
Inductive Learning of Answer Set Programs

Mark Law, Alessandra Russo�, and Krysia Broda

Department of Computing, Imperial College London, United Kingdom
{mark.law09,a.russo,k.broda}@imperial.ac.uk

Abstract. Existing work on Inductive Logic Programming (ILP) has
focused mainly on the learning of definite programs or normal logic pro-
grams. In this paper, we aim to push the computational boundary to
a wider class of programs: Answer Set Programs. We propose a new
paradigm for ILP that integrates existing notions of brave and cautious
semantics within a unifying learning framework whose inductive solu-
tions are Answer Set Programs and examples are partial interpretations
We present an algorithm that is sound and complete with respect to
our new notion of inductive solutions. We demonstrate its applicabil-
ity by discussing a prototype implementation, called ILASP (Inductive
Learning of Answer Set Programs), and evaluate its use in the context of
planning. In particular, we show how ILASP can be used to learn agent’s
knowledge about the environment. Solutions of the learned ASP program
provide plans for the agent to travel through the given environment.

Keywords: Inductive Reasoning, Learning Answer Set Programs, Non-
monotonic Inductive Logic Programming.

1 Introduction

For more than two decades, Inductive Logic Programming (ILP) [10] has been
an area of much interest. Significant advances have been made both on new algo-
rithms and systems (e.g. [15,8,1,11,12]) and proposals of new logical frameworks
for inductive learning (e.g. [13,16]). In most of these approaches an inductive
learning task is defined as the search for an hypothesis that, together with a
given background knowledge, explains a set of observations (i.e. examples). Ob-
servations are usually grouped into positive (E+) and negative (E−) examples,
and an inductive solution is defined as an hypothesis H that is consistent with
the background knowledge B and that, together with B, entails the positive ex-
amples (B∪H |= e for every e ∈ E+) and does not entail the negative examples.

As stated in [16], this semantic view of inductive learning may be too “strong”.
When B ∪ H accepts more than one (minimal) model, it restricts solutions to
be only those hypotheses H for which the given observations are true in the
intersection of all models of B ∪H . Both Brave Induction [16] and Induction of
Stable Models [13] applied induction to the stable model semantics [6] such that
in situations when B ∪ H has more than one stable model, it is just necessary
to guarantee that each example is true in at least one stable model of B ∪ H .

� This research is partially funded by the 7th Framework EU-FET project 600792
“ALLOW Ensembles”, and the EPSRC project EP/K033522/1 “Privacy Dynamics”.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 311–325, 2014.
c© Springer International Publishing Switzerland 2014

312 M. Law, A. Russo, and K. Broda

Their notion of examples is, however, very specific: in [16] there is only one
example defined as a conjunction of atoms, and in [13] examples are partial
interpretations. When B ∪H has multiple stable models, literals may be true in
all models, some of, or none of them, and sometimes only a specified number of a
particular set of literals should be true. Neither Brave Induction, nor Induction
of Stable Models, is able to express through examples that a literal should be
true in all/no stable models. To allow for hypotheses that are ASP programs, a
more expressive notion of examples and inductive solution is therefore needed.

1 3
4 1

2
4 1 2

(a)
1 1
3 1

2
3

(b)
1 2

4

1
2

1
3

(c)
1 4 2 3
3 2 4 1
2 1 3 4
4 3 1 2

(d)

Fig. 1. (a) valid partial grid; (b/c) invalid partial grids; (d) valid complete grid

Consider a simplified version of a sudoku game where the grid includes only
sixteen cells. Let us assume that basic definitions of cell, same row, same col
and same block (true only for two different cells in the same row/column/block)
are given as background knowledgeB expressed as an ASP program, and that the
task is to learn an hypothesis H such that the Answer Sets of B ∪H correspond
to the valid sudoku grids. A possible hypothesis would be the ASP program:

1 { value(1, C), value(2, C), value(3, C), value(4, C) } 1 :- cell(C).

:- value(V, C1), value(V, C2), same_col(C1, C2).

:- value(V, C1), value(V, C2), same_row(C1, C2).

:- value(V, C1), value(V, C2), same_block(C1, C2).

To learn this program, single literal examples such as value(1, cell(1, 1)) would
not be enough, as value(1, cell(1, 1)) being valid depends on the values of the
other cells. Examples should therefore be (partial) grids, e.g. Figure 1(a), and
the learned hypothesis, H , should be such that for every example E, B ∪ H
has an Answer Set corresponding to a complete grid that extends E. It is
not sufficient to consider only (positive) examples of what should be an An-
swer Set of B ∪ H : no matter how many examples we give, the hypothesis
0{value(1, C), value(2, C), value(3, C), value(4, C)}4 ← cell(C) will always be
in the solution space. Each valid sudoku board would be an Answer Set of this
hypothesis; however, this is also true for invalid boards, such as those in Figure 1
(b) and (c). What is needed is the use of negative examples. In the sudoku game,
negative examples would be invalid partial boards (e.g., Figure 1 (b) and (c)).

