
499 Modal and Temporal Logic Autumn 2007

Tutorial Exercises 1 (mjs)

SOLUTIONS

1. Suppose that Σ is closed under RM.

Suppose first that Σ contains C. A derivation of K:

1. ⊢Σ (A ∧ (A→ B) )→ B PL

2. ⊢Σ 2(A ∧ (A→ B) )→ 2B 1, RM
3. ⊢Σ (2A ∧ 2(A→ B) )→2(A ∧ (A→ B) ) C
4. ⊢Σ (2A ∧ 2(A→ B) )→2B 2, 3, RPL
5. ⊢Σ 2(A→ B)→ (2A→ 2B) 4, RPL

Suppose now that Σ contains K. A derivation of C:

1. ⊢Σ A→ (B→ (A ∧B) ) PL

2. ⊢Σ 2A→ 2(B→ (A ∧ B) ) 1, RM
3. ⊢Σ 2(B→ (A ∧ B) )→ (2B→2(A ∧ B) ) K
4. ⊢Σ 2A→ (2B→2(A ∧B) ) 2, 3, RPL
5. ⊢Σ (2A ∧ 2B)→ 2(A ∧B) 4, RPL

2. Let Σ be closed under RM:

(a) 1. ⊢Σ A→ (B→A) PL

2. ⊢Σ 2A→ 2(B→A) 1, RM

(b) 1. ⊢Σ ¬A→ (A→ B) PL

2. ⊢Σ 2¬A→2(A→ B) 1, RM

(c) 1. ⊢Σ A→ (A ∨B) PL

2. ⊢Σ 2A→ 2(A ∨B) 1, RM
3. ⊢Σ B→ (A ∨B) PL

4. ⊢Σ 2B→ 2(A ∨B) 3, RM
5. ⊢Σ (2A ∨ 2B)→ 2(A ∨B) 2, 4, RPL

(d) 1. ⊢Σ (2¬A ∨ 2¬B)→ 2(¬A ∨ ¬B) part (c)
2. ⊢Σ (¬3A ∨ ¬3B)→ 2(¬A ∨ ¬B) 1, Df3
3. ⊢Σ (¬3A ∨ ¬3B)→ 2¬(A ∧B) 2, RPL, RE
4. ⊢Σ (¬3A ∨ ¬3B)→ ¬3(A ∧ B) 3, Df3
5. ⊢Σ 3(A ∧B)→ (3A ∧ 3B) 4, RPL

It is not necessary to be so long-winded. I am showing all the steps in detail.

(e) 1. ⊢Σ (A→B) ∨ (B→ A) PL

2. ⊢Σ ¬(A→ B)→ (B→ A) 1, RPL
3. ⊢Σ 2¬(A→B)→ 2(B→A) 2, RM
4. ⊢Σ ¬3(A→ B)→ 2(B→ A) 3, Df3
5. ⊢Σ 3(A→B) ∨ 2(B→A) 4, RPL

Can also use part (b) and the instance 2¬(A→ B)→ 2((A→ B)→ A).
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(f) I will show the contrapositive. Here it is presented in a different style, informally,
to make the chain of reasoning shorter and clearer. (There are other possible
derivations.)

⊢Σ ¬3(A→ B) → 2¬(A→B) Df3

→ 2(A ∧ ¬B) RPL,RE

→ (2A ∧ 2¬B) M

→ (2A ∧ ¬3B) Df3

→ ¬(2A→3B) RPL

(g) Follows from part (f). Here is an instance of (f):

⊢Σ (2A→3A) → 3(A→ A)

→ 3⊤ RPL,RE

(h) There are other ways to do it, but again it is easier (for me) to prove the contra-
positive, and to see the chain of reasoning when presented informally as follows:

⊢Σ ¬2(A→ B) → 3¬(A→ B) Df3

→ 3(A ∧ ¬B) RPL,RE

→ (3A ∧ 3¬B) part (d)

→ (3A ∧ ¬2B) Df3

→ ¬(3A→ 2B) RPL

3. The lecture notes contain proofs for parts (i) and (ii) and a sketch of how to prove
closure under uniform substitution (US) in part (iii). The remaining tasks in part (iii)
are to prove that ΣF, the set of formulas valid in a class F of frames, contains PL and
is closed under modus ponens (the rule MP).

