
499 Modal and Temporal Logic Autumn 2008

Tutorial Exercises 3 (mjs)

SOLUTIONS

1. A relation R is ‘serially reflexive’ when w R w′ implies w′ R w′ for all w, w′.

Soundness is easy (as usual): M, w |= 2(2A → A) if M, w′ |= (2A → A) for all w′

such that w R w′.

Suppose w R w′. Then w′ R w′ (R is serially reflexive), and so M, w′ |= 2A implies
M, w′ |= A, and M, w′ |= (2A→A) as required.

Completeness: by showing that the canonical relation RΣ is serially reflexive.

Suppose that w RΣ w′. Show w′ RΣ w′, i.e. ∀A [2A ∈ w′ ⇒ A ∈ w′].

Suppose 2A ∈ w′. Show A ∈ w′.

First: 2(2A →A) ∈ w (axiom, and w is a maxi-consistent set.)

2(2A →A) ∈ w ⇒ 2A→ A ∈ w′ (w RΣ w′).

Now 2A ∈ w′ (assumption) and 2A→ A ∈ w′ together imply A ∈ w′ (because w′ is
a maxi-consistent set and so closed under modus ponens).

2. Suppose w RΣ

a
w′ and w′′ RΣ

b
w′.

We need to show w RΣ

b
w′′, i.e., ∀A [KbA ∈ w ⇒ A ∈ w′′].

Suppose KbA ∈ w. Show A ∈ w′′.

KbA ∈ w ⇒ Ka¬Kb¬A ∈ w (axiom, and w is a maxi-consistent set)
Ka¬Kb¬A ∈ w ⇒ ¬Kb¬A ∈ w′ (w RΣ

a w′)
¬Kb¬A ∈ w′ ⇒ A ∈ w′′ (w′′ RΣ

b
w′).

(Last step because w′′ RΣ

b
w′ iff ∀A [¬Kb¬A ∈ w′ ⇒ A ∈ w′′] is the definition of

w′′ RΣ

b
w′ in terms of the dual of Kb.)

ERRATUM: There is a mistake in this question. The last step does not work. The
definition of RΣ

b
in terms of the dual of Kb should of course be:

w′′ RΣ

b
w′ iff ∀A [A ∈ w′ ⇒ ¬Kb¬A ∈ w′′]

not what is written above.

Thanks to Anton Stefanek for pointing this out.

I am not sure what happened here. I might have edited a previous version of the
question without checking it. Sorry. See the (completeness) proof in question 4 below
that schema 5 is canonical for euclidean frames.
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3. Suppose u RΣ
a w, w RΣ

a w′ and w′ RΣ

b
w′′.

We need to show w RΣ

b
w′′, i.e., ∀A [KbA ∈ w ⇒ A ∈ w′′].

Suppose KbA ∈ w. Show A ∈ w′′.

First, we have: Ka(KbA→ KaKbA) ∈ u (axiom, and u is a maxi-consistent set).

Ka(KbA→ KaKbA) ∈ u ⇒ KbA→ KaKbA ∈ w (u RΣ
a w)

KbA ∈ w (assumption) and KbA → KaKbA ∈ w imply KaKbA ∈ w (w is a maxi-
consistent set, so closed under modus ponens).

KaKbA ∈ w ⇒ KbA ∈ w′ (w RΣ

a
w′)

KbA ∈ w′ ⇒ A ∈ w′′ (w′ RΣ

b
w′′)

4. Soundness We have to show that schemas T (2A→A) and 5 (3A→23A) are both
valid in the class of equivalence (reflexive, symmetric, transitive) frames. I omit T
and reflexive: you’ve seen it a thousand times.

For 5: suppose M, w |= 3A for some model M whose relation R is an equivalence
relation. Then M, t |= A for some world t such that w R t. To show M, w |= 23A we
have to show that M, u |= 3A for every world u such that w R u. So suppose w R u.
We have to show there exists a world v such that u Rv and M, v |= A. We will do
this by showing that u R t, as follows. R is symmetric, so from w R u it follows that
u R w. And R is transitive, so from u Rw and w R t it follows that u R t, as required.

Completeness We will use the canonical model method. We show that the canonical
relation RKT5 is reflexive, symmetric, and transitive. The required completeness result
then follows by the usual argument.

There’s various ways to do it. The easiest way (depending on your point of view) is
to observe that T and 5 are canonical for reflexive and euclidean frames, respectively.

(A relation R is euclidean if, for all w, w′w′′ we have w R w′ and w R w′′ implies w′ R w′′.

Now observe that any reflexive and euclidean relation is symmetric and transitive (and
hence an equivalence relation).

So since RKT5 is reflexive and euclidean, it must also be symmetric and transitive.
Done.

