This contrasts

with the static nature of predicate or propositional logic, where the truth of a formula is

fixed.

In the following sections, we will discuss three temporal logics, ctl, Ltl and finally

ctl*. All of these logics can be used to reason about properties involving time in

Kripke models.

2.4 Linear-time Temporal Logic

Linear-time Temporal Logic (LTL) is a temporal logic which includes connectives al-

lowing us to refer to the future. Time is represented as a sequence of states evolving

infinitely into the future. We refer to these sets of states as a computation path. We

define the set Atoms to be a set of atomic formulas, for example, p, q, r, or ‘Main valve

on espresso machine 4 is leaking’.

2.4.1 Syntax

We can now define the syntax of Ltl.

Definition 2.7 (Syntax). Ltl has a syntax defined by the following BNF grammar:

φ ::= >|⊥| (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | (Xφ) | (Fφ) | (Gφ) | (φUφ)

The abbreviations φ1Wφ2, ‘weak until’ and φ1Rφ2 ‘release’ also exist, but we will not

making use of them for the purposes of this project.

2.4.2 Semantics

We can now define the semantics of Ltl. The semantics of Ltl are defined in terms of

paths, which are defined in the following way:

Definition 2.8 (Path). A path in a model M = (S,R,L) is an infinite sequence of

states s0, s1, s2, . . . in S such that for each i ≥ 1, R(si, si+1).

Definition 2.9 (Semantics). Let M = (S,R,L) be a model and π = s0s1s2 . . . a path

in M. We define the notion of π satisfying an Ltl formula φ, i.e. that φ |=M φ in the

following way:

• π |= >
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• π 6|= ⊥

• π |= p⇔ p ∈ L(s0)

• π |= ¬φ⇔ π 6|= φ

• π |= φ1 ∧ φ2 ⇔ π |= φ1 and π |= φ2

• π |= φ1 ∨ φ2 ⇔ π |= φ1 or π |= φ2

• π |= φ1 → φ2 ⇔ π |= φ2 whenever π |= φ1

• π |= Xφ⇔ π[1] |= φ

• π |= Gφ⇔ for all i ≥ 0, π[i] |= φ

• π |= Fφ⇔ there exists some i ≥ 0 : π[i] |= φ

• π |= φUψ ⇔ there exists some i ≥ 0 : π[i] |= ψ and for j = 0, . . . , i − 1 we have

π[j] |= φ

2.5 The Branching-Time Logic CTL

Computation Tree Logic (ctl) is a branching-time logic, where time is interpreted as a

tree-like structure, and the future is not determined. In this logic, we are able to formu-

late properties such as liveness or safety. It has uses for specifying fairness conditions,

such as that used in [14]. Unlike ctl*, where operators can be freely mixed, we are only

permitted to group operators into two in ctl – one path operator followed by a state

operator. In the sense of temporally extended goals, we can use ctl to express weak,

strong and cyclic planning problems.

Referring to the definitions provided in [14], we will now proceed to define the syntax

and semantics of ctl.

2.5.1 Syntax

We can now proceed to define the syntax of well-formed formulae in ctl. Using the

approach taken in [14], firstly let AP be a set of atomic propositions. We can now define

the grammar for ctl formulas over AP as follows:

• If p ∈ AP , then p is a ctl formula.

• If φ1, φ2 are ctl formulas, then so are

¬φ1, φ1 ∧ φ2, AX φ1, EX φ1, A[φ1 U φ2], and E[φ1Uφ2],

where:

– The ∧ and ¬ symbols have their usual meanings.
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– X is the nexttime operator. AXφ1 intuitively means that φ1 holds in every

immediate successor of the current state, while EXφ1 means that φ1 holds

only in some immediate successor state.

– U is the until operator; A[φ1Uφ2] intuitively means that for every computa-

tion path, there is an initial prefix of the path such that φ2 holds at the last

state of the prefix, with φ1 holding at all other states of the prefix. E[φ1Uφ2]

has a similar meaning, but for some computation path.

Note that this syntax is in reduced form, and all other ctl operators can be defined

from these primitive operators.

2.5.2 Semantics

We can now proceed to define the semantics of ctl formulae. In order to gain an

intuition from the semantics, it is sometimes helpful to think of a Kripke model as a

literal tree, where taking a path in the model corresponds to performing a traversal

down the corresponding tree. An example of this can be seen in Fig. 2.5.

s2

s0 s1

s0

s1 s2

s0 s1

s1 s2 s0

Figure 2.5: A simple Kripke model and its corresponding computation “tree”.

LetM be a Kripke structure and s be a state inM. If a state s0 of the Kripke structure

M satisfies a ctl formula φ it is denoted s0 |= φ. We inductively define the |= relation

as follows.
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s0 |= p ⇐⇒ p ∈ P (s0)

s0 |= ¬φ ⇐⇒ not (s0 |= φ)

s0 |= φ1 ∧ φ2 ⇐⇒ s0 |= φ1 and s0 |= φ2

s0 |= AX φ ⇐⇒ for all states t such that (s0, t) ∈ R, t |= φ

s0 |= EX φ ⇐⇒ for some state t such that (s0, t) ∈ R, t |= φ

s0 |= A[φ1Uφ2] ⇐⇒ for all paths (s0, s1, . . . ),

∃i [i ≥ 0 ∧ si |= φ2 ∧ ∀j[0 ≤ j < i =⇒ sj |= φ1]]

s0 |= E[φ1Uφ2] ⇐⇒ for some paths (s0, s1, . . . ),

∃i [i ≥ 0 ∧ si |= φ2 ∧ ∀j[0 ≤ j < i =⇒ sj |= φ1]]

Using the above definition, we can now define the abbreviations AF φ, EF φ, AGφ,

AF φ in the following way:

• AF φ ≡ A[>Uφ]: φ holds at some point in the future along every path from s0.

• EF φ ≡ E[>Uφ]: There exists some path from s0 at which φ eventually holds.

• EGφ ≡ ¬AF¬φ: There exists some path from s0 at which φ holds at every state.

• AGφ ≡ ¬EF¬φ: φ holds at every state on every path from s0; φ is globally true.

2.6 The Full Branching-Time Logic CTL*

ctl*, as proposed in [21], is a superset of Computational Tree Logic (ctl) and Linear

Temporal Logic (Ltl) [23]. The expressive powers of ctl and Ltl are combined in

ctl*. In computer science, the main uses of ctl* are for checking the correctness

of complex reactive systems [39]. Recall that from the ctl definition, every temporal

operator was required to be combined with an associated path quantifier (A, E). This

constraint is relaxed in ctl*. We are now permitted to write formulas such as:

• E[(rUp) ∨ (rUq)]: There is a path along which either r is true until p or r is true

until q.

• A[p ⇒ Xp]: Along all paths, if p is true at the current state, p must be true at

the next state also.

• A[GFp]: Along all paths, p is infinitely often true.

2.6.1 Syntax

We will now define the context-free grammar used to generate the language of well-

formed ctl* formulae, which is composed of two classes:
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• State formulas, which are evaluated in states:

Φ ::= ⊥ |> | p | (¬Φ) |Φ ∧ Φ |Φ ∨ Φ |Φ⇒ Φ | (Φ⇔ Φ) |Aφ |Eφ,

where p is an arbitrary atomic formula, and φ is a path formula.

• Path formulas, which are events along paths:

φ ::= Φ | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ⇒ φ) | (φ⇔ φ) |Xφ |Fφ |Gφ | [φUφ],

where Φ is any state formula.

2.6.2 Semantics

We define ctl* semantics in terms of Kripke structures. We inductively define satisfac-

tion on state formulae as follows:

Definition 2.10 (ctl* semantics for state formulae). If a state s of the Kripke structure

satisfies a state formula Φ it is denoted s |= Φ.

• (M, s) |= Aφ⇔ π |= φ for all paths π starting in s

• (M, s) |= Eφ⇔ π |= φ for some path π starting in s

• (M, s) |= Φ is defined as in Ltl.

Definition 2.11 (ctl* semantics for path formulae). Denote the path π as s0, s1, . . . .

If a path π satisfies a path formula φ, it is denoted π |= φ. Denoting π[n] as the sub-path

sn, sn+1, . . . , we inductively define the semantics on path formulae as follows:

• π |= Φ ⇐⇒ (M, s0) |= Φ

• π |= Xφ ⇐⇒ π[1] |= φ. φ is true in the next state of the path π of the model.

• π |= Fφ ⇐⇒ ∃n ≥ 0 : π[n] |= φ. φ holds at some future point in the path π of

the model.

• π |= Gφ ⇐⇒ ∀n ≥ 0 : π[n] |= φ. φ holds at every point in the path π of the

model.

• π |= [φ1Uφ2] ⇐⇒ ∃n ≥ 0 : (π[n] |= φ2 ∧ ∀0 ≤ k < n, π[k] |= φ1). φ1 holds at

every point in the path π up until some point, where φ2 then becomes true.

The other logical connectives ¬, ∧, ∨, ⇒ and ⇔ have their usual meaning.

2.7 Multi-Agent Systems

We will now define the notion of an agent, which is largely used in the field of model

checking.
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Definition 2.12 (Agent). An agent is a computer system capable of autonomous action

on behalf of its user or owner. It is able to decide the steps which need to be done to

satisfy provided design objectives.

One particularly desirable property which we want from agents is the ability for them to

collaborate together and engage in complex communication with other agents in order

to help to accomplish a common goal. This leads us to define the notion of a multi-agent

system.

Definition 2.13 (Multi-agent system). A multi-agent system consists of a number of

interacting agents. To successfully interact, they will require the ability to cooperate and

coordinate with each other.

We will now discuss a formalism used to describe the computations carried out by a

multi agent system. This formalism is called an interpreted system and is described in

the next section. In the case of adversarial planning, we may run into the case of agents

competing with each other, with potentially conflicting goals in mind. Some agents may

even have the task of preventing the achievement of another agent’s goals.

2.8 Interpreted Systems

Interpreted systems formally describe the computations carried out by a set of agents

[33]. We can define them in the following way:

Definition 2.14 (Interpreted system). For a set of agents Σ = {1, . . . , n}, an inter-

preted system IS is a tuple:

IS = 〈(Li, Acti, Pi, ti)i∈Σ∪{E} , I, h〉,

where

• Each agent i ∈ Σ is characterised by a finite set of private local states Li

• Acti is a finite set of actions that may be performed for agent i.

• Pi : Li → 2Acti is a protocol for agent i. The actions of the agent must be performed

in compliance with the protocol, which allows for non-determinism in the system.

• E is a special “agent”, referred to as the environment, of which agents reside. It

has its own set of local state, set of actions and protocol

• ti : Li×LE ×Act1× · · ·×Actn×ActE → Li is a function describing the evolution

of the agents’ local states. It gives the next local state as a function of the current

local state of the agent, the environment, and all the other agents’ actions.

• I is a set of initial global states

• h : AP → 2G is a valuation function, where
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– AP is a set of atomic propositions

– G is a set of reachable global states

It is also necessary to provide a means of defining the semantics of an interpreted sys-

tem IS. This can be done by associating a Kripke model MIS to the interpreted sys-

tem IS. We call MIS the associated model. We define the associated model MIS =

(G, t, (∼i)i∈Σ, L) for an interpreted system IS = 〈(Li, Acti, Pi, ti)i∈Σ∪{E} , I, h〉 in the

following way:

• We define the set of possible worlds G to be the set of reachable states of IS. One

can obtain G from the set of initial states I by iterating the evolution function t

as previously defined.

• We define the temporal relation t ⊆ G × Act × G to relate two worlds by means

of a joint action.

• We define the epistemic accessibility relation ∼i in terms of the equality of local

components of two given global states.

g ∼i g′ iff li(g) = li(g
′),

i.e. the local states of agent i in global states g and g′ are the same.

• The labelling function L : AP → 2G is equivalent to the previously defined evalu-

ation function h.

2.9 MCMAS

mcmas is a Model Checker for Multi-Agent systems (MAS). It takes in input a speci-

fication and a set of formula the user wishes to be verified, and it evaluates the truth

value of the formulae using algorithms based on Ordered Binary Decision Diagrams

(Obdds). mcmas is able to generate counterexamples for false formula and witnesses

for true formula whenever possible. We will use the witness generation mechanism as

a means of finding the set of actions which will constitute a plan for a given planning

problem.

mcmas allows for the reasoning about correct behaviour and strategies specified by

formulae in ctlk and Atlk. Several extensions to mcmas exist, including mcmas*,

which we will be using to find temporally-extended goals specified in ctl*.

2.9.1 Architecture

In order to use mcmas, the user specifies a model in the Interpreted Systems Program-

ming Language (Ispl). lex and yacc are used to parse the input. Obdds are then

build using the Cudd library. After parsing any formulae specified by the user, mcmas
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then computes a set of states in which the formula(e) holds. This is compared with

the set of states reachable from the initial situation, and true or false is lastly output

by mcmas with either a witness or counterexample if desired by the user. A graphical

representation of the process can be seen in Fig. 2.6

Specify an interpreted system

Parse the domain and problem input

Build Obdds for the parameters

Parse the formulae to check

Compute the set of states in which a formula holds

Compare with the set of reachable states

TRUE in the model FALSE in the model

Figure 2.6: Architectural overview of mcmas.

2.10 Interpreted Systems Programming Language (ISPL)

Descriptions of multi-agent systems are given by means of ispl (Interpreted Systems

Programming Language) programs. ispl is an agent-based, modular language inspired

by interpreted systems, a popular semantics in multi-agent systems. It is the input lan-

guage to mcmas. We will formulate a translation between planning problems specified

in pddl to ispl, in order to be fed into mcmas.

Ispl programs are defined using the following syntax:

1 Agent Environment

2 Obsvars:

3 ...

4 end Obsvars

5 Vars:

6 ...

7 end Vars

8 RedStates:

9 ...

10 end RedStates

11 Actions = {...};
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12 Protocol:

13 ...

14 end Protocol

15 Evolution:

16 ...

17 end Evolution

18 end Agent

19

20 Agent TestAgent

21 Lobsvars = {...};

22 Vars:

23 ...

24 end Vars

25 RedStates:

26 ...

27 end RedStates

28 Actions = {...};

29 Protocol:

30 ...

31 end Protocol

32 Evolution:

33 ...

34 end Evolution

35 end Agent

36

37 Evaluation

38 ...

39 end Evaluation

40

41 InitStates

42 ...

43 end InitStates

44

45 Groups

46 ...

47 end Groups

48

49 Fairness

50 ...

51 end Fairness

52

53 Formulae
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54 ...

55 end Formulae

The purpose of each language construct is as follows:

• Definition of variables: The Vars section allows for the three types of vari-

ables: Boolean, enumeration and bounded integer. In our case, we use booleans to

store the information about the state of action-performing agents in the planning

domain, and enumerations and bounded integers for fluents.

• The definition of local observable variables: We can store variables in agents

which were originally declared in the environment agent using Lobsvars. The

special section Obsvars is used to define variables in the environment agent which

is observable by all agents. This construct is used in our case, when planning

under full observability, as we assume that all action-performing agents have full

state information about the environment.

• Definition of red states: We are allowed to define RedStates, which is a boolean

formula defined over a standard agent’s local and locally observable variables and

an environment agent’s local variables. Local states that satisfy the formula are

red, while other states are green.

• Definition of actions: We define the actions of each agent in the Actions section.

