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Input: background knowledge B and examples E* and E~.
Output: a hypothesis H s.t.
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Input: background knowledge B and examples E* and E~.

Output: a hypothesis H s.t.
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The paper contains two main contributions:
> FastLAS, an ASP-based ILP system which is scalable w.r.t. the size of the
hypothesis space.
> A new approach to supporting domain specific optimisation criteria in the

search.
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In some domains, false negatives are more dangerous than false positives.

Event detection Medical diagnosis
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Optimisation Criteria

In some domains, false negatives are more dangerous than false positives.

Event detection Medical diagnosis

In others (e.g. access control), false positives may be more dangerous
than false negatives.

Depending on the domain, different optimisation criteria may be
required!
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Many ILP systems aim to find the simplest solution.

» Optimal solutions of a task T minimise Sen(H, T) = |H|.
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Many ILP systems aim to find the simplest solution.
» Optimal solutions of a task T minimise Sen(H, T) = |H|.

» With noise, minimise Sien(H, T) + 3 €pen-
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Many other optimisation criteria exist:
» The number of rules in H.
The number of ground instances of rules in H.
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» The number of variables in H.
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The number of answer sets of BU H.
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Optimisation Criteria in ILP

Many ILP systems aim to find the simplest solution.
» Optimal solutions of a task T minimise Sen(H, T) = |H|.

» With noise, minimise Sien(H, T) + 3 €pen-
e€UNCOV(H,T)

Many other optimisation criteria exist:

» The number of rules in H.

» The number of ground instances of rules in H.
» The number of variables in H.
>

The number of answer sets of BU H.

A general scoring function takes as input a learning task T and a hypothesis H
and returns a score in R>o.

specific Optimi
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Optimisation Criteria in ILP
Many ILP systems aim to find the simplest solution.

» Optimal solutions of a task T minimise Sen(H, T) = |H|.

» With noise, minimise Sien(H, T) + 3 €pen-
e€UNCOV(H,T)

Many other optimisation criteria exist:

v

The number of rules in H.

» The number of ground instances of rules in H.
» The number of variables in H.
>

The number of answer sets of BU H.

FastLAS currently supports decomposable scoring functions. These can be
evaluated on each rule independently.

Broda and Lobo

ductive Logic Programm ptimisation Criteria
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FastLAS Learning Task

The FastLAS task T is based on the ILASP (Law et al. 2015) task:

Background
B

Mode Bias
M = (My, M)

Examples
E=(E" E™)
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FastLAS Learning Task

The FastLAS task T is based on the ILASP (Law et al. 2015) task:

Background
B

Mode Bias
M = (My, M)

Examples
E=(E* E™)

FastLAS has two major restrictions:
» All programs have a single answer set.

» No predicate in My occurs in My, or any rule in T.
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FastLAS: Overview

ILASP begins by computing the hypothesis space Sy, which contains
every rule that is compatible with the mode bias M.

Background B

. H potheSIs i
| Mode Bias M l—)l pace Sy l—)l Solver l—)l Solution H

H

nd Lobo
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FastLAS: Overview

FastLAS instead begins by computing an OPT-sufficient subset of the
hypothesis space, which is often significantly smaller than Sy,.

Background B
4
| Mode Bias M l—)l (’sﬁkgg‘ﬁ}c'seﬂ';‘ l—)l Solver l—)l Solution H

A<
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Construction
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Optimisation
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FastLAS

Generate the set of all “maximal” rules which could be useful.

C*(T) contains the “maximal” rules that prove something we should prove.

Initial C™(T) contains the “maximal” rules that prove something we shouldn’t prove.

Construction

Generalisation|

Optimisation

ecific Optimi
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FastLAS

Generate the set of all “maximal” rules which could be useful.

C*(T) contains the “maximal” rules that prove something we should prove.
C™(T) contains the “maximal” rules that prove something we shouldn’t prove.

Example:
r,not r,
B=90 My ={p,a} Mp=1<{ s,not s
t,u
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FastLAS
Generate the set of all “maximal” rules which could be useful.
Initial C*(T) contains the “maximal” rules that prove something we should prove.
nitial

) C™(T) contains the “maximal” rules that prove something we shouldn’t prove.
Construction

Example:
r,not r,
Generalisation B=1 My ={p,a} M= s,not s
t,u
HEq, H |~ p,

Find H s.t. Hu{r. t.} Ep, HU{r. t.}£q,
Optimisation HU{r. w}Ep, HU{r. u}lq
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Construction

Generalisation|

Optimisation

FastLAS

Generate the set of all “maximal” rules which could be useful.

