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Abstract. The goal of Inductive Logic Programming (ILP) is to learn
a program that explains a set of examples in the context of some pre-
existing background knowledge. Until recently, most research on ILP tar-
geted learning Prolog programs. Our own ILASP system instead learns
Answer Set Programs, including normal rules, choice rules and hard and
weak constraints. Learning such expressive programs widens the appli-
cability of ILP considerably; for example, enabling preference learning,
learning common-sense knowledge, including defaults and exceptions,
and learning non-deterministic theories. In this paper, we first give a gen-
eral overview of ILASP’s learning framework and its capabilities. This
is followed by a comprehensive summary of the evolution of the ILASP
system, presenting the strengths and weaknesses of each version, with a
particular emphasis on scalability.
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1 Introduction

The ability to declaratively specify real-world problems and efficiently generate
solutions from such specifications is of particular interest in both academia and
industry [10, 9]. A typical paradigm is Answer Set Programming (ASP) [15,
3], which allows a problem to be described in terms of its specification, rather
than requiring a user to define an algorithm to solve the problem. Its solvers
are capable of constructing solutions from the specifications alone and, where
needed, ranking solutions according to optimisation criteria. The interpretable
nature of the ASP language also enables the generation of explanations, which
is particularly relevant in AI-driven applications. Due to its rich language and
efficient solving, ASP has been applied to a wide range of classical areas in
AI – including planning, scheduling and diagnosis – and is increasingly being
applied in industry [9]; for example, in decision support systems, automated
product configuration and configuration of safety systems [10]. On the other
hand, developing ASP specifications of real-world problems can be a difficult
task for non-experts. Furthermore, the dynamic nature of the contexts in which
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real-world AI applications tend to operate can require the ASP specification of a
problem to be regularly updated or revised. To widen the dissemination of ASP
in practice, it is therefore crucial to develop methods that can automatically learn
ASP specifications from examples of (partial) solutions to real-world problems.
Such learning mechanisms could also provide ways for automatically evolving
and revising ASP specifications in dynamic environments.

Within the last few years, we have addressed this problem and developed a
novel system, called Inductive Learning of Answer Set Programs (ILASP) [21].
The theoretical framework underpinning the ILASP system differs from con-
ventional approaches for Inductive Logic Programming (ILP), which are mainly
focused on learning Prolog programs. Due to the declarative nature of ASP, the
learning process in ILASP primarily targets learning the logical specification of a
problem, rather than the procedure for solving that problem. Secondly, programs
learned by ILASP can include extra types of rules that are not available in Pro-
log, such as choice rules and hard and weak constraints. Enabling the learning of
these extra rules has opened up new applications, which were previously out of
scope for ILP systems; for instance, learning weak constraints allows ILASP to
learn a user’s preferences from examples of which solutions the user prefers [22].

ILASP’s learning framework has been proved to generalise existing frame-
works and systems for learning ASP programs [24], such as the brave learn-
ing framework [30], adopted by almost all previous systems (e.g. XHAIL [28],
ASPAL [6], ILED [16], RASPAL [2]), and the less common cautious learning
framework [30]. Brave systems require the examples to be covered in at least
one answer set of the learned program, whereas cautious systems find a program
which covers the examples in every answer set. We showed in [24] that some
ASP programs cannot be learned with either a brave or a cautious approach,
and that to learn ASP programs in general, a combination of both brave and
cautious reasoning is required. ILASP’s learning framework enables this combi-
nation, and is capable of learning the full class of ASP programs [24]. ILASP’s
generality has allowed it to be applied to a wide range of applications, including
event detection [25], preference learning [22], natural language understanding [4],
learning game rules [7], grammar induction [18] and automata induction [11].

In this paper we give an introduction to ILASP’s learning framework and its
capabilities, demonstrating the various types of examples that ILASP can learn
from, and describe the evolution of the ILASP system. This evolution has been
driven by a need for efficiency with respect to various dimensions, including
handling noisy data, large numbers of examples and large search spaces. We
discuss the strengths and weaknesses of each variation of the ILASP system,
explaining how each system improves on the efficiency of its predecessor. We
conclude with a discussion of recent developments and future research directions.

2 Components of a Learning Task

ILASP is used to solve a learning task, which consists of three main components:
the background knowledge, the mode bias and the examples. The background
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knowledge B is an ASP program, which describes a set of concepts that are
already known before learning. ILASP accepts a subset3 of ASP, consisting of
normal rules, choice rules and hard and weak constraints. We use the term rule
to refer to any of these four components.