• Definition of protocol function: We define the protocol function with a condi-

tion specified as a boolean function over an agent’s local states, followed by a list of

actions allowed to be performed in the local states satisfying the boolean function.

Note that we can model non-determinism in agents by specifying conditions that

are not mutually-exclusive. In this case all actions in both conditions are consid-

ered possible by mcmas. This is of use for strong planning with non-deterministic

domains.

• Definition of the evolution function: A line in an evolution function specifies a

set of assignments of local variables and an enabling condition, which is a Boolean

formula over all variables and actions of all agents. We say that an item has been

enabled in a state if its enabling condition has been satisfied in that state.

We specify the variables being assigned to a new value on the left hand side of an

assignment, and the enabling condition as Boolean formula on the right hand side

of the environment.

We use the evolution function to specify the postconditions (effects) of a given

pddl action.

• Definition of evaluation function: We define an evaluation function as a group

of atomic propositions defined over global. The proposition is true in all global

states that satisfy the Boolean formula. We use the evaluation function to specify

reachability goals for a planning problem.
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• Definition of initial states: The InitStates construct is used to define the

global initial states of the interpreted system as a Boolean function over variables.

We use this specify the initial state of the plannig problem. We can model non-

determinism in the initial state by specifying Boolean formulae in the form

Agent.x=1 or Agent.x=2 or Agent.x=3

for some local variable x for some action-performing agent Agent.

• Definition of groups: We can specify group modalities by using Groups. For

example we can specify groups such as

g1 = { Agent1, Agent2, Agent3, Environment };

and may want to achieve the goal <g1> F goal; (find a plan such that the coalition

of agents contained in group g1 can collaborate to eventually achieve goal).

• Definition of fairness formulae: We can define fairness formulae in the Fairness

section in order to avoid undesireable behaviour. We do not use fairness conditions

in our case.

• Definition of formulae to be checked: We define formulae to be verified

over atomic propositions. This is used in our case for specifying reachability and

temporally-extended goals.

2.11 Introduction to Planning

In the field of Artificial Intelligence, we aim to address one of the most central problems,

the problem of selecting the action to do next [18]. We find that there have been three

main approaches of tacking this:

1. Programming based approach. This involves having a controller which prescribes

which action to take next, which is provided by the programmer.

2. Learning-based approach. Here, the controller is induced from experience. An

example of this is seen in reinforcement learning.

3. Model-based approach. The controller here is automatically derived from a model

of actions, sensors and goals.

We find that planning uses the model-based approach to select the action to do next.

This is the method we will focus on for this project.

Planning is the problem of devising a sequence of actions to satisfy a high-level goal.

Formally, we aim to map the initial state (or set of initial states) into a goal state via

these actions.
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In this project, we will eventually look into conformant planning, where the initial state

isn’t completely known. In conformant planning, we aim to find a sequence of actions

that guarantee to achieve the goal regardless of any uncertainty in the initial condition

of the system and in any non-deterministic effects of actions.

As suggested in [8], we can segment planning domains into three different types. These

have differing levels of observability in the planning domain, ranging from an agent

having perfect information of the domain to it having no information. These are defined

in the following way:

1. Fully observable: The state of the world is assumed to be completely observable

at run-time

2. Null-observable: No information is available at run-time

3. Partially observable: Only part of the domain information is available at run-time.

For the purposes of this project, we will begin with fully observable planning domains,

and then move on to explore plans for partially-observable domains. We see in the

literature that methods of tackling problems in the area of partial observability are very

commonly suggested to be researched further.

We can distinguish between plans which may or may not be guaranteed to achieve the

goal.

Definition 2.15 (Weak plan). A weak plan is a set of state-action pairs which may

achieve the goal.

We see the potential of goals not being achieved by a sequence state-action pairs if there

is non-determinism in the planning domain. For example, executing a certain action

may have more than one effect, leading to a state without a direct way to transition

into the goal state, or requiring extra transitions than without non-determinism. We

can express this in ctl as EFG for a propositional formula G representing the set of

goal states.

Definition 2.16 (Strong plan). A strong plan is a set of state-action pairs which is

guaranteed to achieve the goal.

We can express the notion of a strong plan as the ctl formula AFG for a propositional

formula G representing the set of goal states. Intuitively, the formula can be interpreted

as “The goal G will eventually be reached”

Definition 2.17 (Strong cyclic plan). A strong cyclic plan is a plan whose executions

always have a possibility of terminating and, when they do, they are guaranteed to achieve

the goal.

We can phrase the notion of a strong cyclic plan as “for each possible execution, always

during the execution, there exists the possibility of eventually achieving the goal. In

ctl this sentence can be expressed by the formula AGEFG, where G is a propositional
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formula representing the set of goal states. More detail about the syntax and semantics

of ctl will be given in Section 2.5.

Plans of the above sort can be used to achieve a subset of temporally-extended goals.

Definition 2.18 (Temporally-extended goal). These are goals that express conditions

on the whole execution associated to the solution plan, rather that the conditions on the

final states. One can formulate these as ctl formulae. We aim to formulate these as

ctl* formulae. We see that there is limited progress in literature in the case of having

temporally-extended goals under partial observability.

2.12 Planning via Model Checking

Planning via the use of model checking is based on generating plans by determining

whether formulas are true in model [19]. For this to be possible, we need to be provided

with a planning domain, the planning problem and the method used for plan generation,

defined respectively as follows:

Definition 2.19 (Planning domain). We describe the domain of the plan by a semantic

model. It is used to define the states of the domain, available actions and the state

transitions which occur as a result of executing the respective actions. A planning domain

D is a 4-tuple 〈F, S,A,R〉, where

1. F is a finite set of fluents

2. S ⊂ 2F is a finite set of states

3. A is a finite set of actions

4. R : S ×A 7→ S is a transition function. We define an action a to be executable in

s ∈ S if R(s, a) 6= ∅.

The planning problem is the problem of finding plans of actions provided a planning

domain, initial and goal states. We generate a plan by exploring the state space of the

semantic model. We can translate the model depicted in Figure 2.1 into a planning

domain by simply labelling the edges with actions, as seen in Figure 2.7.

1

2 3

lock unlock

wait

load

wait

unload

wait

p,¬q ¬p, q

p, q

Figure 2.7: An example Planning Domain.

The corresponding planning domain as depicted in the diagram is as follows:
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• F = {p, q}

• S = {{p, q} , {p,¬q} , {¬p, q}}

• A = {lock, unlock, load, unload, wait}

• R = {({p, q} , wait, {p, q})
({p, q} , lock, {p,¬q})
({p, q} , unlock, {¬p, q})
({p,¬q} , wait, {p,¬q})
({p,¬q} , load, {¬p, q})
({¬p, q} , wait, {¬p, q})
({¬p, q} , unload, {p,¬q})}

We will now proceed to formally define a planning problem.

Definition 2.20 (Planning problem). A planning problem P for Planning Domain

D = 〈F, S,A,R〉 is a 3-tuple 〈D, I,G〉, where I = {s0 ⊂ S} is the initial state and

G ⊂ S is the set of goal states.

This allows us to now define a plan, which can be thought of as a sequence of actions

being executed in a set of states, taking an agent from the initial state to the goal.

Definition 2.21 (Plan). A plan π for a planning problem P = 〈D, I,G〉 with planning

domain D = 〈F, S,A,R〉 is defined as

π = {〈s, a〉 : s ∈ S, a ∈ A}

Definition 2.22 (Executable plan). We say that a plan is executable if we have that

π = {〈s, a〉 : s ∈ S, a ∈ A,R(s, a) 6= ∅} .

We observe from [19] that the problem of planning can be reduced to model checking

EFp with p being a propositional ctl formula if we base our planning domain on a

Kripke structure.

2.13 Buchi Automata

It is possible to synthesise plans by using an approach based on certain properties

of Buchi Automata [43] on infinite words. We find that the approach can also be

generalised to work in the case of planning with incomplete information, where we

have uncertainty in the initial situation of the planning domain and successive states

are partially observable. We will begin by defining a transition system, and examining

methods used to plan under complete information.
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2.13.1 Transition Systems

Definition 2.23 (Transition system). We define a (finite) transition system T as the

tuple

T = (W,W0, Act,R,Obs, π) .

where

• W is a finite set of possible states

• W0 ∈W is the finite set of possible initial states

• Act is the set of possible actions

• R : W × Act → W is the transition function. It can be thought of as a function

which returns the next state, given a state and an action.

• Obs is the finite set of possible observations. This models the observable part of

states. Under complete information, we have this as the set of all states.

• π : W → Obs is the observability function. It returns the observable part of the

current state. Under complete information this will be the identity function, since

the observable part of each state will be the state itself.

We will now proceed to define the notion of an execution of a transition system, the

trace of an execution, and the observable behaviour of a transition system. This will

allow us to reason about Buchi automata

Definition 2.24 (Execution of a transition system). For a transition system T , we

define the execution to be an infinite set of states w0, w1, w2, . . . such that w0 ∈W0 and

wi+1 = R (wi, a) for some a ∈ Act.

Definition 2.25 (Trace of an execution). We define the trace to be what we can ob-

serve from an execution. For example, for the execution w0, w1, w2, . . . , the trace is

π(w0), π(w1), π(w2) . . . . Observe that under complete information, the trace will be equal

to the execution, since every state of it can be observed.

Definition 2.26 (Observable behaviour). We define the observable behaviour of a dy-

namic system to be the set of all possible traces of the transition system.

2.13.2 Automata on Infinite Words

With the preliminaries from the previous section, we may now proceed to study Buchi

automata, using [6] as reference.

Firstly, we will define an infinite word.

Definition 2.27 (Infinite word). Given a finite nonempty alphabet Σ, an infinite word

is an element of Σω. It is an infinite sequence a0, a1, . . . , an of symbols from Σ.
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Definition 2.28 (Buchi Automaton). A Buchi automaton is a tuple

A = (Σ, S, S0, ρ, F )

where:

• Σ is the alphabet of the automaton

• S is the finite set of possible states

• S0 ⊂ S is the set of possible initial states. Under complete information, this will

be a singleton set, as we know with certainly which state the automaton will begin

with.

• ρ : S × Σ→ 2S is the transition function of the automaton

• F ⊂ S is the set of accepting states.

We can now explore various properties of a Buchi automaton A.

Definition 2.29 (Input words). The input words of A are infinite words a0, a1, a2, · · · ∈
Σω. This can be thought of as a sequence of actions of a transition system.

Definition 2.30 (Run). A run of A on an infinite word a0, a1, a2, . . . is an infinite

sequence of states s0, s1, s2, · · · ∈ Sω such that s0 ∈ S0 and si+1 ∈ ρ(si, ai). We say that

a run r is accepting iff lim(r) ∩ F 6= ∅, where

lim(r) = {s|s occurs in r infinitely often} .

This means that there is at least one state sf ∈ F that is visited infinitely often.

Definition 2.31 (Language). The language accepted by a, denoted L(A) is the set of

words for which there is an accepting run.

Definition 2.32 (Nonemptiness problem). The non-emptiness problem for an automa-

ton is to decide given an automaton A whether L(A) 6= ∅, i.e. if the automaton accepts

at least one word.

2.14 Planning via Automata

We discover in [16] that we are able to synthesize a plan by checking for the non-

emptiness of a Buchi automaton. Observe that the algorithm used to check for non-

emptiness can be modified to return a plan if a plan exists.

We also find that the power of Buchi automata can also be used for both sequential and

conditional planning with incomplete information.
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2.15 Relation Between Planning and Reinforcement Learn-

ing

It is noted in [5] that Reinforcement Learning (Rl) can be thought of as a type of

universal planning. Here, the goal is represented as a “reward” function in a Markov

Decision Process [20] (Mdp) model of the domain.

Definition 2.33 (Markov Decision Process). A Markov Decision Process (Mdp) model

contains:

• A set of possible world states S

• A set of possible actions A

• A real valued reward function R(s, a)

• A description of each action’s effects in each state

We normally expect non-deterministic (Nd) planners to be able to handle domains with

a larger state space than in reinforcement learning, since we observe that the Rl domain

representation is in general more complex than in a non-deterministic planner.

2.16 Existing Planning Problem Description Languages

We will now discuss the description languages used to specify planning tasks, highlight

their individual strengths and weaknesses, and define our motivations for using our

language of choice, pddl.

2.16.1 Non-deterministic Agent Domain Language

The Non-deterministic Agent Domain Language (Nadl) was introduced in [24] in an

attempt to describe multi-agent planning domains. It has a significantly different syntax

compared to pddl. It is similar to pddl in the sense that agents are given a set of actions

which have their own preconditions and effects.

In general, there is a rather simple model of interactions among concurrent actions, since

it is not possible for two actions to concurrently assign different values to a numeric

fluent. Each specified agent was initially required to share the same goal, but constraint

was later lifted in a later version, to allow agents to have potentially different goals. We

however see that no accompanying description language was provided [29]. Nadl is the

input language for the Umop planner.
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2.16.2 PDDL

The Planning Domain Definition Language (pddl) [34], is an attempt to standardise

planning domain and problem description languages. It is the standard language used to

encode classical planning problems. The introduction of such a standardised language

was of great benefit for the International Planning Competition (Ipc) series.

In the Ipc, performance of planning systems are compared on sets of benchmark prob-

lems. Therefore, it is essential that a common language for specifying problems should

be used. The components of a pddl planning task are:

• Objects: The things in the world which are of interest

• Predicates: Properties of the objects which are of interest.

– Note that these have no intrinsic meaning per se. The meaning of a predi-

cate is determined by what combination of arguments make it true, and the

relationships to other predicates, which is determined by effects that actions

have on predicates and what instances of the predicate are listed as true in

the initial state of the problem definition.

• Initial state: The state of the world in which we start in. We define the initial

state as a set of predicates which must hold true in the initial situation. All

predicates which are not explicitly said to be true in the initial conditions are

assumed to be false.

• Goal specifications: A specification of a property we wish to be true. A solution

to a planning problem is thus a series of actions such that

1. The action sequence is feasible starting from the given initial situation

2. The goal is true in the situation resulting from executing the action sequence

• Actions/Operators: The protocols in which the state of the world is changed

Actions

The actions which are to be ran during the execution of the plan are defined in terms

of an action schema, as introduced in [40]:

Definition 2.34 (Action schema). The action schema represents a number of different

actions that can be derived by instantiating the variables used in the action’s parameter

list to different constants. The action schema consists of three parts; the action name

and parameter list, the precondition, and effect.

1. The list of parameters lists the variables upon which the specific action operates

on. One can think of them as the “arguments” of the action.
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2. The Precondition is an optional goal description which must be satisfied before

the action is applied.

3. Effects list the changes which the action imposes on the current state of the world.

They may be universally quantified and conditional, but full first order sentences

(e.g., disjunction) are not allowed, unless we use extensions of the language.

For the purposes of this project, we will focus on only the standard pddl definition of

effects. All variables must be bound. If a predicate P is not mentioned in an action’s

effects then the truth of P is assumed to be unchanged by an instance of the action.

An important assumption to make about how we reason about the literals which hold

true in a given state during the execution of a plan is the Strips assumption.

Definition 2.35 (Strips Assumption). Every literal not mentioned in the effect of

an action schema remains unchanged.

The consequence of this assumption is to avoid the representational frame problem. We

must also note that having a positive effect from an action which is already present in

a given state does not lead to the effect being added twice. On the other hand, if a

negative effect is not specified in a given state, that part of the effect is ignored.