The first is very easy. Suppose A is a tautology, i.e., A is an element of PL. Then by
definition A is true under any assignment of truth values to atoms in A, and so true
at every world in every model, including the models belonging to class F.

Closure under modus ponens: we have to show that if A ∈ ΣF and A→B ∈ ΣF then
B ∈ ΣF. So suppose M is a model in ΣF and w is a world in M. Since A→ B is
valid in the class F, M, w |= A→B, i.e. M, w |= A ⇒ M, w |= B. But A ∈ ΣF and
so M |= A also. So M, w |= A, which implies that M, w |= B, as required.

Here is the same argument using the truth set notation: A→ B ∈ ΣF means that
M |= A→ B for any model M in F, i.e., if M |= A then M |= B. In truth set
notation this is ‖A‖M ⊆ ‖B‖M. A ∈ ΣF means that ‖A‖M = W where W is the set
of worlds in M. So W ⊆ ‖B‖M, and this must mean ‖B‖M = W , i.e. M |= B, as
required.
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4. We already know (question above) that each of these is a system of modal logic. So
we just have to show that (a) they contain schema K as theorems, and (b) that they
are closed under necessitation (rule RN).

(i) The inconsistent logic contains all formulas and so obviously (a) contains all
instances of schema K, and (b) is closed under RN.

(ii) PL is not a normal logic: instances of K are not tautologies (theorems of PL), and
nor is PL closed under RN. (For example, A→A is a tautology, but 2(A→A)
is not.)

(iii) If {Σi | i ∈ I} is a collection of normal logics, then each Σi contains all instances
of K and is closed under RN. So all instances of K are also in the intersection.
And suppose A is in the intersection. Then A is in every Σi, and so 2A is in
every Σi, and 2A is in the intersection.

(iv) If F is any class of frames then ΣF, the set of formulas valid on F, is a normal
logic. We have to show (a) that schema K is in ΣF, i.e. that K is valid on F, and
(b) that if A is valid on F then 2A is valid on F.

(a) I think this was shown in Ian Hodkinson’s notes. But for your convenience,
here is a proof: consider any world w in any model M whose relation R is in F,
and any formulas A and B. We show M, w |= 2(A→B)→ (2A→ 2B). It is
more convenient to show the equivalent: M, w |= (2(A→B) ∧ 2A)→2B.

M, w |= 2(A→B) ∧ 2A ⇒ M, w |= 2(A→ B) & M, w |= 2A

⇒ ∀w′ (wRw′ ⇒ M, w′ |= A→ B) &

∀w′ (wRw′ ⇒ M, w′ |= A)

⇒ ∀w′ (wRw′ ⇒ M, w′ |= A→ B & M, w′ |= A)

⇒ ∀w′ (wRw′ ⇒ M, w′ |= B)

⇒ M, w |= 2B

(b) Consider any model M whose relation R is in F, and any formula A. We
need to show that if A is true at every world w of M, then so is 2A. So suppose
A is true at every world w of M. Suppose t is a world in M. M, t |= 2A when
A is true at every world R-accessible from t. But A is true at all worlds, and so
true at the worlds R-accessible from t. So 2A is true at t. Here is the argument
symbolically:

∀w ∈ M (M, w |= A) ⇒ ∀t ∈ M, ∀w ∈ M (t Rw ⇒ M, w |= A)

⇒ ∀t ∈ M (M, t |= 2A)

Or again in another notation: M, t |= 2A iff R[t] ⊆ ‖A‖M. But when A is valid
on M, ‖A‖M = W , and so R[t] ⊆W for every t in M.
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5. Let Σ be a normal logic.

Derivation of rule RM3

1. ⊢Σ A→B ass.

2. ⊢Σ ¬B→ ¬A 1, RPL
3. ⊢Σ 2¬B→2¬A 2, RM
4. ⊢Σ ¬2¬A→ ¬2¬B 3, RPL
5. ⊢Σ 3A→3B Def3, and 4, RPL

Derivation of schema N3

1. ⊢Σ ⊤ PL

2. ⊢Σ 2⊤ 1, RN
3. ⊢Σ ¬3¬⊤ 2, Def3
4. ⊢Σ ¬⊤↔⊥ PL

5. ⊢Σ ¬3⊥ 3, 4, RE3

RE3 is the rule
A↔ B

3A↔3B
(which we can easily get, e.g. from rule RM3 and RPL).