The mode bias M (often called a language bias) is used to express the ASP
programs that can be learned; for example, it specifies which predicates may be
used in the head/body of learned rules, and how they may be used together.
From M , it is possible to construct a (finite) set of rules SM called the rule
space4, that contains every rule that is compatible with M . The power set of
SM , P(SM ), is called the program space, and contains the set of all ASP programs
that can be learned.

The examples E describe a set of semantic properties that the learned pro-
gram should satisfy. When the semantic property of an individual example e ∈ E
is satisfied, we say that e is covered. The goal of an ILP system, such as ILASP,
is to find a program (often called a hypothesis) H ∈ P(SM ) such that B ∪ H
(the combination of this program with the background knowledge) covers every
example in E. Many ILP systems (including ILASP) follow the principle of Oc-
cam’s Razor, that the simplest solution should be preferred, and therefore search
for an optimal program, which is the shortest in terms of the number of literals.

Many ILP systems learn from (positive and negative) examples of atoms
which should be true or false. This is because many ILP systems are targeted
at learning Prolog programs, where the main “output” of a program is a query
of a single atom. In ASP, the main “output” of a program is a set of answer
sets. For this reason, ILASP learns from positive and negative examples of (par-
tial) interpretations, which should or should not (respectively) be an answer set
of the learned program. These examples are sufficient to learn any ASP pro-
gram consisting of normal rules, choice rules and hard constraints (up to strong
equivalence) [24]; however, it is not possible to learn weak constraints using only
positive and negative examples, because they can only specify what should (or
should not) be an answer set. Weak constraints do not have any effect on what is
or is not an answer set – they only create a preference ordering over the answer
sets. For this reason, ILASP allows a second type of example called an ordering
example, the semantic property of which is a preference ordering over a pair
of answer sets of B ∪ H. Learning weak constraints corresponds to a form of
preference learning.

2.1 Positive and Negative Examples

Consider a very simple setting, where we want to learn a program that describes
the behaviour of three (specific) coins, by flipping them and observing which sides
they land on. We can use a very simple mode bias to describe the rules we are
allowed to learn. The predicates heads/1 and tails/1 are both allowed to appear

3 For a formal definition of this subset, please see the ILASP manual (http://www.
ilasp.com/manual).

4 In other literature, the rule space is often called the hypothesis space.
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in the head with a single argument, which is either a variable or constant of type
coin (where there are three constants of type coin in the domain: c1, c2 and
c3). In the body, we can use three predicates (both positively and negatively):
heads/1, tails/1 and coin/1. The mode bias expressing this language is shown
below.

#modeh(heads(var(coin))).

#modeh(tails(var(coin))).

#modeb(heads(var(coin))).

#modeb(tails(var(coin))).

#modeb(coin(var(coin))).

#modeh(heads(const(coin))).

#modeh(tails(const(coin))).

#constant(coin, c1).

#constant(coin, c2).

#constant(coin, c3).

We flip the coins twice, and see the following combinations of observations:
{heads(c1), tails(c2), heads(c3)}, {heads(c1), heads(c2), tails(c3)}. We
can encode these “observations” in ILASP using positive examples. Positive
examples specify properties which should hold in at least one answer set of the
learned program (B∪H). The two observations are represented by the following
two examples:

#pos({heads(c1), tails(c2), heads(c3)},

{tails(c1), heads(c2), tails(c3)}).

#pos({heads(c1), heads(c2), tails(c3)},

{tails(c1), tails(c2), heads(c3)}).

Each positive example contains two sets of ground atoms, called the inclu-
sions and the exclusions (respectively). For a positive example to be covered,
there must be at least one answer set of B ∪ H that contains all of the inclu-
sions and none of the exclusions. In this case, these examples mean that there
must be (at least) two answer sets, one which contains heads(c1), tails(c2)
and heads(c3), and does not contain tails(c1), heads(c2) and tails(c3), and
another answer set which contains heads(c1), heads(c2) and tails(c3), and
does not contain tails(c1), tails(c2) and heads(c3). Although these partic-
ular examples completely describe the values of all coins, this does not need to
be the case in general. Partial examples allow us to represent uncertainty; for
example, we could have a fourth coin c4 for which we do not know the value.

Together with the above examples, we can also give the following, very simple,
background knowledge, which defines the set of coins we have:

coin(c1). coin(c2). coin(c3).

