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Inductive Reasoning for Cognitive Systems

Humans are capable of performing cognitive activities, such as:

I Learning from past experience.

I Making predictions and reasoning using learned knowledge.

I Revising and extending knowledge, based on new information.

I Communicating learned knowledge to others.

I Learning in the presence of incomplete and inaccurate (or noisy)
information.

To realise human-like levels of cognition, Machine Learning solutions
have to achieve the above points.
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Inductive Logic Programming

I Given E+, E− and B, the goal is to find a hypothesis H such that:

I ∀e ∈ E+ : B ∪ H |= e
I ∀e ∈ E− : B ∪ H 6|= e

I The key advantages of ILP for Cognitive Systems are that:

I The hypotheses are human readable, and can therefore be
communicated to humans or other machines.

I Can define useful concepts in the background knowledge; it is
thus possible to extend an existing knowledge base, rather
than starting from scratch.

3/26

Mark Law, Alessandra Russo and Krysia Broda
Inductive Learning of Answer Set Programs from Noisy Examples



Inductive Logic Programming

I Given E+, E− and B, the goal is to find a hypothesis H such that:

I ∀e ∈ E+ : B ∪ H |= e
I ∀e ∈ E− : B ∪ H 6|= e

I The key advantages of ILP for Cognitive Systems are that:

I The hypotheses are human readable, and can therefore be
communicated to humans or other machines.

I Can define useful concepts in the background knowledge; it is
thus possible to extend an existing knowledge base, rather
than starting from scratch.

3/26

Mark Law, Alessandra Russo and Krysia Broda
Inductive Learning of Answer Set Programs from Noisy Examples



Answer Set Programming (ASP)

I Expressive declarative environment for logical reasoning.

Real world
problem

Answer Set
Program Answer Sets

Real world
solutions

Desirable features for representing knowledge for Cognitive Systems:

I Negation as failure can be used to model defaults and exceptions.

I Choice rules can be used to model non-determinism and choice.

I Preferences can be modelled as weak constraints.
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Initial Approaches to learning ASP

I The early approaches to learning ASP were either brave or
cautious, meaning that examples had to be covered in either
at least one or every answer set (respectively).

I We showed in (Law et al. 2014) that to learn some programs
a combination of both brave and cautious semantics is
required, and presented the ILPLAS framework which
combines brave and cautious semantics.

5/26

Mark Law, Alessandra Russo and Krysia Broda
Inductive Learning of Answer Set Programs from Noisy Examples



ILPLAS Encoding of the Hamiltonian Example

I An answer set A extends a partial interpretation 〈e inc , eexc〉 iff
e inc ⊆ A and eexc ∩ A = ∅.

1 2

3 4

〈
size(4)
edge(1, 2)
edge(2, 3)
edge(3, 4)
edge(4, 1)

 ,


edge(1, 1)
edge(1, 3)
edge(1, 4)

. . .


〉

B :
1{size(1..4)}1.
node(1..N):-size(N).
0{edge(V0, V1)}1:-node(V0),

node(V1).

H :
0{in(V0, V1)}1:-edge(V0, V1).
reach(V0):-in(1, V0).
reach(V1):-in(V0, V1), reach(V0).
:-node(V0), not reach(V0).
:-in(V0, V1), in(V0, V2), V1 6= V2.
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Context-dependent Examples

I In standard ILP, for each example e, B ∪ H |= e.

I In our framework we can make use of context-dependent
examples. Each example has its own context Ce , and the
coverage condition is that B ∪ H ∪ Ce |= e.
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Weak Constraints

Journey A > Journey D > Journey C > Journey B
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Weak Constraints

Journey A > Journey D > Journey C > Journey B
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Context-dependent Ordering Examples

I An ordering example is a pair of positive examples expressing that
the first example is preferred to the second. 9/26
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Learning from Noisy Examples

I The tasks up to this point have been non-noisy. For non-noisy
tasks ILASP searches for a hypothesis that covers all the
examples and minimises |H|.

I In noisy tasks, some (usually all) examples are given a positive
integer penalty, and ILASP searches for a hypothesis H that
minimizes S(H,T ) (and for which S(H,T ) is finite), where:

S(H,T ) = |H|+
∑

e∈uncov(H,T )

epen
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ILASP

Scales with
Algorithm negative examples large numbers of examples noise large hypothesis spaces

ILASP1 No No No No
ILASP2 Yes No No No
ILASP2i Yes Yes No No

I ILASP is a collection of algorithms for solving ILPcontext
LOAS and,

more recently, ILPnoise
LOAS tasks.

