
Representing and Learning Grammars
in Answer Set Programming

Mark Law1, Alessandra Russo1, Elisa Bertino2,
Krysia Broda1 and Jorge Lobo3

1Imperial College London

2Purdue University

3ICREA – Universitat Pompeo Fabra

1/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Induction of Grammars and Automata

Regular

Context Free

Context Sensitive

Recursively Enumerable

Finite
State

Push Down

Linear Bounded

Turing Machine

I Previous work on learning grammars has mostly been restricted to
learning context-free grammars.

I Some work has considered learning mildly context sensitive languages.

2/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Induction of Grammars and Automata

Regular

Context Free

Context Sensitive

Recursively Enumerable

Finite
State

Push Down

Linear Bounded

Turing Machine

I Previous work on learning grammars has mostly been restricted to
learning context-free grammars.

I Some work has considered learning mildly context sensitive languages.

2/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Induction of Grammars and Automata

Regular

Context Free

Context Sensitive

Mildly CS

Recursively Enumerable

Finite
State

Push Down

Linear Bounded

Turing Machine

I Previous work on learning grammars has mostly been restricted to
learning context-free grammars.

I Some work has considered learning mildly context sensitive languages.

2/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Induction of Grammars and Automata

Regular

Context Free

Context Sensitive

Recursively Enumerable

Finite
State

Push Down

Linear Bounded

Turing Machine

I We propose a new class of context sensitive grammars called Answer Set
Grammars (ASGs), which extend CFGs with context sensitive conditions
written in ASP.

I ASP conditions can be learned using an existing ASP learner.

I Previous work on learning grammars has mostly been restricted to
learning context-free grammars.

I Some work has considered learning mildly context sensitive languages.

2/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Induction of Grammars and Automata

Regular

Context Free

Context Sensitive

Recursively Enumerable

Finite
State

Push Down

Linear Bounded

Turing Machine

I Unlike other approaches, our learning approach takes an initial grammar
as input.

I Previous work on learning grammars has mostly been restricted to
learning context-free grammars.

I Some work has considered learning mildly context sensitive languages.

2/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Relevant Applications of ASG Induction

I Fuzzing is the process of randomly generating test inputs to programs:

Random
input

Program Result

I Given the CFG for the program input, our approach can be used to learn
to generate semantically valid input.

I Automatic classification of logs:

Log data Classifier

Entry Type 1

Entry Type 2

Entry Type 3

3/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Relevant Applications of ASG Induction

I Fuzzing is the process of randomly generating test inputs to programs:

Random
syntactically valid

input
Program Result

Context Free
Grammar

I Previous approaches have used grammar induction to learn to randomly
generate syntactically valid input.

I Given the CFG for the program input, our approach can be used to learn
to generate semantically valid input.

I Automatic classification of logs:

Log data Classifier

Entry Type 1

Entry Type 2

Entry Type 3

3/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Relevant Applications of ASG Induction

I Fuzzing is the process of randomly generating test inputs to programs:

Random
semantically valid

input
Program Result

Answer Set
Grammar

I Given the CFG for the program input, our approach can be used to learn
to generate semantically valid input.

I Automatic classification of logs:

Log data Classifier

Entry Type 1

Entry Type 2

Entry Type 3

3/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Relevant Applications of ASG Induction

I Fuzzing is the process of randomly generating test inputs to programs:

Random
semantically valid

input
Program Result

Answer Set
Grammar

I Given the CFG for the program input, our approach can be used to learn
to generate semantically valid input.

I Automatic classification of logs:

Log data Classifier

Entry Type 1

Entry Type 2

Entry Type 3

3/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Answer Set Grammars (ASGs)

I An Answer Set Grammar is an augmented CFG, where each production
rule may be annotated with ASP.

1: start -> as bs cs {

:- size(X)@1, not size(X)@2.

:- size(X)@1, not size(X)@3.

}

2: as -> "a" as { size(X+1) :- size(X)@2. }

3: as -> { size(0). }

4: bs -> "b" bs { size(X+1) :- size(X)@2. }

5: bs -> { size(0). }

6: cs -> "c" cs { size(X+1) :- size(X)@2. }

7: cs -> { size(0). }

I This grammar represents the context-sensitive language anbncn.

4/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Learning Answer Set Grammars

Existing Grammar G

Hypothesis space SM

(ASP rules)

E+ (strings)

E− (strings)

ASG
Learning Task

Learned ASG

I The goal is to find an H ⊆ SM st when H is added to the annotations of
G , the extended ASG accepts every string in E+ and no string in E−.

I In this work all parse trees are assumed to be bounded by a given
maximum depth d .

