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Inductive Logic Programming

» Given a set of positive examples ET, negative examples E~
and a background knowledge B, the goal is to find a
hypothesis H such that:

»Vec Et:BUH e
» Vee ET:BUH e
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Inductive Logic Programming

» Given a set of positive examples ET, negative examples E~
and a background knowledge B, the goal is to find a
hypothesis H such that:

»Vec Et:BUH e
»Vec E-:BUH e
» The key advantages are that:

» The hypotheses are human readable.
» Can define useful concepts in the background knowledge.
» Can give a very structured language bias to guide the search.
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Learning from Answer Sets (ILP;as)

» In ILPas (Law et al. 2014), examples are partial
interpretations.

» A partial interpretation e is a set of pairs of atoms (e, e®¢).

size(4) edge(1, 1)
edge(1,2) edge(1,3)
edge(2,3) ;, edge(174)
edge(3,4) ’
edge(4,1) Y

Mark Law, Alessandra Russo and Krysia Broda

Iterative Learning of ASP Programs from Context Dependent Examples



Imperial College
London

Learning from Answer Sets (ILP;as)

» In ILPas (Law et al. 2014), examples are partial
interpretations.

» A partial interpretation e is a set of pairs of atoms (e, e®¢).

:;Z:géll)z) edge(1,1)
’ edge(1,3) >
< edge(3,4) edge(1,4)
edge(4,1) Y
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Learning from Answer Sets (ILP;as)

» In ILPas (Law et al. 2014), examples are partial
interpretations.

» A partial interpretation e is a set of pairs of atoms (e, e®¢).

size(4) edge(1,1)
edge(1,2) edge(1,3)
edge(2,3) ;, edge(1. 4)
edge(3,4) ’
edge(4,1) "

» An answer set A extends e iff e C A and e N A = ().

» A positive (resp. negative) example e is covered if at least one
(resp. no) answer set of B U H extends e.
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ILP; ps Encoding of the Hamiltonian Example

size(4) edge(1,1)
edge(1,2)
edge(1,3)
edge(2,3) o, edge(1,4)
edge(3,4) gelt
edge(4,1) ”
B: H:
1{size(1..4)}1. reach(V0):-in(1,V0).
node(1..N):-size(N). reach(V1):-in(VO, V1), reach(V0).
0{edge(V0,V1)}1:-node(V0), 0{in(V0,V1)}1:-edge(VO,V1).
node(V1). :-node(V0),not reach(V0).

:-in(V0, V1), in(V0, V2), V1 # V2.
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ILPLoas

ILP;oas (Law et al. 2015) is a generalisation of ILP; s which
enables the learning of weak constraints.

Definition

An ordering example o is a pair (e1, e2). A program P is said to
bravely (resp. cautiously) respect o if for at least one (resp. every)
pair (A1, Aa) such that A1, Ay € AS(P), A1 extends e; and A
extends e, it is the case that A1 <p As.

Mark Law, Alessandra Russo and Krysia Broda
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ILPLoas

Definition

An ILPoas task is a tuple T=(B, Sy, E*,E~, 0P, O°).
A hypothesis H C Sy is in ILP oas(T), the set of all inductive
solutions of T, if and only if:

» Ve € E* JA € AS(B U H) such that A extends e

» Ve € E- BA € AS(B U H) such that A extends e

» Yo € O BU H bravely respects o

» Yo € O° BU H cautiously respects o

Mark Law, Alessandra Russo and Krysia Broda
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Journey Preferences
:~ mode(L,walk), crime rating(L,R),R > 3.[1@3,L,R]

:~ mode(L, bus).[102,L]
:~ mode(L, walk),distance(L,D).[D@1,L, D]

¢ Walk 400m through ¢ Take the bus 4km ¢ Take the bus 400m e Take a bus 2km
an area with crime through an area with through an area with through an area with
rating of 2. crime rating of 2 crime rating of 2. crime rating 5.

« Take the bus 3km *Walk 1km through an ¢ Take a second bus ¢ Walk 2km through an
through an area with area with crime 3km through an area area with crime
crime rating 4. rating 5. with crime rating 4 rating 1.

Journey A > Journey D > Journey C > Journey B
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Learning Journey Preferences

Journey A
Journey B

* Walk 400m through « Take the bus 4km
an area with crime > through an area with
rating of 2. crime rating of 2

« Take the bus 3km «Walk 1km through an

area with crime rating

through an area :

with crime rating 4.
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Learning Journey Preferences

Journey A
Journey B

* Walk 400m through « Take the bus akm
an area with crime > through an area with
rating of 2. crime rating of 2

« Take the bus 3km Walk 1km through an
through an area area with crime rating
5.
with crime rating 4.