C*(T) contains the “maximal” rules that prove something we should prove.
C™(T) contains the “maximal” rules that prove something we shouldn’t prove.

Example:
r,not r,
B=90 My ={p,a} Mp=1<{ s,not s
t,u
Hl=q, H [~ p,

Find H s.t. Hu{r. t.} Ep, HU{r. t.}£q,
HuU{r. v} Ep, HU{r. u}lfq

q :- not r,not s. p :- not r,not s.
C*(T)=14 p :- r,not s,t. C(T)=< q :- r,not s,t.
p :- r,not s,u. q :- r,not s,u.
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FastLAS

Compute “maximal” generalisations.

Initial
Construction
G(T) contains the maximal subrules of rules in C*(T) that are subrules
of as many rules in C*(T) as possible.

Generalisation| Example:
q :- not r,not s.
CH(T)=< p :- r,not s,t.
p :- r,not s,u.
Optimisation

ecific Optimi
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FastLAS
Compute “maximal” generalisations.
Initial
Construction
G(T) contains the maximal subrules of rules in C*(T) that are subrules
of as many rules in C*(T) as possible.
Generalisation| Example:
q :- not r,not s.
q :- not r,not s. oot st
CH(T)=<{ p :- r,not s,t. G(T)= p ’ v
p :- r,not s,u.
p :- r,not s,u.
p :- r,not s.

Optimisation
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Compute OPT-sufficient subset of the hypothesis space

For each R € G(T), compute one optimal subrule of R w.rt. &
Initial that is not a subrule of any rule in C™(T).

Construction

Generalisation|

Optimisation
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FastLAS

Compute OPT-sufficient subset of the hypothesis space

For each R € G(T), compute one optimal subrule of R w.rt. &
that is not a subrule of any rule in C™(T).

Initial
Construction
Example:
q :- not r,not s.
.~ romot s.t p :- not r,not s.

G(T)= P v C(T)=<{ q :- r,not s,t.

L p :- r,not s,u. .- ronot s.u

Generalisation| p i- r,not s. q : A ,u.

Optimise with Spen :

Optimisation
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FastLAS

Compute OPT-sufficient subset of the hypothesis space

For each R € G(T), compute one optimal subrule of R w.rt. &

Initial that is not a subrule of any rule in C™(T).
Construction
Example:
q :- not r,not s. .~ not r.not s
p :- r,not s,t. _ P ’ ’
g(T): C (T): q :- r,not s,t.
L. p :- r,not s,u. =
Generalisation| P i- r,mot s q - Tmot su
- T, .
Optimise with Spen :
q :- not r,not s. = q :- not r.
Optimisation
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FastLAS

Compute OPT-sufficient subset of the hypothesis space

For each R € G(T), compute one optimal subrule of R w.rt. &

Initial that is not a subrule of any rule in C™(T).
Construction
Example:
q :- not r,not s. .~ not r.not s
p :- r,not s,t. _ P ’ ’
g(T): C (T): q :- r,not s,t.
L. p :- r,not s,u. =
Generalisation| P i- r,mot s q - Tmot su
- T, .
Optimise with Spen :
q :- not rymot s. = q :- not r.
:- r,not s,t. = - or.
Optimisation P ’ ’ P
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FastLAS

Compute OPT-sufficient subset of the hypothesis space

For each R € G(T), compute one optimal subrule of R w.rt. &

Initial that is not a subrule of any rule in C™(T).
Construction
Example:
q :- not r,not s. p i- not T,not s
i- r,not s,t. . : ’ ’
g(T) = i - r,not o C(T)=4{ q :- r,not s,t.
- T B :- r,not s,u.
Generalisation| p :- r,not s. 4 T,not &1
Optimise with Spen :
q :- not ry,not s. = q :- not r
.. . p :- r,not s,t. = p - r
Optimisation p - r,mot su. = p:-r.
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FastLAS