5/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Learning Answer Set Grammars

Existing Grammar G

Hypothesis space SM

(ASP rules)

E+ (strings)

E− (strings)

ASG
Learning Task

Learned ASG

I The goal is to find an H ⊆ SM st when H is added to the annotations of
G , the extended ASG accepts every string in E+ and no string in E−.

I In this work all parse trees are assumed to be bounded by a given
maximum depth d .

5/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Algorithm

1: procedure LearnASG(T)
2: TLAS = LAS(T , d);
3: H = ILASP(TLAS)
4: returnHASG ;
5: end procedure

I LAS(T , d) translates an ASG learning task T and depth d to a learning
task for an existing ASP learner (ILASP).

I HASG is the translation of the ILASP solution H to an ASG solution.

LearnASG is sound and complete.

6/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Algorithm

1: procedure LearnASG(T)
2: TLAS = LAS(T , d);
3: H = ILASP(TLAS)
4: returnHASG ;
5: end procedure

I LAS(T , d) translates an ASG learning task T and depth d to a learning
task for an existing ASP learner (ILASP).

I HASG is the translation of the ILASP solution H to an ASG solution.

LearnASG is sound and complete.

6/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Complexity – decision problems

I Bounded-ASG-membership: deciding whether an ASG
accepts a string.

I Bounded-ASG-satisfiability: deciding whether an ASG has a
non-empty language.

Each decision problem is investigated for ASGs with various
restrictions on the language of the ASP annotations:

I Propositional and (function-free) first-order ASGs

I Horn, stratified and unstratified ASGs

7/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Complexity – decision problems

I Bounded-ASG-membership: deciding whether an ASG
accepts a string.

I Bounded-ASG-satisfiability: deciding whether an ASG has a
non-empty language.

Each decision problem is investigated for ASGs with various
restrictions on the language of the ASP annotations:

I Propositional and (function-free) first-order ASGs

I Horn, stratified and unstratified ASGs

7/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Complexity of bounded ASG
membership/satisfiability

Horn Stratified Unstratified

Propositional NP NP NP

First-order EXP EXP NEXP

I “Even loops” can be simulated by duplicate production rules:

s -> b {
p:-not q.

q:-not p.

}

s -> b {p.}
s -> b {q.}

8/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Complexity of bounded ASG
membership/satisfiability

Horn Stratified Unstratified

Propositional NP NP NP

First-order EXP EXP NEXP

I “Even loops” can be simulated by duplicate production rules:

s -> b {
p:-not q.

q:-not p.

}

s -> b {p.}
s -> b {q.}

8/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Complexity of learning – decision problems

I Bounded-verification: deciding whether a given hypothesis is
a solution of a given learning task.

I Bounded-satisfiability: deciding whether a given learning
task has any solutions.

9/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Complexity of learning results

I If each string has a polynomial number of parse trees:

Horn Stratified Unstratified

Bounded-verification DP DP DP

Bounded-satisfiability ΣP
2 ΣP

2 ΣP
2

I In the paper, we give a more efficient translation to an ILASP
task for this case.

10/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Complexity of learning results

I If each string has a polynomial number of parse trees:

Horn Stratified Unstratified

Bounded-verification NP NP DP

Bounded-satisfiability NP NP ΣP
2

I In the paper, we give a more efficient translation to an ILASP
task for this case.

10/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Complexity of learning results

I If each string has a polynomial number of parse trees:

Horn Stratified Unstratified

Bounded-verification NP NP DP

Bounded-satisfiability NP NP ΣP
2

I In the paper, we give a more efficient translation to an ILASP
task for this case.

10/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Evaluation

I We evaluated LearnASG on anbncn, starting from various initial
grammars: anbncm, aibjck and (a|b|c)∗.

I The more information given as input, the easier the ASG is to learn.

I (Nakamura and Imada 2011) learn anbncn from scratch.

I Faster than LearnASG on the equivalent problem – from (a|b|c)∗

I Slower than LearnASG from aibjck

I Cannot take advantage of an existing CFG

I Their method can only learn MCS languages (whose membership
problem must be in P).

11/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Evaluation

I We evaluated LearnASG on anbncn, starting from various initial
grammars: anbncm, aibjck and (a|b|c)∗.

I The more information given as input, the easier the ASG is to learn.

I (Nakamura and Imada 2011) learn anbncn from scratch.

I Faster than LearnASG on the equivalent problem – from (a|b|c)∗

I Slower than LearnASG from aibjck

I Cannot take advantage of an existing CFG

I Their method can only learn MCS languages (whose membership
problem must be in P).