In Section 3 we propose a new paradigm for inductive learning, called Learn-
ing from (partial) Answer Sets. Our approach integrates notions of brave and
cautious semantics within a unifying learning framework whose inductive solu-
tions are ASP programs and both positive and negative examples are (partial)
interpretations. Inductive solutions are ASP programs that together with a given
background knowledge B have at least one Answer Set extending each positive
example (this could be a different Answer Set for each example), and no Answer

Inductive Learning of Answer Set Programs 313

Set which extends any negative example. The use of negative examples is what
differentiates our approach from Brave Induction or Induction of Stable Mod-
els. In fact, neither of these two existing approaches would be able to learn the
three constraints for the sudoku problem, but our approach can solve any Brave
Induction or Induction of Stable Models task. In addition, in our framework
negative examples drive the learning of constraints, or the learning of bounds on
aggregates. In Section 4 we present our algorithm, ILASP, and argue its sound-
ness and completeness with respect to our new notion of inductive learning. In
Section 5 we investigate its applicability to a planning problem. We conclude the
paper with a review of the related work and a discussion of future directions.

2 Background

We assume the following subset of the ASP language. A literal can be either an
atom p or its default negation not p (often called negation as failure). A normal
rule is of the form h ← b1, . . . , bn, not c1, . . .not cm where h is called the head,
b1, . . . , bn, not c1, . . .not cm (collectively) is called the body, and all h, bi, and cj
are atoms. A constraint is of the form ← b1, . . . , bn, not c1, . . . not cm. A choice
rule is an expression of the form l{h1, . . . , hm}u ← b1, . . . , bn, not c1, . . .not cm
where the head l{h1, . . . , hm}u is called an aggregate. In an aggregate l and u
are integers and hi, for 1 ≤ i ≤ m, are atoms. A variable V occurring in a rule R
is said to be safe if V occurs in at least one positive literal in the body of R; for
example, X is not safe in the rules p(X)← q(Y), not r(Y); or p← q, not r(X).

An Answer Set Program P is a finite set of normal rules, constraints and choice
rules. Given an ASP program P , the Herbrand Base of P , denoted asHBP , is the
set of all ground (variable free) atoms that can be formed from the predicates and
constants that appear in P . When P includes only normal rules, a set A ⊆ HBP

is an Answer Set of P iff it is the minimal model of the reduct PA (constructed
from the grounding of P by removing any rule whose body contains a literal
not ci where ci ∈ A, and removing any negative literals in the remaining rules).
An Answer Set satisfies a ground constraint ← b1, . . . , bn, not c1, . . . not cm if
{b1, . . . , bn} �⊆ A or A ∩ {c1, . . . cm} �= ∅. Informally, given a ground choice
rule l{h1, . . . , hm}u← b1, . . . , bn, not c1, . . . not cm if the body is satisfied by A,
then the rule has the effect of generating all Answer Sets in which l ≤ |A ∩
{h1, . . . , hm}| ≤ u. For a formal definition of the semantics of choice rules, the
reader is referred to [5]. Throughout the paper we will denote with AS(P) the
set of all Answer Sets of P .

Definition 1. A partial interpretation E is a pair E = 〈Einc, Eexc〉 of sets of
ground atoms, called the inclusions and exclusions respectively. An Answer Set
A extends 〈Einc, Eexc〉 if and only if (Einc ⊆ A) ∧ (Eexc ∩A = ∅).

A partial interpretation E is bravely entailed by a program P if and only if there
exists an Answer Set A ∈ AS(P) such that A extends E. E is cautiously entailed
by P if and only if every Answer Set A ∈ AS(P) extends E.

314 M. Law, A. Russo, and K. Broda

3 Learning from Answer Sets

In this section we formalize our new paradigm of Learning from (partial) Answer
Sets. We assume background knowledge and hypotheses to be ASP programs
expressed using the ASP language defined in Section 2.

In an ILP task, the expressivity of the hypothesis space is defined by the
language bias of the task, often characterised by mode declarations [11]. A lan-
guage bias can be defined as a pair of sets of mode declarations 〈Mh,Mb〉, where
Mh (resp. Mb) are called the head (resp. body) mode declarations. Each mode
declaration mh ∈ Mh (resp. mb ∈ Mb) is a literal whose abstracted arguments
are either v or c. Informally, an atom is said to be compatible with a mode
declaration m if each instance of v in m is replaced by a variable, and every
c by a constant. Given a language bias M = 〈Mh,Mb〉, a rule of the form
h← b1, . . . , bn, not c1, . . .not cm is in the search space SM if and only if (i) h is
empty; or h is an atom compatible with a mode declaration in Mh; or h is an
aggregate l{h1, ...hk}u such that 0 ≤ l ≤ u ≤ k and ∀i ∈ [1, k] hi are compatible
with mode declarations in Mh; (ii) ∀i ∈ [1, n], ∀j ∈ [1,m] bi and cj are compat-
ible with mode declarations in Mb, and finally (iii) all variables in the rule are
safe. Each rule R in SM is given a unique identifier Rid.