The proof that T is canonical for reflexive relations is in the lecture notes (and is very
easy). I thought that the proof that 5 is canonical for euclidean relations was also
in the notes but I see that it is not. Here is a proof that, for any normal logic Σ
containing the schema 5, the canonical relation RΣ is euclidean.
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Suppose w RΣ w′ and w RΣ w′′. We show w′ RΣ w′′, i.e., that ∀A [A ∈ w′′ ⇒ 3A ∈ w′].

Suppose A ∈ w′′. We show 3A ∈ w′.

A ∈ w′′ ⇒ 3A ∈ w (w RΣ w′′)
3A ∈ w ⇒ 23A ∈ w (schema 5, and w is a maxi-consistent set of Σ)
23A ∈ w ⇒ 3A ∈ w′ (w RΣ w′)

Back to KT5. We know that RKT5 is reflexive. Another way to show it is symmetric
and transitive is to observe that we can derive (syntactically) schemas B and 4 in KT5
(which is an exercise on tutorial sheet 1). Since B and 4 are canonical for symmetry
and transitivity respectively (in the lecture notes) that does it.

5. Suppose the canonical relation RS5 is universal.

Any atom, say p, is S5-consistent. By Lindenbaum’s lemma there must be some
maxi-consistent set, say w, such that p ∈ w.

Now if RS5 were universal, p ∈ w implies 3p ∈ w′ for all maxi-consistent sets w′. And
this means that ⊢S5 3p.

So if RS5 were universal, we would have ⊢S5 3p for all atoms p, which is obviously not
the case.

Or, similarly: {2p} is S5-consistent, so by Lindenbaum’s lemma there must be a
maxi-consistent set, say w, such that 2p ∈ w. If RS5 were universal, 2p ∈ w would
imply p ∈ w′ for all maxi-consistent sets w′. And this would mean that ⊢S5 p.

6. We show that the canonical relation

w RKT4G w′ ⇔ {A | 2A ∈ w } ⊆ w′

for S4.2=KT4G is reflexive, transitive, and strongly convergent. The arguments for
reflexive and transitive were done in the lecture notes, and in a earlier question on
this sheet.

For strongly convergent we need to show that for all KT4G-maxi-consistent sets w, w′

there exists a KT4G-maxi-consistent set v such that:

{A | 2A ∈ w } ⊆ v and {A | 2A ∈ w′ } ⊆ v

This is equivalent to showing that there exists a KT4G-maxi-consistent set v such
that:

{A | 2A ∈ w } ∪ {A | 2A ∈ w′ } ⊆ v

Since v is a KT4G-maxi-consistent set, by Lindenbaum’s lemma it is sufficient to show
that

{A | 2A ∈ w } ∪ {A | 2A ∈ w′ }

is KT4G-consistent. This is given in the question, since w and w′ are KT4G-maxi-
consistent sets.
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7. We show that the canonical relation

w RKT4G w′ ⇔ {A | 2A ∈ w } ⊆ w′

for S4.2=KT4G is ‘incestual’/‘Church-Rosser’.

Suppose u RKT4G w and u RKT4G w′. We need to show that there exists a v such that
w RKT4G v and w′ RKT4G v. By the same argument as in the previous question, it is
sufficient to show that

{A | 2A ∈ w } ∪ {B | 2B ∈ w′ }

is KT4G-consistent.

Suppose it is not. Then

⊢KT4G A1∧· · ·∧Am∧B1∧· · ·∧Bn→⊥ and hence ⊢KT4G A1∧· · ·∧Am→¬(B1∧· · ·∧Bn)

for some {2A1, . . . , 2Am} ⊆ w and {2B1, . . . , 2Bn} ⊆ w′. By the rule RK (which we
have in any normal system), we get

⊢KT4G 2A1 ∧ · · · ∧ 2Am → 2¬(B1 ∧ · · · ∧ Bn)

Now {2A1, . . . , 2Am} ⊆ w and w is a maxi-consistent set of KT4G, so 2¬(B1 ∧ · · ·∧
Bn) ∈ w.

2¬(B1 ∧ · · · ∧ Bn) ∈ w ⇒ 32¬(B1 ∧ · · · ∧ Bn) ∈ u (u RKT4G w by
assumption)

32¬(B1 ∧ · · · ∧ Bn) ∈ u ⇒ 23¬(B1 ∧ · · · ∧ Bn) ∈ u (axiom G, and u

is a maxi-consistent set of KT4G)
23¬(B1 ∧ · · · ∧ Bn) ∈ u ⇒ 3¬(B1 ∧ · · · ∧ Bn) ∈ w′ (u RKT4G w′ by

assumption)
3¬(B1 ∧ · · ·∧Bn) ∈ w′ ⇒ ¬2(B1 ∧ · · ·∧Bn) ∈ w′ (w′ is a maxi-consistent

set of KT4G)

So now we have {2B1, . . . , 2Bn} ⊆ w′ and ¬2(B1 ∧ · · · ∧ Bn) ∈ w′, which obviously
contradicts the assumption that w′ is a KT4G maxi-consistent set.
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