11/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Conclusion

I ASGs are a new context-sensitive grammars, which extend CFGs with
ASP annotations.

I Presented a method for the ASP annotations.

I Best suited for tasks where the underlying syntax of a language
is known, but (some of) the semantic conditions are unknown.

I Future research directions include:

I Investigating the relevant applications.

I Exploring using other formalisms such as CSPs and SMTs in
annotations.

12/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Backup

13/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Going beyond Mildly CS grammars

I Membership of MCS languages is in P.

I The graph colouring language consists of strings representing graphs that
are 3-colourable.

“0 1 2 3 (0, 1) (1, 2) (1, 3) (2, 3) (3, 0)”

|E+| |E−| Final Time Total Time

Stratified 2 2 11.5s 23.8s

Unstratified 4 4 90.1s 256.9s

14/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Going beyond Mildly CS grammars

I Membership of MCS languages is in P.

I The graph colouring language consists of strings representing graphs that
are 3-colourable.

0 1

2 3

“0 1 2 3 (0, 1) (1, 2) (1, 3) (2, 3) (3, 0)”

|E+| |E−| Final Time Total Time

Stratified 2 2 11.5s 23.8s

Unstratified 4 4 90.1s 256.9s

14/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Going beyond Mildly CS grammars

I Membership of MCS languages is in P.

I The graph colouring language consists of strings representing graphs that
are 3-colourable.

0 1

2 3

“0 1 2 3 (0, 1) (1, 2) (1, 3) (2, 3) (3, 0)”

|E+| |E−| Final Time Total Time

Stratified 2 2 11.5s 23.8s

Unstratified 4 4 90.1s 256.9s

14/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Evaluation: anbncn

Initial
Language

anbncm

(ASG st
CF part is
aibjck)

anbncm

(CFG)

aibjck

(CFG)

(a|b|c)∗

(CFG)

Target
Constraint

n = m n = m i = j = k All a’s before all b’s be-
fore all c’s. Same num-
ber of a’s, b’s and c’s

|E+|/|E−| 1 / 2 1 / 3 1 / 7 1 / 45
Final/Total
Time

0.5s / 1.4s 0.3s / 1.3s 1.1s / 5.1s 1004.0s / 13314.9s

I The target language for each of these tasks is the same (anbncn), but the
information encoded in the initial language decreases from left to right in
the table.

I More examples are needed as the information encoded in the initial
language decreases.

I Although the final experiment shows that it is possible to learn the whole
language from scratch, the method performs better when the CFG is
given as input.

15/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Evaluation: anbncn

Initial
Language

anbncm

(ASG st
CF part is
aibjck)

anbncm

(CFG)

aibjck

(CFG)

(a|b|c)∗

(CFG)

Target
Constraint

n = m n = m i = j = k All a’s before all b’s be-
fore all c’s. Same num-
ber of a’s, b’s and c’s

|E+|/|E−| 1 / 2 1 / 3 1 / 7 1 / 45
Final/Total
Time

0.5s / 1.4s 0.3s / 1.3s 1.1s / 5.1s 1004.0s / 13314.9s

I More examples are needed as the information encoded in the initial
language decreases.

I Although the final experiment shows that it is possible to learn the whole
language from scratch, the method performs better when the CFG is
given as input.

15/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Evaluation: anbncn

Initial
Language

anbncm

(ASG st
CF part is
aibjck)

anbncm

(CFG)

aibjck

(CFG)

(a|b|c)∗

(CFG)

Target
Constraint

n = m n = m i = j = k All a’s before all b’s be-
fore all c’s. Same num-
ber of a’s, b’s and c’s

|E+|/|E−| 1 / 2 1 / 3 1 / 7 1 / 45
Final/Total
Time

0.5s / 1.4s 0.3s / 1.3s 1.1s / 5.1s 1004.0s / 13314.9s

I More examples are needed as the information encoded in the initial
language decreases.

I Although the final experiment shows that it is possible to learn the whole
language from scratch, the method performs better when the CFG is
given as input.

15/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Evaluation: anbncn

Initial
Language

anbncm

(ASG st
CF part is
aibjck)

anbncm

(CFG)

aibjck

(CFG)

(a|b|c)∗

(CFG)

Target
Constraint

n = m n = m i = j = k All a’s before all b’s be-
fore all c’s. Same num-
ber of a’s, b’s and c’s

|E+|/|E−| 1 / 2 1 / 3 1 / 7 1 / 45
Final/Total
Time

0.5s / 1.4s 0.3s / 1.3s 1.1s / 5.1s 1004.0s / 13314.9s

I (Nakamura and Imada 2011) presented a method that can learn anbncn

from scratch, which takes 18s.

