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The logic S5n, and variations

The logic S5 = KT5 = KT45 is often taken as the standard logic of rational knowledge
for a single agent (and KD45 (‘weak S5’) as the standard logic of belief).

Given a set of agents {1, . . . , n}

The logic S5n is the smallest modal logic in which each Ki is of type S5 (i.e., of type
KT5 = KT45 = KT4B), i.e. the smallest modal logic containing (for each i ∈ 1..n):

RN.
A

Ki A

K. Ki(A → B) → (Ki A → Ki B)

T. Ki A → A ‘veridicality’ or ‘truth’

4. Ki A → Ki Ki A ‘positive introspection’

5. ¬Ki A → Ki ¬Ki A ‘negative introspection’

There are just 6 modalities in S5 (see ‘reduction laws’, exercise sheet 1, e.g., ⊢S5 Ki
k A ↔

Ki A, etc):
Ki A → A → ¬Ki ¬A

Ki ¬A → ¬A → ¬Ki A
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A standard logic of belief: KD45n (sometimes ‘weak S5n’)

RN.
A

Bi A

K. Bi(A → B) → (Bi A → Bi B)

P. ¬Bi ⊥ ‘consistency’

D. Bi A → ¬Bi ¬A

4. Bi A → Bi Bi A ‘positive introspection’

5. ¬Bi A → Bi ¬Bi A ‘negative introspection’

Note that in every normal system the schemas P and D are inter-derivable: a normal
system contains P iff it contains D.

These are very strong properties, whether we read them as referring to knowledge or belief.
For example, it is generally accepted that negative introspection is a more demanding
condition than positive introspection. Therefore many researchers argue that it is more
reasonable to adopt S4n = KT4n, rather than S5n, as the logic of knowledge (and KD4n

as the logic of belief).

Logical omniscience

Notice that these are all normal logics and so they have, among other things:

A → B

Ki A → Ki B

An agent knows all the logical consequences of what it knows — one manifestation of
logical omniscience.

Clearly this is not a property of real agents, and what they actually know.

But if modal epistemic logics do not describe what agents actually know, what do they
describe?

Several possible suggested readings for Ki A:

• “agent i knows A implicitly”

• “A follows from i’s knowledge”

• “agent i carries the information A”

• “A is agent i’s possible knowledge”

These and other possible suggestions refer to what is implicitly represented in an agent’s
information state, i.e., what logically follows from its actual knowledge. They do not refer
to any notion of how an agent computes knowledge or answers questions based on its
knowledge. What an agent actually knows is called its explicit knowledge. We won’t be
looking at possible formalisations of explicit knowledge and actual reasoning mechanisms.
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Models

Given a set of agents {1, . . . , n}

M = 〈W, R1, . . . , Rn, h 〉

For S5n every accessibility relation Ri is an equivalence relation.

Note that every transitive relation is symmetric if and only if it is euclidean.

Theorem

1. Kn is determined by the class of all models with n accessibility relations.

2. Tn = KT n is determined by the class of models where the n accessibility relations
are all reflexive.

3. S4n = KT4n is determined by the class of models where the n accessibility relations
are all reflexive and transitive.

4. S5n = KT5n = KT45n is determined by the class of models where the n accessibility
relations are all equivalence relations.

5. KDn is determined by the class of models where the n accessibility relations are all
serial.

6. KD4n is determined by the class of models where the n accessibility relations are all
serial and transitive.

7. KD45n is determined by the class of models where the n accessibility relations are
all serial, transitive, and euclidean.

Mutual knowledge – ‘everyone knows’

The auxiliary operator E (to be interpreted as “everyone knows”) is defined as:

E A =def K1 A ∧ . . . ∧ Kn A

Or more generally where G is any non-empty subset of {1, . . . , n}:

EG A =def

∧

i∈G

Ki A

EG A – “everyone in group G knows A”.

Sometimes called mutual knowledge.

Similarly we can define mutual belief – “everyone (in group G) believes A.”

Given a model M = 〈W, R1, . . . , Rn, h 〉, we can define the truth conditions for EG A as
follows:

M, w |= EG A iff for every i in G, M, w |= Ki A

iff for every i in G, for every w′, w Ri w
′ implies M, w′ |= A

iff for every w′, w REG
w′ implies M, w′ |= A

where REG
= Ri1 ∪ · · · ∪ Rim for G = {i1, . . . , im}. REG

=
⋃

i∈G Ri.
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EG is evaluated on a relation (the relation REG
). It follows that each EG is normal:

RN.
A

EG A

K. EG(A → B) → (EG A → EG B)

Further, if each Ri is reflexive, then clearly R1 ∪ · · ·∪Rn is also reflexive (it is enough that
one of the Ri is reflexive), and so we also have:

T. EG A → A

However, it is easy to check:

• R1 ∪ · · · ∪ Rn is not necessarily transitive even if all the Ri are transitive;

• R1 ∪ · · · ∪ Rn is not necessarily euclidean even if all the Ri are euclidean.