» Given examples of this form, we can learn:

:~ mode(L, walk), crime_rating(L,R),R > 3.[1@3,L,R]
H=( :~mode(L,bus).[102,L]
:~ mode(L, walk), distance(L,D).[D@1,L, D]

Mark Law, Alessandra Russo and Krysia Broda
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Journey Preferences in ILP;pas
:~ mode(L, walk), crime_rating(L,R),R > 3.[1@3,L,R]

H= :~ mode(L, bus).[102,L]
:~ mode(L,walk),distance(L,D).[D@1,L,D]

1{choose(j1),...,choose(jn)}1.
mode(legl, walk):-choose(j1).

B =( crime rating(legl,2):-choose(j1).
distance(legl,1000):-choose(j1).

e1 = ({choose(j1)},0), e = ({choose(j2)},0),

Ob:{ <e.1?.e2> }

Mark Law, Alessandra Russo and Krysia Broda
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Journey Preference Experiments
Average com putation time (a) Average memory usage (b)
200 7e+06 ;
[ ILASP2 ] ILASP2
180 | 6.3e+06 /
160 __ 5.6e+06 |
& 140 2 4.9e+06 /
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s 80 T 28e+06 /
2 eo / E  21e+06
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40 1.4e+06
20 | 700000
0 o 0 A
100 200 300 400 500 0 100 200 300 400 500

Number of examples Number of examples

Figure: (a) the average computation time and (b) the memory usage of
ILASP2 for learning journey preferences.
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Reason for Scalability Issues

» The background knowledge contains all the attributes of each
journey

» Can we divide this background knowledge into pieces that
only apply for particular examples?

Mark Law, Alessandra Russo and Krysia Broda
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Context-dependent examples

» In standard ILP, we search for hypotheses H such that:

»Vec EY BUHE e
» Vee E- BUH It e

» Given context-dependent examples, it must be the case that:

» V(e,C) e EY BUHUC e
» V(e,C) e E- BUHUC [£e.
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Context-dependent examples

» In standard ILP, we search for hypotheses H such that:

»Vec EY BUHE e
» Vee E- BUH It e

» Given context-dependent examples, it must be the case that:

» V(e,C) e EY BUHUC e
» V(e,C) e E- BUHUC [£e.

For example, we may wish to learn that when it is raining a user
prefers to take the bus; otherwise, they prefer to walk.

f ((fous},0), {rain.}), . { (({walk},0),{rain.}),
E+{ ({walk},0), {}) £ { ({bus}, 0), {})

Mark Law, Alessandra Russo and Krysia Broda
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ILP; ps Encoding of the Hamiltonian Example

size(4) edge(1,1)
edge(1,2)
edge(1,3)
edge(2,3) o, edge(1,4)
edge(3,4) gelt
edge(4,1) ”
B: H:
1{size(1..4)}1. reach(V0):-in(1,V0).
node(1..N):-size(N). reach(V1):-in(VO, V1), reach(V0).
0{edge(V0,V1)}1:-node(V0), 0{in(V0,V1)}1:-edge(VO,V1).
node(V1). :-node(V0),not reach(V0).

:-in(V0, V1), in(V0, V2), V1 # V2.
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Context-dependent Hamiltonian Example

node(1..4).
edge(1,2).
<<@, 0),< edge(2,3) >
edge(3,4)
edge(4,1)
B: H:
None! reach(V0):-in(1,V0).

reach(V1):-in(V0, V1), reach(V0).
0{in(V0,V1)}1:-edge(V0,V1).
:-node(V0),not reach(V0).
:-in(V0, V1), in(V0, V2), V1 # V2.
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Journey Preferences in ILP;pas
:~ mode(L,walk), crime_rating(L,R),R > 3.[1@3,L,R]

H =< :~mode(L,bus).[102,L]
:~ mode(L,walk),distance(L,D).[D@1,L,D]

1{choose(j1),...,choose(jn)}1.
mode(legl, walk):-choose(ji).

B =( crime rating(legl,2):-choose(j1).
distance(legl,1000):-choose(j1).

e1 = ({choose(j1)},0), e = ({choose(j2)},0),

Ob:{ (el,e2> }
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Journey Preferences in ILP[Z¢
:~ mode(L,walk), crime_rating(L,R),R > 3.[1@3,L,R]
H =< :~mode(L,bus).[102,L]
:~ mode(L,walk),distance(L,D).[D@1,L,D]
B={ None!

mode(legl, walk).
er = ((0,0),] crime_rating(legl,2). )
distance(legl, 1000).

Ob:{ (el,e2> }

Mark Law, Alessandra Russo and Krysia Broda
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Complexity

context

> In the paper, we present a mapping 7.0as from any ILP[g¢
task to an ILP;pas task.