I More examples are needed as the information encoded in the initial
language decreases.

I Although the final experiment shows that it is possible to learn the whole
language from scratch, the method performs better when the CFG is
given as input.

15/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Evaluation: anbncn

Initial
Language

anbncm

(ASG st
CF part is
aibjck)

anbncm

(CFG)

aibjck

(CFG)

(a|b|c)∗

(CFG)

Target
Constraint

n = m n = m i = j = k All a’s before all b’s be-
fore all c’s. Same num-
ber of a’s, b’s and c’s

|E+|/|E−| 1 / 2 1 / 3 1 / 7 1 / 45
Final/Total
Time

0.5s / 1.4s 0.3s / 1.3s 1.1s / 5.1s 1004.0s / 13314.9s

I (Nakamura and Imada 2011) presented a method that can learn anbncn

from scratch, which takes 18s.

I Their method is faster at learning from scratch, but cannot
take an initial grammar.

I Their method can only learn MCS grammars.

I More examples are needed as the information encoded in the initial
language decreases.

I Although the final experiment shows that it is possible to learn the whole
language from scratch, the method performs better when the CFG is
given as input.

15/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Answer Set Grammars

I An Answer Set Grammar (ASG) is an augmented CFG, where each
production rule may be annotated with ASP constraints.

I A string s is a member of an ASG G , if there is at least one parse tree of
G for s st the program G [PT] is satisfiable.

1: start -> as bs cs {

:- size(X)@1, not size(X)@2.

:- size(X)@1, not size(X)@3.

}

2: as -> "a" as { size(X+1) :- size(X)@2. }

3: as -> { size(0). }

4: bs -> "b" bs { size(X+1) :- size(X)@2. }

5: bs -> { size(0). }

6: cs -> "c" cs { size(X+1) :- size(X)@2. }

7: cs -> { size(0). }

start

as

“a” as

bs

“b” bs

cs

“c” cs

16/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Answer Set Grammars

I An Answer Set Grammar (ASG) is an augmented CFG, where each
production rule may be annotated with ASP constraints.

I A string s is a member of an ASG G , if there is at least one parse tree of
G for s st the program G [PT] is satisfiable.

1: start -> as bs cs {

:- size(X)@1, not size(X)@2.

:- size(X)@1, not size(X)@3.

}

2: as -> "a" as { size(X+1) :- size(X)@2. }

3: as -> { size(0). }

4: bs -> "b" bs { size(X+1) :- size(X)@2. }

5: bs -> { size(0). }

6: cs -> "c" cs { size(X+1) :- size(X)@2. }

7: cs -> { size(0). }

start

as

“a” as

bs

“b” bs

cs

“c” cs

16/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Answer Set Grammars

I An Answer Set Grammar (ASG) is an augmented CFG, where each
production rule may be annotated with ASP constraints.

I A string s is a member of an ASG G , if there is at least one parse tree of
G for s st the program G [PT] is satisfiable.

1: start -> as bs cs {

:- size(X)@1, not size(X)@2.

:- size(X)@1, not size(X)@3.

}

2: as -> "a" as { size(X+1) :- size(X)@2. }

3: as -> { size(0). }

4: bs -> "b" bs { size(X+1) :- size(X)@2. }

5: bs -> { size(0). }

6: cs -> "c" cs { size(X+1) :- size(X)@2. }

7: cs -> { size(0). }

start
(1, [])

as
(2, [1])

“a”
as

(3, [1, 2])

bs
(4, [2])

“b”
bs

(5, [2, 2])

cs
(6, [3])

“c”
cs

(7, [3, 2])

16/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Answer Set Grammars

I An Answer Set Grammar (ASG) is an augmented CFG, where each
production rule may be annotated with ASP constraints.

I A string s is a member of an ASG G , if there is at least one parse tree of
G for s st the program G [PT] is satisfiable.

G[PT]:

:- size(X)@[1], not size(X)@[2].

:- size(X)@[1], not size(X)@[3].

size(X+1)@[1] :- size(X)@[1, 2].

size(0)@[1, 2].

size(X+1)@[2] :- size(X)@[2, 2].

size(0)@[2, 2].

size(X+1)@[3] :- size(X)@[3, 2].

size(0)@[3, 2].

start
(1, [])

as
(2, [1])

“a”
as

(3, [1, 2])

bs
(4, [2])

“b”
bs

(5, [2, 2])

cs
(6, [3])

“c”
cs

(7, [3, 2])

16/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Answer Set Grammars

I An Answer Set Grammar (ASG) is an augmented CFG, where each
production rule may be annotated with ASP constraints.

