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Induction of Grammars and Automata

Regular

Context Free

Context Sensitive

Recursively Enumerable

Finite
State

Push Down

Linear Bounded

Turing Machine

I Previous work on learning grammars has mostly been restricted to
learning context-free grammars.

I Some work has considered learning mildly context sensitive languages.
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I We propose a new class of context sensitive grammars called Answer Set
Grammars (ASGs), which extend CFGs with context sensitive conditions
written in ASP.

I ASP conditions can be learned using an existing ASP learner.

I Previous work on learning grammars has mostly been restricted to
learning context-free grammars.

I Some work has considered learning mildly context sensitive languages.
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Induction of Grammars and Automata
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I Unlike other approaches, our learning approach takes an initial grammar
as input.

I Previous work on learning grammars has mostly been restricted to
learning context-free grammars.

I Some work has considered learning mildly context sensitive languages.
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Relevant Applications of ASG Induction

I Fuzzing is the process of randomly generating test inputs to programs:

Random
input

Program Result

I Given the CFG for the program input, our approach can be used to learn
to generate semantically valid input.

I Automatic classification of logs:

Log data Classifier

Entry Type 1

Entry Type 2

Entry Type 3
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Answer Set Grammars (ASGs)

I An Answer Set Grammar is an augmented CFG, where each production
rule may be annotated with ASP.

1: start -> as bs cs {

:- size(X)@1, not size(X)@2.

:- size(X)@1, not size(X)@3.

}

2: as -> "a" as { size(X+1) :- size(X)@2. }

3: as -> { size(0). }

4: bs -> "b" bs { size(X+1) :- size(X)@2. }

5: bs -> { size(0). }

6: cs -> "c" cs { size(X+1) :- size(X)@2. }

7: cs -> { size(0). }

I This grammar represents the context-sensitive language anbncn.
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Learning Answer Set Grammars

Existing Grammar G

Hypothesis space SM

(ASP rules)

E+ (strings)

E− (strings)

ASG
Learning Task

Learned ASG

I The goal is to find an H ⊆ SM st when H is added to the annotations of
G , the extended ASG accepts every string in E+ and no string in E−.

I In this work all parse trees are assumed to be bounded by a given
maximum depth d .
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Algorithm

1: procedure LearnASG(T )
2: TLAS = LAS(T , d);
3: H = ILASP(TLAS)
4: returnHASG ;
5: end procedure

I LAS(T , d) translates an ASG learning task T and depth d to a learning
task for an existing ASP learner (ILASP).

I HASG is the translation of the ILASP solution H to an ASG solution.

LearnASG is sound and complete.
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Complexity – decision problems

I Bounded-ASG-membership: deciding whether an ASG
accepts a string.

I Bounded-ASG-satisfiability: deciding whether an ASG has a
non-empty language.

Each decision problem is investigated for ASGs with various
restrictions on the language of the ASP annotations:

I Propositional and (function-free) first-order ASGs

I Horn, stratified and unstratified ASGs
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Complexity of bounded ASG
membership/satisfiability

Horn Stratified Unstratified

Propositional NP NP NP

First-order EXP EXP NEXP

I “Even loops” can be simulated by duplicate production rules:

s -> b {
p:-not q.

q:-not p.

}

s -> b {p.}
s -> b {q.}
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Complexity of learning – decision problems

I Bounded-verification: deciding whether a given hypothesis is
a solution of a given learning task.

I Bounded-satisfiability: deciding whether a given learning
task has any solutions.
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Complexity of learning results

I If each string has a polynomial number of parse trees:

Horn Stratified Unstratified

Bounded-verification DP DP DP

Bounded-satisfiability ΣP
2 ΣP

2 ΣP
2

I In the paper, we give a more efficient translation to an ILASP
task for this case.
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Evaluation

I We evaluated LearnASG on anbncn, starting from various initial
grammars: anbncm, aibjck and (a|b|c)∗.