Compute OPT-sufficient subset of the hypothesis space

For each R € G(T), compute one optimal subrule of R w.rt. &

Initial that is not a subrule of any rule in C™(T).
Construction
Example:
q :- not r,not s. .~ not r.not s
p :- r,not s,t. _ P ’ ’
g(T): C (T): q :- r,not s,t.
L. p :- r,not s,u. =
Generalisation| P i- r,mot s q - Tmot su
- T, .
Optimise with Spen :
q :- not rymot s. = q :- not r.
.. . p :- r,not s,t. = p - r
Optimisation p - r,mot su. = p:-r.
p :- r,not s. = p:- T
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FastLAS

Compute OPT-sufficient subset of the hypothesis space

For each R € G(T), compute one optimal subrule of R w.rt. &

Initial that is not a subrule of any rule in C™(T).
Construction
Example:
q :- not r,not s. p i- mot r,mot s
- t s, t. . ’ ’
G(T) = i o ?Eco)t Z’u C(T)= q :- r,not s,t.
i i . ’ T := r,not .
Generalisation| p i- T.mot s. q r,not s,u
Optimise with Sjep :
q :- not ry,not s. = q :- not r
.. . p :- r,not s,t. = p - r
Hed t r.
Optimisation p :- r,not s,u. = p:-rI. O(T,S,en):{ d - 1:0 ¥ }
p :- r,not s. = p:-r. pim
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FastLAS

Compute OPT-sufficient subset of the hypothesis space

For each R € G(T), compute one optimal subrule of R w.rt. &

Initial that is not a subrule of any rule in C™(T).
Construction
Example:
q :- not r,not s. .~ not r.mot s
p :- r,not s,t. _ P ’ :
9(T)= C(T)=<{ q :- r,not s,t.
L. p :- r,not s,u. =
Generalisation| p i- T,not s q :- r,not s,u.
- T, .
Optimise with Sjep :
q :- not r,mot s. = q :- not r.
.. . p :- r,not s,t. = p - r
Hed t r.
Optimisation p :- r,not s,u. = p:-rI. O(T,S,e"):{ d - :D ¥ }
p :- r,not s. = p:-r. pim

O(T,S) is OPT-sufficient. Hence, FastLAS is guaranteed to return an optimal
solution w.r.t. any decomposable scoring function!
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FastLAS

Compute OPT-sufficient subset of the hypothesis space

For each R € G(T), compute one optimal subrule of R w.rt. &

Initial that is not a subrule of any rule in C™(T).
Construction
Example:
q :- not r,not s. .~ not r.mot s
p :- r,not s,t. _ P ’ :
9(T)= C(T)=<{ q :- r,not s,t.
L. p :- r,not s,u. =
Generalisation| p i- T,not s q :- r,not s,u.
- T, .
Optimise with Sjep :
q :- not r,mot s. = q :- not r.
.. . p :- r,not s,t. = p - r
Hed t r.
Optimisation p :- r,not s,u. = p:-rI. O(T,S,e"):{ d - :D ¥ }
p :- r,not s. = p:-r. pim

O(T,S) is OPT-sufficient. Hence, FastLAS is guaranteed to return an optimal
solution w.r.t. any decomposable scoring function!

The full hypothesis space (computed by ILASP) contains 72 rules.
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Sentence Chunking
In (Kazmi et al. 2017), the Inspire system was evaluated on a sentence

chunking dataset (Agirre et al. 2016), which contains examples of how
sentences should be chunked.

THAT OPPOSITION PARTY 0 BOYGOTT GENERAL ELEGTION.

in-specific Optimisation Criteria
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Sentence Chunking
In (Kazmi et al. 2017), the Inspire system was evaluated on a sentence

chunking dataset (Agirre et al. 2016), which contains examples of how
sentences should be chunked.

THAT OPPOSITION PARTY 0 BOYGOTT GENERAL ELEGTION.

’ System \ F \ Running Time
INSPIRE | 0.712 | >1800s in some cases
ILASP3 0.777 1051.4s
FastLAS | 0.768 4.5s

Law, Russo, Bertino, Broda and Lobo

calable Inductive Logic Programming, incorpora main-specific Optimisation Criteria
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Policy Learning |l

We evaluated FastLAS on access control datasets.

» We used three scoring functions, Sien, Scov and Suni, which encouraged
learning progressively more general hypotheses.

d Lobo

L usso, Berti
FastLAS: Scalable Inductive Logic P
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Policy Learning |l
We evaluated FastLAS on access control datasets.

» We used three scoring functions, Sien, Scov and Suni, which encouraged
learning progressively more general hypotheses.

