Tutorial Exercises 2 (mjs) SOLUTIONS

- 1. We prove the contrapositive. Suppose $\{\Box A_1, \ldots, \Box A_n, \neg B\}$ is S4-inconsistent. Then either
 - (i) $\vdash_{\mathrm{S4}} (\Box A_i \wedge \cdots \wedge \Box A_k) \to \bot$ or (ii) $\vdash_{\mathrm{S4}} (\Box A_i \wedge \cdots \wedge \Box A_k \wedge \neg B) \to \bot$ for some $\{\Box A_i, \ldots, \Box A_k\} \subseteq \{\Box A_1, \ldots, \Box A_n\}$. If case (i) then $\{\Box A_1, \ldots, \Box A_n, \neg \Box B\}$ is also S4-inconsistent. If case (ii) then $\vdash_{\mathrm{S4}} (\Box A_i \wedge \cdots \wedge \Box A_k) \to B$. And so (S4 is normal, and rule RK) $\vdash_{\mathrm{S4}} (\Box A_i \wedge \cdots \wedge \Box \Box A_k) \to \Box B$. But (schema 4, and RPL) $\vdash_{\mathrm{S4}} (\Box A_i \wedge \cdots \wedge \Box A_k) \to (\Box \Box A_i \wedge \cdots \wedge \Box \Box A_k)$ and so $\vdash_{\mathrm{S4}} (\Box A_i \wedge \cdots \wedge \Box A_k) \to \Box B$. Hence $\vdash_{\mathrm{S4}} (\Box A_i \wedge \cdots \wedge \Box A_k \wedge \neg \Box B) \to \bot$ and so $\{\Box A_1, \ldots, \Box A_n, \neg \Box B\}$ is S4-inconsistent. (Note that this doesn't use schema T.) The following (slightly quicker) is also fine. If $\{\Box A_1, \ldots, \Box A_n, \neg B\}$ is S4-inconsistent then

$$\vdash_{\mathrm{S4}} (\Box A_i \wedge \cdots \wedge \Box A_k) \longrightarrow B$$

Now (same argument as above, details omitted)

$$\vdash_{\mathrm{S4}} (\Box A_i \wedge \cdots \wedge \Box A_k) \longrightarrow \Box B$$

So $\{\Box A_1, \ldots, \Box A_n, \neg \Box B\}$ is S4-inconsistent.

2. (i) You could say $\{p,q\}$ and $\{p,\neg q\}$ are both S4-consistent, so (by Lindenbaum's lemma) there are at least two distinct S4-maxi-consistent sets containing p — one has q and the other has $\neg q$.

Or: if $p \in \Gamma$ implied $q \in \Gamma$ that would mean $p \to q \in \Gamma$ (by Theorem 6(8) of the lecture notes). Since Γ is arbitrary, we would have shown $p \to q \in \Gamma$ for every S4-maxi-consistent set Γ , and hence (by Theorem 8(2) of the notes—see next question of this sheet) that $\vdash_{S4} p \to q$, which is clearly not true.

- (ii) Same argument as above. $\{p, \Box p\}$ and $\{p, \neg \Box p\}$ are both S4-consistent. Or: by the same argument as above, we would have $\vdash_{S4} p \rightarrow \Box p$, which is clearly not true.
- (iii) Yes, $p \in \Gamma$ does imply $\Diamond p \in \Gamma$. Because ...

 $\vdash_{S4} p \to \Diamond p$. This is because S4 contains all instances of the schema T ($\Box A \to A$), of which one instance is $\Box \neg p \to \neg p$, which is propositionally equivalent to $p \to \neg \Box \neg p$. (Or: the 'dual schema' of T is $A \to \Diamond A$.)

Since $\vdash_{\mathrm{S4}} p \to \Diamond p$ and Γ is S4-maxi-consistent, $p \to \Diamond p \in \Gamma$. But $p \in \Gamma$ and Γ is closed under MP, so $\Diamond p \in \Gamma$.

- (iv) No. (Part (ii) is already a counter-example for the case n = 0.)
- (v) Yes. If $A_1 \wedge \cdots \wedge A_n \to A \in S4$, then $\Box A_1 \wedge \cdots \wedge \Box A_n \to \Box A \in S4$ (by the rule RK, and the fact that S4 is normal).