Goal Descriptions

Goal descriptions are used to specify the goals that are desired in the planning problem.

These are also used for specifying the precondition for an action. We are allowed to use

function-free first-order predicate logic for goal descriptions. One must be sure to have

occurrences of predicates in goal descriptions agreeing with its domain declaration in

terms of its number of arguments.

Specifying Planning Tasks

Tasks specified in pddl are split into a domain file and a problem file. We define domain

files in the following form:

(define (domain <domain name>)

<PDDL code for predicates>

<PDDL code for first action>

...

<PDDL code for last action>

)

The name of the planning domain is specified by the string <domain name>. The prob-

lem defines what the planner tries to solve.

We define problem files in the following format:
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(define (problem <problem name>)

(:domain <domain name>)

<PDDL code for objects>

<PDDL code for initial state>

<PDDL code for goal specification>

)

Here, we require that <domain name> matches the name of the domain of which was

specified in the corresponding domain file. <problem name> is a string identifying the

planning task.

We note that we are also able to specify fluents in order define metrics to measure the

quality of a plan.

2.16.3 The Multi-Agent Extension of PDDL 3.1

The Multi-Agent Extension of pddl 3.1 (ma-pddl) was proposed in [29] with the Bnf

grammar given in [28]. The purpose of the language was to give an additional, optional

extension to the existing pddl language. ma-pddl only provides minimalistic changes

and is backwards compatible with every existing extension in the official language. An

informal semantics of the language is given in [29].

One drawback that we however see with ma-pddl is that it does not include support for

partial observability. By default, the planning environment is fully observable, meaning

that any observation is a complete description of new states and action-combinations

that produced them.

Nevertheless, we will continue using pddl for use in our project, due to its reputation on

being the standard language for use in International Planning Competitions. A multi-

agent planning track is also proposed in [29] for upcoming Ipcs, which will make it more

convenient to benchmark out solution.

We also observe that it is noted that in ma-pddl it is “non-trivial” to represent strategies

in a compact manner. We believe that this will be one of the strengths of out solution,

since mcmas has the built-in ability to efficiently reason about the multiple strategies

involved in systems of multiple agents [2].

2.16.4 NuPDDL

Nupddl is a extension of pddl for planning in non-deterministic domains [7]. It models

this with a variety of new constructs.

• We are enabled to specify temporally-extended goals using the temporal logic ctl,

which can be used by specifying a :ctlgoal. For example, one can seek to obtain
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a plan in the form af(..), ag(..), ef(..),. . . .

• We can also have uncertainty in the initial state of the planning problem. This

uncertainty can be specified using the oneof and unknown keywords, for example

(:init (and P1) (oneof (and (P2) (P3)) (P4)) unknown(P5)), where:

– The oneof (..) keyword allows the state to be set non-deterministically to

one of a set of states

– The keyword unknown (f) is the same as specifying a oneof statement, but

with the type of f taking any possible value.

• We are allowed to have non-deterministic action effects

• We can have partial observability of the state of the domain.

We note that most classes of non-deterministic problems can be captured by a temporal

logic, since most of the classes identify constraints over the execution of the plan, rather

than the goal of the plan itself.

For example, we may wish to ensure that some goal has a guarantee of being reached

(AF goal), or if there is only a possibility (EF goal) of it being reached. It is crucial to

have these types of goals distinguished, as is may be the case that a given action could

have a non-deterministic action, with the option of either staying in the same state or

transitioning to another one.

The language is used as the input of the Mbp planner. Although the Mbp planner offers

a powerful selection of strengths, we see that it cannot currently plan for temporally

extended goals under partial observability. We also do not see an attempt to plan for

multiple agents in Mbp. We aim to tackle both of these problems with a combination

of mcmas and our compiler.

We also find that Mbp does not offer support for non-deterministic and/or faulty sen-

sors. Having this functionality would be a further step into significantly more realistic

planning problems, but is beyond the scope of this project, and would have to be a topic

for further study.

2.16.5 EaGLe

EaGLe, the “Extended Goal Language” is a goal language proposed in [15] used to spec-

ify an even richer set of extended goals. ctl is used to specify extended goals allowing

us to distinguish between temporal requirements on “all the possible executions” and

on “some executions” of a plan.

In contrast, EaGLe is introduced in an attempt to extend ctl with the possibility

of expressing classes of goals that are typical of real world applications, but can’t be

expressed in ctl or any other existing temporal logics. For example, one may wish
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to express “Try to achieve a goal whenever possible” or “If you fail to achieve a goal,

recover by trying a different goal”.

The language can also be used as the input of the Mbp planner.

2.17 Existing Planners

We will now study the planners which are currently in use today. We will examine

their strengths and shortcomings in order to see how our solution will compare to the

state-of-the-art.

2.17.1 The Model Based Planner

The Model Based Planner (Mbp) is used for planning for non-deterministic domains with

temporally-extended goals and several degrees of observability. The input language of

Mbp is the Npddl language as discussed previously.

Mbp also has capabilities for the validation of plans, where it uses model checking to

validate plans.

2.17.2 Universal Multi-agent OBDD-based Planner

The Universal Multi-agent OBDD-based planner (UMOP) [24] is based on model check-

ing algorithms and uses BDDs to encode the planning domain symbolically using the

BuDDy BDD package. It supports five planning algorithms:

1. Strong planning

2. Strong cyclic planning

3. Optimistic planning

4. Strong cyclic adversarial planning

5. Optimistic adversarial planning

NADL, the Nondeterministic Agent Domain Language, is the language used for repre-

senting the agent domain in the input of the UMOP planner.

2.17.3 SATplan

SATplan [25] is a method for automated planning. It is based on the method of Planning

as Satisfiability [26]. The planning problem is converted into a Boolean satisfiability

problem (also known as a SAT problem), which is then solved using a method for

establishing satisfiability.
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2.17.4 Existing MCMAS Extensions

In a previous MSc Thesis, we see two algorithms proposed for planning for epistemic

goals in the Alternative-Time Temporal Epistemic Logic (ATEL) [42]. ATEL extends

ATL by adding knowledge modalities. An example of a formula expressible in ATEL is

Ki〈〈i〉〉◦p, which means that “agent i knows that he can make p true in the next state”.

In the thesis, the Planning via Model Checking method [19] is used for constructing the

two algorithms:

1. Planning during the model checking phase, constructing universal strong plans

2. Planning after model checking

A compiler was then constructed, translating the Umop specification language to Ispl

in order to be fed into the mcmas model checker. We see that the planner was used on

a variety of domains, including the “Rugby”, “Muddy children” and “Gripper” domain.

Evaluation is on the correctness of output of the planner. We will perform a similar

evaluation in our case, but for the logic ctl*.

2.18 Other Existing Logics

We will now examine other logics used in the current state-of-the art for expressing goals

for planning problems, and evaluate their benefits and shortcomings.

2.18.1 ATL*

Atl* was proposed in [4] as a generalisation of ctl*. Instead of using the path quanti-

fiers ‘there exists’ (E) and ‘for all’ (A), we instead use strategic modalities of the form

〈〈E 〉〉 and 〈〈A 〉〉 referring to a group of agents A. The cooperation and also competition

of agents can be expressed using the modalities in order for them to achieve temporal

goals.

There are some problems with planning for goals specified in Atl* [36, 41]. There a

lack of support for binding strategies explicitly to various agents, or the same agents

in different contexts. To overcome these difficulties, we have Strategy Logic which was

proposed in [37].

2.18.2 Strategy Logic

Strategy Logic (SL) was introduced in [13] in an attempt to overcome some of the

shortcomings seen in logics such as Atl*. It can express game-theoretic properties such

as Nash equilibrium. Nash equilibrium occurs in a non-cooperative game of two or more

players where each player is assumed to know the equilibrium strategies of the other

players, and no player has anything to gain by changing their own strategy.
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The main obstacle in using strategy logic in a planner is that model checking is very

expensive. Other fragments of SL exist, for example SL[1G] and SL[BG], introduced

in [38], with more efficient model checking methods, but we find that they are not as

expressive as the ‘full’ SL.

2.18.3 α-CTL

As proposed in [17], α-ctl was introduced in an attempt to specify more complex

temporally-extended goals. We however find that we are unable to specify a coalition

of agents using this logic. This logic differs from ctl in the sense that ctl is used for

formulating properties with respect to the execution structure of a plan, whereas α−ctl
allows semantic properties to be specified about the planning domain directly.

α-ctl allows us to specify properties such as “Try its best to achieve the goal g” for some

agent. We find that the property can in fact be specified in another similar extension

to ctl called p-ctl*, which we will not discuss further in this project, but the model

checking procedure is less computationally expensive when using α-ctl.
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From Planning Problems to

Interpreted Systems

In this chapter, we will discuss the method in which we can compile from a planning

problem specified in a PDDL file to a semantically interpreted system specified in an

ISPL file. We will do this by going through different examples of standard planning

problems, and then proving the bisimularity of the generated model compared to the

original planning problem.

3.1 The Dinner Domain

We will now consider a simple example domain in order to study the way in which we

can perform the translation to an interpreted system. The planning problem is described

in [44], where we plan to prepare a surprise date for a sleeping partner. We wish to

achieve the goal of having dinner cooked, a present wrapped, and for the garbage to

be taken out. We have four possible actions that we can perform: cook, wrap, carry,

and dolly.

In order to cook, which results in dinner being cooked, we require that our hands are

clean. To wrap, which results in a present, we require that it is quiet, since we do not

want to wake up our significant other. To carry means to take out the garbage. This

requires that the garbage has not already been taken out, and results in the garbage

being taken out but leaves our hands unclean. We note that none of the actions are

parametrised. The dolly action is another means of taking out the garbage, which

leaves our hands clean, but creates noise. We start with the initial state of having

garbage, clean hands, and quiet in the room.

A formal summary is as follows:
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3.1.1 Domain

Recall that the domain is defined to be a set of predicates, along with a set of actions

with their own respective preconditions and effects:

• Predicates: The predicates are the following:

clean, dinner, quiet, present, garbage

• Actions: The actions are as follows:

– cook

∗ Precondition: clean

∗ Effect: dinner

– wrap

∗ Precondition: quiet

∗ Effect: present

– carry

∗ Precondition: garbage

∗ Effect: not(garbage), not(clean)

– dolly

∗ Precondition: garbage

∗ Effect: not(garbage), not(quiet)

3.1.2 Problem

We can now define our planning problem in terms of its initial and goal state. We define

a state to be the conjunction of a number of predicates.

• Initial state: The initial state is simply the case when the following three fluents

hold true:

garbage, clean, quiet

• Goal state: The goal is when the following three fluents hold:

dinner, present, not(garbage)

3.1.3 Planning Domain Specification

As described in Section 2.12, we can now define the Dinner domain via a semantic model

MP .
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• Fluents: We can define our fluents as the following set:

F = {quiet, clean, dinner, present, garbage} .

• Set of states: We now need to define the set of states S that can possibly be

visited in the domain. For convenience, we will let S be the set of all subsets of

F , namely 2F .

• Set of actions: The set of actions will be

A = {cook, wrap, carry, dolly} .

• Transition function: We must finally define our transition function R : S×A 7→
S. We will make the assumption that the domain is deterministic, i.e. that it is

not possible to arrive in more than one state after the execution of an action.

We can now begin to write the function from the initial state of the system starting

as follows:

R ({garbage, clean, quiet} , cook) = {garbage, dinner, quiet, clean}

R ({garbage, clean, quiet} , wrap) = {garbage, present, quiet, clean}

R ({garbage, clean, quiet} , carry) = {quiet}

R ({garbage, clean, quiet} , dolly) = {clean}
...

This can be written more generally as

R (s, a) = (s \ aneg) ∪ apos, for a ∈ A, s ∈ S, if apre ⊆ s,

where the action apre denotes the positive preconditions of action a (recall that

negative preconditions are ignored), apos denotes the positive effects of a, and aneg

denotes the negative effects of a.

Note that the cardinality of R, namely |R|, is of the order of |A||S| = 2|F ||A| in

size, which grows exponentially with the number of fluents in the planning domain.

We will now proceed to formally define the planning problem.

3.1.4 Planning Problem Specification

Recall from Section 2.12 that the planning problem P for a planning domain D =

〈F, S,A,R〉 is a 3-tuple 〈D, I,G〉, where I = {s0} ∈ S is the initial state, and G ⊆ S is

the set of goal states. We will now attempt to specify the planning problem P for the

Dinner domain.
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• Initial state: We define the initial state as

I = {garbage, clean, quiet}

• Goal states: We define the set of goal states as the set corresponding to all states

where dinner ∧ present ∧ ¬quiet holds true, namely:

G =

{
{dinner, quiet, present} , {dinner, present, clean} ,
{dinner, present} , {dinner, present, quiet, clean}

}

Construction of Corresponding Kripke Model

This concludes the specification of our planning problem P = 〈D, I,G〉. From [19], we

find that it is possible to construct a Kripke model K = 〈W,W0, T, L〉 corresponding to

the planning problem P . We will denote the corresponding Kripke model by MP .

The Kripke model corresponding to the planning problem P with domainD = 〈F, S,A,R〉
can be constructed as follows:

1. W = S = 2F , as previously defined, where F is the set of fluents defined for the

planning domain.

2. W0 = I

3. T ⊂W ×W is such that

T (w,w′) iff ∃a ∈ A : w′ = R(w, a),

where R is the transition function as previously defined for the planning domain

D.

4. L = id, the identity function. This is the case because the states of the planning

domain are determined by the set of fluents which are true in a given state.

We will now discuss the construction of an interpreted system MIS for the planning

problem, which we later show is semantically equivalent to MP .

3.1.5 Translation to Interpreted Systems

We will now attempt to translate the semantic model for the planning domain MP into

an Interpreted System (IS). Since the actions in this domain do not have any parameters,

we are able to make a one-to-one mapping between the four pddl actions and the actions

required for the IS. Note that this will not be the case for n−ary predicates (for n > 0),

as we will see that we must ground the predicates in order to fully specify the state-space.
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• Local States L: To define our local states, let us firstly define a set S containing

all predicates of the planning domain which will act as atoms in our IS:

S = {quiet, clean, dinner, present, garbage} .

Each of the atoms can either be true or false for a given state. All of the possible

truth values of the atoms can be encoded by using the power set of S. Define 2S

to represent the power set of S, i.e. the set of all subsets of S. Our interpreted

system will have a single agent, the environment agent. We can now define our

set of local states as

L = LE =


|s|∧
i=1

si : si ∈ s, s ∈ 2S

 .

Let ∧|s|i=1si = l for some s ∈ 2S . We interpret S \ s as the set of atoms in the local

state l which are false.

• Actions: Our actions are identical to the actions defined in the planning domain.

The actions that we wish to be able to perform are to cook dinner, wrap a gift,

carry out the trash manually, or to carry out the trash using the dolly. Formally,

Act = {cook, wrap, carry, dolly}

• Protocol function: We aim to be able to express the states which are possible as

a result of performing an action. We are enabled to cook dinner only if our hands

are clean. If there is garbage, we should be enabled to use the dolly or carry out

the trash. If it is quiet, we should be enabled to wrap the gift. We can naturally

express this in our protocol function P , where P : L→ 2Act is defined as follows:

P (l) =


{cook} if clean ∈ s

{dolly, carry} if garbage ∈ s

{wrap} if quiet ∈ s,

(3.1)

where s ∈ S is such that l = ∧|s|i=1si : si ∈ s.