If we run this task in ILASP, then ILASP returns the following solution:

heads(V1) :- coin(V1), not tails(V1).

tails(V1) :- coin(V1), not heads(V1).
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This program states that every coin must land on either heads or tails,
but not both. Although the first coin c1 has never landed on tails in the sce-
narios we have observed, ILASP has generalised to learn first-order rules that
apply to all coins, rather than specific ground rules that only explain the specific
instances we have seen. The ability to generalise in this way is a huge advan-
tage of ILP systems over other forms of machine learning, because it usually
means that ILP techniques require very few examples to learn general concepts.
Note that both positive examples are required for ILASP to learn this gen-
eral program. Neither positive example on its own is sufficient because in both
cases there is a shorter program that explains the example – the set of facts
{heads(c1). tails(c2). heads(c3).} covers the first example and similarly the
set of facts {heads(c1). heads(c2). tails(c3).} covers the second.

It may be that after many more observations, we still have not witnessed c1

landing on tails, and we could be convinced that it never will. In this case, we
can use ILASP’s negative examples to specify that there should be no answer
set that contains tails(c1). This example is expressed in ILASP as follows:

#neg({tails(c1)}, {}).

Given this extra example, ILASP learns the slightly larger program:

heads(V1) :- coin(V1), not tails(V1).

tails(V1) :- coin(V1), not heads(V1).

heads(c1).

This program states that all coins must land on either heads or tails, but
not both, except for c1, which can only land on heads. Note that negative
examples often cause ILASP to learn programs with rules that eliminate answer
sets. In this case, the fact heads(c1) eliminates all answer sets that contain
tails(c1). Negative examples are often used to learn constraints. The constraint
“: - tails(c1).” would have has the same effect; however, it is not permitted
because the mode bias does not allow constants to be used in the body of a rule.

Context-dependent Examples. Positive and negative examples of partial
answer sets are targeted at learning a fixed program, B ∪ H. When ASP is
used in practice, however, a program representing a general problem definition
is often combined with another set of rules (usually just facts) describing a
particular instance of the problem to be solved. For instance, a general program
defining what it means for a graph to be Hamiltonian (i.e. the general problem
definition) can be combined with a set of facts describing a particular graph (i.e.
a problem instance). The combined program is satisfiable if and only if the graph
represented by the set of facts is Hamiltonian. The context-dependent behaviour
of the general Hamilton program cannot be captured by positive and negative
examples of partial answer sets. Instead, we need an extension, called a context-
dependent example. This allows each example to come with its own extra bit of
background knowledge, called a context C, which applies only to that example.
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#pos({}, {}, {

node(1..4).

edge(1, 2).

edge(2, 3).

edge(3, 4).

edge(4, 1).

}).

#neg({}, {}, {

node(1..4).

edge(1, 2).

edge(2, 1).

edge(2, 3).

edge(3, 4).

edge(4, 2).

}).

1 2

3 4

1 2

3 4

Fig. 1. One positive and one negative example of Hamiltonian graphs. On the left is
the ILASP representation of the example, and on the right is the corresponding graph.

It is now B ∪H ∪C that has to satisfy the semantic properties of the example,
rather than B ∪H. In ILASP, the context of an example is expressed by adding
an extra set to the example, containing the context.

Consider the two context-dependent examples in Figure 1. Both examples
have empty inclusions and exclusions. In the case of a positive example, this
simply means that there must exist at least one answer set of B ∪H ∪ C – any
answer set is consistent with the empty partial interpretation – and in the case
of a negative example, it means that there should be no answer set of B∪H ∪C.
Given a sufficient number of examples of this form, ILASP can be used to learn
a program that corresponds to the definition of a Hamiltonian graph; i.e. the
program B ∪ H ∪ C is satisfiable if and only if the set of facts C represents a
Hamiltonian graph. The full program learned by ILASP is:

0 { in(V0, V1) } 1 :- edge(V0, V1).

reach(V0) :- in(1, V0).

reach(V1) :- reach(V0), in(V0, V1).

:- not reach(V0), node(V0).

:- V1 != V2, in(V0, V2), in(V0, V1).

This example shows the high expressive power of ILASP, compared to many
other ILP systems, which are only able to learn definite logic programs. In this
case, ILASP has learned a choice rule, constraints and a recursive definition of
reachability. The full learning task, hamilton.las, used to learn this program
is available online.5

5 For instructions on how to install ILASP, see http://www.ilasp.com. All learning
tasks discussed in this section are available at http://www.ilasp.com/research.