I Each ILASP algorithm is sound and complete wrt the optimal
solutions of a LOAS tasks.

I Our most recent algorithm, ILASP3, specifically targets
learning in the presence of noise.
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ILASP3

Scales with
Algorithm negative examples large numbers of examples noise large hypothesis spaces

ILASP1 No No No No
ILASP2 Yes No No No
ILASP2i Yes Yes No No
ILASP3 Yes Yes Yes No

I ILASP is a collection of algorithms for solving ILPcontext
LOAS and,

more recently, ILPnoise
LOAS tasks.

I Each ILASP algorithm is sound and complete wrt the optimal
solutions of a LOAS tasks.

I Our most recent algorithm, ILASP3, specifically targets
learning in the presence of noise.
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Synthetic Evaluation
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Noisy Hamilton Evaluation

For n = 0, 20, 40, . . . , 200:

I n graphs of up to size 4 were generated, half of which were
Hamiltonian.

I For p = 5, 10 and 20, p% of the graphs were incorrectly
labelled.

I ILASP3 was then used to learn a hypothesis, which was then
tested on a further 1000 graphs.

I Each experiment was repeated 50 times.
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Noisy Hamilton Results
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Noisy Journey Preference Evaluation

We randomly generated 50 “target hypotheses”, each consisting of
between 1-3 weak constraints. For each target hypothesis:

I For n = 0, 20, 40, . . . , 200, we generated 200 ordering
examples (each consisting of a pair of journeys and a
comparison operator – either < or =).

I For p = 5, 10 and 20 we changed the comparison operator of
a random p% of the examples.

I ILASP3 was then used to learn a hypothesis, which was then
tested on a further set of journey pairs.
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Noisy Journey Preference Results
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Noisy Journey Preference Results
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Comparison to Approximate Algorithms

I ILASP is guaranteed to return an optimal solution of any
ILPnoise

LOAS task (resources permitting).

I Several other algorithms for learning under the answer set
semantics exist, but often, they make no such guarantee.

I We have compared the accuracy of the optimal hypotheses
returned by ILASP3 with the accuracy of these other
approximate algorithms on (mostly) real data.

18/26

Mark Law, Alessandra Russo and Krysia Broda
Inductive Learning of Answer Set Programs from Noisy Examples



Sentence Chunking Dataset

I In (Kazmi et al. 2017), the Inspire system was evaluated on a
sentence chunking dataset (Agirre et al. 2016), which
contains examples of how sentences should be chunked.

I For instance, according to the dataset, the sentence “Thai
opposition party to boycott general election.” should be split
into the three chunks “Thai opposition party”, “to boycott”
and “general election”.

I Inspire claims that such a dataset requires apprioximate
algorithms, which are not guaranteed to find optimal solutions.
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Sentence Chunking Dataset

Inspire F1 score ILASP F1 score ILASP computation time (s)

100 examples

Headlines S1 73.1 74.2 351.2

Headlines S2 70.7 73.0 388.3

Images S1 81.8 83.0 144.9

Images S2 73.9 75.2 187.2

Students S1/S2 67.0 72.5 264.5

500 examples

Headlines S1 69.7 75.3 1616.6

Headlines S2 73.4 77.2 1563.6

Images S1 75.3 80.8 929.8

Images S2 71.3 78.9 935.8

Students S1/S2 66.3 75.6 1451.3
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Comparison to δILP

I In (Evans and Grefenstette 2018), it was claimed that ILP
approaches are unable “to handle noisy, erroneous, or
ambiguous data” and that “If the positive or negative
examples contain any mislabelled data, [ILP approaches] will
not be able to learn the intended rule”.

I To learn from noisy data, (Evans and Grefenstette 2018)
introduces the δILP algorithm, based on artificial neural
networks, which is able to achieve a high accuracy even with a
large proportion of noise in the examples.
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Comparison to δILP: predecessor
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Comparison to δILP: less than
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(b)

ILASP3
dILP

less than(V0, V1):-succ(V0, V1).

less than(V0, V2):-succ(V0, V1), less than(V1, V2).
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Comparison to δILP: less than
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(b)

ILASP3
dILP

geq(V0, V0):-succ(V0, V1).

geq(V1, V1):-succ(V0, V1).

geq(V0, V2):-succ(V2, V1), geq(V0, V1).
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Related work under the answer set semantics
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Related Work

I Early approaches to relational learning (e.g.
(Mooney and Ourston 1991) and (Cohen 1995)) were able to learn
definite rules from noisy data.

I Many early ILP approaches, such as (Cohen 1995) and
(Muggleton 1995), give algorithms which learning one clause at a
time.