• Evolution function: We wish to formally describe how the system will evolve

through the execution of actions. We can read off an evolution function from

the precondition–effect description of the actions defined in the planning domain

description.

If we perform the cook action, we wish to attain a state where the dinner atom

is true. If the dolly action is performed, we wish to attain a state where the

garbage and quiet atoms are both false. If carry is performed, we wish to attain

a state where the atoms garbage and clean are both false. If we perform wrap,
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we should attain a state where present is true. Note that the evolution function

is independent to the local state that the agent is in at the time of performing an

action.

Let t(l, a) = l′ for some action a and some local state l. Let S be the set of all atoms

as defined before. Let s be the corresponding element of the power set 2S for the

resulting local state l′. Atoms contained in the set S \ s can non-deterministically

be true or false. The evolution function t : L× Act → L can be defined for some

action a ∈ A as follows:

t(∧α : sα ∈ s, a) = ∧αsα : sα ∈



s ∪ {dinner} if a = cook

s \ {garbage, quiet} if a = dolly

s \ {garbage, clean} if a = carry

s ∪ {present} if a = wrap

In general,

t (∧αsα : sα ∈ s, a) = ∧αsα : sα ∈ (s \ aneg) ∪ apos, where s ∈ 2S , a ∈ A,

where apos and aneg respectively denote the positive and negative effects of an

action a from some planning problem P .

• Initial global states: In our case, we have only one initial global state. We define

our initial state as i = garbage ∧ clean ∧ quiet. Every other atomic proposition

must be false. Our set of initial global states is therefore the singleton set

I = {garbage ∧ clean ∧ quiet} .

• Valuation function: The valuation function h : AP → 2G of the interpreted

system ISP is defined to map a set of reachable global states to each atomic

proposition. One may wish to define a valuation function h : AP → 2G, which

assigns to each state g ∈ G the set of atomic propositions which are assumed to

be true at that state. Since we only have one agent, observe that L = G.

Since the states of the IS are themselves are determined by the set of atomic

propositions true at each state, it is natural to define

h

∧|s|i=1si︸ ︷︷ ︸
g

 = s, for si ∈ s, s ∈ 2S (3.2)
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3.1.6 Kripke Model Translation of Dinner Domain

We must now define the Kripke model equivalent to our interpreted system. We will

denote the corresponding Kripke model as MIS .

Let MIS = 〈W,W0, T, L〉 be such that

• W = L, the set of all possible global states in the IS, as previously defined.

• W0 = I, the singleton set of initial states, as previously defined.

• T ⊆W ×W such that

T (w,w′) iff ∃a ∈ Act : w′ = t(w, a),

where t is the evolution function as previously defined for the interpreted system

and where the action a is appropriately enabled for a given local state by the

protocol function defined in (3.1).

• L = h, the interpreted system’s valuation function as defined in expression 3.2.

3.2 The Gripper Domain – Towards a More General Trans-

lation

We will now discuss the process of compilation for a more general planning problem,

where we have parametrised actions and predicates in the planning domain. We will

reference the “Gripper” domain, used in the first (1998) International Planning Com-

petition as a way to gain an intuition about the translation.

The Gripper domain consists of a robot with two grippers, n balls, and two rooms. In

the initial situation of the planning problem, one of the rooms contains all n balls.

Our goal is to eventually realise a state of all balls eventually being in the other room.

The robot has the task of using its grippers to facilitate this state being reached.

The robot is constrained in a way which only allows each gripper to carry one item at

any given time, and must drop an item before picking up another.

We define the predicates of the domain as the following:

room(r), ball(b), gripper(g), at-robby(r), at(b, r), free(g),

carry(o, g)

These have the following interpretations:

• room(r): r is a room.

• ball(b): b is a ball.
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• gripper(g): g is a gripper.

• at-robby(r): The robot is located at r.

• at(b,r): b is located at r.

• free(g): g is free.

• carry(o,g): the object o is being carried by g.

We combine these predicates together via conjunction and negation in order to produce

preconditions and postconditions for actions. In pddl the postconditions of an action

are its effects. The preconditions must hold true before an action is performed, and the

effect is guaranteed to hold true after the action is performed. In the Gripper domain,

we have actions which take several parameters, which is not the case in the “Dinner”

domain.

Having parametrised actions and predicates leads to an increase in the amount of states

necessary to reason about after discovering the possible predicate–action combinations

through the process of grounding.

In the Gripper planning problem, we have the following actions:

Move

• Parameters: There are only two parameters are the following:

from, to

• Precondition: room(from), room(to), at-robby(from))

• Effect: not(at-robby(from))

Pick

• Parameters: obj, room, gripper

• Precondition:

ball(obj), room(room), gripper(gripper), at(obj, room),

at-robby(room), free(gripper)

• Effect: carry(obj, gripper), not(at(obj, room)), not (free(gripper))

Drop

• Parameters: obj, room, gripper

• Precondition:
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ball(obj), room(room), gripper(gripper), carry(obj, gripper),

at-robby(room)

Interpretation: The robot is in a room and a ball is being carried by a gripper of

the robot.

• Effect:

and (at(obj, room), free(gripper), not(carry(obj, gripper)))

Interpretation: The ball is now in the room, the gripper is free, and the ball is no

longer being carried by the gripper.

Note: It is forbidden to use the dash (’-’) character in variable names in ispl files.

We however generate variables in mcmas from the predicate names. To solve this issue,

when parsing the pddl file, we currently perform some preprocessing in order to remove

occurrences of dashes in names. For example, at-gripper is converted to at_gripper.

3.2.1 Problem

To define the planning problem, we specify a set of initial states of which the model

begins, and the goal which should be realised by some plan, such that for a group of

agents g1, we have that 〈g1〉F goal holds, where goal is a logical formula made up of a

conjunction of predicates. In our case, the group g1 consists only of a single agent.

In our case, we have a finite set objects, of which the predicates are quantified over.

Initial State

Our initial situation is the conjunction of the predicates shown in Fig. 3.1.

room(rooma), room(roomb)

ball(ball4), ball(ball3), ball(ball2), ball(ball1)

at-robby(rooma),

free(left), free(right),

at(ball4, rooma), at(ball3, rooma), at(ball2, rooma), at(ball1, rooma)

gripper(left), gripper(right)

Figure 3.1: Initial situation of the Gripper domain

Goal state

Our goal is to have all four balls inside room b, which is expressed by the conjunction

of the following predicates:

at(ball4, roomb), at(ball3, roomb), at(ball2, roomb), at(ball1, roomb)
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3.2.2 Planning Problem Specification

The planning problem specification for domains with parametrised actions and predi-

cates relies on the process of grounding.

Definition 3.1 (Grounding). The process of obtaining all state variables and actions

for a planning problem.

A single predicate can represent a large number of state variables, and a single pddl

action can similarly represent a large number of ispl actions.

We will now define the Gripper domain using a semantic model D = 〈F, S,A,R〉.

Fluents

Our fluents are the grounded set of all predicates applied to each of the pddl objects.

Let O be the set of all objects, and P the set of all predicates in the planning prob-

lem. Let argcount(p) denote the number of arguments for predicate p ∈ P . Let

groundPredicate(p,O) be a function which combines a predicate p with a set of ob-

jects to obtain a set of fluents representing the predicate applied to argcount(p) objects

as parameters taken from the set O. Then,

F =
⋃
p∈P

groundPredicate(p,O). (3.3)

For example, for the predicate p = same, where argcount(p) = 2 and O = {ball1, ball2},
we have that

groundPredicate(name,O) = {same(ball1, ball2), same(ball2, ball1)} .

Note that that different orderings of the arguments represent different groundings. Note

also that one can draw an isomorphism between the groundPredicate function and

the function P (n, k) which returns the k-permutations of n, which is defined to be the

different ordered arrangements of a k-element subset of an n-set.

States

As before, we define the set of states S as the set of all subsets of the set of fluents,

namely S = 2F . By intuition, We know that some states will not be reached during the

execution of the plan, but we must first enumerate over all possibilities first.

Actions

In a similar fashion to before, let O denote the set of all objects in the domain. Let AP be

a set containing the names of all actions of the planning domain. Let groundAction(a,O)
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be a function taking an action with name a ∈ AP and a set of objects O which returns a

set of grounded actions for each permutation of objects in O of size argcount(a), where

argcount(a) is a function returning the number of arguments taken by the action with

name a. Then,

A =
⋃
a∈A

groundAction(a,O) (3.4)

Transition function

We will now define the transition function R : S × A 7→ S. As before, we will require

that R will be deterministic. R is defined as follows:

R(s, a) = (s \ aneg) ∪ apos, for a ∈ A, s ∈ S, if apre ⊆ s (3.5)

where s denotes an appropriately grounded state contained in S, and a denotes a

grounded action contained the set defined in 3.4. Define aneg to be the set of grounded

negative effects, apos to be the set of grounded positive effects, and apre the set of

grounded preconditions of the action a. Then, to compute the result of R(s, a) for some

state s and action with name a, we remove the negative effects from the current state

and union the result with the positive effects of a. This is conditional on the set apre

being contained in s. In the case that this condition does not hold, the function is not

defined for such a (s, a) pair.

Initial state

The initial state I is the set of grounded states representing the predicates defined in the

init construct in the pddl file describing the planning problem. It is necessary in pddl

to specify the values of each parameter of each predicate used for the init construct.

Let IP be the set of predicates used in init for a planning problem P . Then,

I = {s : s ≡ iP , s ∈ S, iP ∈ IP } (3.6)

In the case of the Gripper domain, I will be the grounded predicates of Fig. 3.1.

Goal state

We define the goal state G to be set of grounded states representing the set of predicates

in the goal construct in a pddl definition of a planning problem P . Let GP be the set

of predicates used in the goal construct of a planning problem P . Formally,

G = {s : s ≡ gP , s ∈ S, gP ∈ GP } (3.7)
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In the case of the Gripper domain, G will be the set of states s ∈ S representing the set

of predicates

{at(ball4, roomb), at(ball3, roomb), at(ball2, roomb), at(ball1, roomb)} .

This concludes the construction of the planning problem P = 〈D, I,G〉 where

D = 〈F, S,A,R〉.

We will now discuss the translation to a corresponding interpreted system ISP which

will have a Kripke model simulating MP .

3.2.3 Translation to Interpreted System

We will now discuss our attempt to encode the semantic model of a general planning

problem as an Interpreted System.

3.2.4 Translation of Local States

We will now discuss the translation from the pddl predicates to local states in ispl.

When parsing the pddl file, we are able to obtain a set of predicates and a set of objects.

In our Gripper domain, the predicates are:

room/1, ball/1, gripper/1, atrobby/1, at/2, free/2, carry/2

We denote <predicate-name>/x to mean “the predicate with name predicate-name

takes x arguments”.

Our objects are:

rooma, roomb, ball4, ball3, ball2, ball1, left, right

This defines the objects in our domain; our two rooms, four balls and two (left and

right) grippers respectively.

ispl supports three types of variables, boolean, enumeration and bounded integer [32].

We choose to represent the possible predicates of a planning domain as booleans in

ispl, storing them in the Obsvars section of the environment agent.

To make this translation, for each predicate, we can compute the permutations of all

objects of size xi, with xi being the number of arguments for predicate i. We may also

maintain a hash table of these variables and their truth value in the compilation stage.

This will be of use when encoding the initial states of the planning problem.

We ensure that the agents that interact with the environment do not have their own

state, but instead change the observable state of the environment through the execution
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of actions. We do not require that the environment performs any actions.

For the room predicate, we know that it has one argument, and there are eight objects,

so we know that we will have eight different states that are generated from this predicate

to be used as local states, namely:

room(rooma), room(roomb), room(ball4), room(ball3), room(ball2),

room(ball1), room(left), room(right)

We can then create the variables

room rooma : boolean,

room roomb : boolean,

...

where we substitute the corresponding object as the predicate’s argument.

For predicates with two arguments, we use a similar method, ending up with 6 local

states for each predicate with two arguments. In the general case, for a planning problem

with m objects and a predicate i with ri arguments, we will generate m!
(m−ri)! new local

states. This leads to
∑n

i=1
m!

(m−ri)! local states for an arbitrary planning domain with n

predicates. Therefore, for the set LE of local states of the environment,

|LE | =
n∑
i=1

m!

(m− ri)!
,

where LE is the conjunction of elements of 2S , as previously defined using the groundPredicate

function.

Define

S =
⋃
p∈P

groundPredicate(p,O). (3.8)

Then,

LE =
⋃
s∈2S

{∧
α∈I

sα : sα ∈ s

}
, (3.9)

where I is some index set for elements in each set s. We assume that all states contained

LE are observable by all agents in the planning domain.

3.2.5 Actions

Denote the set of actions for agent i of an interpreted system as Acti. We find that for

every action defined in a planning domain, we may need to create several corresponding

actions for the IS. The amount of actions generated depends on the number of parameters

of a given action.
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For every pddl action, at the parsing stage we already know the number of arguments

each action will use. In a similar way of generating local variables, we again generate

combinations of the objects in the planning domain of size kj , where kj is the number

of arguments of the action j.

For every action, we therefore generate a total of m!
(m−kj) IS actions, so

∑nact
j=1

m!
(m−kj)

total actions for an arbitrary planning domain with m objects and nact actions.

In a similar fashion to how the planning problem P was defined, we have that the set

of actions for agent i of the IS are

Acti =
⋃
a∈A

groundAction(a,O), (3.10)

where O denotes the set of objects in the planning domain and groundAction is a

function which, given an action defined in the planning domain and a set of objects,

returns a set of grounded actions with respect to the set of objects and the number of

arguments of the action a.

For the environment, we require that the set of actions are empty, i.e.

ActE = {} (3.11)

3.2.6 Protocol function

We use the protocol function Pi : Li → 2Acti as a way of defining the actions that are

enabled when in some local state li ∈ Li. We achieve this by examining the preconditions

which hold in a given state for a given action.

Let groundPreconditions(a) be a function which finds all preconditions of a given pddl

action a and returns a set grounded predicates representing all possible preconditions

of the action with respect to the number of objects in the set O taken as parameters of

the action.

Pi(l) = {a : groundPreconditions(a) ⊆ s, a ∈ Act} , (3.12)

where l is a conjunction of fluents contained a set s ∈ S, and a ∈ Act is a grounded

action which represents the name and the specific parameter values of the action to be

executed.

For the environment, we have an empty protocol function, as no actions are specified

for it. We therefore have that:

PE(l) = {} for all l ∈ LE (3.13)
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3.2.7 Evolution function

The evolution function is defined to give the next local state as a function of the current

local state of the agent, environment, and all the other agent’s actions. In our case,

we will only change the observable state of the environment as a function of a separate

agent’s actions, which has knowledge of the actions from the planning problem.

We can encode the effects of the actions of the planning domain by using an evolution

function. In our case, the next local (but globally observable) state of the environment

is determined by the action of an action-performing agent i and the current local state

of the environment, so we aim to define the function

tE : LE ×Acti → LE .

This is encoded in ispl as an Evolution construct.

For each grounded action a ∈ Act, we need to be able to obtain its grounded positive

and negative preconditions. The positive preconditions are those which do not contain

any negations.

Define the following functions for a given grounded pddl action a:

• groundNegatives(a): returns the set of grounded negative effects of a with respect

to the parameter count of a and objects in O

• groundPositives(a): returns the set of grounded positive effects of a with respect

to the parameter count of a and objects in O

Take for example the action drop, which takes a single argument and a singleton set of

objects O = {ball}.