Example 1. Let M be the mode declarations 〈{value(c, v)}, {cell(v), value(v, v),
same block(v, v), same row(v, v), same col(v, v)}〉. Then the following are inSM :
value(1, C)← cell(C); 1{value(1, C), value(2, C)}2← cell(C);← value(X,C1),
value(X,C2), same block(C1, C2); whereas the following are not: value(C) ←
cell(C); cell(C)← cell(C);← value(1, C1), value(1, C2), same block(C1, C2).1

Definition 2. A Learning fromAnswer Sets task is a tuple T = 〈B,SM , E+, E−〉
where B is the background knowledge, SM is the search space defined by a language
biasM ,E+ and E− are sets of partial interpretations called, respectively, the posi-
tive and negative examples. An hypothesis H is an inductive solution of T (written
H ∈ ILPLAS(T)) if and only if:

1. H ⊆ SM

2. ∀e+ ∈ E+ ∃A ∈ AS(B ∪H) such that A extends e+

3. ∀e− ∈ E− � ∃A ∈ AS(B ∪H) such that A extends e−

Note that this definition combines properties of both the brave and cautious
semantics: the positive examples must each be bravely entailed; whereas the
negation of each negative example must be cautiously entailed.

Example 2. Let B = {p← r}, M = 〈{q, r}, {p, r}〉, E+={〈{p}, {q}〉, 〈{q}, {p}〉}
and E− = {〈∅, {p, q}〉, 〈{p, q}, ∅〉}. An inductive solution is the ASP program H
given by H = {q ←not r; r←not q}. The Answer Sets of B ∪H are {p, r} and
{q}. The former extends the first positive example, the latter extends the second
positive example and clearly neither of them extend any negative examples.

1 Here, and in the rest of the paper, we use ; as a delimiter in sets of rules.

Inductive Learning of Answer Set Programs 315

The following example shows that our learning setting, with the search space as
defined in example 1, can learn the sudoku problem described in the introduction.

Example 3. Consider again the sudoku problem, with SM as described in exam-
ple 1, B containing the definitions of same row, same col, same block and cell.
Let the examples be as follows:

E+ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈{value(cell(1, 1), 1),
value(cell(1, 2), 2),
value(cell(1, 3), 3),
value(cell(1, 4), 4),
value(cell(2, 3), 2)
}, ∅〉

E− =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈{value(cell(1, 1), 1),
value(cell(1, 3), 1)}, ∅〉
〈{value(cell(1, 1), 1),
value(cell(3, 1), 1)}, ∅〉
〈{value(cell(1, 1), 1),
value(cell(2, 2), 1)}, ∅〉

Let l{value(C, 1), value(C, 2), value(C, 3), value(C, 4)}ube denoted by agg(l, u).
The hypothesisH1 = {agg(1, 1)← cell(C)} is not an inductive solution, whereas
H2 = {agg(1, 1) ← cell(C);← value(V,C1), value(V,C2), same col(C1, C2);
← value(V,C1), value(V,C2), same row(C1, C2);← value(V,C1), value(V,C2),
same block(C1, C2)} is an inductive solution. This shows that our learning task
can incentivise the learning of constraints. With the examples as they are, if we
takeH3 to be constructed from H2 by replacing agg(1, 1) with agg(0, 1), then H3

is still an inductive solution. Adding the negative example 〈∅, {value(cell(1, 1), 1),
value(cell(1, 1), 2), value(cell(1, 1), 3), value(cell(1, 1), 4), }〉, this is no longer the
case. H2 is an inductive solution, whereas H3 is not. This shows that ILPLAS is
able to incentivise learning bounds on aggregates.

It is common practice in ILP to search for “optimal” hypotheses. This is usually
defined in terms of the number of literals in the hypothesis. This does not apply
well to hypotheses that include aggregates: the length of 1{p, q}1 (exactly one
of p and q is true) would be the same as the length of 0{p, q}2 (none, either or
both of p and q is true), but clearly they do not represent similar concepts. To
calculate the length of an aggregate we convert it to disjunctive normal form,
as this takes into account both the number of Answer Sets that the aggregate
generates and the number of literals it uses. For example, 0{p, q}2 is considered
as (p∧ q)∨ (p∧not q)∨ (not p∧ q)∨ (not p∧not q), which has length 8, whereas
1{p, q}1 is considered as (p ∧ not q) ∨ (not p ∧ q), which has length 4.

Definition 3. Given an hypothesis H, the length of the hypothesis, |H |, is the
number of literals that appear in HD, where HD is constructed from H by con-
verting all aggregates in H to disjunctive normal form.

Given an ILPLAS learning task T =〈B,SM , E+, E−〉, we denote with ILP ∗
LAS(T)

the set of all optimal inductive solutions of T , where optimality is defined in terms
of the length of the hypotheses. We will also denote with ILPn

LAS(T) the set of all
inductive solutions of T which have length n.

316 M. Law, A. Russo, and K. Broda

4 Algorithm

In this section we describe our algorithm ILASP (Inductive Learning of Answer
Set Programs) and state its soundness and completeness results. Due to space
limitation, proofs have been omitted from the paper but they are available in [9].

Our algorithm works by encoding our ILPLAS task into an ASP program. It
makes use of two main concepts: positive solutions and violating solutions. Pos-
itive solutions are those hypotheses that, added to the background knowledge,
have Answer Sets which extend each positive example. But some positive solu-
tions may still cover negative examples; we call these the violating solutions. The
underlying idea of our algorithm is to compute every violating solution of a given
length, and then use these to generate a set of constraints which, when added
to our task program, eliminate the violating solutions. Theorem 1 shows that
the remaining positive solutions are indeed the inductive solutions of the given
ILPLAS task. ILASP uses the ASP solver clingo[4] to compute these solutions.

