Proof of the Soundness and Completeness of ILASP2

Mark Law, Alessandra Russo and Krysia Broda

July 3, 2015

Abstract

In this document we provide the proofs of soundness and completeness of the ILASP2 (Inductive Learning of
Answer Set Programs) algorithm which were omitted from the paper Learning Weak Constraints in Answer Set
Programming. ILASP2 can learn ASP programs with normal rules, constraints, choice rules and weak constraints.

1 Introduction

In the next section, we recall the necessary definitions from the paper and give some extra definitions omitted from
the paper. In section 3 we introduce some extra notation used in this document. In section 4 we give some lemmas
necessary for the proofs.

The main content in the document is in sections 5, 6 and 7 where we describe various parts of our meta representation
(how we represent orderings, the construction of T},e, and the construction of V Ry,eq(7T)) and prove necessary
results about them. In section 8, we give the proof of the soundness and completeness of our algorithm, ILASP2,
and in section 8, give an example encoding.

The second part of the document concerns some theoretical properties of our learning framework. In section 9, we
prove sufficient and necessary conditions for there to be a solution to an ILP;oas task and in section 10, we prove
the complexity of deciding the existence of a solution to a task.

2 Definitions

Definition 2.1 [I]. A weak constraint is of the form: :~ by,...,b,, no0t c1,..., N0t Cp.[WQL ¢y, .. . t,;,] Wwhere
bi,...,by, c1,...,cy are atoms, w and [are terms specifying the weight and the level, and t4,...,t,, are terms.
A weak constraint W is said to be safe if every variable occurring anywhere in W occurs in at least one positive
literal in the body of W.

Definition 2.2. Given a program P and an answer set A of P, weak(P, A) is the list of ground terms (w, 1,1, ...,t,)
for which there exist at least one weak constraint :~ body.[w@l, t1,...,t,] in ground(P) such that body is satisfied
by A.

Definition 2.3. Given a program P and an answer set A in AS(P), weak(P, A)={(w,l,t1,...,to) | i~ b1,...,bn,
not ¢1, ..., N0t ¢y JwQl, t1,...,t,] € ground(P) and A extends ({b1,...,b,},{c1,...,cn}) and w € Z}. For each

level l’ le4 = Z(w,l,tl,..‘,to)eweak(P,A) w.

Definition 2.4. For any A;, As € AS(P), A1 dominates Ay (written A »p Ag) iff 31 such that Pf41 < Pf42 and
Vm > [, P}y = PJ'. An answer set A€ AS(P) is optimal if it is not dominated by any other A € AS(P).

As we only use choice rules rather than programs allowing aggregates in the body of a rule, we are able to present
the slightly simplified semantics of ASP presented in [2]. For the subset of ASP programs that we consider, this
semantics is equivalent to the full semantics given in [3].

Definition 2.5. The reduct of a program P with respect to an interpretation I, is constructed in the following 4
steps.

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

1. Remove any rule whose body contains not a for some a € I and remove any negative literals from the remaining
rules.

2. For any constraint R, :-body(R), replace R with L :-body™ (R).

3. For any choice rule R, 1{hy;...;hy}u :=body(R) such that I < |IN{hy,...,h,}| < u, replace R with the set of
rules {h; :=body™(R) | h; € IN{hy ... h,}}.

4. For any remaining choice rule R, 1{h;;...;h,}u :-body(R), replace R with the constraint L :-body™(R).

PX is a definite logic program, containing one additional atom L which cannot appear in an interpretation of P.
The idea is that if PX = 1 then X is not an Answer Set.

Definition 2.6. Given any program P, X is an Answer Set of P if and only if X = M ((ground(P))*) (where M (P)
denotes the least Herbrand model of P).

Definition 2.7 [4]. A Learning from Answer Sets task is a tuple T = (B, Spas(Mp, My), EY, E~) where B is the
background knowledge, Spas(Mp,, My) is the search space defined by a language bias M = (M}, M), E* and E~ are
sets of partial interpretations called, respectively, positive and negative examples. An hypothesis H is an inductive
solution of T, written H € ILPpag(T), if and only if H C Spas(My, My); Ve™ € ET 3A€ AS(B U H) such that A
extends e*; and finally, Ve~ € E= AA€ AS(B U H) such that A extends e™.