The ILASP System for Inductive Learning of Answer Set Programs 7

2.2 Ordering Examples

Positive and negative examples can be used to learn any ASP program consisting
of normal rules, choice rules and hard constraints.6 As positive and negative
examples can only express what should or should not be an answer set of the
learned program, they cannot be used to learn weak constraints, which do not
affect what is or is not an answer set. Weak constraints create a preference
ordering over the answer sets of a program, so in order to learn them we need
to give examples of this preference ordering – i.e. examples of which answer sets
should be preferred to which other answer sets. These ordering examples come
in two forms: brave orderings, which express that at least one pair of answer sets
that satisfy the semantic properties of a pair of positive examples are ordered in
a particular way; and cautious orderings, which express that every such pair of
answer sets should be ordered in that way.

Consider a scenario in which a user is planning journeys from one location to
another. All journeys consist of several legs, in which the user may take various
modes of transport. Other known attributes of the journey legs are the distance
of the leg, and the crime rating of the area (which ranges from 0 – no crime – to
5 – extremely high). By offering the user various journey options, and observing
their choices, we can use ILASP to learn the preferences the user is using to make
such choices. The options a user could take can be represented using context-
dependent examples. Four such examples are shown below. Note that the first
argument of the example is a unique identifier for the example. This identifier
is optional, but is needed when expressing ordering examples.

#pos(eg_a, {}, {}, { #pos(eg_c, {}, {}, {

leg_mode(1, walk). leg_mode(1, bus).

leg_crime_rating(1, 2). leg_crime_rating(1, 2).

leg_distance(1, 500). leg_distance(1, 400).

leg_mode(2, bus). leg_mode(2, bus).

leg_crime_rating(2, 4). leg_crime_rating(2, 4).

leg_distance(2, 3000). leg_distance(2, 3000).

}). }).

#pos(eg_b, {}, {}, { #pos(eg_d, {}, {}, {

leg_mode(1, bus). leg_mode(1, bus).

leg_crime_rating(1, 2). leg_crime_rating(1, 5).

leg_distance(1, 4000). leg_distance(1, 2000).

leg_mode(2, walk). leg_mode(2, bus).

leg_crime_rating(2, 5). leg_crime_rating(2, 1).

leg_distance(2, 1000). leg_distance(2, 2000).

}). }).

6 This result holds, up to strong equivalence, which means that given any such ASP
program P , it is possible to learn a program that is strongly equivalent to P [24].
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By observing a user’s choices, we might see that the user prefers the journey
represented by eg a to the one represented by eg b. This can be expressed in
ILASP using an ordering example:

#brave_ordering(eg_a, eg_b, <).

This states that at least one answer set of B ∪H ∪ Ca must be preferred to
at least one answer set B ∪ H ∪ Cb (where Ca and Cb are the contexts of the
examples eg a and eg b, respectively, and B, in this simple case, is empty). The
final argument of the brave ordering is an operator, which says how the answer
sets should be ordered. The operator < means “strictly preferred”. It is also
possible to use any of the other binary comparison operators: >, <=, >=, = or
! =. For instance, the following example states that the journeys represented by
eg c and eg d should be equally preferred.

#brave_ordering(eg_c, eg_d, =).

By using several such ordering examples, it is possible to learn weak con-
straints corresponding to a user’s journey preferences. For example, the learning
task journey.las (available online) causes ILASP to learn the following set of
weak constraints:

:~ leg_mode(L, walk), leg_crime_rating(L, C), C > 3.[1@3, L, C]

:~ leg_mode(L, bus).[1@2, L]

:~ leg_mode(L, walk), leg_distance(L, D).[D@1, L, D]

These weak constraints represent that the user’s top priority is to minimise
the number of legs of the journey in which the user must walk through an area
with a high crime rating; their next priority is to minimise the number of buses
the user must take; and finally, their lowest priority is to minimise the total
walking distance of their journey.

Note that in the given scenario there is always a single answer set of B∪H∪C
for each of the contexts C, meaning that brave and cautious orderings coincide.
When B ∪H ∪ C may have multiple answer sets, the distinction is important,
and cautious orderings are much stronger than brave orderings, expressing that
the preference ordering holds universally over all pairs of answer sets that meet
the semantic properties of the positive examples.

2.3 Noisy Examples

Everything presented so far in this paper assumes that all examples are correctly
labelled, and therefore that all examples should be covered by the learned pro-
gram. In real applications, of course, this is often not the case; examples may be
noisy (i.e. mislabelled), and so finding a program that covers all examples may
not be possible, or even desirable (as this might be overfitting on the examples).
In ILASP, each example can be given a penalty, which is a cost for not covering
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that example. The search for an optimal learned program now searches for a pro-
gram that minimises |H|+ cost, where |H| is the length of the program and cost
is the sum of the penalties of all examples that are not covered by the learned
program. We have used this approach to noise to apply ILASP to a wide range
of real world problems, including event detection [25], sentence chunking [25],
natural language understanding [4] and user preference learning [25].