I The more information given as input, the easier the ASG is to learn.

I (Nakamura and Imada 2011) learn anbncn from scratch.

I Faster than LearnASG on the equivalent problem – from (a|b|c)∗

I Slower than LearnASG from aibjck

I Cannot take advantage of an existing CFG

I Their method can only learn MCS languages (whose membership
problem must be in P).
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Conclusion

I ASGs are a new context-sensitive grammars, which extend CFGs with
ASP annotations.

I Presented a method for the ASP annotations.

I Best suited for tasks where the underlying syntax of a language
is known, but (some of) the semantic conditions are unknown.

I Future research directions include:

I Investigating the relevant applications.

I Exploring using other formalisms such as CSPs and SMTs in
annotations.

12/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP



Backup
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Going beyond Mildly CS grammars

I Membership of MCS languages is in P.

I The graph colouring language consists of strings representing graphs that
are 3-colourable.

“0 1 2 3 (0, 1) (1, 2) (1, 3) (2, 3) (3, 0)”

|E+| |E−| Final Time Total Time

Stratified 2 2 11.5s 23.8s

Unstratified 4 4 90.1s 256.9s
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Evaluation: anbncn

Initial
Language

anbncm

(ASG st
CF part is
aibjck)

anbncm

(CFG)

aibjck

(CFG)

(a|b|c)∗

(CFG)

Target
Constraint

n = m n = m i = j = k All a’s before all b’s be-
fore all c’s. Same num-
ber of a’s, b’s and c’s

|E+|/|E−| 1 / 2 1 / 3 1 / 7 1 / 45
Final/Total
Time

0.5s / 1.4s 0.3s / 1.3s 1.1s / 5.1s 1004.0s / 13314.9s

I The target language for each of these tasks is the same (anbncn), but the
information encoded in the initial language decreases from left to right in
the table.

I More examples are needed as the information encoded in the initial
language decreases.

I Although the final experiment shows that it is possible to learn the whole
language from scratch, the method performs better when the CFG is
given as input.
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Answer Set Grammars

I An Answer Set Grammar (ASG) is an augmented CFG, where each
production rule may be annotated with ASP constraints.

I A string s is a member of an ASG G , if there is at least one parse tree of
G for s st the program G [PT ] is satisfiable.

1: start -> as bs cs {

:- size(X)@1, not size(X)@2.

:- size(X)@1, not size(X)@3.

}

2: as -> "a" as { size(X+1) :- size(X)@2. }

3: as -> { size(0). }

4: bs -> "b" bs { size(X+1) :- size(X)@2. }

5: bs -> { size(0). }

6: cs -> "c" cs { size(X+1) :- size(X)@2. }

7: cs -> { size(0). }

start

as

“a” as

bs

“b” bs

cs

“c” cs

16/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP



Answer Set Grammars

I An Answer Set Grammar (ASG) is an augmented CFG, where each
production rule may be annotated with ASP constraints.

I A string s is a member of an ASG G , if there is at least one parse tree of
G for s st the program G [PT ] is satisfiable.

1: start -> as bs cs {

:- size(X)@1, not size(X)@2.

:- size(X)@1, not size(X)@3.

}

2: as -> "a" as { size(X+1) :- size(X)@2. }

3: as -> { size(0). }

4: bs -> "b" bs { size(X+1) :- size(X)@2. }

5: bs -> { size(0). }

6: cs -> "c" cs { size(X+1) :- size(X)@2. }

7: cs -> { size(0). }

start

as

“a” as

bs

“b” bs

cs

“c” cs

16/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP



Answer Set Grammars

I An Answer Set Grammar (ASG) is an augmented CFG, where each
production rule may be annotated with ASP constraints.

I A string s is a member of an ASG G , if there is at least one parse tree of
G for s st the program G [PT ] is satisfiable.

1: start -> as bs cs {

:- size(X)@1, not size(X)@2.