Definition 4. Let T = 〈B,SM , E+, E−〉 be an ILPLAS task. An hypothesis
H ∈ positive solns(T) iff H ⊆ SM and ∀e+ ∈ E+ ∃A ∈ AS(B ∪ H) such
that A extends e+. A positive solution H ∈ violating solns(T) iff ∃e− ∈ E−

∃A ∈ AS(B ∪ H) such that A extends e−. We write positive solnsn(T) and
violating solnsn(T) to denote the positive and violating solutions of length n.

Example 4. Consider the ILPLAS task T =〈B,SM , E+, E−〉 where B={q ← r},
E+ = {〈{p}, ∅〉, 〈{q}, ∅〉}, E− = {〈{p, q}, ∅〉} and SM is given by the following
rules {p; r; p ← r; p ← not r; r ← not p}2. The hypotheses H1 = {p; r},
H2 = {p ← r; r} and H3 = {p ← not r; r ← not p} are among the positive
solutions of T . Each of the first two hypotheses (together with the background
knowledge) has one Answer Set: {p; q; r}. This extends the negative example in
T , and so both hypotheses are violating solutions of T . Note that the positive
solutions which are also violating solutions are not inductive solutions, whereas
the third positive solution, which is not a violating solution is an inductive
solution of T . This is a general property proven by Theorem 1.

Theorem 1. Let T = 〈B,SM , E+, E−〉 be an ILPLAS learning task. Then
ILPLAS(T)=positive solns(T)\violating solns(T).

One method to find all inductive solutions of an ILPLAS learning task T would
be to generate all positive inductive solutions of T , add each solution, in turn,
to the background knowledge in T and solve the resulting program to check
whether it accepts Answer Sets that extend any negative examples, i.e. whether
it is a violating solution of T . As, in practice, this would be inefficient, we in-
stead generate the violating solutions first and use these to constrain our search
for positive solutions. Inspired by the technique in [2], we encode our ILPASP

learning task as an ASP program whose Answer Sets will provide our positive
solutions. But, differently from [2], our encoding uses a meta-level approach that

2 In subsequent examples we will refer to these rules in SM with their Rid a to e.

Inductive Learning of Answer Set Programs 317

allows us to reason about multiple Answer Sets of B∪H , as in our notion of pos-
itive solution there might be multiple positive examples that may be extended
by different Answer Sets of B ∪H .

Specifically, our definition of a positive solution H requires that each positive
example e+ ∈ E+ has an Answer Set of B ∪ H that extends it. We use the
atom e(A, e+id) to represent that a literal A is in the Answer Set that extends
the positive example e+ (with unique identifier e+id). For each e+ ∈ E+, the
ground fact ex(e+id). Each rule R in the background knowledge and in the given
hypothesis space SM , is rewritten in a meta-level form by replacing each atom
A that appears in R with the atom e(A,X) and adding ex(X) to the body of
the rule. In this way the evaluation of the rules (in B ∪ H) can explicitly refer
to specific Answer Sets that extend a specific positive example and guide the
search accordingly. In the case of negative examples, for an hypothesis H to be
a violating solution, it is only necessary that B ∪H cover one negative example.
We therefore use only the fact ex(neg) to represent any negative example. We
use a predicate active(Rid), added to the body of each rule R∈SM , where Rid

is a unique identifier for R. Rules not chosen for the hypothesis will have this
condition evaluated to false (and the rule will be vacuously satisfied). Formally,
given an Answer Set A, the function meta−1(A) = {R ∈ SM : active(Rid) ∈ A}.
Definition 5. Let T =〈B,SM , E+, E−〉 be an ILPLAS learning task and n ∈ N.
Let Rid be a unique identifier for each rule R∈SM and let e+id be a unique iden-
tifier for each positive example e+ ∈E+. The learning task T is represented as
the ASP task program T n

meta = meta(B)∪meta(SM)∪meta(E+)∪meta(E−)∪
meta(Aux, n) where each of these five “meta” components are as follows:

1. meta(B) is generated from B by replacing every atom A with the atom
e(A,X), and by adding the condition ex(X) to the body of each rule.

2. meta(SM) is generated from SM by replacing every atom A with the atom
e(A,X), and by adding the two conditions active(Rid) and ex(X) to the body
of the rule R that matches the correct rule identifier Rid.

3. meta(E+) includes for each ex+ = 〈{li1, . . . , lih}, {le1, . . . , lek}〉 ∈ E+ the

rules:

⎧
⎨

⎩

ex(ex+
id); ← not covered(ex+

id);
covered(e+id)← e(li1, ex

+
id), . . . , e(lih, ex

+
id),

not e(le1, ex
+
id), . . . ,not e(lek, ex

+
id)

4. meta(E−) includes for each e−=〈{li1, . . . , lih}, {le1, . . . , lek}〉∈E− the rule:
violating ← e(li1, neg), . . . , e(lih, neg), not e(le1, neg), . . . ,not e(lek, neg)

5. meta(Aux, n) includes the ground facts length(Rid, |R|) for every rule R∈
SM and the rule n #sum{active(R) = X : length(R,X)}n to impose that
the total length of the (active) hypothesis has to be n.