Learning rules for accept:

[ Scoring function | Recall [ Precision |
Slen 0.905 0.951
Scov 0.892 0.949
Suni 0.991 0.917

Broda and Lobo

ductive Logic Program cific Optimisation Cr
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Policy Learning |l

We evaluated FastLAS on access control datasets.

» We used three scoring functions, Sien, Scov and Suni, which encouraged
learning progressively more general hypotheses.

Learning rules for accept:

[ Scoring function | Recall [ Precision |
S 0905 | 0.051
Scov 0.892 0.949
Suni 0.991 0.917

Learning rules for reject:

[ Scoring function | Recall | Precision |
Slen 0.974 0.935
Scov 0.969 0.941
Suni 0.966 0.965

Law, Russo, Bertino, Broda and Lobo

Inductive Lo
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Conclusion

FastLAS is a new ASP-based ILP system.

» Far more scalable than ILASP.

» Supports domain-specific optimisation criteria, through scoring
functions.

Future research directions include:

> Lifting current restrictions, to allow recursion, non-observational
predicate learning, predicate invention and programs with multiple
answer sets.

» Non-decomposable scoring functions.

0, Broda and Lobo

Inductive Logic Programn
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Sentence Chunking Results

100 examples:

’ System \ F \ Running Time ‘
INSPIRE | 0.733 -
ILASP3 | 0.757 210.4s
FastLAS | 0.751 0.909s

500 examples:

[ System | Fi [ Running Time
INSPIRE | 0.712 -
ILASP3 0.777 1051.4s
FastLAS | 0.768 4.5s

Law, Russo, Bertino, Broda and Lobo
calable Inductive Logic Programming, incorpora

main-specific Optimisation Criteria
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CAVIAR

The CAVIAR dataset (generated by the EC Funded CAVIAR project/IST
2001 37540) consists of manually annotated video streams.

The task is to detect events by learning initiating/terminating conditions.
We compared FastLAS to OLED (Katzouris et al. 2016) and
ILASP3 (Law et al. 2015) on the task of detecting people meeting.
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CAVIAR Results

[ System | F | Running Time |

OLED 0.792 107s
ILASP3 | 0.837 523.3s
FastLAS | 0.907 263.8s

For CAVIAR, ILASP had a hypothesis space with 3370 rules. FastLAS
had over 2 rules.

main-specific Optimisation Criteria
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CAVIAR Results

[ System | F | Running Time |
OLED 0.792 107s
ILASP3 | 0.837 523.3s
FastLAS | 0.907 263.8s

For CAVIAR, ILASP had a hypothesis space with 3370 rules. FastLAS
had over 2 rules.

Due to the larger search space, FastLAS achieved an F; score of 0.923
compared to ILASPs 0.842.

Law, Russo, Bertino, Broda and Lobo

ble Inductive Logic Programming, incorpora main-specific Optimisation Criteria
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Policy Learning |l

In access control logs, users do not tend to request resources which they know
they cannot access, meaning negative examples do not occur frequently.

d Lobo

L usso, Berti
FastLAS: Scalable Inductive Logic P
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Policy Learning |l

In access control logs, users do not tend to request resources which they know
they cannot access, meaning negative examples do not occur frequently.

In (Cotrini et al. 2018), a new metric, universal F; was proposed, which uses a

o . .. S T .
modified version of precision (P = —tp#p), UP = ot where u is the set of

users who have not requested access to the resource.

tino, B d Lobo
P

L u: 3
FastLAS: Scalable Inductive Loy
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Policy Learning |l

In access control logs, users do not tend to request resources which they know
they cannot access, meaning negative examples do not occur frequently.

In (Cotrini et al. 2018), a new metric, universal F; was proposed, which uses a
o . .. S T .

modified version of precision (P = m), UP = ot where u is the set of

users who have not requested access to the resource.

[ Method [ Resource 25993 [ Resource 4675 [ Resource 75078 [ Resource 79092 |
Rhapsody 0.04 0.10 0.10 0.04
CTA 0.04 0.12 0.10 0.04
FastLAS: S 0.02 0.04 0.02 0.02
FastLAS: S 0.02 0.04 0.02 0.02
FastLAS: S, 0.01 0.04 0.02 0.02
FastLAS: Sur 0.07 0.10 0.11 0.05

0, Broda and Lobo

Inductive Logic Programr Optimisation Crit
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