And so the following are not valid:

6|= EG A → EG EG A

6|= ¬EG A → EG ¬EG A

However, the union of a set of symmetric relations is also symmetric, and so if all the Ri

are symmetric (as they are if all are equivalence relations) then the following schema is
valid:

B. A → EG ¬EG ¬A

It is also easy to see that

|= EG A → EG′ A when G′ ⊆ G

One can construct a representation of mutual belief (“everyone in group G believes”) in
similar fashion.

Notice that the union of a set of serial relations is also serial. And so, e.g.:

⊢KD45n ¬EG ⊥

⊢KD45n EG A → ¬EG ¬A
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Distributed knowledge

(Not so interesting in my opinion.)

If mutual knowledge of a group of agents corresponds to the union of the accessibility
relations R1∪· · ·∪Rn, what kind of knowledge corresponds to the intersection R1∩· · ·∩Rn?

Given a model M = 〈W, R1, . . . , Rn, h 〉, define the truth conditions for DG A as follows:

M, w |= DG A iff for every w′ such that w Ri w
′ for every i ∈ G we have M, w′ |= A

iff for every w′, w RDG
w′ implies M, w′ |= A

where RDG
= Ri1 ∩ · · · ∩ Rim for G = {i1, . . . , im}. RDG

=
⋂

i∈G Ri.

Easy to see that the following schema is valid:

|= Ki A → DG A for every i ∈ G

Or in other words: |=
∨

i∈G Ki A → DG A

This is easy to check because
⋂

j∈G Rj ⊆ Ri for every i ∈ G.

But the following is not valid:

6|= DG A →
∨

i∈G

Ki A

So DG A means that group G ‘knows’ A if they could somehow pool their information —
even when no i in G individually knows A.

Clearly: |= DG A → DG′ A when G ⊆ G′

DG is interpreted on a relation (the relation RDG
=

⋂
i∈G Ri).

It follows that every DG is normal. The logic of distributed knowledge has:

RN.
A

DG A

K. DG(A → B) → (DG A → DG B)

Also:

• if each Ri is reflexive then
⋂

i∈G Ri is reflexive;
• if each Ri is symmetric then

⋂
i∈G Ri is symmetric;

• if each Ri is transitive then
⋂

i∈G Ri is transitive.

And so e.g. the logic S5n with distributed knowledge has:

T. DG A → A

4. DG A → DG DG A

5. ¬DG A → DG ¬DG A

Distributed knowledge is not very interesting, in my opinion. However, there is a recently
established (August 2007!) connection to the logic of collective action.

Roughly: read D iA as ‘A is a necessary consequence of what i does’.

Then DG A represents a kind of collective action by the group G: A is a necessary con-
sequence of the group G’s collective actions, though not a necessary consequence of what
any of the individual members in G does.’
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Some useful observations

Consider models/frames
M = 〈W, R1, R2, . . . 〉

with 21 and 22 interpreted on R1 and R2 respectively.

If R1 ⊆ R2 then

• |= 31A → 32A

• |= 22A → 21A

It is easy to check that 22A → 21A is canonical for R1 ⊆ R2.

Mutual knowledge (‘everyone knows’)

REG
= R1 ∪ · · · ∪ Rn

• REG
⊆ R1 ∪ · · · ∪ Rn gives |= K1 A ∧ · · · ∧ Kn A → EG A.

• R1 ∪ · · · ∪ Rn ⊆ REG
gives |= EG → K1 A ∧ · · · ∧ Kn A.

EG ↔ K1 A ∧ · · · ∧ Kn A is canonical for REG
= R1 ∪ · · · ∪ Rn.

Distributed knowledge
RDG

= R1 ∩ · · · ∩ Rn

• R1 ∩ · · · ∩ Rn ⊆ Ri so |= Ki A → DG A.

But |= Ki A → DG A just implies

• Ri ⊆ RDG
for every i ∈ G

• R1 ∩ · · · ∩ Rn ⊆ RDG

K1 A ∨ · · · ∨ Kn A → DG A is canonical for R1 ∩ · · · ∩ Rn ⊆ RDG
.

Finally (useful in a minute)

M = 〈W, R1, R2, . . . 〉

M, w |= 2122A iff M, w′ |= A for all (w, w′) ∈ R1 ◦ R2

where R1 ◦ R2 is the composition of relations R1 and R2:

(w, w′) ∈ R1 ◦ R2 iff there exists w′′ such that (w, w′′) ∈ R1 and (w′′, w′) ∈ R2
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Common knowledge

Basic idea: it is common knowledge in group G that A when everyone in group G knows
A, and everyone in group G knows everyone in group G knows A, and everyone in group
G knows everyone in group G knows everyone in group G knows A, etc, etc.