Definition 2.8. A mode bias with ordering is a tuple M = (My,, My, My, My, limaz), where My, and My, are respec-
tively head and body declarations, M, is a set of mode declarations for body literals in weak constraints, M, is a set
of integers and l,,,4, is a positive integer. The search space Sy is the set of rules R that satisfy one of the conditions:

o Re Spas(My, My).

e R is a safe weak constraint :~ by,...,b;, not bjt1,..., not b;.[w@l, ¢1,...,t,] such that Vk €1,] by, is com-
patible with M,; t1,...,t, is the set of terms in b1,...,b;; w € My, I € [0, lnqz)-

Definition 2.9. An ordering example is a tuple o = (e, e5) where e; and ey are partial interpretations. An ASP
program P bravely respects o iff 341, As € AS(P) such that A; extends ey, As extends e; and Ay =p As. P cautiously
respects o iff VA;, Ay € AS(P) such that A; extends e; and Ay extends eq, it is the case that Ay =p As.

Definition 2.10. A Learning from Ordered Answer Sets task is a tuple T = (B, Sy, E¥, E~, 0% O°) where B is an
ASP program, called the background knowledge, Sy, is the search space defined by a mode bias with ordering M,
E* and E~ are sets of partial interpretations called, respectively, positive and negative examples, and O° and O°
are sets of ordering examples over ET called brave and cautious orderings. A hypothesis H C Sy, isin ILProas(T),
the inductive solutions of T, if and only if:

1. Let My, and M, be asin M and H’ be the subset of H with no weak constraints. H' € ILPras({(B, Spas(Mp, My), ET, E™))
2. Yo € O° BU H bravely respects o

3. Yo € O° BU H cautiously respects o

Definition 2.11. Let T = (B, Sy, ET, E=,0% 0° be an ILProas task. Any H C Sy is a positive hypothesis
iff Ve € ET 3A € AS(B U H) such that A extends e, and Yo € O H U B bravely respects o. The set of positive
hypotheses of T is denoted P(T).

Definition 2.12. A positive hypothesis H is a wiolating hypothesis of T = (B, Sy, Et, E~,0% O°), written
HeV(T), iff at least one of the following cases is true:

e Je- € E~ and 3A€ AS(B U H) such that A extends e~. In this case we call A a violating interpretation of T
and write (H, Ay € VI(T).

e JA;, Ay € AS(BU H) and {ey, ez) € O° such that A; extends ey, As extends es and Ay ¥ p Ay with respect
to BU H. In this case, we call (A1, As) a violating pair of T and write (H, (A1, A2)) € VP(T).

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Definition 2.13. Let T be an ILPrpas task, VI and VP (resp.) be sets of violating interpretations and pairs of
interpretations, and B be the background knowledge. Any H € P(T) is a remaining hypothesis of T with respect to
VIUVPif VINAS(BUH) =0 and V(I,,15) e VP if I, I, € AS(BUH) then I} >pyun Is. A remaining hypothesis
H is a remaining violating hypothesis iff IR such that (H, R) € VZ(T) UVP(T).

We will call those violating hypotheses which are not remaining violating hypotheses, known violating hypotheses
(they are already ruled out by some known violating reason).

Finally, Algorithm 1 is our algorithm, ILASP2.

Algorithm 1 ILASP2

procedure ILASP2(T)
VR =]
solution = solve(Teta UV Rieta(T))
while solution # nil && solution.optimality%2 == 0 do
A = solution.answer_set
if vi € A then
VR += M, (A)
else if 3¢y, ts such that v_p(ty,ts) € A then
VR += M, l(A)

vp
end if
solution = solve(Tyeta UV Riera(T))
end while

return {M;, (A) | A€ AS*(Tmeta UV Rineta(T))}
end procedure

3 Extra notation

Definition 3.1. For any ASP program P, predicate name pred and term term we will write reify(P, pred, term)
to mean the program constructed by replacing every atom a € P by pred(a,term). We will use the same notation
for sets of literals/partial interpretations, so for a set S: reify(S, pred,term) = {pred(atom, term) : atom € S}.