If $\Box A_1 \wedge \cdots \wedge \Box A_n \rightarrow \Box A \in S4$ then $\Box A_1 \wedge \cdots \wedge \Box A_n \rightarrow \Box A \in \Gamma$ because any S4-maxi-consistent set Γ contains all theorems of S4.

3. This is a theorem in the notes relating deducibility (\vdash_{Σ}) with maxiconsistent sets. We need to prove that:

(a) $\Gamma \vdash_{\Sigma} A$ iff $A \in \Delta$ for every Σ -maxi-consistent Δ such that $\Gamma \subseteq \Delta$.

(b) $\vdash_{\Sigma} A$ iff $A \in \Delta$ for every Σ -maxi-consistent Δ .

Proof. Left to right: suppose $\Gamma \vdash_{\Sigma} A$. Suppose $\Gamma \subseteq \Delta$. Then $\Delta \vdash_{\Sigma} A$ (monotonicity of \vdash_{Σ}). For the other half: suppose $\Gamma \not\vdash_{\Sigma} A$. We have to show there is a Σ -maxiconsistent Δ such that $\Gamma \subseteq \Delta$ and $A \notin \Delta$. From $\Gamma \not\vdash_{\Sigma} A$, it follows that $\Gamma \cup \{\neg A\}$ is Σ -consistent. By Lindenbaum's lemma there is therefore a Σ -maxi-consistent Δ such that $\Gamma \cup \{\neg A\} \subseteq \Delta$. Because $\{\neg A\} \subseteq \Delta$, i.e., $\neg A \in \Delta$, $A \notin \Delta$ as required.

Part (b) is just the special case of part (a) where $\Gamma = \emptyset$, and so follows immediately remembering that $\emptyset \vdash_{\Sigma} A \Leftrightarrow \vdash_{\Sigma} A$.

4. We want to prove that for any Σ -maxi-consistent sets Γ and Γ'

 $\{A \mid \Box A \in \Gamma\} \subseteq \Gamma' \quad \Leftrightarrow \quad \{\Diamond A \mid A \in \Gamma'\} \subseteq \Gamma$

or equivalently

 $\forall A [\Box A \in \Gamma \Rightarrow A \in \Gamma'] \quad \Leftrightarrow \quad \forall A [A \in \Gamma' \Rightarrow \Diamond A \in \Gamma]$

Assume LHS. Now suppose $A \in \Gamma'$. We need to show $\Diamond A \in \Gamma$. Suppose not. Suppose $\Diamond A \notin \Gamma$.

 $\begin{array}{lll} & \Diamond A \notin \Gamma & \Rightarrow & \neg \Diamond A \in \Gamma & (\Gamma \text{ is maxi}) \\ \neg \Diamond A \in \Gamma & \Rightarrow & \Box \neg A \in \Gamma \\ & \Box \neg A \in \Gamma & \Rightarrow & \neg A \in \Gamma' & (\text{assumed LHS}) \\ \neg A \in \Gamma' & \Rightarrow & A \notin \Gamma' & (\Gamma' \text{ is } \Sigma\text{-consistent}) \\ & A \notin \Gamma' & \text{Contradiction (we assumed } A \in \Gamma') \end{array}$

The other direction is similar. Here it is ...

Assume RHS. Now suppose $\Box A \in \Gamma$. We need to show $A \in \Gamma'$. Suppose not. Suppose $A \notin \Gamma'$.

 $\begin{array}{rcl} A \notin \Gamma' & \Rightarrow & \neg A \in \Gamma' & (\Gamma' \text{ is maxi}) \\ \neg A \in \Gamma' & \Rightarrow & \Diamond \neg A \in \Gamma & (\text{assumed RHS}) \\ \Diamond \neg A \in \Gamma & \Rightarrow & \neg \Diamond \neg A \notin \Gamma & (\Gamma \text{ is } \Sigma \text{-consistent}) \\ \neg \Diamond \neg A \notin \Gamma & \Rightarrow & \Box A \notin \Gamma \\ \Box A \notin \Gamma & \text{Contradiction (we assumed } \Box A \in \Gamma) \end{array}$