Let the effects of the action be on-ground(ball) and not(elevated(ball)). Then,

groundNegatives(drop(ball)) = {elevated(ball)} ,

and

groundPositives(drop(ball)) = {on-ground(ball)} .

For the environment agent E, we can now proceed to define

tE (lE , ai) = ∧αsα : sα ∈ (s \ groundNegatives(ai)) ∪ groundPositives(ai), (3.14)

where lE = ∧αsα : sα ∈ s, s ∈ 2S , ai ∈ Acti.

Each local state is expressed as a conjunction of elements of some state s ∈ S and some

action. We then compute the resulting set of atomic propositions that remain true after

removing the negative effects and adding additional positive ones, and compute the

conjunction of such a set. The preconditions of the effects are handled in the protocol
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function, so we do not need to add another conditional statement as seen in the transition

function defined in 3.5.

3.2.8 Valuation function

It is now necessary to define the valuation function h : AP → 2G which assigns to each

propositional atom a set of states at which the propositional atom is true.

In our case, our set AP will only contain propositions of the form ∧α∈Isα for sα ∈ s,
s ∈ S, i.e. a conjunction of atoms which are true. If we decompose ∧αsα back into a set

s of elements of the conjunction, we then need to find the set of subsets of S that the

set s is a subset of. If we then obtain the conjunction of each of these individual sets,

we obtain the set of states at which the atomic proposition is true. Formally,

h(p) =
{
∧|s

′|
j=1sj : sj ∈ s′, s ⊆ s′, s′ ∈ S

}
, (3.15)

where p = ∧|s|i=1si, si ∈ s.

This concludes the translation from the planning problem P to an interpreted system

ISP .

3.2.9 Conversion from planning problem to corresponding Kripke model

We can construct the Kripke model MP = 〈W,R, h〉 in the following way:

1. We define the set of worlds W as the set of conjunctions of elements of 2F . Namely,

W =
{
∧|s|i=1si : si ∈ s, s ∈ 2F

}
, (3.16)

where 2F is the set of all subsets of fluents defined in expression 3.3.

2. Define the set of initial states W0 to be the singleton set containing the conjunction

of all fluents required to be true in the initial state of P .

3. Define the function compose(w), which returns the conjunction of a set of states

w and the function decompose(w), which returns the set of states that w is a

conjunction of. Then,

R ⊆W ×W is such that

R
(
w, compose(w′)

)
iff ∃a ∈ A : w′ = RP (decompose(w), a), (3.17)

where:

• a ∈ A is a grounded action,

• RP is the transition relation for the planning problem P .
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4. We now must define the valuation function h : W 7→ 2P which assigns to each

world a set of atomic propositions which are true at that world. For the valuation

function h : W 7→ 2P , we exploit the fact that worlds are expressed as conjunctions

of fluents. We can then decompose the fluents that make up the world w as a set

s. We can then compute the set of subsets of the set s. The conjunction of each

element of this set will be the set of atomic propositions true at the world w.

Formally,

h(w) =
{
∧|s

′|
i=1si : si ∈ s′, s′ ∈ 2s

}
,

where s is such that w = ∧|s|i=1wi, wi ∈ s.

3.2.10 Conversion from IS to Kripke model

We will now attempt to convert the interpreted system ISP into a Kripke modelMISP
.

Let MISP
= 〈W,R, h〉 be such that

• W = L, the set of all possible global states in IS.

• W0 be a singleton set containing the conjunction of fluents representing the initial

state of P .

• R ⊆W ×W such that

R(w,w′) iff ∃ai ∈ Acti : w′ = t(w, ai),

where t is the evolution function as defined in 3.14 and ai is a grounded action

defined for the agent i. Note that the transition will only be defined if the protocol

function P for IS defined in 3.12 has enabled the corresponding action.

• We define the valuation function h : W 7→ 2P , in a similar way to that of MP , as

we can still exploit the fact that worlds are expressed as conjunctions of fluents.

We therefore have also that

h(w) =
{
∧|s

′|
i=1si : si ∈ s′, s′ ∈ 2s

}
,

where s is such that w = ∧|s|i=1wi, wi ∈ s.

This concludes our translations to a planning problem P and interpreted system IS and

the construction of the corresponding Kripke models MP and MISP
.

3.3 Correctness of Translation

We must now prove the correctness of the translation by showing that we can obtain

a bisimulation between the interpreted system MIS and the planning model MP . We
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wish to show that MIS can simulate MP and vice-versa.

Definition 3.2 (Bisimulation). Let M = (W,R, h) and M′ = (W ′, R′, h′) be Kripke

models. Let t ∈ W , t′ ∈ W ′. A bisimulation between (M, t) and (M′, t′) is a relation

B ⊆W ×W ′ satisfying:

• B(t, t′),

and for every u ∈W and u′ ∈W ′ such that B(u, u′):

• For all atoms p: M, u |= p iff M′, u′ |= p.

• forth: If v ∈W and R(u, v), then there is a v′ ∈W ′ with R′(u′, v′) and B(v, v′)

• back: If v′ ∈W ′ and R′(u′, v′), then there is a v ∈W with R(u, v) and B(v, v′)

We can now define what it means for two models to be bisimular.

Definition 3.3 (Bisimular). We say (M, t) and (M, t′) are bisimular if there exists

a bisimulation between (M, t) and (M′, t′).

Remark. Let:

• WP be the set of all possible states of the Kripke model MP .

• WIS be the set of all possible states of the Kripke model MIS.

• IP be the set of initial states of MP .

• IISP
be the set of initial states of MISP

.

• wP ∈WP . wIS ∈WIS.

• RP and RISP
be the transition functions of MP and MISP

respectively.

• hP be the valuation function of MP .

• hIS be the valuation function of MIS.

the relation B ⊆WP ×WIS between (MP , wP ) and (MIS , wIS) is a bisimulation.

In order to prove this, we wish to show that the following properties hold for an arbitrary

wP ∈WP and wIS ∈WIS if B(wP , wIS):

1. All initial states of MP and MIS can be related by B,

2. Assuming B(wP , wIS),

• For an arbitrary atomic proposition p, MP , wP |= p iff MIS , wIS |= p

• forth: If w′P ∈ WP and RP (wP , w
′
P ), then there is a w′IS ∈ WIS with

RIS(wIS , w
′
IS) and B(w′P , w

′
IS)

• back: If w′IS ∈ WIS and RIS(wIS , w
′
IS), then there is a w′P ∈ WP with

RP (wP , w
′
P ) and B(w′P , w

′
IS).
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Proof. (1). We have defined the initial states ofMP as IP , the singleton set containing

the conjunction of fluents which are true in the initial state of the planning problem.

We have defined the initial states of MIS as IISP
, the singleton set containing a local

state of the interpreted system IS representing the initial state of the planning problem.

IP and IIS are clearly isomorphic, as IIS , a set containing a local state of IS, is simply

a conjunction of the grounded fluents representing the initial state of P , which by

definition is IP . One can therefore define a bijection between elements of IP and IISP
.

This bijection will act as the relation B.

(2). Assume B(wP , wISP
) for arbitrary worlds wP ∈WP , wISP

∈WISP
.

Let p be an arbitrary atom in F , the set of fluents as previously defined.

The functions hP and hIS are isomorphic as worlds are identically defined in both MP

and MISP
, and through their respective valuation functions, hP and hIS , they will

produce the same set of atomic propositions for worlds wP , wISP
. Therefore, hP ' hIS ,

and so p ∈ hP (wP ) iff p ∈ hIS(wISP
) and so MP , wP |= p iff MIS , wIS |= p.

For some state wP ∈WP , wIS ∈WIS , we have that

• RP (wP , compose(w
′
P )) iff ∃a ∈ A : w′P = R(decompose(wP ), a), where R is the

transition function defined for the planning problem P , a is an action in the set

of actions Act, the functions compose and decompose are as previously defined.

• RIS(wIS , w
′
IS) iff ∃ai ∈ Acti : w′IS = t(wIS , ai), where ai is appropriately enabled

by the protocol function of the IS, and ai is an action of the i-th action-performing

agent of the IS.

We can therefore define the sets next(wP ) and next(wIS) corresponding to the next

states that wP and wIS are respectively related to. Specifically,

• next(wP ) = {w′P : RP (wP , w
′
P ), w′P ∈WP }

• next(wIS) = {w′IS : RIS(wIS , w
′
IS), w′IS ∈WIS}

By construction, RP will give a successor state only if the set of positive preconditions

required for a given action are contained in the set of fluents representing the current

state. Similarly, RIS will produce a successor state only if an action can be found which

is enabled by the protocol function.

Observe that the protocol function enables actions based on the preconditions which

hold in a given state of the environment agent, which occurs in an identical fashion to

RP . This means that we can construct a bijection between next(wP ) and next(wIS).

We can therefore draw a relation B between all states of next(wP ) and next(wIS). This

proves the back and forth properties required for a bijection and hence concludes the

proof.
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3.3.1 Corollary

A corollary of the above proof is that any formula which holds true in the interpreted

system will also hold true for the interpreted system ISP . This is of great relevance for

attempting to specify reachability goals. If we want to find a plan to ensure that the

goal is eventually, we simply need to check if the formula F goal is satisfied in the model

ISP . This can be verified by the use of model checking.

Due to the bisimular property, if the formula holds in ISP , the formula must hold in

the original planning problem P . We can then find a witness which achieves the truth

of the formula, which will correspond to a plan in the planning problem P .

A crucial benefit of this is that we can now specify formulas of any degree of complexity

using ctl or ctl* to represent temporally-extended goals. By the bisimular property,

again, if the formula holds in ISP , it must also hold in P . This gives a lot more power

of the goals that we can find plans for without substantial additional cost.

It is also possible to generalise the proof to multiple agents, which will allow us to specify

properties involving coalitions of agents. There has however not been enough time to

formalise this within the constraints of this project.

3.4 Summary

In this chapter, we discussed the formalisation of the correspondence between a planning

problem and an interpreted system, which can be input into mcmas to find a plan via

finding the existence of a witness. This is true because any formula true in the interpreted

system will be true in the planning problem. We discussed this in terms of two of the

ex ample domains, Dinner and Gripper.

In the next chapter, we will discuss how the theoretical results can be applied on the

machine level in the physical implementation of the compiler.
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Implementation

In this chapter, we will discuss the implementation details of the pddl–ispl compiler.

The operation of the compiler, from a given pddl file to an ispl file is completed from

3 main stages:

1. Parsing: The pddl is parsed and tokenised, supporting a subset of the syntax of

the pddl 1.0 and some npddl extensions, as mentioned in Section 2.16.4. This

takes care of both the lexer and syntax analysis stages, where an error will be

thrown in the case of any violation of the standard pddl syntax.

2. Semantic analysis: After the domain and problem are tokenised, semantic anal-

ysis is then performed to obtain meaning from the tokens.

3. Intermediate code generation: Code is generated internally to the compiler,

where ‘candidates’ are created with the potential to be added to the final output.

4. Code generation: Code is finally outputted by the compiler, ready to be ran

with mcmas. An debug mode is also available to the compiler, where the user can

instead see a representation of symbol table after the parsing stage instead.

It is known that the library Python-Lex-Yacc (Ply) is an implementation of the lex and

yacc parsing tools for Python, used normally for the construction of compilers. It was

initially considered to used it, but since the pddl syntax is relatively simple, we thought

the overhead of using any other external libraries were not worth the overhead. If the

pddl language were however to be extended in drastic ways in the future, it may become

more necessary to use an existing parsing library rather than build it from scratch.

Instead of using Ply, the compiler is written using the open source pddl-parser written

by Felipe Meneguzzi, an Artificial Intelligence researcher at the Pontifical Catholic Uni-

versity of Rio Grande do Sul (Pucrs). The parser initially had basic tools for parsing

domains and problems written with the pddl 1.0 syntax. A basic propositional planner

was also included in the original project.

Several extensions however had to be made to allow for the more expressive syntax with
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the first change being made in order to parse predicates. The parser is now enabled to

parse types, fluents and extended goals.

Using a combination of Java and ANother Tool for Language Recognition (Antlr)

was also considered, but the trade-off of time taken to set up Antlr with an already

structured language did not seem worth the time. Having a compiler built and working

with as little external dependencies as possible made more logical sense. In the future,

it would probably better to use a language with static types, as there is much potential

for the compiler to grow in size drastically as further extensions are made to pddl.

4.1 Architecture

The architecture of the compiler can be seen in Fig. 4.1. The domain and problem

definition files are provided as input arguments to the compiler. The files are then

parsed and a symbol table is built. If the pddl file contained any temporally-extended

goals, they are parsed and converted internally into a format recognisable by mcmas.

The final Ispl code is lastly created in the code generation stage.

Domain pddl file Problem pddl file

Parse the input

Semantic analysis

Build symbol table for variables

Build internally-represented interpreted system

Compiled Ispl file

Figure 4.1: Architectural overview of mcmas.

4.2 Parser

The syntax of pddl is fortunately rather simple, all constructs are surrounded by well-

balanced parentheses with no exceptions. This means that we can tokenise the entire

syntax using a simple regex and use a standard parsing algorithm to start building the
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structure of the syntax tree representing the pddl-specified domain and problem.

Algorithm 1: Generation of a syntax tree given a tokenised PDDL file.

Result: A syntax tree of a tokenized PDDL file, represented as a nested list.

stack = [ ];

list = [ ];

for t in tokens do

if t == ‘(‘ then

stack.append(list);

list = [ ];

end

else if t == ‘)’ then

if stack is not empty then

l = list;

list = stack.pop();

list.append(l);

end

else

raise Exception(‘missing open parentheses’);

end

end

else

list.append(t);

end

end

if stack is not empty then

raise Exception(‘Missing close parentheses’);

end

if list has a length not equal to 1 then
raise Exception(‘Malformed expression’)

end

4.3 Code Generator

The code_generator is responsible for generating all ispl code, storing the lines as a

simple list of strings. All code is printed using the following simple procedure:

Algorithm 2: Print all lines of a fully compiled ispl file.

code generator = generate code();

for line in code generator do

print line;

end
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The generate_code() function is defined as in the following algorithm:

Algorithm 3: Build the symbol table and add symbolic representation of all

components of interpreted system.

initialise variable map();

prepare actions();

add environment agent();

for agent in action performing agents do

add action performing agent(agent);

end

add evaluation(environment);

add initial states(environment);

add groups(action performing agents);

add fairness conditions();

add formulae();

Here we see that we firstly initialise a map of variables acting as the symbol table to be

used throughout all stages of compilation, prepare the actions, and add an environment

agent. After this, we loop through each agent specified in the planning domain, and add

action-performing agents to the corresponding interpreted system. We denote agents

that are different to the environment to be action-performing, as we assume that the

environment will not be required to perform any actions. After this, we can then add

the evaluation, initial states, any groups of agents, fairness conditions, and any formulae

needed to express reachability goals.

The prepare_actions() function does the bulk of the work for this function, as it also

initialises several other data structures to be used in the interpreted system’s protocol

and evolution functions.

The function loops through each action specified in the planning domain and performs

the following algorithm if typing is not being used:

Algorithm 4: Construct a mapping from each parameter to a unique integer and

call a function to get preconditions and effects.

combinations = permutations(objects, action.parameters.length());

parameter map = dict();

for i = 0 to action.parameters.length() do

parameter map[action.parameters[i]] = i;

end

get preconditions and effects(action, combinations, parameter map);

Here, permutations(objects, n) is a function taking a collection of objects and an

integer n and returns a list of permutations of objects of size n. In our implementation

we do not store the list directly in memory, due to its potential to become very large. We

instead create an iterator which yields each value only when required. The reason for
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the function is to ground each action in order to find every combination of parameters

possible given the objects present in the domain.