Example 5. Recall the task T in Example 4. T 3
meta is as follows:

1. meta(B)={e(q,X)← e(r,X), ex(X)}
2. meta(SM)={e(p,X)← active(a), ex(X); e(r,X)← active(b), ex(X);

e(p,X)← e(r,X), active(c), ex(X); e(p,X)← not e(r,X), active(d), ex(X);
e(r,X)← not e(p,X), active(e), ex(X)}

318 M. Law, A. Russo, and K. Broda

3. meta(E+)={covered(1)← e(p, 1); covered(2)← e(q, 2);
← not covered(1);← not covered(2); ex(1); ex(2)}

4. meta(E−)={violating← e(p, neg), e(q, neg)}
5. meta(Aux, 3)={length(a, 1); length(b, 1); length(c, 2); length(d, 2);

length(e, 2); 3 #sum{active(R) = X : length(R,X)}3}
Proposition 1. Let T =〈B,SM , E+, E−〉 be an ILPLAS task and n∈N . Then
H∈positive solnsn(T) if and only if ∃A∈AS(T n

meta) such that H=meta−1(A).

But as stated in Theorem 1, to compute our inductive solution we need also
to compute the violating solutions. The same ASP encoding described in Def-
inition 5 can be used to generate all the violating solutions. Specifically, given
a length n, the ASP program T n

meta ∪ {← not violating; ex(neg)} will have
Answer Sets that include active(Rid) of hypotheses R ∈ SM that are violating
solutions. This is captured by Proposition 2.

Proposition 2. Let T = 〈B,SM , E+, E−〉 be an ILPLAS task and n ∈ N .
Let P be the ASP program T n

meta ∪ {← not violating; ex(neg)}. Then H ∈
violating solnsn(T) if and only if ∃A ∈ AS(P) such that H=meta−1(A).

The main idea of our learning algorithm, called ILASP, is to compute first all
violating solutions of a given ILPLAS learning task T by solving the ASP pro-
gram T n

meta ∪{← not violating; ex(neg)}. Then to convert these solutions into
constraints3 and again to solve T n

meta, augmented this time with these new con-
straints. The Answer Sets of this second step will provide all the inductive solu-
tions of T . This is formally described in Algorithm 1.

Algorithm 1. ILASP

procedure ILASP(T)
solutions = []
for n = 0; solutions.empty; n++ do

vs = AS(Tn
meta ∪ {← not violating; ex(neg)})

ps = AS(Tn
meta ∪ {constraint(meta−1(V)) : V ∈ vs})

solutions = {meta−1(A) : A ∈ ps}
end for
return solutions

end procedure

We denote with ILPn
LAS(T) the set of all inductive solutions of length n. Propo-

sition 3 states that the Answer Sets of the ASP task program augmented with
constraint(H), for each violating solutionH , correspond exactly to the inductive
solutions of length n of the original learning task.

Proposition 3. Let T = 〈B,SM , E+, E−〉 be an ILPLAS task and n ∈ N . Let
P = T n

meta ∪ {constraint(V) : V ∈ violating solnsn(T)}. Then a hypothesis
H ∈ ILPn

LAS(T) if and only if ∃A ∈ AS(P) such that H = meta−1(A).

3 constraint({R1, . . . , Rh}) denotes the rule ← active(Rid1), . . . , active(Ridh), where
Rid1,. . .Ridh are the unique identifiers of rules R1, . . . , Rh in H .

Inductive Learning of Answer Set Programs 319

The following theorem states that ILASP is sound and complete with respect
to the notion of optimal4 inductive solutions in ILP ∗

LAS(T). ILASP (T) denotes
the set of hypotheses computed by ILASP for a given ILPLAS task T .

Theorem 2. Let T be any ILPLAS learning task such that there is at least one
inductive solution. Then ILASP (T) = ILP ∗

LAS(T).

Proof. At each step through the for loop (fix n to be any natural number): let
H be an hypothesis of length n and P = T n

meta ∪ {← not violating; ex(neg)}.
By Prop. 2, H ∈ violating solnsn(T) iff ∃A ∈ AS(P) st H = meta−1(A).
⇒ H ∈ violating solnsn(T) iff ∃A ∈ vs st H = meta−1(A).
⇒ violating solnsn(T) = {meta−1(A) : A ∈ vs}

ps = AS(T n
meta ∪ {constraint(meta−1(V)) : V ∈ vs})

⇒ ps = AS(T n
meta ∪ {constraint(V) : V ∈ violating solnsn(T)})

⇒ H ∈ ILPn
LAS(T) iff ∃A ∈ ps st H = meta−1(A) by Proposition 3.

⇒ ILPn
LAS(T) = {meta−1(A) : A ∈ ps} = solutions

As ILASP (T) returns ILPn
LAS(T) for the first n for which it is non-empty,

ILASP (T) = ILP ∗
LAS(T). ��

We are currently working to improve ILASP’s scalability. In general there could
be many violating solutions before the first inductive solution; for example, with
the sudoku problem, the first positive solution is H1 from example 3 which has
length 17; however, the first inductive solution is not until H2 at length 26. There
are many thousands of violating solutions between lengths 17 and 26 (many of
these are constructed by adding rules to H1). By restricting the search space
so that the only permitted aggregates are those of the form agg(l, u) for some l
and u (see example 3), our implementation was able to find the correct solution.
In current work we are exploring techniques to make ILASP more efficient and
more scalable. One possibility is to keep a set of full Answer Sets which extend
negative examples. When we find a violating solution, we add an Answer Set to
this set and rule out further solutions which accept this Answer Set. This set is
likely to be much smaller than the set of violating solutions.