For any /LPE%’K;Xt task T, /LPLOAS(ﬁOAS(T)) = /LPf%’KgXt(T).

context

The complexity of deciding whether an ILP[5xS" task is satisfiable
is ¥5-complete.

Mark Law, Alessandra Russo and Krysia Broda
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ILASP2i

» The mapping T;pas means that we can use ILASP2 to
compute solutions for any context dependent task:
» This would be by calling ILASP2(TLoas((B, Su, E))).
» However, ILASP2 is known to scale poorly wrt the number of
examples.
» Qur new algorithm, ILASP?2i, iteratively computes a subset of
the examples Rel, called relevant examples.

» In each iteration, we call ILASP2(T.0as({B, Sm, Rel})).

Mark Law, Alessandra Russo and Krysia Broda
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1:
2:
3
4:
5:
6.
7
8
9

10:
11:

ILASP2i_pt

procedure ILASP21_pT({B, Sy, E))

(B', Sy, E") = TLoas({B, Sm, E));
Relevant = (0,0,0,0); H=0;
re = findRelevantExample((B’, S},, E'), H);
while re # nil do
Relevant << re;
H = ILASP2({B’, S;,, Relevant));
if(H==nil) return UNSATISFIABLE;
else re = findRelevantExample({B’, S;,, E), H);
end while
return H;

Mark Law, Alessandra Russo and Krysia Broda
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1:
2:
3
4:
5:
6.
7
8
9

10:
11:

ILASP2i_pt

procedure ILASP21_pT({B, Sy, E))

(B, Sy, E') = TLoas((B, Sm, E));
Relevant = (0,0,0,0); H=0;
re = findRelevantExample((B’, S},, E'), H);
while re # nil do
Relevant << re;
H = ILASP2({B’, S;,, Relevant));
if(H==nil) return UNSATISFIABLE;
else re = findRelevantExample({B’, S;,, E), H);
end while
return H;

Translation occurs once, at the start of the algorithm.

Mark Law, Alessandra Russo and Krysia Broda
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Journey Preference Experiments

Average com putation time (a)

[ ILASPZi_pt

| ILASP2 ﬁ
f

¥

100 200 300 400

Number of examples

500

Memory usage (kB)

7e+06
6.3e+06
5.6e+06
4.9e+06
4.2e+06
3.5e+06
2.8e+06
2.1e+06
1.4e+06
700000
o]

Average memory usage (b)

[ ILASPZi_pt
| ILASP2

0

100 200 300 400

Number of examples

500

Figure: (a) the average computation time and (b) the memory usage of
ILASP2 and ILASP2i_pt for learning journey preferences.
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ILASP2i
1: procedure ILASP21((B, Sp, E))
2 Relevant = (0,0,0,0); H=0;
3 re = findRelevantExample((B, Sum, E), H);
4 while re # nil do
5: Relevant << re;
6 H = ILASP2(T.0as((B, Su, Relevant)));
7 if(H ==nil) return UNSATISFIABLE;
8 else re = findRelevantExample((B, Sm, E), H);
9 end while
10: return H;

Translation occurs in each iteration, using only the relevant
contexts.

Mark Law, Alessandra Russo and Krysia Broda
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ILASP2i
1: procedure ILASP21((B, Sp, E))
2 Relevant = (0,0,0,0); H=0;
3 re = findRelevantExample((B, Sum, E), H);
4 while re # nil do
5: Relevant << re;
6 H = ILASP2(T.0as((B, Su, Relevant)));
7 if(H ==nil) return UNSATISFIABLE;
8 else re = findRelevantExample((B, Sm, E), H);
9 end while

10: return H;

Theorem 4

ILASP2i is sound for any well defined ILP{Zi&" task, and returns
an optimal solution if one exists.

Mark Law, Alessandra Russo and Krysia Broda
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Figure: (a) the average computation time and (b) the memory usage of
ILASP2, ILASP2i and ILASP2i_pt for learning journey preferences.
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Journey Preference Experiments

Predictive accuracy of ILASP2i

0.9
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Average accuracy

@ L
o T-a-T o2

W

dr

4 8 12 16 20 24 28 32 36 40

Number of examples

Without equality orderings
With equality orderings

Figure: average accuracy of ILASP2i
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Experiments
Learning F#examples time/s Memory/kB
task Et E- o O° 2 2i_pt 2i 2 2i_pt 2i
Hamilton A 100 100 O 0 10.3 42 43 07x10°  12x10* 1.2x107
(no context)
Hamilton B 100 100 O 0 32.0 84.9 3.6 3.6x10°  27x10° 1.4x10*
(context dep.)
Journeys 386 0 200 0 10314 452 5.0 14x107  11x10° 3.4x10*

(context dep.)

» ILASP2 runs the automatic translation (7.pas) of context
dependent tasks.