The get_preconditions_and_effects() is defined in the following way:

Algorithm 5: Algorithm for populating the effects and combinations hash

maps. Note: action is a pddl action of a domain, combination is an ele-

ment of a list of permutations, param map is a hash map mapping from a

parameter to a unique integer.

for (i, combination) in enumerate(combinations) do

candidates = set();

negatives = set();

positives = set();

get all candidates(action, candidates, combination, parameter map,

negatives, positives);

if negatives == positives then

continue;

end

next combination = ‘ and ’.join(candidate + ‘=true’ for candidate in

candidates);

with effects = [p + ‘=true’ for p in positives] + [n + ‘=false’ for n in

negatives];

next effect = ‘ and ’.join(with effects);

action name = ‘ ’.join((action.name,) + comb);

effects[action name] = next effect;

combinations[action name] = next combination;

end

Dealing With Typed Predicates and Actions

As discussed previously, using types in planning problems leads to significant reductions

in the time taken to produce a plan for a given planning problem. In order to generate

the code for typed predicates, we follow the following algorithm:

1. Store a hash map, mapping from the name of the predicate to another map,

mapping each argument to the corresponding type.

2. Using another hash map used to store the types of existing objects and constants

in the planning domain, we loop through the argument’s types, and produce a list

for each argument, containing possible objects in the domain which have the same

type as the current argument.

3. Compute the Cartesian product of the lists, giving an ‘argument list’ containing

grounded arguments, but with the correct type.
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4. Iterate through the argument list and populate the Vars section of the interpreted

system as before. Observe that we will be required to create far less Vars, since

we do not redundantly use every object in the planning domain. We only generate

a new variable if the variable did not already exist in the variable map. We also

initialise the variable map with a False value by default, as we do not consider

the possibility of it being true in the initial state yet.

5. For each grounded predicate generated, produce a physical line in the Ispl file in

the form grounded_predicate_name : boolean;.

Taking the Gripper domain as an example, the map of predicate names to types is of

the following form:

(at_robby: {’?r’: ’room’}),

(at: {’?b’: ’ball’, ’?r’: ’room’}),

(free: {’?g’: ’gripper’}),

(carry: {’?o’: ’ball’, ’?g’: ’gripper’})

For the at_robby predicate, we know that the only objects with the type room are

rooma and roomb. For this predicate we therefore only generate the singleton set of a

set containing the two rooms, namely

{{rooma, roomb}} .

When the argument list contains multiple arguments of different types, we arrive in

cases such as the in at predicate, where we have the set

{{ball1, ball2, ball3, ball4} , {rooma, roomb}} .

The Cartesian product of the elements of the set will be of the form

{(ball1, rooma) , (ball1, roomb) , (ball2, rooma) . . . } ,

which creates the grounded arguments for the at predicate.

We also use a similar method to pre-process actions in the planning domain to create

an internal representation of the possible grounded actions. This representation is then

used to generate code in the same way as for untyped actions, but again, we have less

internal actions being generated, leading to a reduction in the size of the final Ispl file.

4.4 Plan-printing in MCMAS

We can print the plan simply by reading from the witness generated from Ectlk for-

mulae, and can output each action executed in the witness in the following way:
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1 void

2 print_plan(bdd_parameters * para, vector< vector< transition * >*> *cextr)

3 {

4 cout << "Found Plan:" << endl;

5 for (unsigned int ac = 0; ac < (int) cextr->size(); ac++) {

6 for (unsigned int j = 0; j < (int) cextr->at(ac)->size(); j++) {

7 cextr->at(ac)->at(j)->print_plan(para->a);

8 }

9 }

10 }

Here, we are iterating through a witness generated in mcmas. The j variable is used to

iterate through each action-performing agent. We then print the actions simultaneously

performed by each agent from the initial state to the goal. The option of printing the

plan is toggled though a command-line argument. The print_plan method is defined

as follows:

1 void

2 transition::print_plan(vector<BDD> *a)

3 {

4 for (unsigned int i = 0; i < agents->size(); i++) {

5 cout << " " << (*agents)[i]->action_to_str(*label, *a);

6 }

7 cout << endl;

8 }

4.5 Summary

In this chapter we discussed the implementation of the compiler. We discussed the

methods taken to build the parser, and the components of the code generator. We

also looked into how typed variables were handled and the difference this makes in the

number of ispl variables generated for the corresponding interpreted system.

We also discussed the way in which plans are printed in mcmas, highlighting the limi-

tations our method has for formulae other than those contained in ectl*.
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Planning for

Temporally-Extended Goals

In this chapter, we will examine the extensions to classical planning that we support

with the compiler. This includes temporally-extended goals specified in ctl and ctl*,

allowing us to find more complex plans for the Dinner and Gripper planning domains.

We also look into using types in planning domains to reduce the state-space explosion

seen in untyped domains, as well as non-determinism in the initial state of a planning

problem and in the effects of actions.

Along with this, We examine how fluents are represented in mcmas, and also the pos-

sibility of planning under incomplete information.

5.1 Using CTL for Goal Specification

Goals for planning problems are traditionally viewed as a set of desirable final states

being reached. The plan returned by a planner is correct if and only if it can translate

the current state to one satisfying the desirable states.

As discussed in the background section, we aim to view goals as a desirable sequence

of states instead. Here, the plan is correct if its execution yields one of the desirable

sequences. We will denote a classical goal to represent the standard definition of a goal,

i.e. having a plan to solely reach some final state.

5.1.1 Using the Gripper Domain

Recall the description of the Gripper domain from Section 3.2. Initially, we wanted to

only satisfy the condition that the Gripper could move balls from one room to another,

regardless of the means in which the left and right grippers coordinated to achieve this

goal.
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Using ctl we can now express the condition that that goal is reached within n steps,

which can be expressed in the following way:

EX (EX (. . . (goal) . . . ))︸ ︷︷ ︸
nEX′s

.

Another property which can be specified in ctl is “Eventually reach the goal and

permanently have the right gripper free thereafter”. From a practical point of view,

this can be useful if in general a property is desired to remain true after the goal is

reached, for example, a notification signal. This is expressed in ctl as:

EF (goal) ∧ EG (free(right)).

5.2 Using CTL* for Goal Specification

We are now in a position to use the model checker mcmas-dynamic, which was proposed

in [27] to plan for temporally-extended goals using the logic ctl*. This allows plans to

be generated which cannot be expressed in the language ctl or Ltl alone.

5.2.1 Using the Dinner domain

Observe that we can use mcmas* to check the satisfaction of formulae of the form

EFGp for some model, which is not ctl or Ltl-expressible. This means that we

can now produce a plan which satisfies EFG goal, meaning “Find a way to eventually

achieve goal infinitely often”, where goal is true if dinner ∧ present ∧ ¬garbage is

true for some state in the planning domain.

5.2.2 Using the Gripper domain

We use the Gripper domain and aim to specify properties about the execution of plans

in this domain. For this domain, let goal be the classical conjunction of predicates

at(ball1, roomb) ∧ at(ball2, roomb) ∧ at(ball3, roomb) ∧ at(ball4, roomb),

and let free(right) denote a predicate representing the truth of the robot’s right

gripper being free.

We find that it is now possible to express properties such as:

1. E (GF free(right))→ G(E(F (G goal))))) – Find a plan where if the right grip-

per is permanently free, it is always eventually possible for the goal to be perma-

nently true.
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2. E (GF goal) ∧ (G free(right)))) – Infinitely often reach the goal without ever

using the right gripper.

3. E(F goal) ∧ (G free(right)) – Find a way to eventually achieve the goal and

never use the right gripper.

4. E(G(F (goal ∧ (E(X¬goal))))) – Whenever I achieve the goal, I can find a way

to negate it after executing the next action.

All of these goals produce a witness in mcmas-dynamic, meaning that a plan can be

generated. In general, any formula contained in ectl* should produce a witness and

formula in actl* will not find a witness, but can the prove the non-existence of a plan

in the case that one does not exist. By construction, We are able provide support for

the arbitrary nesting of temporal operators for ctl and ctl* formulae.

5.3 Types

Observe that predicates and all arguments of actions specified in a planning domain can

take on any arbitrary value. This means that during the grounding process, we have

no choice but to have each possible argument value as a potential candidate. This will

happen regardless of if the grounded action or predicate can every be reached from the

initial state of the planning problem.

One method of reducing the combinatorial explosion caused by this is by allowing the

arguments predicates and the arguments of actions to have types. We also observe that

starting from pddl 2.1, typing is a compulsory requirement, so it is necessary to have

types supported by the compiler.

Including types requires that the user specifies :typing in the :requirements section

of the domain. We can now move to a typed version of the Gripper domain, where:

• room, ball and gripper are :types

• rooma and roomb are of type room

• ball1, ball2, ball3 and ball4 are of type ball

• left and right are of type gripper

When using the typed domain compared to the untyped domain, we find that the code

generated by the compiler reduces from ∼ 1800 lines of Ispl code to 150 lines, and the

time taken for model checking reduces from 60 seconds to 0.25 seconds, which is a very

significant reduction.

We also observe that we still have the same number of reachable states in both models

when input into mcmas, but the typed version uses about 1/4 of the memory that the

untyped version uses. This highlights the crucial importance of reducing the state space
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of the domain. The experimental results of the difference between solving planning

problems in typed and untyped domains can be found in Section 6.1.1.

5.4 Non-Determinism

5.4.1 Uncertainty in the Initial State

We can encode uncertainty in the initial state of the domain by using the oneof keyword

introduced in Npddl. For example, we may want to find a way to achieve the same goal

for the Gripper domain, but with one of the balls non-deterministically being in room

a or room b and the robot non-deterministically starting either room. In pddl, this is

specified by:

(:init (oneof (at-robby rooma) (at-robby roomb))

..

(oneof (at ball4 rooma) (at ball4 roomb))

..

)

In general, for each oneof (p1, p2, . . . , pn) statement in pddl, we generate the following

code in ispl:

n∨
i=1

pi=true ∧
∧
j 6=i

pj=false

 , (5.1)

which takes the following form in mcmas:

InitStates

(p1=true and p2=false and p3=false and ... and pn=false) or

(p2=true and p1=false and p3=false and ... and pn=false) or

...

(pn=true and p1=false and p2=false and ... and p_n-1=false);

end InitStates

mcmas will now non-deterministically choose one of the values contained in the set

{p1, p2 . . . , pn} to be true for the initial state.

Although it is possible to check for the existence (or non-existence) of a plan, the plan

itself is currently not generated. The reason for this is because mcmas does not generate

a witness in such a non-deterministic case. Adding the functionality to also produce the

plan in non-deterministic situations will also be a topic for further work.
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5.4.2 Conditional Effects

We also provide support for planning with conditional effects being specified in the plan-

ning domain. We may want to have an action having a specific effect only if a certain con-

dition holds, along with a precondition. An example of this is in the robot_navigation

domain, where we see that the precondition is a disjunction of clauses, and the effects

section specifies the specific state change that will occur when a given disjunct holds.

The way in which this is implemented is by creating a new action for each specific case

of the conditional, and append the condition to the action’s initial precondition.

5.5 Fluents

The specification of fluents are supported. They are implemented by creating an enu-

meration of values in the Vars section of an Ispl file, given that an appropriate range

of values are given in the original pddl specification.

5.5.1 Durative Actions

Durative actions and the solving of minimisation problems during the execution of a

plan are currently not supported in this project. It is known that linear programming

methods along with the use of fluents should be used.

5.6 Planning Under Incomplete Information

One of the most realistic uses for solving planning problems is planning with incomplete

information. That is, having action-performing agents possessing only partial observ-

ability of the domain.

Referring to an example described in [9, 10], one such domain is a robot in a maze with

the goal of moving from one specific room of the maze to another.

The robot only has information regarding whether there is a wall in front, behind, to

the left, or to the right of itself, but it does not know its precise position. We can think

of this information being communicated to the robot thought the use of sensors.

The example is illustrated in Figure 5.1. There are four rooms, labelled s0, s1, s2 and

s3. It is possible to move between two connected rooms. s0 is connected with s1, s0 with

s2, and s2 with s3. However, if the robot moves away from s0, due to an oil spillage,

there is a chance that the robot will slip and end up in s2. Due to the robot’s limited

sensing, it is not able to distinguish between states s1 and s3.

We see an approach being taken to plan under partial observability by classical re-

planning in [11]. They propose a method to convert the partially observable planning
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s0 s1

s2 s3

s0 s1

s2 s3

Figure 5.1: The domain as described in [9, 10], with the corresponding state transition
diagram.

problem P into a fully-observable problem obtained by the translation K ′(P ), with the

restriction that the problem P is simple and solvable. A planning problem P is solvable

means that the problem can be solved by a classical planner. They define the problem

to be simple using the following definition:

Definition 5.1. A (deterministic) partially-observable problem P = 〈F,O, I,G,M〉 is

simple if the non-unary clauses in the initial condition I are all invariant, and no

hidden fluents appear in the body of a conditional effect.

An example of a non-unary clause is one which contains uncertainty, for example, as-

signing oneof(x1, . . . , xn) to a variable.

An invariant in a planning problem is a formula which remains true during the execution

of a plan. An example of this, also as given in [11], is a robot which can move an object

to n different locations. Invariant are in this case formulas such as at(o, l1) ∨ · · · ∨
at(o, ln) ∨ hold(o). The reason for this is because the object can be at any of the n

locations or the robot is currently holding the object.

From [11], we also see that the observable variables should have the ability to update

automatically without regards to the action being executed. This means that there is

not a direct translation into a bisimular Ispl specification, since the next state is a

function of the previous state and the last action being executed, and the next action is

a function of the current state. This subtle semantic difference explains the difference

in expressing similar properties in Ispl.

An alternative method is to have the action-performing agent execute an observe action,

which will sense the current state and subsequently update the observable variables of

the agent. This however again has different semantics to what is originally proposed in

the literature.

5.7 Summary

In this chapter we discussed the way in which temporally extended goals can be encoded

using ctl* formula with interpreted systems. We discussed how the goals are encoded

in both the Dinner and Gripper domains. We also discussed how types are handled in

the compiler and the drastic reduction in the state space generated and consequently,
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the reduction in the time taken to find a plan.

We see that there are many strengths gained from planning by model-checking with

mcmas, in the sense that expressing complex temporally-extended goals in ctl* are

now possible. In the evaluation chapter, we see that the increased expressivity does not

come at a significant cost.

Along with the gains in expressivity of goals compared to that of classical planning

problems, we also observe that the ability of planning for multiple agents should be

feasible, as mcmas allows for the specification of formulae involving coalitions of agents.

Planning for multiple agents have however not been included in this project due to time

constraints.
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Evaluation

In this chapter, we discuss several ways in which we evaluated the compiler. We firstly

examined the way in which we benchmarked classical domains, and then looked into the

running time taken to find the plan for temporally-extended goals. We also discussed

our testing methods for the correctness of the compiler.

6.1 Experimental Evaluation

6.1.1 Classical Domains

For the classical typed planing domains, we can conduct an experimental evaluation

when scaling the domains. For the Gripper planning problem, one method of scaling is

by increasing the number of balls the robot is required to move from room a to room b.