The function |H| + cost is one example of a scoring function. Most systems,
including ILASP, come with a built-in scoring function that cannot be modi-
fied, but in recent work [19], we have developed a new system that allows the
user to define their own scoring function, allowing a custom (domain-specific)
interpretation of optimality.

3 Evolution of the ILASP system

Although we refer to ILASP as a single system, in reality it is a collection of
algorithms, with each algorithm developed to address a scalability weakness of
its predecessor.7 Table 1 considers various “dimensions” of learning tasks and
shows which ILASP algorithms scale with respect to each of these dimension.

Scales with
Algorithm Any Negative Examples? # of Examples Level of Noise Size of SM

ILASP1 No No No No

ILASP2 Yes No No No

ILASP2i Yes Yes No No

ILASP3 Yes Yes Yes No

Table 1. A summary of the scalability of each ILASP system, with respect to various
dimensions of learning tasks.

Note that although newer versions of ILASP scale with respect to various
dimensions of learning tasks, none of the current ILASP systems scales with
respect to large rule spaces; however, this is being addressed in current work
(for more details, see the next section).

3.1 ILASP1 and ILASP2

As depicted in Figure 2, the first two ILASP systems both have three main
phases: (1) pre-processing; (2) solving; and (3) post-processing. In the first phase,
ILASP1 and ILASP2 map the input learning task into an ASP program. Next,
this ASP program is solved by the Clingo ASP solver [14, 12]. Finally, the answer
set returned by Clingo is post-processed to extract the learned program.

7 The learning framework has also been expanded with each new algorithm; however,
older algorithms have been updated so that every ILASP algorithm supports the
most general version of the learning framework.
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ILASP1

Pre-processor

Multi-shot ASP

Solver (Clingo)

Compute V Sn

Compute PSn\V Sn

n=n+1

n=0

Post-processor

Task
〈B,M,E〉

Learned
Program (H)

ILASP2

Pre-processor

Multi-shot ASP

Solver (Clingo)

Compute optimal H

Find violation vri

vr1, . . . , vri

Post-processor

Task
〈B,M,E〉

Learned
Program (H)

Fig. 2. ILASP1 and ILASP2. PSn and V Sn denote, respectively, the positive and
violating hypotheses of length n and vr1, . . . , vri are the current violating reasons.

The procedures of the ILASP1 [20] and ILASP2 [22] algorithms are encoded
using Clingo’s built-in scripting feature, which allows a technique called multi-
shot solving [13] to be used. Multi-shot solving enables a program to be solved
iteratively, each time adding new parts to the program (or removing existing
ones). The difference between the first two ILASP algorithms is in the multi-shot
procedure. Both systems rely on the concepts of positive hypotheses – programs
that cover all of the positive examples – and violating hypotheses – which also
cover all of the positive examples, but do not cover at least one negative example.
Starting at length n = 0, in each iteration, ILASP1 computes all the violating
hypotheses of length n, converts each violating hypothesis to a constraint, which
is added to the program, and then searches for a positive hypothesis of length n
that does not violate any of the computed constraints (i.e. a program of length
n which covers all of the examples). If there is such a program, it is returned;
otherwise, n is incremented and the next iteration begins. As there can be a
large number of violating hypotheses, and because there is one constraint per
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violating hypothesis, this process can be very inefficient if there is at least one
negative example. ILASP2, on the other hand, computes a single (optimal) pos-
itive solution H in each iteration. If H is a violating hypothesis, then it extracts
a “violating reason” vr, which explains why H is violating. It then encodes vr
into a set of ASP rules, which are added to the program in order to rule out not
only H, but also any other program which is violating for the same reason vr.
Compared with ILASP1, ILASP2 adds far less to the program in each iteration,
and often requires fewer iterations (as the same violating reason will often apply
to many violating hypotheses), leading to orders of magnitude of improvement
in performance on tasks with negative examples.

3.2 ILASP2i

The number of rules in the grounding of the ASP encoding used by ILASP1 and
ILASP2 is proportional to the number of examples in the learning task. As the
size of the grounding of an ASP program is one of the major factors in how long
it takes for Clingo to solve that program, this means that ILASP1 and ILASP2
do not scale with respect to the number of examples.

