Tutorial Exercises 2 (mjs) SOLUTIONS

1. We prove the contrapositive. Suppose $\{\Box A_1, \ldots, \Box A_n, \neg B\}$ is S4-inconsistent. Then either

(i) $\vdash_{S4} (\Box A_i \land \dots \land \Box A_k) \to \bot$ or (ii) $\vdash_{S4} (\Box A_i \land \dots \land \Box A_k \land \neg B) \to \bot$

for some $\{\Box A_i, \ldots, \Box A_k\} \subseteq \{\Box A_1, \ldots, \Box A_n\}.$

If case (i) then $\{\Box A_1, \ldots, \Box A_n, \neg \Box B\}$ is also S4-inconsistent.

If case (ii) then $\vdash_{S4} (\Box A_i \land \cdots \land \Box A_k) \to B$.

And so (S4 is normal) $\vdash_{S4} (\Box \Box A_i \land \dots \land \Box \Box A_k) \to \Box B.$

But (schema 4, and RPL) $\vdash_{S4} (\Box A_i \land \cdots \land \Box A_k) \rightarrow (\Box \Box A_i \land \cdots \land \Box \Box A_k)$

and so $\vdash_{\mathrm{S4}} (\Box A_i \wedge \cdots \wedge \Box A_k) \longrightarrow \Box B$.

Hence $\vdash_{\mathrm{S4}} (\Box A_i \wedge \cdots \wedge \Box A_k \wedge \neg \Box B) \rightarrow \bot$ and so $\{\Box A_1, \ldots, \Box A_n, \neg \Box B\}$ is S4-inconsistent.

(Note that this doesn't use schema T.)

- 2. This is a theorem in the notes relating deducibility (\vdash_{Σ}) with maxiconsistent sets. We need to prove that:
 - (a) $\Gamma \vdash_{\Sigma} A$ iff $A \in \Delta$ for every Σ -maxi-consistent Δ such that $\Gamma \subseteq \Delta$.
 - (b) $\vdash_{\Sigma} A$ iff $A \in \Delta$ for every Σ -maxi-consistent Δ .

Proof: left to right is easy. Suppose $\Gamma \vdash_{\Sigma} A$. Suppose $\Gamma \subseteq \Delta$. Then $\Delta \vdash_{\Sigma} A$ (monotonicity of \vdash_{Σ}). For the other half: suppose $\Gamma \not\vdash_{\Sigma} A$. We have to show there is a Σ -maxi-consistent Δ such that $\Gamma \subseteq \Delta$ and $A \notin \Delta$. From $\Gamma \not\vdash_{\Sigma} A$, it follows that $\Gamma \cup \{\neg A\}$ is Σ -consistent. By Lindenbaum's lemma there is therefore a Σ -maxi-consistent Δ such that $\Gamma \cup \{\neg A\} \subseteq \Delta$. Because $\{\neg A\} \subseteq \Delta$, i.e., $\neg A \in \Delta$, $A \notin \Delta$ as required.

Part (b) is just the special case of part (a) where $\Gamma = \emptyset$, and so follows immediately remembering that $\emptyset \vdash_{\Sigma} A \Leftrightarrow \vdash_{\Sigma} A$.

3. We want to prove that for any Σ -maxi-consistent sets Γ and Γ'

 $\{A \mid \Box A \in \Gamma\} \subseteq \Gamma' \quad \Leftrightarrow \quad \{\Diamond A \mid A \in \Gamma'\} \subseteq \Gamma$

or equivalently

$$\forall A \left[\Box A \in \Gamma \Rightarrow A \in \Gamma' \right] \quad \Leftrightarrow \quad \forall A \left[A \in \Gamma' \Rightarrow \Diamond A \in \Gamma \right]$$

Assume LHS. Suppose $A \in \Gamma'$. We need to show $\Diamond A \in \Gamma$. Suppose not. Suppose $\Diamond A \notin \Gamma$.

 $\begin{array}{l} \diamond A \notin \Gamma \implies \neg \diamond A \in \Gamma \quad (\Gamma \text{ is maxi}) \\ \neg \diamond A \in \Gamma \implies \Box \neg A \in \Gamma \\ \Box \neg A \in \Gamma \implies \neg A \in \Gamma' \quad (\text{assumed LHS}) \\ \neg A \in \Gamma' \implies A \notin \Gamma' \quad (\Gamma' \text{ is } \Sigma \text{-consistent}) \\ A \notin \Gamma' \quad \text{Contradiction (we assumed } A \in \Gamma') \end{array}$

The other direction is similar.

Assume RHS. Suppose $\Box A \in \Gamma$. We need to show $A \in \Gamma'$. Suppose not. Suppose $A \notin \Gamma'$.

 $\begin{array}{rcl} A \notin \Gamma' & \Rightarrow & \neg A \in \Gamma' & (\Gamma' \text{ is maxi}) \\ \neg A \in \Gamma' & \Rightarrow & \diamond \neg A \in \Gamma & (\text{assumed RHS}) \\ \diamond \neg A \in \Gamma & \Rightarrow & \neg \diamond \neg A \notin \Gamma & (\Gamma \text{ is } \Sigma \text{-consistent}) \\ \neg \diamond \neg A \notin \Gamma & \Rightarrow & \Box A \notin \Gamma \\ \Box A \notin \Gamma & \text{Contradiction (we assumed } \Box A \in \Gamma) \end{array}$