Definition 3.2. For any ASP program P and any atom a, append(P, a) is the program constructed by appending
a to every rule in P.

Definition 3.3. Given a set of rules Sy; such that all rules R € Sy, have identifiers R;q and any program P such
that:

1. Some rules in P contain the atom in hyp(Riq) for some rules R € Sy,
2. No rule contains more than one instance of in_hyp (or a non ground atom with the predicate in_hyp).
3. P contains the choice rule {in hyp(Riq) : R € Sur)}.

4. No other rule contains an ¢n_hyp atom in the head.

For any H C Sy, P[H] is constructed in three steps:

1. Remove the choice rule {in_hyp(Riq) : R € Sir)}.
2. Remove any rule with in hyp(Riq4) in its body st R & H.

3. Remove the in_hyp atoms from the remaining rules.

Definition 3.4. Given a set of rules Sy; such that all rules R € Sy, have identifiers R;; and an interpretation I:

M;ylp(j) = {R|in hyp(Riq) € I, R € Sn}

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Definition 3.5. Given an interpretation I:

M HI) = {atom | in_as(atom,n) € I}

Definition 3.6. Given an interpretation I and two ground terms t; and ts:

M) (I t1,t2) = ({atom | in_as(atom, t;) € I}, {atom | in_as(atom, t3) € I})

Definition 3.7. Given an interpretation I which contains the atom v_p(ti,ty) for some ground terms t; and ts:
M (I) = M1t ta).

If I contains more than one atom v_p(¢1,¢2), then /\/l;p1 (I) will choose a pair of terms; it is not gauranteed which.
If I contains no such atom, then M, !(I) is undefined.

Definition 3.8. For any ASP program P, normal(P) is the set of all normal rules in P.
Definition 3.9. For any ASP program P, constraints(P) is the set of all (hard) constraints in P.
Definition 3.10. For any ASP program P, choice(P) is the set of all choice rules in P.
Definition 3.11. For any ASP program P, weak(P) is the set of all weak constraints in P.

Definition 3.12. For any ASP program P, non-weak(P) = normal(P) U constraints(P) U choice(P).

4 Lemmas

In this document ground(P) refers to all ground instances of rules in P, rather than the “relevant” grounding
produced by ASP solvers.

Lemma 4.1. Let P and @ be ASP program such that atoms(ground(P)) N atoms(ground(Q)) = 0.

Then AS(PUQ) ={A1UAy | Ay € AS(P), A € AS(Q)}.

Hence P U @ is satisfiable if and only if P and @) are both satisfiable.

Corollary 4.2. Let last_terms(P) be a function which extracts the last argument from each atom in a program P.

Let P and Q be ASP programs (which contain no atoms of arity 0) st each term in last_terms(P) and last_terms(Q)
is ground and last_terms(P) N last_terms(Q) =0

Then AS(PUQ) ={A1UAy | Ay € AS(P), Ay € AS(Q)}.
Hence P U @ is satisfiable if and only if P and @ are both satisfiable.

Corollary 4.3. Let p; and py be two distinct predicate names and Terms; and Termss be disjoint sets of ground
terms. Let P be any ASP program.

Let Q = append(reify(P,p1, X), p2(X))

Then AS(Q U {pa(t) | t € Terms; UTermsa}) = {A1 UAs | i€ {1,2},4; € AS(QU {pa(t) | t € Terms,;})}.
Lemma 4.4. For any program P U @ in which the atom a does not occur:

AS(append(P,a)UQU{a.}) ={AuU{a.}: A AS(PUQ)}

Lemma 4.5. For any ASP program P any partial interpretation E = (E™¢ E°*¢) and any ground atom a which
does not appear in P or E.