In real datasets, there is often considerable overlap between the concepts
required to cover several different examples. In other words, there are classes
of examples such that each example in a class is covered by exactly the same
programs as every other example in the class. In a non-noisy setting (where all
examples must be covered), only one example per class is actually required, and
all other examples are “irrelevant”. The idea behind ILASP2i is to construct a
subset of the examples called the relevant examples, which is often significantly
smaller than the full set of examples, but nonetheless still forces ILASP to learn
the correct program. The construction of the relevant examples is achieved by
interleaving the search for an optimal program that covers the (partially con-
structed) set of relevant examples with a second search for a new relevant exam-
ple – an example that is not covered by the current program H. This interleaving
is illustrated in Figure 3. At the start of the process, the program H is set to be
empty, because at this point this is the shortest program that covers the (empty)
set of relevant examples. In each iteration, ILASP2i searches for a new relevant
example, and if it finds one, it searches for a new program (updating H) that
covers all relevant examples found so far, using ILASP2 to perform the search.
If no relevant example exists, then H is an optimal solution of the task, and is
returned. An example of the ILASP2i procedure, based on the coin learning task
from the previous section, is shown in Figure 4.

The experiments in [23] demonstrate that ILASP2i can be over two orders of
magnitude faster than ILASP2 on tasks with hundreds of examples. The reason
is that the call to ILASP2 calls Clingo with an ASP program whose grounding
is only proportional to the number of relevant examples, rather than to the full
set of examples. Note that although the call to Clingo in the relevant example
search considers all examples, its grounding is not proportional to the number of
examples and it only requires single-shot solving in Clingo, meaning that each
call to Clingo is relatively cheap compared to the Clingo execution in ILASP2.
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ILASP2i

Relevant Example Search

Pre-processor

Single-shot ASP

Solver (Clingo)

Extract rei

ILASP2

Pre-processor

Multi-shot ASP

Solver (Clingo)

Post-processor

〈B,M, {re1, . . . , rei}〉

Update H

Task
〈B,M,E〉

H = ∅

Learned
Program (H)

Fig. 3. ILASP2i. The relevant examples computed so far are denoted re1, . . . , rei.

Relation to other approaches. ILASP1 and ILASP2 are examples of batch
learners, which consider all examples simultaneously. Some older ILP systems,
such as ALEPH [31], Progol [26] and HAIL [29], incrementally consider each
positive example in turn, employing a cover loop. The idea behind a cover loop
is that the algorithm starts with an empty program H and, in each iteration,
adds new rules to H such that a single positive example e is covered, and none
of the negative examples are covered. This approach does not work in a non-
monotonic setting, as new rules could “undo” the coverage of previously covered
examples. For this reason, most ASP learners are batch learners (e.g. [28, 6]).
ILASP2i’s method of using relevant examples can essentially be thought of as a
non-monotonic version of the cover loop. There are three main differences:

1. In cover loop approaches, in each iteration a previous program H is extended
with extra rules, giving a new program H ′ that contains H. In ILASP2i, a
completely new program is learned in each iteration. This not only resolves
the issue of non-monotonicity, but is also necessary to guarantee that optimal
programs are computed. Many cover loop approaches make no guarantee
about the optimality of the final learned program.
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% Background Knowledge

coin(c1).

coin(c2).

coin(c3).

% Examples

#pos(eg1, {heads(c1), tails(c2), heads(c3)},

{tails(c1), heads(c2), tails(c3)}).

#pos(eg2, {heads(c1), heads(c2), tails(c3)},

{tails(c1), tails(c2), heads(c3)}).

#pos(eg3, {tails(c1), heads(c2), tails(c3)},

{heads(c1), tails(c2), heads(c3)}).

#pos(eg4, {tails(c1), tails(c2), tails(c3)},

{heads(c1), heads(c2), heads(c3)}).

% Mode bias

#modeh(heads(var(coin))).

#modeh(tails(var(coin))).

#modeh(heads(const(coin))).

#modeh(tails(const(coin))).

#modeb(heads(var(coin))).

#modeb(tails(var(coin))).

#modeb(coin(var(coin))).

#constant(coin, c1).

#constant(coin, c2).

#constant(coin, c3).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Iteration 1

%%

%% Hypothesis:

%%

%% Searching for an uncovered example...

%% The hypothesis does not cover the example: eg1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Iteration 2

%%

%% Searching for a hypothesis that covers the

%% examples in { eg1 }.

%%

%% Hypothesis:

%%

%% tails(c2). heads(c1). heads(c3).

%%

%% Searching for an uncovered example...