5 Application to a Planning Problem

In this section we apply our approach to a planning problem where an agent is
in a room at a given position and attempts to get to a target position. Figure 2
gives a graphical representation of the room and the legend describes its main
features. The challenge in this planning problem is that although the agent has
complete knowledge of the grid map, it does not know the meaning of the various
cell features. For instance, it knows which cells are locked, but not that to go
through a locked cell it must first visit the key to that cell. The agent’s goal is
to learn the definition of valid move to allow it to reach the target position.

4 Note that the optimality – hypotheses with shortest length – is guaranteed by the
incremental property of our algorithm.

320 M. Law, A. Russo, and K. Broda

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

X

X

E

S

L
X,X

L
6,7

L
2,4

L
9,6

L
8,X

L
3,X

L
3,5

L
9,X

K
7,6

K
8,6

K
4,7

K
8,2

K
1,X

K
3,5

S

E

L
8,X

K
4,7

The agent starts here

The agent is aiming to end here

This cell starts off as being locked Cell

This is the key for the locked cell (4, 7)

This is a link cell which

allows the agent to move to (8, X)

Fig. 2. Cells with diagonal lines are locked and the agent must visit the corresponding
key before it can enter these cells. Link cells allow the agent to jump to the indicated
destination cell. The thick black lines represent walls.

The planning problem is modelled as follows. At each step an oracle informs
the agent on which cells it could move to next, called the valid moves. If the
agent, using its current knowledge, infers valid moves that are different from that
suggested by the oracle then the agent learns an updated hypothesis; otherwise
it plans a path to the target position, using its current hypothesis, and selects as
its next move the first move in the plan. By using ASP optimisation, the agent
can even plan for the optimal (shortest) plan.5 In what follows we show three
scenarios illustrating three different learning outcomes. In the first scenario, the
agent learns just the concept of valid move; in the second scenario, part of the
existing background knowledge is removed and the agent has to also learn a new
concept that does not appear in the examples or in the background knowledge,
showing the ability of ILPLAS to support predicate invention [11]. Finally, in
the third scenario, the environment is non deterministic, causing the agent to
learn a non deterministic notion of valid move.

Scenario 1: In this simplest scenario, the agent is given the grid map, encoded
as facts, together with the history of the cells it has been at from the start and
the notions of adjacent cells, visited cell and unlocked cell (given below).

unlocked(C, T) :- visited_cell(Key, T), key(C, Key).

unlocked(C, T) :- cell(C), not locked(C), time(T).

The task is for the agent to learn the rules:

valid_move(C1, T) :- agent_at(C2, T), not wall(C1, C2),

adjacent(C1, C2), unlocked(C1, T).

valid_move(C1, T) :- agent_at(C2, T), link(C2, C1), unlocked(C1, T).

We denote with VMoracle the set of valid move/2 facts that the oracle generates
and with VMagent the set of valid move/2 facts that the agent infers at a given
time using its current knowledge and hypothesis. When VMoracle and VMagent

differ, the agent uses our ILASP algorithm to find a new hypothesis such that

5 If the agent cannot generate, with its current knowledge, a plan to reach the target
position, then optimality is defined in terms of exploration of the map.

Inductive Learning of Answer Set Programs 321

VMagent and VMoracle are once again equal. The background knowledge consists
of the definitions of adjacent, unlocked, visited cell and of the history of the
cells the agent has been at from the start. In this simple scenario the target
program has only one Answer Set, thus only one positive example is necessary.
In particular, at each learning step, the positive example is given by every valid
move in VMoracle that does not appear in VMagent. These are the moves the
agent did not realise were possible, hence it needs to learn. The negative examples
are constructed from the moves that are in VMagent but not in VMoracle. These
are the moves the agent wrongly thought were possible and that the new learned
hypothesis should no longer cover. The first few sets of examples are shown in
example 6. Note that the learning task does not take into account the complete
history of the valid moves. So it is possible that the new hypothesis wrongly
classifies as invalid a move made at an earlier step. If VMoracle is still different
to VMagent, the examples are again updated and a new hypothesis is learned.

Example 6. At the first step VMoracle = {(9, 1), (10, 2)}, but given the agent’s
initial hypothesis, ∅, VMagent = ∅. The examples are therefore:

E+ =

{ 〈{valid move(cell(9, 1), 1),
valid move(cell(10, 2), 1)}, ∅〉

E− = ∅

ILASP returns the hypothesis valid move(C, T) ← unlocked(C, T). VMagent

and VMoracle are still not equal as VMagent now contains too many moves. The
agent therefore extends its examples to:

E+ =

⎧
⎨

⎩

〈{valid move(cell(9, 1), 1),
valid move(cell(10, 2), 1)
}, ∅〉

E− =

⎧
⎨

⎩

〈{valid move(cell(8, 1), 1)}, ∅〉,
〈{valid move(cell(7, 1), 1)}, ∅〉,

. . .

The new hypothesis is valid move(C, T) ← adjacent(C,C2), agent at(C2, T).
VMagent and VMoracle are now equal, and so the agent makes it’s first move (to
(9, 1)). VMoracle and VMagent are equal until the agent reaches (8, 1). VMagent

now has (7, 1) where VMoracle does not. The previous example set is augmented
with the new negative example 〈{valid move(cell(7, 1), 3)}, ∅〉. As shown in Ta-
ble 1, ILASP is able to generate the correct solution in 6 learning steps; however,
in this scenario it only had to learn a single predicate. Next we investigate what
happens when ILASP needs to learn an unseen predicate.