AS(PuU{a:- A 1lit, A not lit. :- not a.}) ={AU{a}|A € AS(P) st A extends E}.

lit€Einc liteEexe

Lemma 4.6. Let R be the rule h:=by,..., by, #sum{s; =wy,...,8, = wy} < 0, where h, each of the b;’s and s;’s
are ground atoms and each w; is an integer.

For any set of (ground) facts F' (such that h ¢ F):

h € M(RUF) (the only Answer Set of this program) iff VO < i <mn: b, € F and) (w;) <0
s; el

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Corollary 4.7. Let R be theruleh :=by,..., by, #sum{s; = wy,...,s; = Wy} < 0, where h, each of the b;’s and s;’s
are atoms and each w; is an integer.

For any set of (ground) facts F (such that h ¢ F):

1. If > wi | <0 then AS(FUR) =AS(FU{h:-by,...,by})
seF,30st s=s;0

2. Otherwise AS(F UR) = AS(F).

Lemma 4.8. Given a set of rules Sy; such that all rules R € Sy, have identifiers R;q and any program P such that:

1. Some rules in P contain the atom in hyp(Riq) for some rules R € Sy,
2. No rule contains more than one instance of in_hyp (or a non ground atom with the predicate in_hyp).
3. P contains the choice rule {in hyp(Riq) : R € Sur)}-

4. No other rule contains an tn_hyp atom in the head.

Given any H C Sy,

AS(P[H]) = {A\{in hyp(Riq) | R€ H} | A € AS(P) st M}

hyp(A) = H}.

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Part 1
ILASP2

5 Repesentation of weak constraints

Before defining the main meta translations, we describe how we represent weak constraints. Essentially, we translate
them to normal rules such that each head corresponds to an element which could occur in the set weak(P, A) (which
is used to define the semantics of weak constraints). We then add rules to determine which interpretations dominate
other interpretations. In this section we define this representation and prove some of the properties we require in
later sections.

5.1 Meta Level Representation

Definition 5.1. Let p; and ps be distinct predicate names and ¢ be a term. Given R as a weak constraint

i~ by,...,by,n0t cy,...,n0t c1.[wtQ@Qlev, ty,...,ty], metayear (R, p1,p2,t) is the rule:
w(wt, lev, args(tl, ... ,tn), t) :-
p2(t), pi(bl,t), ... pi(bm, t),
not pl(cl,t), ... , not pl(cl,t).

For a set of weak constraints W, metayear (W, p1, p2,t) = {metayear (R, p1,p2,t) | R € W}.
Example 5.2. Let W be the set of weak constraints:

7 pX, Y), not q(X).[2@1, X, Y]
7 p(X, Y).[-102, X]

Then metayear (W, in-as,as, V') is the program:

w(2, 1, args(X, V), V) :- as(V), in_as(p(X, Y), V), not in_as(q(X), V).
w(-1, 2, args(X), V) :- as(V), in_as(p(X, Y), V).

The intuition of this meta encoding (when used with these two predicates) is that for each answer set V' of some
program P, if in_as defines the elements of V, then w(W,L, args(ty,...,ty), V) is true if and only if (W, L, t1,...,t,) €
weak(P, V).

Now that we have defined the predicate w to represent weak (P, A) for each answer set A, we can use some additional
rules to determine, given two interpretations, whether one dominates another.

Definition 5.3. Given any two terms ¢1 and ¢2, dominates(t1,t2) = dom(t1,¢2) U doma(t1,t2) where:

doma (t1,12):

dom_1v(t1,t2,L) :- 1v(L), #sum{w(W,L,A,t1)=W, w(W,L,A,t2)=-W} < O.
non_dom_1v(tl,t2,L) :- 1v(L), #sum{w(W,L,A,t2)=W, w(W,L,A,t1)=-W} < O.

doma(t1,t2):

non_bef(t1,t2,L) :- 1v(L), 1v(L2), L < L2, non_dom_1lv(t1,t2,L2).
dom(t1,t2) :- dom_1lv(t1,t2,L), not non_bef(tl,t2,L).