The following would be perfectly acceptable:

1. ⊢Σ 2⊤ N (in every normal modal logic — check)
2. ⊢Σ ¬3¬⊤ 1, Def3
3. ⊢Σ ¬3⊥ 2, RPL and RE3

Derivation of schema MC3 We can derive this in two parts: 3(A∨B)→ (3A∨3B)
(which is the schema C3), and (3A ∨ 3B)→3(A ∨ B) (which is the schema M3).

1. ⊢Σ (2¬A ∧ 2¬B)→ 2(¬A ∧ ¬B) C. (in every normal logic — check!)
2. ⊢Σ (2¬A ∧ 2¬B)→ 2¬(A ∨B) 1, RPL, RE
3. ⊢Σ ¬2¬(A ∨ B)→ ¬(2¬A ∧ 2¬B) 2, RPL
4. ⊢Σ 3(A ∨B)→ ¬(¬3A ∧ ¬3B) 3, Def3, RPL, RE3

5. ⊢Σ 3(A ∨B)→ (3A ∨ 3B) 4, RPL

For the other half (M3):

1. ⊢Σ A→ (A ∨B) PL

2. ⊢Σ 3A→3(A ∨ B) 1, RM3

3. ⊢Σ B→ (A ∨B) PL

4. ⊢Σ 3B→3(A ∨ B) 3, RM3

5. ⊢Σ (3A ∨ 3B)→3(A ∨ B) 2, 4, RPL

M3 can also be derived directly from schema M.

Alternatively, derive MC3 from schema MC:

1. ⊢Σ (2¬A ∧ 2¬B)↔ 2(¬A ∧ ¬B) MC. (in every normal logic — check!)

⊢Σ

... (as for C3 above)
5. ⊢Σ 3(A ∨B)↔ (3A ∨ 3B) 4, RPL
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6. To show that the normal logic KT5 is the same as the normal logic KT45, we show
that 4 is already in KT5. (I mean: all instances of schema 4 are theorems of KT5.)

Semantically, one might argue like this. We know that T (2A→A) is valid in reflexive
frames, and 5 (3A→ 23A) is valid in euclidean frames. Recall that a relation R is
euclidean iff, for all w, w′, w′′ we have wRw′ & wRw′′ ⇒ w′Rw′′.

Now observe: if a relation R is reflexive and euclidean then it is also symmetric.
(Check: wRw′ & wRw ⇒ w′Rw.)

Further, a symmetric relation is euclidean iff it is transitive. (Check: wRw′ & w′Rw′′ ⇒
(symmetric) w′Rw & w′Rw′′ ⇒ (euclidean) wRw′′.)

Symmetric frames validate schema B (A→ 23A) and transitive frames validate 4
(2A→22A).

We cannot use this semantic argument directly (we haven’t proved any soundness
and completeness results for normal modal logics, yet) but it suggests a strategy for
deriving schema 4 from schemas T and 5, via schema B. Here goes. I will present it
in fragments rather than as one long single derivation.

First:

1. ⊢KT5 2¬A→ ¬A instances of T
2. ⊢KT5 A→ ¬2¬A 1, RPL
3. ⊢KT5 A→3A 2, Def.3

The schema A→3A is often called the ‘dual schema’ of T; call it T3.

For future reference, we can also derive the ‘dual schema’ 53 of schema 5 by a similar
argument:

1. ⊢KT5 3¬A→ 23¬A instances of schema 5
2. ⊢KT5 ¬23¬A→ ¬3¬A 1, RPL
3. ⊢KT5 ¬23¬A→ 2A 2, Def.3
4. ⊢KT5 32A→ 2A 3, Def.3, rule RE

Next:

1. ⊢KT5 A→3A T3

2. ⊢KT5 3A→ 23A schema 5
3. ⊢KT5 A→ 23A 1, 2, RPL

So now we have proved that KT5 contains all instances of schema B as theorems. (Cf.
reflexive and euclidean implies symmetric.)