I ILP systems which iteratively learn single clauses are common when
the target hypotheses are definite logic programs (with no
negation), as the programs being learned are monotonic.

I Learning non-monotonic ASP programs with negation requires a
different approach, due to the non-monotonicity.
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Conclusion

I Learning interpretable knowledge is a key requirement for cognitive
systems.

I ASP programs are capable of representing complex knowledge, such as
defaults, exceptions and preferences.

I ILASP3 can learn even in the presence of high proportions noisy examples.

I Our experiments show that in most cases ILASP3 is able to learn with a
higher accuracy than existing approximate systems, which are not
guaranteed to find optimal solutions of the tasks.

I In current work, we are developing ILASP systems which are more
scalable wrt the size of the hypothesis space.
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Learning from Noisy Examples

Definition 1

An ILPnoise
LOAS task T is the form 〈B, SM ,E 〉. Given a hypothesis

H ⊆ SM ,

1. uncov(H,T ) is the set consisting of all examples in E that H
does not cover.

2. S(H,T ), is the sum |H|+
∑

e∈uncov(H,T ) epen.

3. H is an inductive solution of T if and only if S(H,T ) is finite.

4. H is an optimal inductive solution of T if and only if S(H,T )
is finite and @H ′ ⊆ SM such that S(H,T ) > S(H ′,T ).
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Complexity

Framework Verification Satisfiablity

ILPb NP-complete NP-complete

ILPsm NP-complete NP-complete

ILPc DP-complete ΣP
2 -complete

ILPLAS DP-complete ΣP
2 -complete

ILPLOAS DP-complete ΣP
2 -complete

ILPcontext
LOAS DP-complete ΣP

2 -complete

ILPnoise
LOAS DP-complete ΣP

2 -complete
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Learning from Answer Sets

Definition 2

An ILPLAS task is a tuple T = 〈B, SM , 〈E+,E−〉〉. A hypothesis
H ⊆ SM is an inductive solution of T if and only if:

1. ∀e+ ∈ E+ ∃A ∈ AS(B ∪ H) such that A extends e+

2. ∀e− ∈ E− @A ∈ AS(B ∪ H) such that A extends e−

I An answer set A extends a partial interpretation 〈e inc , eexc〉 iff
e inc ⊆ A and eexc ∩ A = ∅.
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ILPLAS Encoding of the Hamiltonian Example

1 2

3 4

〈
size(4)
edge(1, 2)
edge(2, 3)
edge(3, 4)
edge(4, 1)

 ,


edge(1, 1)
edge(1, 3)
edge(1, 4)

. . .


〉

B :
1{size(1..4)}1.
node(1..N):-size(N).
0{edge(V0, V1)}1:-node(V0),

node(V1).

H :
reach(V0):-in(1, V0).
reach(V1):-in(V0, V1), reach(V0).
0{in(V0, V1)}1:-edge(V0, V1).
:-node(V0), not reach(V0).
:-in(V0, V1), in(V0, V2), V1 6= V2.
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Context-dependent Hamiltonian Example

1 2

3 4

〈
〈∅, ∅〉 ,


node(1..4).
edge(1, 2).
edge(2, 3).
edge(3, 4).
edge(4, 1).


〉

B :
None!

H :
reach(V0):-in(1, V0).
reach(V1):-in(V0, V1), reach(V0).
0{in(V0, V1)}1:-edge(V0, V1).
:-node(V0), not reach(V0).
:-in(V0, V1), in(V0, V2), V1 6= V2.
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Brave and Cautious Ordering Examples

Definition

An ordering example is a tuple o=〈e1, e2〉 where e1 and e2 are
partial interpretations.

I An ASP program P bravely respects o iff ∃A1,A2∈AS(P)
such that A1 extends e1, A2 extends e2 and A1 �P A2.

I P cautiously respects o iff ∀A1,A2∈AS(P) such that A1

extends e1 and A2 extends e2, it is the case that A1 �P A2.

I In the tasks in this paper, the notion of brave and cautious
orderings coincided (as in the preference learning tasks all
positive examples were extended by exactly one answer set).
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Comparison to δILP: member
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Related Work: noise thresholds

I ILP systems often use a cost function, e.g.
(Srinivasan 2001, Muggleton 1995, Bragaglia and Ray 2014).

I When examples are noisy, this cost function is sometimes combined
with a notion of maximum threshold, e.g.
(Srinivasan 2001, Oblak and Bratko 2010, Athakravi et al. 2013).

I Our ILPnoise
LOAS framework addresses the problem of computing

optimal solutions (with respect to the cost function) and in doing so
does not require knowledge a priori of the level of noise in the data.
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