This also defines the name of the planning problem. In other words, planning problem

i corresponds to moving 2i + 2 balls from room a to room b. The results can be seen

in Table 6.1, where we examine the running time for each planning problem, as well as

the Bdd memory being taken up while model checking is being conducted.

Problem # Time taken (secs) # of balls (N) bdd memory (bytes)

1 0.231 4 9685632
2 0.566 6 12154624
3 1.904 8 16258512
4 3.734 10 28356208
5 6.278 12 28144752
6 10.29 14 34523760
7 30.93 16 49814688
8 63.78 18 48676352

Table 6.1: Experimental results for the typed Gripper domain.

From the table, we see a clear exponential increase in the time taken for the plan to be

found via model checking. The Bdd memory being taken appears to increase linearly

with respect to N , where N is the number of balls being used in the planning domain.
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The reason for this is because for every n extra balls being added to the domain, the

number of boolean variables declared in the Vars section of the action-performing agent

will only grow by mn, where m is the number of predicates containing references to

balls, for example, at(ball2, rooma). The number of predicates m stays constant as

n increases, so we indeed have a linear increase in the size of the state space. The time

taken to compile each file is negligible, with all problems taking less than one tenth of

a second to compile.
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Figure 6.1: Comparison of running times for each planning problem.

6.1.2 Temporally-Extended Goals

We can also test the running time for planning for temporally-extended goals. We can

use a sufficiently complicated goal, we will use the goal

E(G(F (goal ∧ (E(X¬goal))))),

meaning “Whenever I achieve the goal, I can find a way to negate it after executing the

next action.”

Again, we can scale the problem by increasing the number of balls required to be moved

by the robot. The results can be seen in Table 6.2.

Here, we see the same exponential increase in the time taken to find the existence of a

plan, along with the linear increase in the size of the Bdd memory taken in encode the

domain. We note that having temporally-extended goals expressed in ctl does not lead

to any major increases in the running time needed to compute a plan.

It is also possible to express the need to achieve a goal in precisely n steps. In this case,

since we are allowed the arbitrary nesting of ctl operators, this can be expressed as

EX (EX (. . . (goal) . . . ))︸ ︷︷ ︸
nEX′s

.
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Problem # Time taken (secs) # of balls (N) Bdd memory (bytes)

1 0.255 4 11674048
2 0.538 6 16909440
3 1.964 8 19343792
4 4.035 10 33403536
5 7.201 12 38262416
6 11.479 14 43684048
7 28.523 16 58292960
8 61.108 18 57074752

Table 6.2: Experimental results for the typed Gripper domain with the formula
E(G(F (goal ∧ (E(X¬goal))))).

For the Dinner domain, as explained in section 3.1, we may want to delay the eventual

reaching of the goal, rather than have it solved in the standard three steps. This leads

to generated plans in the form seen in Fig. 6.3 for n = 6, where an enabled action is

repeated a sufficient amount of times in order to achieve the goal in the number of steps

given. If no possible actions are enabled, the plan will not exist.

6.1.3 Infinite Plans

It is also possible for infinite plans to be represented in mcmas. Taking the Dinner

domain again as an example, we may want to find a plan to achieve EFGgoal, meaning

“Find a way to eventually maintain the goal”, which can be expressed in ctl*, but not

ctl or Ltl. When finding the plan in mcmas, the goal is reached, and the final state

is simply repeated infinitely often, representing the “G” part of the formula. The plan

generated is of the form seen in Fig. 6.2.

We have also included in the appendix the plans generated for the ctl* formulae

E(F goal) ∧ (G free(right))

and

E(G(F (goal ∧ (E(X¬goal)))))

for the Gripper domain.

s0 s1 s2 s3 s4 s5
cook cook wrap dolly cook

cook

Figure 6.2: Infinite plan generated for the formula EFGgoal.

s0 s1 s2 s3 s4 s5
cook cook carry wrap wrap

Figure 6.3: Plan generated for achieving goal in 6 steps.
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6.1.4 Large State Spaces

One example of a planning problem with a large state space is a domain named “Wumpus

world” [40], which leads to a very large output Ispl file. The problem is designed to be

a benchmark for the ability for planners to deal with partial observable domains. We

incur poor performance even with full observability. The problem is stated as follows:

The world is a grid-based cave. Our hero wants to enter the cave, find some gold, and

leave unscathed. The rules of the Wumpus world are as follows:

1. Unfortunately the cave contains a number of pits, which our hero can fall into and

die.

2. The cave also contains the Wumpus, who will eat him.

3. The Wumpus is too fat to fall into a pit

Our hero can move around the cave at will and can perceive the following:

• In a position near the Wumpus, a stench is perceived.

• In a position near a pit, a breeze is perceived.

• In a position where the gold is located, a glitter is perceived.

• When trying to move into a wall, a bump is perceived.

• When killing a Wumpus, a scream is perceived.

The hero also has a single arrow, which can be used to kill the Wumpus. The usual

benchmark used for this planning problem is to design an agent that can usually perform

well regardless of the layout of the cave.

As a display of the extremely large state-space explosion, we obtain the following results

when trying to find a plan to achieve the goal in mcmas:

Execution time No. reachable states Bdd memory in use

5514.6 126 115351568

Table 6.3: Performance results of the wumpus domain.

We see that it took 5514.6 seconds, or 1.53 hours and 115 MB of Bdd memory to find the

plan. This explicitly shows the difficulties involved in planning with untyped domains

with large state spaces.

The plan generated by mcmas is the following:

move_agent_sq_1_1_sq_1_2

move_agent_sq_1_2_sq_1_3

take_agent_the_gold_sq_1_3

move_agent_sq_1_3_sq_1_2

move_agent_sq_1_2_sq_1_1

84



CHAPTER 6. EVALUATION

n Time Reachable states Bdd memory

4 0.245 125 10427056
5 1.561 866 15726432
6 22.583 7057 31699184
7 687.964 65990 108441040
8 11071 695417 458544592

Table 6.4: Performance results for blocks domain

6.1.5 Blocks World Domain

We will now evaluate the compiler for the Blocks World domain, one of the standard

benchmark planning problems used for the International Planning Competitions. The

domain consists of n ‘blocks’, which are initially situated on a table. The goal of the

planning problem is to find a way to stack the blocks in a single tower where the blocks

are arranged in a fixed order. The problems vary in the number n of blocks in the

domain and the height of any existing stacks of blocks in the initial state.

For n = 4 blocks C, A, B, and D, with the goal to have them stacked in the order

ABCD, reading from the bottom of the tower to the top, one possible plan (and the

plan generated by our tool) is:

pick up(B), stack(B,A), pick up(C), stack(C,B), pick up(D), stack(D,C)

We will test our solution with the problem where no blocks are already stacked on any

other blocks.

We again see an exponential blow-up in the time taken and the reachable states explored

to produce a plan. The blowup in this case is far worse than the gripper domain. The

time taken for the n = 8 case is well over 3 hours; the time recorded by mcmas undergoes

a loss of precision when the time becomes excessively large. A correct plan was found

nevertheless.

Another observation is that the lengths of the plans found are not a direct function of

the number of blocks initially in the planning.

6.1.6 Multi-Agent Planning

Planning for multiple agents is a crucial area in the field of artificial intelligence. In

order to specify planning domains with multiple agents, we will be using a subset of the

ma-pddl specification language, as discussed in Section 2.16.3.

Although it was possible to translate planning domains for a single agent into an equiv-

alent interpreted system, the case for multiple agents is more complicated. We also

note that there are several notions of planning for multiple agents. In order to test our

solution, we use the blocks world domain. We take several approaches to this:
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• Planning for multiple agents as if there was only one agent: In this case,

we interpret an agent only as an additional parameter to actions and predicates.

Since we specify the agents to have the type agent, we are able to ground our

actions and predicates using the appropriate types for agents and other typed

objects.

In this case, we end up with a sequential plan, where each agent takes turns to

perform an action which modifies the state of the environment. When running the

example, the plan takes the following form:

unstack_d_a_a2

unstack_b_d_a3

unstack_f_b_a4

put_down_b_a4

unstack_e_f_a1

put_down_d_a3

unstack_c_e_a3

pick_up_c_a4

stack_d_c_a4

pick_up_b_a4

stack_c_b_a4

stack_b_a_a2

stack_a_f_a1

stack_f_e_a3

We see that each agent collaborates in a sequential fashion in order to achieve the

goal of having the blocks in the formation DCBAFE (reading from the bottom

of the stack to the top).

• Solving the problem using only one agent: We can also compare the results

to that when attempting to solve the planning problem with only one agent. We

see that the plan is noticeably longer than that for planning with multiple agents.

Using more agents to collaborate can achieve a shorter plan to achieve the same

goal.

• Solving the planning problem using multiple physical IS agents, in a

sequential fashion: We can also encode each agent as a separate Agent in the

compiled interpreted system. Ma-pddl allows us to specify both public and pri-

vate predicated in the planning domain. We interpret the private predicates, which

involve the use of a specific agent as local variables, and the global predicates as

observable variables (Obsvars) in the environment agent of the interpreted system.

The environment agent has its state changed as a function of the separate agents.

When each agent performs an action, their own respective state is then changed.

This solution is far more complex as the previous two, as it leads to problems such
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as race-conditions which may not be taken into account in the definition of the

concrete planning problem specification. This may sometimes lead to undesirable

behaviour during the execution of the plan.

For example, in the blocks world domain, it is not explicitly stated that one

agent can be carrying an agent only if another agent is not carrying the same

object. This is not a problem when planning as a single agent, but leads to race-

conditions when using multiple physical agents.

Another problem is for each agent to perform exactly the same action as the other,

since there may not be a mechanism defined in the planning problem to prevent

agents from picking up an item while another agent picks up the same action. This

leads to the plan below for the 4-0 configuration1 of blocks world:

Found Plan:

pick_up_b_a1 pick_up_b_a2

stack_a_b_a1 stack_a_b_a2

pick_up_c_a1 pick_up_c_a2

stack_b_c_a1 stack_b_c_a2

pick_up_d_a1 pick_up_d_a2

stack_c_d_a1 stack_c_d_a2

----------------------------------------

done, 1 formulae successfully read and checked

execution time = 8.767

number of reachable states = 1163

BDD memory in use = 39800992

In this case, We see that the coalition is specified by the group of agents g1, where

g1 is a set containing the agents a1, a2, a3 and a4.

• Planning with multiple physical agents using the composition of actions:

This is by far the most complex case, with an extremely large number of observable

variables being referred to in the evolution function of the environment agent.

The reason for this is because we need to search for all possible state changes that

can happen to the environment for all agents specified in the planning domain,

and perform all state changes as a result of the concurrent execution of all actions

performed by the respective agents.

Along with a very large ispl output file, the time taken to solve very simple

planning problems becomes very unreasonable to be used practically.

• Planning without explicit specification of a coalition of agents: In this

case, we simply specify ctl formula involving the desired goal, for example,

1This configuration refers to the problem of having four blocks initally placed on a table, with no
block on top of another block, with the goal of having the blocks stacked in a single tower of some
predefined ordering.
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EF goal for reachability. This is without reference to any coalition of agents.

In this case, we see behaviour involving the concurrent execution of actions of the

agents which do not necessarily make direct progress to the goal, but eventually

will reach it. An example of this is the following, for the 4-0 configuration of the

domain:

pick_up_c_a1 pick_up_d_a2

stack_a_c_a1 stack_b_d_a2

pick_up_c_a1 unstack_b_d_a2

stack_c_c_a1 stack_c_d_a2

pick_up_b_a1 unstack_c_d_a2

stack_a_b_a1 stack_d_d_a2

unstack_a_b_a1 unstack_c_d_a2

stack_c_b_a1 put_down_d_a2

pick_up_c_a1 pick_up_d_a2

stack_b_c_a1 stack_d_d_a2

pick_up_d_a1 unstack_b_c_a2

stack_c_d_a1 stack_c_c_a2

In this case, we also see that the time taken to find a plan is relatively quick.

In general, we that it is sometimes better to plan for a goal using a single agent to

plan for all agents specified in the planning domain. This may be because of a lack

of suitable planning domains which make strong use of being able to execute actions

concurrently, and also the definition of well-defined domains where race-conditions are

taken into account.

We use a multi-agent version of the blocks world domain for our evaluation.

6.1.7 Uniform Strategies

We can also use mcmas to find out the uniformity in the strategies used to reach a given

goal. This can be done by passing the uniform flag to mcmas for a given ispl file.

The aim of this is to find out if it is possible for a formula to be true when uniform

strategies versus the case when we do not. One domain used to test this out is the

robot-navigation domain, which involves a robot in a maze with five rooms, the

store, the lab, ne-room, sw-room and the dep room.

The robot has the aim of travelling from the store to the dep. Each of the rooms have

a given number of doors open for the robot to freely travel through. The domain is

normally used in literature as an example of a partially observable domain, but we will

use it in order to demonstrate uniform strategies.

We may aim to deduce whether the formula AF goal can be achieved by the robot in

the maze, meaning “it is always possible to reach the goal”. When checking for uniform
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strategies, we find that the formula is true, but false when using non-uniform strategies.

We also find that there are 5 reachable states and 25 uniform protocols in general, which

can be seen from the mcmas output.

Building partial transition relation...

processing protocol in agent Environment... done: 1 uniform protocols

processing protocol in agent Performer... done: 24 uniform protocols

Building BDD for initial states...

Verifying formulae under uniform strategies...

Strategy 1: number of reachable states = 5

Formula number 1: (AF goal), is TRUE in the model

done, 1 formulae successfully read and checked

execution time = 0.003

maximum number of reachable states = 5

number of uniform strategies = 1

BDD memory in use = 8972544

6.1.8 Performance Test Setup

For benchmarking the performance of mcmas and the compiler, we used a “Graphics”

machine in the Department of Computing with eight 3.70GHz Intel(R) Xeon(R) CPUs

cores and 64GB of Ram, running Ubuntu 16.04.2 LTS (Xenial Xerus). The metrics for

the time taken for model checking is independent of the time taken for compilation.

6.2 Testing

We will now discuss the various measures taken to determine the correctness of the

compiler’s output.

6.2.1 The Automatic Validation Tool VAL

We find that it is possible to test the correctness of plans using the Val tool [22]. The

tool is used as standard in International Planning Competitions to evaluate the plans

being generated for planners using pddl 2.1, and is also fundamental for the development

of new planners.

We however did not use VAL for the purposes of the project, and instead compared the

generated plans from mcmas with the output of existing planners and making use of

the cloud-based automated planning service offered at [1].
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6.2.2 Differential Testing

We were able to provide a form of differential testing [35] to evaluate the correctness of

our tool’s output, which is a method frequently used to evaluate compilers. The way

in which we approach this method of testing is by using input pddl files representing

the same planning problem. As discussed earlier, the Gripper domain can be expressed

with or without using types. By inputting each problem into the compiler, we see that

the plan generated achieves the same goal.

We note that this is not a scalable method of testing, as the generated plan needs be

analysed by a human to check the correctness, since like a topological sort, some actions

can appear in a different order, but the same goal can still be achieved. Another method

of checking correctness is by encoding the plan in a way which can be executed as a

finite state machine, and it can then be evaluated if executing the actions of the plan

from the initial state can indeed achieve the desired goal.

The plan generated for both versions of the Gripper domain can be seen in Table 6.5.