Now the last steps:

1. ⊢KT5 32 A→ 2A schema 53
2. ⊢KT5 232A→ 22A 1, rule RM
3. ⊢KT5 2A→232A instances of schema B
4. ⊢KT5 2A→22A 3, 2, RPL
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Notice that since we have also shown above that all instances of schema B are theorems
of KT5, we have actually shown:

S5 = KT5 = KT45 = KTB5 = KTB45

7.

noN. ⊢ Oblig ⊤ ↔ O⊤∧ ¬2⊤
↔ O⊤∧ ⊥ (because 2 is normal and hence ⊢ 2⊤)
↔ ⊥ (by propositional logic)

So we have, by propositional logic, ⊢ ¬Oblig ⊤.

D. ⊢ Oblig A ∧ Oblig ¬A ↔ OA ∧ ¬2A ∧ O¬A ∧ ¬2¬A
↔ OA ∧ O¬A ∧ ¬2A ∧ ¬2¬A
↔ ⊥∧ ¬2A ∧ ¬2¬A (because O is of type KD)
↔ ⊥

So we have, by propositional logic, ⊢ ¬(Oblig A∧Oblig ¬A), i.e. (by propositional
logic) ⊢ Oblig A→ ¬Oblig ¬A.

C. ⊢ Oblig A ∧ ObligB ↔ OA ∧ ¬2A ∧ OB ∧ ¬2B

↔ OA ∧ OB ∧ ¬2A ∧ ¬2B

↔ O(A ∧ B) ∧ ¬2A ∧ ¬2B

(because O is normal: ⊢ (OA ∧ OB)→O(A ∧ B))
↔ O(A ∧ B) ∧ ¬2(A ∧B)

(because 2 is normal: see below)
↔ Oblig(A ∧ B)

The missing step: because 2 is normal we have ⊢ 2(A ∧ B) → 2A, and so
(contra-positive) ⊢ ¬2A→ ¬2(A ∧ B). Similarly, ⊢ ¬2B→ ¬2(A ∧ B). And
so (by propositional logic) ⊢ (¬2A ∧ ¬2B)→ ¬2(A ∧B).

8. Derivation of P is very easy if you notice that the schema T (2A→ A) is a theorem
iff its dual schema (A→3A) is a theorem. Here is the full derivation in case you did
not notice that:

1. ⊢ET5 2¬A→ ¬A T
2. ⊢ET5 A→ ¬2¬A 1, RPL
3. ⊢ET5 A→3A 2, Df3
4. ⊢ET5 ⊤→3⊤ instance of 3
5. ⊢ET5 ⊤ PL

6. ⊢ET5 3⊤ 4, 5, MP
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To derive schema N using 5 (3A→23A) requires some inspiration. Here is a deriva-
tion:

1. ⊢ET5 3⊤ from 6 above
2. ⊢ET5 3⊤↔⊤ 1, RPL
3. ⊢ET5 23⊤↔ 2⊤ 2, RE
4. ⊢ET5 3⊤→23⊤ schema 5
5. ⊢ET5 3⊤→2⊤ 4, 3, RPL
6. ⊢ET5 2⊤ 1, 5, MP

9. For ease of reference, these are the ‘reduction laws’ that we need to show are theorems
of the normal system S4 (=KT4):

2A↔ 22A 3A↔33A

32A↔3232A 23A↔ 2323A

Schema T is 2A→A and its dual schema T3 is A→3A. Schema 4 is 2A→22A

and its dual schema 43 is 33A→3A.

For the reduction laws: first note that those on the right are dual schemas of those on
the left. That is to say:

3A ↔ ¬2¬A ↔ ¬22¬A ↔ 3¬2¬A ↔ 33A

23A ↔ ¬3¬¬2¬A ↔ ¬32¬A ↔ ¬3232¬A ↔ 2323A

Check the last step: ¬3232¬A ↔ ¬323¬3A ↔ ¬32¬23A ↔ ¬3¬323A ↔
¬¬2323A ↔ 2323A.

So we only need to check that the formulas on the left are theorems of KT4 (S4). The
first one on the left is immediate: 2A→ 22A is just schema 4, and 22A→ 2A is
a special case of T.

For the bottom one on the left, there are various ways to do it. For example, we can
get left-to-right by showing that 2A→ 232A is a theorem, because then 32A→
3232A follows by rule RM3. And we have this, because 2A→ 32A is a special
case of T3, from which follows 22A→232A by rule RM. And 2A→22A (schema
4) gives us what we need.