Scenario 2: This scenario differs from the previous one in that the agent is
not given the definition of unlocked cell. The language bias of this learning task
is therefore augmented with a new predicate, called extra/2 added to both Mh

and Mb. We expected the agent to learn the previous hypothesis along with the
definition of unlocked; however, the agent learned the shorter hypothesis:

extra(C,T) :- agent_at(C1, V1), link(C1,C).

extra(C,T) :- adjacent(C,C1), agent_at(C1, T), not wall(C,C1).

valid_move(C, T) :- extra(C,T), not locked(C).

valid_move(C, T) :- extra(C,T), key(C1,C), visited_cell(C1,T).

So far, due to the deterministic environment the agent has learned programs with
only one Answer Set. The next scenario explores a non-deterministic setting.

322 M. Law, A. Russo, and K. Broda

Table 1. Results for the first scenario. Each row shows the path the agent took while
it believed a particular hypothesis ((1..3, 2) abbreviates (1, 2), (2, 2), (3, 2)) .

Path Hypotheses (With variables renamed for readability)

(10, 1)
(10, 1) valid move(C, T)← unlocked(C, T).
(10..8, 1) valid move(C, T)← adjacent(C,C2), agent at(C2, T).
(8, 1..4), (7..6, 4) valid move(C, T)← not wall(C,C2), adjacent(C,C2), agent at(C2, T).

(6, 4..7), (5, 7)
valid move(C, T)← not wall(C,C2), adjacent(C,C2), agent at(C2, T).
valid move(C, T)←link(C,C2), agent at(C2, T).

(5, 7..8), (2..3, 4),
(3, 3)

valid move(C, T)← not wall(C,C2), unlocked(C,T),
adjacent(C,C2), agent at(C2, T).

valid move(C, T)←link(C,C2), agent at(C2, T).

(3, 3), (2..3, 3),
(3, 5), (2, 5..6),
(1, 6..7) (1, 8..5),
(3..1, 10)

valid move(C, T)← not wall(C,C2), unlocked(C,T),
adjacent(C,C2), agent at(C2, T).

valid move(C, T)←link(C,C2), unlocked(C, T), agent at(C2, T).

Scenario 3: We now further complicate matters for our agent by removing the
guarantee that the set of valid moves it has is always inferable given its history.
The change to the scenario is that link is given an extra argument: the flipped
destination cell (if the destination cell is (X,Y), the flipped cell is (Y,X)). Now
whenever the agent lands on a link cell, the oracle decides (randomly) whether
to give the destination cell, or the flipped cell as a valid move. In the first
two scenarios we restricted the search space to hypotheses without aggregates,
whereas here we allow aggregates, which extends the search space to include
many more rules. As a consequence, to overcome the scalability issues discussed
in the previous section, we needed to make a small addition to the background
knowledge that combines the concepts of adjacent and wall into a new concept
joined(C1, C2) ← adjacent(C1, C2), not wall. In this scenario, in addition to
the set of valid moves, the oracle also gives to the agent a second set of potentially
valid moves (the union of all sets of valid moves the oracle could have given).

The fact that the environment is non-deterministic changes the learning task
slightly. We can no longer encode every invalid move proposed by the agent at
a particular time as a negative example. This is because, had the oracle made
a different choice, the move might have been a valid one. If an invalid move
appears in the set of potentially valid moves, then it is instead added to the
exclusion set of the positive example at that time. This means that it cannot
occur in the Answer Set extending this positive example, but could well appear
in other Answer Sets of the program. The agent was able to learn the rules:

1 {valid_move(C, T); valid_move(FC, T)} 1 :-

unlocked(C, T), link(C2, C, FC), agent_at(C2, T).

valid_move(C, T) :- unlocked(C, T), joined(C, C2), agent_at(C2, T).

6 Related Work

In this section we review the related work. We reformulate (but preserve the
meaning of) some learning tasks to allow for easier comparison with our own.

Inductive Learning of Answer Set Programs 323

The goal of traditional ILP has been to learn Prolog style logic programs.
Usually this is restricted to learning definite programs (with no negation as
failure). The learning task of these traditional ILP systems is equivalent to a
Learning from Answer Sets task with a single positive example (and no nega-
tive examples) and with the search space restricted to definite logic programs.
But learning more general ASP programs rather Prolog programs has the clear
advantage that the ASP representation is completely declaratvie. In Prolog, we
would have to learn a procedure for constructing valid sudoku boards, whereas
in ASP we only learned the rules of sudoku.

Induction of Stable Models [13] extends the definition of ILP to the stable
model semantics. An Induction of Stable Models task is a tuple 〈B,SM , E〉 where
B is the background knowledge, SM is the search space and E is a set of partial
interpretations. H ∈ ILPsm〈B,M,E〉 iff (i) H ⊆ SM ; and (ii) ∀O ∈ E : ∃A ∈
AS(B∪H) such that A extends O. This is a special case of ILPLAS: with no neg-
ative examples. For any B,SM , E: ILPsm〈B,SM , E〉 = ILPLAS〈B,SM , E, ∅〉.
However, negative examples are needed to learn Answer Set programs in prac-
tice, as otherwise there is no concept of what should not be in an Answer Set. In
our planning, for instance, no negative examples would give the optimal solution
0{valid move(C, T)}1← cell(C), time(T) (at any time for each cell C, we may
or may not be allowed to move to C). This does cover our positive examples,
but it is not specific enough to be useful for planning.