CG A ↔ EG A ∧ EG EG A ∧ · · · ∧ EG
k A ∧ . . .

But the above is an infinitely long conjunction, and hence is not a well formed formula.

Given a model M = 〈W, R1, . . . , Rn, h 〉, we can define the truth conditions for CG A as
follows:

M, w |= CG A iff M, w |= EG
k A for every k ≥ 1

Reminder

When R and S are both binary relations on a set W their composition R ◦ S is defined as
follows:

(w, w′) ∈ R ◦ S iff there exists w′′ such that (w, w′′) ∈ R and (w′′, w′) ∈ S

Usual notation: R1 = R, R2 = R ◦ R, . . . , Rk+1 = R ◦ Rk = Rk ◦ R, . . . .

So Rk can be seen as the set of all paths of length k of R (or rather, the set of pairs of
elements of W that are connected by paths of length k of R).

The transitive closure R+ of a binary relation R is the smallest (set inclusion) transitive
relation that contains R. And . . .

R+ = R1 ∪ R2 ∪ · · · ∪ Rk ∪ . . . =
⋃

k≥1

Rk

So, given a model M = 〈W, R1, . . . , Rn, h 〉, we can also define the truth conditions for
CG A as follows:

M, w |= CG A iff M, w |= EG
k A for every k ≥ 1

iff for every w′, w Rk
EG

w′ implies M, w′ |= A, for every k ≥ 1

iff for every w′, w RCG
w′ implies M, w′ |= A

where RCG
= R+

EG
, the transitive closure of REG

.

For G = {i1, . . . , im}

REG
= (Ri1 ∪ . . . Rim)

RCG
= (Ri1 ∪ . . . Rim)+ =

⋃

k≥1

(Ri1 ∪ . . . Rim)k

7

CG is interpreted on a relation (the relation RCG
= R+

EG
).

It follows that every CG is normal. Also:

• the transitive closure of a reflexive relation is also reflexive; if the Ri are reflexive,
REG

is reflexive and so is RCG
;

• the transitive closure of a symmetric relation is also symmetric; if the Ri are transitive
and euclidean they are symmetric; REG

is symmetric and so is RCG
;

• the transitive closure of a relation is obviously transitive; a transitive relation that
is symmetric is also euclidean; so if the Ri are transitive and euclidean, RCG

is
symmetric and therefore also euclidean.

And so e.g. the logic S5n
C

has:

RN.
A

CG A

K. CG(A → B) → (CG A → CG B)

T. CG A → A

4. CG A → CG CG A

5. ¬CG A → CG ¬CG A

It is also easy to see that

⊢S5n

C
CG A → CG′ A when G′ ⊆ G

And obviously

• ⊢S5n

C
CG A → EG A

• ⊢S5n

C
CG A → CG EG A

• ⊢S5n

C
CG A → CG Ki A

etc, etc.

One can construct a representation of common belief (‘it is a common belief in group G

that”) in similar fashion.

The transitive closure of a serial relation is also serial. And so:

⊢KD45n

C
¬CG ⊥

⊢KD45n

C
CG A → ¬CG ¬A
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Axioms

Logics of common knowledge can be axiomatized on the basis of the corresponding epis-
temic logics by adding suitable axiom schemata and inference rules. The following axiom-
atization is due to Halpern and Moses.

FP. CG A → EG(A ∧ CG A) ‘Fixpoint axiom’

RI.
A → EG(A ∧ B)

A → CG B
‘Rule of Induction’

Various other axiomatizations exist. (There is no need to memorise the above.)

The rule RI is equivalent to the following (which is perhaps clearer):

RI′
A → EG(A ∧ B)

A → CG(A ∧ B)

It is easy to show the above are sound (with respect to the class of models in which
RCG

= R+

EG
.)

For the schema FP, notice that

• CG A → EG A is validated by REG
⊆ R+

EG
;

• CG A → EG CG A is validated by REG
◦ R+

EG
⊆ R+

EG
.

(Check it. Easy.)

For RI′, suppose M |= A → EG(A∧B). Suppose M, w |= A. Now show M, w |= CG(A∧B):
show by induction on k that M, w′ |= A ∧ B for every (w, w′) ∈ Rk

EG
, for every k ≥ 1.

One can also show completeness by the canonical model method. (There are a couple of
little fiddly details, which I omit. See e.g. the book by Fagin, Halpern,Moses, and Vardi.)

(There is no need to memorise the axiomatisation. It is included for your interest.)
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