We can get right-to-left by showing that 323A→ 3A is a theorem, because then
323(2A)→3(2A) is a special case. (The brackets are to aid readability.) We also
have this, because (e.g.) 23A→3A is a special case of schema T, from which follows
323A→33A by rule RM3. And 33A→3A is just schema 43.

These various implications are summarised in the following diagram (Chellas, p149).

7

2

232

32 23

323

3

·

Now let’s see how many modalities there are in KT4 (S4). A modality is any sequence
φ of ¬, 2, 3 in any combination, including the empty sequence, denoted ·. Within a
system of modal logic, two modalities φ and ψ are equivalent when, for every formula
A, the expression φA↔ ψA is a theorem.

First notice that, by moving all negations to the outside, interchanging 3 and 2 as
necessary, and then replacing all occurrences of 3 . . .3 by 3 and 2 . . .2 by 2, every
modality ψ must be equivalent in S4 to one of the form φ or ¬φ where φ is one of

(23)n (23)n
2 (32)n (32)n

3 (n ≥ 0)

or: · 2 3 (23)n (23)n
2 (32)n (32)n

3 (n ≥ 1).

Now, by means of the reduction laws (for n ≥ 1):

(23)nA↔23A

(23)n
2A↔ 232A

(32)nA↔32A

(32)n
3A↔323A

So every modality is equivalent in S4 to one of

· 2 3 23 32 232 323

or one of their negations: ¬ ¬2 ¬3 ¬23 ¬32 ¬232 ¬323. So we’ve
proved that KT4 (S4) has at most 14 modalities. It still remains to prove that these
14 are distinct, i.e., that S4 does not have fewer than these 14 modalities.

To show this we have to show 6⊢KT4 φA↔ψA for all pairs φ and ψ of the 14 modalities.
How? One way is by constructing a suitable countermodel. For suppose we know that
a system Σ is sound with respect to some class C of models, i.e. ⊢Σ A⇒|=C A. Then
6|=C A⇒6⊢Σ A. So one way of showing 6⊢Σ A is to find a model M in class C such that
M, w 6|= A for some world w in M (a ‘countermodel’). So, for example, the model M
with W = {w1, w2}, R = {(w1, w1), (w1, w2), (w2, w2)}, and h(p) = {w2} is reflexive
and transitive. M, w1 |= 3p but M, w 6|= p, so 6⊢KT4 3A↔ A. Construction of
suitable countermodels to show all the 14 modalities are distinct in KT4 (S4) requires
some ingenuity. You can use techniques such as Salqvist’s to identify what kind of
countermodels to look for. Details omitted.
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10. Now let’s do the same exercise for the logic S5 (= KT5 = KT45). We know that
S5 is a KT4 system (we showed that in an earlier question). So we can proceed by
investigating what further reduction laws are available in in KT45 (S5) besides those
present in KT4 (S4).

For ease of reference, schema 5 is 3A→23A and its dual schema 53 is 32A→2A.

Notice that the converse of schema 5 (23A→ 3A) is a special case of schema T,
and the converse of schema 53 is a special case of schema T3. So in S5 we have the
following pair of further reduction laws:

23A↔3A 32A↔2A

Check what has happened to the bottom pair of S4 reduction laws (32A↔3232A).

What of the modalities? Let’s check the S4 modalities. In S5:

23A↔3A

32A↔2A

232A↔32A↔ 2A

323A↔23A↔3A

So we are left with just three modalities in S5:

· 2 3

and their negations: ¬ ¬2 ¬3.

2 −−−−→ · −−−−→ 3

Alternatively, to determine the modalities in S5 from the reduction laws, follow the
method used for determining the S4 modalities: every modality ψ must be equivalent
in S5 to one of the form φ or ¬φ where φ is one of

(23)n (23)n
2 (32)n (32)n

3 (n ≥ 0)

Now, by means of the reduction laws:

(23)nA↔ (3)nA↔3A

(23)n
2A↔ (3)n

2A↔32A↔ 2A

(32)nA↔ (2)nA↔ 2A

(32)n
3A↔ (2)n

3A↔23A↔3A

9