:- size(X)@1, not size(X)@3.

}

2: as -> "a" as { size(X+1) :- size(X)@2. }

3: as -> { size(0). }

4: bs -> "b" bs { size(X+1) :- size(X)@2. }

5: bs -> { size(0). }

6: cs -> "c" cs { size(X+1) :- size(X)@2. }

7: cs -> { size(0). }

start
(1, [])

as
(2, [1])

“a”
as

(3, [1, 2])

bs
(4, [2])

“b”
bs

(5, [2, 2])

cs
(6, [3])

“c”
cs

(7, [3, 2])

16/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP



Answer Set Grammars

I An Answer Set Grammar (ASG) is an augmented CFG, where each
production rule may be annotated with ASP constraints.

I A string s is a member of an ASG G , if there is at least one parse tree of
G for s st the program G [PT ] is satisfiable.

G[PT]:

:- size(X)@[1], not size(X)@[2].

:- size(X)@[1], not size(X)@[3].

size(X+1)@[1] :- size(X)@[1, 2].

size(0)@[1, 2].

size(X+1)@[2] :- size(X)@[2, 2].

size(0)@[2, 2].

size(X+1)@[3] :- size(X)@[3, 2].

size(0)@[3, 2].

start
(1, [])

as
(2, [1])

“a”
as

(3, [1, 2])

bs
(4, [2])

“b”
bs

(5, [2, 2])

cs
(6, [3])

“c”
cs

(7, [3, 2])

16/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP



Answer Set Grammars

I An Answer Set Grammar (ASG) is an augmented CFG, where each
production rule may be annotated with ASP constraints.

I A string s is a member of an ASG G , if there is at least one parse tree of
G for s st the program G [PT ] is satisfiable.

G[PT]:

:- size(X)@[1], not size(X)@[2].

:- size(X)@[1], not size(X)@[3].

size(X+1)@[1] :- size(X)@[1, 2].

size(0)@[1, 2].

size(X+1)@[2] :- size(X)@[2, 2].

size(0)@[2, 2].

size(X+1)@[3] :- size(X)@[3, 2].

size(0)@[3, 2].

start
(1, [])

as
(2, [1])

“a”
as

(3, [1, 2])

bs
(4, [2])

“b”
bs

(5, [2, 2])

cs
(6, [3])

“c”
cs

(7, [3, 2])

G [PT ] is satisfiable, hence “abc” ∈ L(G).
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:- size(X)@[1], not size(X)@[2].

:- size(X)@[1], not size(X)@[3].

size(X+1)@[1] :- size(X)@[1, 2].

size(0)@[1, 2].

size(0)@[2].

size(X+1)@[3] :- size(X)@[3, 2].

size(0)@[3, 2].

start
(1, [])

as
(2, [1])

“a”
as

(3, [1, 2])

bs
(5, [2])

cs
(6, [3])

“c”
cs

(7, [3, 2])

G [PT ] is unsatisfiable, hence “ac” ∈ L(G).
16/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP



Answer Set Grammars

I An Answer Set Grammar (ASG) is an augmented CFG, where each
production rule may be annotated with ASP constraints.

I A string s is a member of an ASG G , if there is at least one parse tree of
G for s st the program G [PT ] is satisfiable.

1: start -> as bs cs {

:- size(X)@1, not size(X)@2.

:- size(X)@1, not size(X)@3.

}

2: as -> "a" as { size(X+1) :- size(X)@2. }

3: as -> { size(0). }

4: bs -> "b" bs { size(X+1) :- size(X)@2. }

5: bs -> { size(0). }

6: cs -> "c" cs { size(X+1) :- size(X)@2. }

7: cs -> { size(0). }

start
(1, [])

as
(2, [1])

“a”
as

(3, [1, 2])

bs
(5, [2])

cs
(6, [3])

“c”
cs

(7, [3, 2])

G represents anbncn, which is a Context Sensitive Grammar (CSG).
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