» Troas(Hamilton B) is less efficient than Hamilton A.

» Troas(Journeys) is the same as the non-context dependent
Journey task.

Mark Law, Alessandra Russo and Krysia Broda
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Related work under the answer set semantics

Normal Chuwe CIassl:aJ eak AJganrhm for
Lea,n”,g ek
Brave Induction
Inoue 2009] v v v x

Cautious Induction
[Saka oue 2009]

XHAIL [Ray 2009]
& ASPAL

[Otero 2001]

induction from
Answer Sets
[Sakama 2005]

LAS
[Law et al 2014]
LOAS
[Law et al 2015]

SSX X X X
S SN % % % <
S SN N % % %
X %X x < x x <
S SN N XN S x
S SN X ¥ % <
S S % 8 & % %
S % % X x % x
S SN %8 & < %
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Related Incremental Learner

» ILASP2i incrementally constructs the set of relevant examples,
learning a new hypothesis each time.

» ILASP2i's relevant example set could become very large.

» ILASP2i is guaranteed to find an optimal solution.

» ILED (Katzouris et al. 2015) is an incremental extension of
XHAIL, which is targeted at learning event definitions.

» ILED incrementally learns a hypothesis through theory revision.
» ILED is not guaranteed to find an optimal solution.

Mark Law, Alessandra Russo and Krysia Broda
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Current Work

» Improve the scalability of ILASP for tasks with:

» Noisy examples
» Large hypothesis spaces

Mark Law, Alessandra Russo and Krysia Broda

Iterative Learning of ASP Programs from Context Dependent Examples



Imperial College
London

Current Work

» Improve the scalability of ILASP for tasks with:

» Noisy examples
» Large hypothesis spaces

» |ILASP2 and ILASP2i are available to download from
https://www.doc.ic.ac.uk/~m11909/ILASP

Mark Law, Alessandra Russo and Krysia Broda
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Hamilton Experiment

Average time for learning Hamilton (a)

560 Average memory for learning Hamilton (b)
ILASP2 (Ham A —— 2e+06
180 ILASP2i (Ham A) —— ILASP2 (Ham A) ——
1.8e+06 ILASP2i (Ham A) ——
ILASP2 (Ham B)
160 ILASP2i (Ham B) ——— ILASP2 (Ham B)
i 116e+06 ILASP2i (Ham B) ———
140 ILASP2i_pt (Ham B) _ LATASRZ e B
= 2 14e+06 i_pt (Ham B) ——
£ 120 g 1.2¢+06
= 100
S g 1e+06
I 80 £
2 2, 800000
< 60 ]
£ eooooo
. 400000
20
200000
o I
01 2 3 4 656 6 7 8 9 10 0

01 2 3 4 5 6 7 8 9 10
Maximum graph size Maximum graph size

Figure: (a) the average computation time and (b) the memory usage of
ILASP2, ILASP2i and ILASP2i_pt for Hamilton A and B.
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ILP; ps

Definition
An ILP a5 task is a tuple T=(B, Sy, ET,E™).
A hypothesis H C Sy is in ILP as(T), the set of all inductive
solutions of T, if and only if:
» Ve € E* JA € AS(B U H) such that A extends e
» Ve € E- BA € AS(B U H) such that A extends e.

Mark Law, Alessandra Russo and Krysia Broda
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Context-dependent ILP; a5

Definition

An ILP{3¥e task is a tuple T=(B, Sy, E",E™).
A hypothesis H C Sy is in ILPE*(T), the set of all inductive
solutions of T, if and only if:
» V(e,C) € ET JA € AS(B U C U H) such that A extends e
» V(e,C) € E- A € AS(BU C U H) such that A extends e.

4

Mark Law, Alessandra Russo and Krysia Broda
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context
ILP LOAS

Definition

A context-dependent ordering example o is a pair

((e1, C1), (€2, C2)). A program P is said to bravely (resp.
cautiously) respect o if for at least one (resp. every) pair (A1, A2)
such that Ay € AS(PU (1), A, € AS(P U &), A; extends e; and
Ao extends ey, it is the case that A1 <p As.

Mark Law, Alessandra Russo and Krysia Broda
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Context-dependent examples

» In standard ILP, we search for hypotheses H such that:
»Vec EY BUHE e
» Vee E- BUH It e

» Given context-dependent examples, it must be the case that:
» V(e,C) e EY BUHUC e
» V(e,C) e E- BUHUC [£e.

For example, we may wish to learn that when it is raining a user
prefers to take the bus; otherwise, they prefer to walk.

E+ — { (“take bus”, {1{rain, snow}1.}),

(“walk”, {}) _ | (“walk”,{rain.}),
£ = { (“take bus”, {})

Mark Law, Alessandra Russo and Krysia Broda
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