%% The hypothesis does not cover the example: eg2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Iteration 3

%%

%% Searching for a hypothesis that covers the

%% examples in { eg1, eg2 }.

%%

%% Hypothesis:

%%

%% heads(V1) :- coin(V1), not tails(V1).

%% tails(V1) :- coin(V1), not heads(V1).

%%

%% Searching for an uncovered example...

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Solution found:

heads(V1) :- coin(V1), not tails(V1).

tails(V1) :- coin(V1), not heads(V1).

Fig. 4. On the left, an extension of the coin learning task from Section 2 (with more
examples), and on the right, the output from ILASP2i. In the first iteration, ILASP2i
searches for an example that is not covered by the empty program, and finds eg1. In
the second iteration, it finds a very specific program that covers eg1, and then finds the
second relevant example eg2. Next, it searches for a program that covers both relevant
examples, and finds a more general program. As this program covers all examples, no
further relevant examples are computed, and the process terminates.

2. In ILASP2i, the set of relevant examples is maintained and used in every
iteration, whereas in cover loop approaches, only one example is considered
per iteration.

3. In cover loop approaches, once an example has been processed, even if it
did not cause any changes to the current program H, it is guaranteed to be
covered by any future program H ′ and so it is not checked again. In ILASP2i,
this is not the case. ILASP2i performs the search for relevant examples on
the full set of examples, even if some were previously known to be covered.

ILASP2i is also somewhat similar to active learning algorithms, such as
L∗ [1]. Active learners are able to query an oracle as to whether what they
have learned is correct. The oracle is then able to provide counterexamples to
aid further learning. ILASP2i’s set of relevant examples are very similar to the
counterexamples provided by the oracle. The main difference between the two
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ILASP3

Relevant Example Search

Pre-processor

Single-shot ASP

Solver (Clingo)

Extract rei

Program Search

Single-shot ASP

Solver (Clingo)

Post-processor

Example Translator

Translate

Implication Check

B, M , rei C1 ∪ . . . ∪ Ci

Update H and Uncov

Task
〈B,M,E〉

H = ∅
Uncov = ∅

Learned
Program (H)

Fig. 5. The ILASP3 algorithm.

approaches is that in active learning, the oracle is assumed to know the correct
definition of the concept being learned, whereas in ILASP2i, this is not the case,
and the search for relevant examples is only over the provided training examples.

3.3 ILASP3

Although the concept of relevant examples allows ILASP2i to scale far better
than ILASP2 with respect to the number of examples, this only holds in a
non-noisy setting, where all examples must be covered. When examples can
be noisy, finding a single relevant example only means that a penalty must be
paid if the example is not covered. Many relevant examples (of the same class)
may need to be found before their total penalty makes it “worth” covering the
examples. For this reason, the final set of relevant examples is usually much
larger in noisy settings, which significantly reduces the technique’s impact on
scalability; in fact, ILASP2i is often even slower than ILASP2 on tasks with
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large numbers of potentially noisy examples (i.e. large numbers of examples
with finite penalties) [17].

ILASP3 uses a novel method of translating an example into a set of coverage
constraints over the solution space. The intuition of these coverage constraints is
that they give a list of conditions which are satisfied by exactly those programs
that cover the examples (e.g. the learned program must include at least one of a
certain set of rules, or none of another set of rules). The benefit of having these
constraints is twofold. Firstly, finding the optimal program that conforms to the
constraints can be performed using a single-shot ASP call rather than a multi-
shot call, as in ILASP2i, meaning that in ILASP3 the search for the optimal
program is computationally much cheaper. This is because most of the work is
done in the translation procedure (which does, itself, use a multi-shot call to
Clingo). Secondly, once the constraints for one example have been computed, it
is possible to check whether these constraints are necessary for other examples
to be covered. This second benefit is the main reason why ILASP3 performs
so much better than ILASP2i on tasks with noisy examples. After a relevant
example is found (and translated), it is known that the computed constraints
must be satisfied by the learned program, otherwise a whole set of examples
will not be covered (and the penalties of each example in this set must be paid),
rather than just the single relevant example as in ILASP2i. This can significantly
reduce the number of iterations required by ILASP3, compared with ILASP2i.