I A string s is a member of an ASG G , if there is at least one parse tree of
G for s st the program G [PT] is satisfiable.

G[PT]:

:- size(X)@[1], not size(X)@[2].

:- size(X)@[1], not size(X)@[3].

size(X+1)@[1] :- size(X)@[1, 2].

size(0)@[1, 2].

size(X+1)@[2] :- size(X)@[2, 2].

size(0)@[2, 2].

size(X+1)@[3] :- size(X)@[3, 2].

size(0)@[3, 2].

start
(1, [])

as
(2, [1])

“a”
as

(3, [1, 2])

bs
(4, [2])

“b”
bs

(5, [2, 2])

cs
(6, [3])

“c”
cs

(7, [3, 2])

G [PT] is satisfiable, hence “abc” ∈ L(G).

16/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Answer Set Grammars

I An Answer Set Grammar (ASG) is an augmented CFG, where each
production rule may be annotated with ASP constraints.

I A string s is a member of an ASG G , if there is at least one parse tree of
G for s st the program G [PT] is satisfiable.

1: start -> as bs cs {

:- size(X)@1, not size(X)@2.

:- size(X)@1, not size(X)@3.

}

2: as -> "a" as { size(X+1) :- size(X)@2. }

3: as -> { size(0). }

4: bs -> "b" bs { size(X+1) :- size(X)@2. }

5: bs -> { size(0). }

6: cs -> "c" cs { size(X+1) :- size(X)@2. }

7: cs -> { size(0). }

start
(1, [])

as
(2, [1])

“a”
as

(3, [1, 2])

bs
(5, [2])

cs
(6, [3])

“c”
cs

(7, [3, 2])

16/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Answer Set Grammars

I An Answer Set Grammar (ASG) is an augmented CFG, where each
production rule may be annotated with ASP constraints.

I A string s is a member of an ASG G , if there is at least one parse tree of
G for s st the program G [PT] is satisfiable.

G[PT]:

:- size(X)@[1], not size(X)@[2].

:- size(X)@[1], not size(X)@[3].

size(X+1)@[1] :- size(X)@[1, 2].

size(0)@[1, 2].

size(0)@[2].

size(X+1)@[3] :- size(X)@[3, 2].

size(0)@[3, 2].

start
(1, [])

as
(2, [1])

“a”
as

(3, [1, 2])

bs
(5, [2])

cs
(6, [3])

“c”
cs

(7, [3, 2])

16/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Answer Set Grammars

I An Answer Set Grammar (ASG) is an augmented CFG, where each
production rule may be annotated with ASP constraints.

I A string s is a member of an ASG G , if there is at least one parse tree of
G for s st the program G [PT] is satisfiable.

G[PT]:

:- size(X)@[1], not size(X)@[2].

:- size(X)@[1], not size(X)@[3].

size(X+1)@[1] :- size(X)@[1, 2].

size(0)@[1, 2].

size(0)@[2].

size(X+1)@[3] :- size(X)@[3, 2].

size(0)@[3, 2].

start
(1, [])

as
(2, [1])

“a”
as

(3, [1, 2])

bs
(5, [2])

cs
(6, [3])

“c”
cs

(7, [3, 2])

G [PT] is unsatisfiable, hence “ac” ∈ L(G).
16/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Answer Set Grammars

I An Answer Set Grammar (ASG) is an augmented CFG, where each
production rule may be annotated with ASP constraints.

I A string s is a member of an ASG G , if there is at least one parse tree of
G for s st the program G [PT] is satisfiable.

1: start -> as bs cs {

:- size(X)@1, not size(X)@2.

:- size(X)@1, not size(X)@3.

}

2: as -> "a" as { size(X+1) :- size(X)@2. }

3: as -> { size(0). }

4: bs -> "b" bs { size(X+1) :- size(X)@2. }

5: bs -> { size(0). }

6: cs -> "c" cs { size(X+1) :- size(X)@2. }

7: cs -> { size(0). }

start
(1, [])

as
(2, [1])

“a”
as

(3, [1, 2])

bs
(5, [2])

cs
(6, [3])

“c”
cs

(7, [3, 2])

G represents anbncn, which is a Context Sensitive Grammar (CSG).
16/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

Nakamura, K. and Imada, K. 2011.

Towards incremental learning of mildly context-sensitive grammars.
In Machine Learning and Applications and Workshops (ICMLA), 2011 10th International Conference on.
Vol. 1. IEEE, 223–228.

12/12

Law, Russo, Bertino, Broda and Lobo
Representing and Learning Grammars in ASP

	Backup