Brave Induction[16] finds an hypothesis which covers a single observation
O. A Brave Induction task, when defined in the context of ASP, is a tuple
〈B,SM , O〉 where B is the background knowledge, SM the search space and O
is a set of atoms. H ∈ ILPb〈B,M,O〉 iff (i) H ⊆ SM ; and (ii) ∃A ∈ AS(B ∪H)
such that O ⊆ A. For any B,M,O, the Brave Induction task ILPb〈B,M,O〉 =
ILPLAS〈B,M, {〈O, ∅〉}, ∅〉. ASPAL [2] uses ASP as a solver to compute a so-
lution to a standard ILP Task. ASPAL’s learning task, similarly to that of
XHAIL [14], is between Brave Induction and Induction of Stable Models. It
has a single positive example which is a partial interpretation. ASPAL’s method
of using an ASP solver to search for the inductive solutions to an ILP task in-
spired our own. Our method conducts the search in multiple stages however, as
we not only require the brave entailment of the positive examples, but also the
cautious entailment of the negation of our negative examples. The search spaces
in ASPAL and XHAIL did not include aggregates or constraints.

In [3], De Raedt defines Learning from Partial Interpretations. Under ILPLFPI

an example E (a partial interpretation) is covered by a hypothesis H iff there
is a model of B ∪ H , which extends E. Unlike ILPLAS, as this definition uses
models, H covers an example E iff B∪H ∪E is consistent. Another approach is
Learning from Interpretation Transitions [7]. The examples here are pairs of in-
terpretations 〈I, J〉 such that J must equal TB∪H(I). This task can be mapped
to an ILPLAS task by replacing every atom h in the head of rules in B and
SM or occuring in J with the new atom tp(h), representing that h ∈ TB∪H(I).
Each Ii ∈ {I1, . . . , In} would then be put in the background knowledge with a

324 M. Law, A. Russo, and K. Broda

condition egi in the body (supported by a choice rule 1{eg1, . . . , egn}1) and egi
would be added to each Ji which then become the positive examples.

7 Conclusion and Future Work

We have presented a new paradigm for ILP that allows the learning of ASP
programs. We have designed and implemented an algorithm which is able to
compute inductive solutions, and have shown how it can be used in a planning
problem.

There are two avenues of future work: improving the efficiency of our algo-
rithm; and learning a larger subset of the language of ASP. In particular we
believe that learning optimisation statements in ASP will facilitate many more
applications, as most of ASP’s applications involve optimisation.

References

1. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming as abductive search.
In: ICLP (Technical Communications), pp. 54–63 (2010)

2. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming in answer set pro-
gramming. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds.) ILP 2011.
LNCS, vol. 7207, pp. 91–97. Springer, Heidelberg (2012)

3. De Raedt, L.: Logical settings for concept-learning. Artificial Intelligence 95(1),
187–201 (1997)

4. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The Potsdam answer set solving collection. AI Communications 24(2),
107–124 (2011)

5. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
and Claypool Publishers (2012)

6. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, vol. 88, pp. 1070–1080 (1988)

7. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Ma-
chine Learning 94(1), 51–79 (2014)

8. Kimber, T., Broda, K., Russo, A.: Induction on failure: learning connected horn
theories. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753,
pp. 169–181. Springer, Heidelberg (2009)

9. Law, M., Russo, A., Broda, K.: Proofs for inductive learning of answer set pro-
grams, https://www.doc.ic.ac.uk/~ml1909/ILASP_Proofs.pdf

10. Muggleton, S.: Inductive logic programming. New Generation Computing 8(4),
295–318 (1991)

11. Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K., Srinivasan,
A.: Ilp turns 20. Machine Learning 86(1), 3–23 (2012)

12. Muggleton, S., Lin, D.: Meta-interpretive learning of higher-order dyadic datalog:
Predicate invention revisited. In: Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, pp. 1551–1557. AAAI Press (2013)

13. Otero, R.: Induction of stable models. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001.
LNCS (LNAI), vol. 2157, pp. 193–205. Springer, Heidelberg (2001)

https://www.doc.ic.ac.uk/~ml1909/ILASP_Proofs.pdf

Inductive Learning of Answer Set Programs 325

14. Ray, O.: Nonmonotonic abductive inductive learning. Journal of Applied
Logic 7(3), 329–340 (2009)

15. Ray, O., Broda, K., Russo, A.: A hybrid abductive inductive proof procedure. Logic
Journal of IGPL 12(5), 371–397 (2004)

16. Sakama, C., Inoue, K.: Brave induction: a logical framework for learning from
incomplete information. Machine Learning 76(1), 3–35 (2009)

	Inductive Learning of Answer Set Programs
	1 Introduction
	2 Background
	3 Learning from Answer Sets
	4 Algorithm
	5 Application to a Planning Problem
	6 Related Work
	7 Conclusion and Future Work
	References