Figure 5 depicts the procedure of ILASP3. It is similar in structure to
ILASP2i, and similarly interleaves the program search with a search for rele-
vant examples. The main difference is the addition of the Example Translator,
which has two steps: firstly, it translates the relevant examples into a set of
constraints on the solution space; and secondly, in the implication check step, it
checks which other examples would be guaranteed to not be covered if the cov-
erage constraints were not satisfied – i.e. for which other examples the coverage
constraints are necessary conditions. The coverage constraints give an approxi-
mation of the coverage and score of every program in the program space. This
approximation of a program’s score is always guaranteed to be less than or equal
to the program’s real score, as it will only overestimate the program’s coverage
(if the program violates a coverage constraint, then it is known not to cover the
corresponding examples). The program search computes the optimal program
H with respect to the approximation of the score. When the approximation of
the score of H is correct (i.e. the approximation of the coverage of H is equal
to the true coverage of H), H is guaranteed to be an optimal solution of the
learning task, and is returned. Checking whether the approximation is correct
is performed by the relevant example search. As the approximation never un-
derestimates the coverage of H, it suffices to only search for a relevant example
within the set of examples that the approximation says H should cover. To fa-
cilitate this, in addition to returning H, the program search also returns the
set of examples, Uncov, which are known not to be covered by H (according to
the coverage constraints). The relevant example search is then within E\Uncov,
rather than the full example set E.
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In addition to the procedure described in this section, ILASP3 has several
other optional features, designed to boost performance on certain types of task.
For more information, please see [17].

4 Current and Future Work

4.1 Conflict-driven ILP and ILASP4

Meta-level ILP systems, such as TAL [5], ASPAL [6] and Metagol [27, 8], encode
an ILP task as a fixed meta-level logic program, which is solved by an off-the-
shelf Prolog or ASP solver, after which the meta-level solution is translated back
to an (object-level) inductive solution of the ILP task.

At first glance, the earliest ILASP systems (ILASP1 and ILASP2) may seem
to be meta-level systems, and they do indeed involve encoding a learning task
as a meta-level ASP program; however, they are actually in a more complicated
category. Unlike “pure” meta-level systems, the ASP solver is not invoked on a
fixed program, and is instead (through the use of multi-shot solving) incremen-
tally invoked on a program that is growing throughout the execution.

With each new version, ILASP has shifted further away from pure meta-level
approaches, towards a new category of ILP system, which we call conflict-driven.
Conflict-driven ILP systems, inspired by conflict-driven SAT and ASP solvers,
iteratively construct a set of constraints on the solution space – where the term
constraint is used very loosely to mean anything that partitions the solution
space into one partition that satisfies the constraint and another that does not
– which must be satisfied by any inductive solution. In each iteration, the solver
finds a program H that satisfies the current constraints, then searches for a
conflict C, which corresponds to a reason why H is not an (optimal) inductive
solution. If none exists, then H is returned; otherwise, C is converted to a new
constraint which the next programs must satisfy.

In some sense ILASP2i is already a conflict-driven ILP system, where the
relevant examples in each iteration are the conflicts, although it is not really in
the spirit of a true conflict-driven system as the constraint generated in each
iteration is that one of the examples must be covered, which was already ob-
vious from the original task. ILASP3 is arguably the first truly conflict-driven
ILP system, as it translates the relevant example (the conflict) into a set of
constraints on the solution space; however, unlike conflict-driven SAT and ASP
approaches the constraints can be extremely large and expensive to compute,
especially when the program space is large. The issue stems from the fact that
the constraints are both sufficient and necessary for the example to be covered
(i.e. the example is covered if and only if the constraints are satisfied). ILASP4,
which is currently in development, relaxes this and computes constraints which
are only guaranteed to be necessary (but may not be sufficient) for the example
to be covered. This may mean that the same relevant example is found twice,
leading to more iterations, but each iteration will be considerably less expensive,
and the constraints constructed in each iteration will be significantly smaller.
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4.2 FastLAS

Although each ILASP system has improved scalability with respect to several
dimensions, one bottleneck that remains is the size of the rule space. This is
because every version of ILASP begins by computing the rule space in full. Fast-
LAS [19] is a new algorithm that solves a restricted version of ILASP’s learning
task (currently with no recursion, only observational predicate learning and no
predicate invention). Rather than generating the rule space in full, FastLAS com-
putes a much smaller subset of the rule space that is guaranteed to contain at
least one optimal solution of the task (called an OPT-sufficient subset). As this
OPT-sufficient subset is often many orders of magnitude smaller than the full
rule space, FastLAS is far more scalable than ILASP. Due to FastLAS’s restric-
tions, once it has computed the OPT-sufficient subset, it is able to solve the task
in one (single-shot) call to Clingo. FastLAS2, which is currently in development,
will lift the restrictions and replace the call to Clingo with a call to ILASP, thus
enabling ILASP to take advantage of FastLAS’s increased scalability.
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