Untyped Typed

pick_ball2_rooma_right pick_ball3_rooma_right

pick_ball1_rooma_left pick_ball1_rooma_left

move_rooma_roomb move_rooma_roomb

drop_ball2_roomb_right drop_ball1_roomb_right

drop_ball1_roomb_left drop_ball3_roomb_left

move_roomb_rooma move_roomb_rooma

pick_ball3_rooma_left pick_ball2_rooma_left

pick_ball4_rooma_right pick_ball4_rooma_right

move_rooma_roomb move_rooma_roomb

drop_ball4_roomb_right drop_ball4_roomb_right

drop_ball3_roomb_left drop_ball2_roomb_left

Table 6.5: Comparison of plans generated by typed and untyped Gripper domain defi-
nitions.

Problem Execution time (secs) Reachable states Bdd memory in use (bytes)

Typed 0.28 256 10594112
Untyped 60.516 256 40440096

Table 6.6: Performance comparison for typed and untyped Gripper domains

From Table 6.6, we observe that the number of reachable states stays constant between

the problems, but we have a 99.5% decrease in the execution time, as well a 73% decrease

in the Bdd memory taken by the generated model.

By inspecting the generated plans, we see that both plans achieve the same goal. Balls

are moved by the grippers in a different order, but this does not make a difference in

the possibility of the goal being achieved.
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6.2.3 Unit Testing

In order to test for the correctness of individual components compiler, we have intro-

duced a test suite. It is possible to ensure that every component works as expected,

since it was built in a modular fashion.

It is significantly more difficult to introduce an automated test suite for mcmas. Due

to the limited time constraints of the project and the small interaction the compiler has

with the internals of mcmas, we have decided to not write unit tests for it, but stick

with acceptance tests instead to ensure that the code written to print the action from

the witness is correct.

6.3 Summary

In general, we see good performance from the compiler for typed domains, but see

problems occurring with untyped domains with large state spaces. The next chapter

will focus on the usage of the compiler, with instructions for performing a compilation

given a planning domain and problem specification.
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Usage

In this chapter, we will discuss the way in which a user can perform a compilation given

a planning domain and problem specification written as pddl files, and how the user can

retrieve an equivalent interpreted system which can then be input into mcmas, which

will use model checking to find a plan.

7.1 Translation of Planning Problems to Interpreted Sys-

tems

The compilation of a pddl domain and problem into an equivalent ispl file can be done

by running the PDDL.py script and specifying the domain and problem as command-line

arguments. In general, the usage is as follows:

> python PDDL.py DOMAIN-NAME.pddl PROBLEM-NAME.pddl

Taking the Gripper domain as an example, we compile into an equivalent Ispl file by

running the following:

> python PDDL.py problems/gripper/domain.pddl problems/gripper/problem.pddl

mcmas will also provide information about the non-existence of a plan, if the given

formula does not hold in the generated model.

7.2 Plan-Finding via MCMAS

We are now able to compile specific pddl files into ispl files.
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7.2.1 Dinner domain

We will attempt to perform the compilation and model checking procedure for the Dinner

domain.

We run mcmas with the successfully compiled dinner.ispl using the following com-

mand:

> ./mcmas -c 4 dinner.ispl

We obtain the following output:

----------------------------------------

Found Plan:

cook

wrap

dolly

----------------------------------------

done, 1 formulae successfully read and checked

execution time = 0.006

number of reachable states = 12

BDD memory in use = 8974672

Here, we see that one sequence of actions to be fired in order to achieve the goal are to

cook dinner, wrap the gift, and then use the dolly to take out the trash.

7.2.2 Gripper domain

We will now attempt to obtain an ispl file representing the Gripper planning problem.

We can run mcmas with the compiled gripper.ispl file using the following command:

> ./mcmas -c 4 gripper.ispl

We obtain the following output, which displays the actions to be executed along with

the necessary arguments to be used to achieve the goal of having all four balls being in

room b:

----------------------------------------

Found Plan:

pick_ball2_rooma_right

pick_ball1_rooma_left

move_rooma_roomb

drop_ball2_roomb_right

drop_ball1_roomb_left

move_roomb_rooma
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pick_ball3_rooma_left

pick_ball4_rooma_right

move_rooma_roomb

drop_ball4_roomb_right

drop_ball3_roomb_left

----------------------------------------

done, 1 formulae successfully read and checked

execution time = 82.247

number of reachable states = 256

BDD memory in use = 38834032

Here, we see that the robot must pick up two balls from room a using its left and right

grippers, move to room b, drop both balls and move back to room a. This sequence of

actions is repeated for each remaining pair of balls left in room a, and the goal state is

successfully reached.

The planner will also give feedback if it is not possible to plan for a desired goal. An

example is the temporally-extended goal

E [(free(left) ∧ free(right)) U goal] ,

where goal is the goal as defined previously, and free(left) and free(right) correspond

to the left and right grippers respectively being free. The formula represents the property

“Find a plan to reach the goal with using the left and right grippers”. This property is

clearly not true. Assuming that the compiled file was saved in until-false.ispl in a

directory named output, we end up with the following output in mcmas:

...

output/until-false.ispl has been parsed successfully.

Global syntax checking...

Done

Encoding BDD parameters...

Building partial transition relation...

Building BDD for initial states...

Building reachable state space...

Checking formulae...

Verifying properties...

Formula number 1: E((free_left && free_right) U goal),

is FALSE in the model

done, 1 formulae successfully read and checked

execution time = 0.274

number of reachable states = 256
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BDD memory in use = 9851360

Here, we see that a plan could not be found to achieve the goal without using any of

the grippers.

7.2.3 Blocks World domain

We will now attempt the same procedure for the Blocks World domain.

Running the compiled ispl file in mcmas, we obtain the following output:

----------------------------------------

Found Plan:

unstack_b_c

put_down_b

unstack_c_a

put_down_c

unstack_a_d

stack_a_b

pick_up_c

stack_c_a

pick_up_d

stack_d_c

----------------------------------------

done, 1 formulae successfully read and checked

execution time = 0.254

number of reachable states = 125

BDD memory in use = 10791280

96



Chapter 8

Project Evaluation

In this chapter we will perform an evaluation of the strengths and weaknesses of both

the theoretical results and the implementation of the solution.

8.1 Theory

8.1.1 Strengths

The theoretical aspects of the project had the following strengths:

• Proof of a bisimulation between planning problems and interpreted sys-

tems: We were able to ensure that the planning problem and the equivalent in-

terpreted system are bisimular to each other.

• Analysis of the semantics of partial observability: We looked into the se-

mantics of having planning problems with only partial observability of state. We

made initial progress in seeing that the semantics differ to an extent that there

may not be the possibility of a direct translation.

8.1.2 Weaknesses

We however saw some weaknesses in the theoretical contributions of the project.

• More generalised formal correspondence: We were able to define a for-

mal correspondence for planning problems generalised to the extent of having

parametrised actions and predicates. It is however not general enough to deal

with multiple agents, due to the wide array of semantic differences seen when

attempting to reason about planning problems with multiple agents.

We however note that once the semantic differences are formally laid out and

examined in detail, we should be able to exploit the power of interpreted systems

and their ability to verify properties about multi-agent systems.
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We were also not able to amend the correspondence with the addition of typed

objects in the planning. This however should not be too large of a difference, as

using types is simply a method to reduce the size of the grounded actions and

predicates generated when replacing argument with concrete objects.

• Proof of a more generalised correspondence: It is naturally expected for a

proof to be provided for the language extensions. This should again be possible

for typed objects, but in the case of multi-agent systems, the bisimular property

may change depending on the means of which the agents are required to achieve

the final goal.

In the case of finding a correspondence for planning for partial observability, the

proof will be far more difficult. The models may again lose the bisimular prop-

erties because observations will have to represented in interpreted-system specific

properties which may lose the specific properties of an observation when compared

directly with the planning problem.

8.2 Implementation

8.2.1 Strengths

In the implementation side of the solution, we saw multiple strengths worth noting:

• Testing: Using a test-driven approach when building components of the compiler

to deal with new language extensions lead to more modular and inherently more

testable code in general.

• Support for classical planning problems: We are able to compile classical

planning problems specified in pddl with support for parametrised actions and

predicates.

• First planner for temporally extended goals in CTL*: Along with goals

expressible in LTL and CTL, we were able to support ctl* specifications. There

is no other planner of our knowledge with the ability to express goals with the

same level of expressivity of ctl*. Since the output of the compiler is ispl, it

should be compatible with any further extensions mcmas.

• Omission of any external parsing libraries: We were able to keep the de-

pendency on any external dependencies to a minimum, leading to strongly self-

contained code, and ease of use for users to install and begin using the solution.

8.2.2 Weaknesses

• Testing: The testing of the solution could have been improved. Unit tests were

used for the compiler implementation and acceptance tests were used to check the
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correctness of the generated plans.

• Performance of the compiler output: The output of the compiler generated

correct plans in mcmas, but we see that the time taken to find the plan quickly

becomes unreasonable as the size of the state space grows due to an increase in

the number of actions, predicates and/or agents in the planning domain.

• Omission of any external parsing libraries: Although having the absence of

libraries leads to self-contained code without any external dependencies, it does

lead to reinventing methods which already exist and may have a more elegant and

efficient solution. For example, using the PLY library for parsing the pddl files

would have led to less work on our side to implement new parsing functionality

for new extensions to the language.
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Conclusions and Future Work

9.1 Summary of Work

We initially had the goal of defining a formal correspondence between planning problems

and interpreted systems and build a compiler to be able to tackle the problem of planning

for temporally-extended goals using the temporal logic ctl*. Our overall contributions

are the following:

• Formal correspondence drawn between planning problems and inter-

preted systems. We were able to successfully draw a formal correspondence by

proving a bisimulation between the two models. The correspondence is sufficient

for planning problems where actions and predicates are parametrised.

• Compiler built to translate PDDL files into ISPL files: We were able to

successfully build a compiler to translate a subset of pddl and ma-pddl into ispl,

the input for the model checker mcmas. The compiler is capable of dealing with

both typed and untyped domains, and can plan for the goals to be achieved by

multiple agents in different ways.

• Planning for temporally-extended goals specified in CTL*: We were able

to successfully use the extension to mcmas, mcmas* to solve planning problems

where the goal was specified over the execution structure of the plan rather that

only the final states. We investigated the rich set of properties which could be

specified in ctl* and analysed the performance for a variety of domains and goal

specifications.

9.2 Future Work

Although we managed to investigate a small part of the field of planning through the

use of model checking, we still believe that there are several avenues in which the project

can be taken further. These are the following:
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• A full investigation into planning under partial observability: We man-

aged to make progress into how planning with partial observability can be done,

but we realised that the difference in the semantics between planning problems

with observability and the evolution of an interpreted system caused progress to

not be made.

The investigation itself was also limited by the physical time constraints of the

project. With more time, we believe that a formal correspondence should be able

to be made. As discussed earlier, this will lead to much more realistic planning

problem being solved using model checking in mcmas.

Taking this further, it would be ideal to be able to model the possibility of changes

of observability of state, in the form of a faulty sensor for a robot, for example.

It would also be ideal to look further into the differences between planning with

uniform versus non-uniform strategies. Mcmas already has functionality to deal

with this, but we were only able to make limited progress in this area due to time

constraints.

• Further investigation in planning with multiple agents: We made initial

progress in the investigation of planning with multiple agents, but there is still

work to be done. We were able to investigate the different ways in which a plan

can be thought of from the point of view of the environment agent or an action-

performing one.

Due to time constraints, we were however not able to investigate further other

methods of achieving a goal, for example, adversarial planning, where other agents

in the planning domain may have the aim of preventing other agents from achieving

their own goals. This also leads into planning under partial observability, where

other agents may perform changes to the state of the environment without other

agents being aware of it.

• Optimisations of the compiler and/or MCMAS: The compiler was built

only with minimal optimisations done mainly to reduce the lines of ispl code

outputted. In addition to this, it would also be useful to perform more advanced

semantic analysis on the planning domains after the parsing stage of the problem.

This may be useful in reducing the memory used for allocating bdds in the model

checking process, and will be able to reduce the time taken for finding a plan.

One concrete example of where this would come into use would be when local

variables generated by the predicates of the planning problem may never been

modified during any execution of a plan.

We saw that using heuristics is one of the better ways of achieving much quicker

planning times. This should either be done via preprocessing of the pddl file before

it is output to ispl, or even making planning-specific optimisations in mcmas
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itself. We must note that no functionality changes were made in mcmas apart

from plan-printing.

• Durative actions and constraint solving: One key area in planning is being

able to perform optimisations of variables in some planning domain. Parsing the

costs of actions would not be a problem, but the functionality involved in solving

the optimisation problem would have to built directly into mcmas.
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Appendix A

Plans generated for Gripper

domain problems

We attach the plans generated for the formulae

E(F goal) ∧ (G free(right))

and

E(G(F (goal ∧ (E(X¬goal)))))

for the Gripper domain.
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Figure A.1: Plan generated for formula E(F goal) ∧ (G free(right)).
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Figure A.2: Plan generated for formula E(G(F (goal ∧ (E(X¬goal))))).

111





Appendix A

Robot Navigation Domain (Full

Observability) in ISPL

1 Agent Environment

2 Obsvars:

3 robot_position : {store, lab, ne_room, sw_room, dep};

4 end Obsvars

5 RedStates:

6 end RedStates

7 Actions = {

8 none

9 };

10 Protocol:

11 Other : { none };

12 end Protocol

13 Evolution:

14 robot_position=store if ( Performer.Action=move_robot_left and robot_position=ne_room) or

15 ( Performer.Action=move_robot_up and robot_position=sw_room );

16 robot_position=ne_room if ( Performer.Action=move_robot_right and robot_position=store ) or

17 ( Performer.Action=move_robot_up and robot_position=dep ) or

18 (Performer.Action=move_robot_down and robot_position=lab );

19 robot_position=lab if ( Performer.Action=move_robot_up and robot_position=ne_room );

20 robot_position=sw_room if ( Performer.Action=move_robot_left and robot_position=dep) or

21 ( Performer.Action=move_robot_down and robot_position=store );

22 robot_position=dep if ( Performer.Action=move_robot_right and robot_position=sw_room ) or

23 ( Performer.Action=move_robot_down and robot_position=ne_room );

24 end Evolution

25 end Agent

26 Agent Performer

27 Vars:

28 state : { empty };

29 end Vars

30 Actions = {

31 move_robot_up, move_robot_down, move_robot_right, move_robot_left

32 };

33 Protocol:

34 ( Environment.robot_position=sw_room or

35 Environment.robot_position=dep or

36 Environment.robot_position=ne_room ) : { move_robot_up };

37 ( Environment.robot_position=store or

38 Environment.robot_position=lab or

39 Environment.robot_position=ne_room ) : { move_robot_down };
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40 ( Environment.robot_position=sw_room or

41 Environment.robot_position=store ) : { move_robot_right };

42 ( Environment.robot_position=dep or

43 Environment.robot_position=ne_room ) : { move_robot_left };

44 end Protocol

45 Evolution:

46 state=empty if state=empty;

47 end Evolution

48 end Agent

49 Evaluation

50 goal if Environment.robot_position=dep;

51 end Evaluation

52 InitStates

53 Environment.robot_position=store;

54 end InitStates

55 Groups

56 g1 = { Performer };

57 end Groups

58 Fairness

59 end Fairness

60 Formulae

61 AF goal;

62 end Formulae
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