The intuition is that dom(asl, as2) (where asl and as2 represent two answer sets) should be true if and only if asl
dominates as2.

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

5.2 Properties

As the meta level programs considered in this section are each clearly stratified, for each program P there is a unique
answer set (equal to the minimal Herbrand model M (P)). For the rest of this section, therefore, we shall refer to
M (P) rather than AS(P).

This section is devoted to proving the following lemma (which proves that our representation of weak constraints is
correct).

Lemma 5.4. Let t1 and t2 be two distinct terms and L be a set of integers. Let I; and I, be interpretations and
P be an ASP program.

For any predicates p; and p2 (not used in the rest of the program):

metaweak(weak(P)vpl7p27ti)
Ureify(l1,p1,t1) contains the atom dom(ty, t,) if and only if I; >p I5.

U {p2(ts)}

In order to do this, we need to first prove several intermediate lemmas. Some of the proofs of these lemmas have
been omitted from the main document, but can be found in the appendix.

dominates(ty,ta)U

M {1v(1). |l e L}U

Lemma 5.5. Let [be a constant, ¢t; and t2 be two distinct ground terms and head be an atom.

Let R be the rule head :=by, ..., by, #sum{w(W,1,A,t1) = W,w(W,1,A,t5) = —W} < 0 and F be a set of (ground) facts
of the predicate w/4 and (where head has a different predicate name to w)

For i € {1,2}, let Si = (3o, (weight,l,args t:)eF WEIGht)

1. If S, > S, then M(F U R) = M(F)
2. If §; < Sy then M(FUR) = FU{head :-by,...,by})

Lemma 5.6. Let ¢; and ¢3 be two distinct terms and L be a set of integers. F is a set of (ground) facts of the
predicate w/4.

M(doml(tl,tg) U {lv(l) ‘ le L} U F)
dom_1v(ty, to,1) : - #sum{w(W,L,A, t1) = W,w(W,L,A,ty) = —W} < 0.
non_dom 1v(ty, ty, 1) : - #sum{w(W,L, A, ty) = W,w(W,L, A, t;) = —W} < 0. UF)uU{lv(1) |le L}

Proof. Follows from repeated use of lemma ?7? over the facts in {1v(1) |l € L}. O

Proposition 5.7. Let t; and t5 be two distinct terms and L be a set of integers.

Let Wi be a set of facts which are ground instances of the form w(W,L,A t;) and Ws be a set of facts which are
ground instances of the form w(W,L, A, t,).

Fori € {1,2} and l € L, let S! = (X w(veight,1,args v cw; WEiGht)

M(doml(tl,tg) U {lv(l) ‘ le L} U W1 @] WQ)
= {dom_1v(ts,t9,1) |l € L, S < S4} U {non_dom 1v(ty,ty,1) |1 € L,S} > SL}UuW, UWo U {1v(1) |l € L}

Proof. Follows directly from lemma [5.5 and lemma O

Recall that for any interpretation I, program P and integer [, PIZ is the sum of the weights w such that (w,l,...) €
weak(P,I). Recall also that this is used to determine which interpretations dominate each other. Lemma shows
that if we represent weak(W, I;) and weak(W, I3) as facts, we can use dom; to capture at each level whether I; or
I dominates at that level.

Lemma 5.8. Let t; and t5 be two distinct terms and L be a set of integers. Let I; and Iy be interpretations and
W a set of weak constraints.

For i € {1,2} let W; = {w(wt,1,args(as,...,an), t:) | (wt,l,a1,...,a,) € weak(W,I;)}

M(doml(tl,tg) @] {1V(1) ‘ le L} U u Wg)
= {dom_1v(t1,t2,1) |l € L, W} < W} }U{non dom 1v(ts,t2,1) [l € L,W} > W} }uW,UW,U{1v(1) |l € L}

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Proof.

For i€ {1,2} and [€ L, let S! = (X w(veight,1,args 1) cw; Weight)

M(doml(tl,tg) @] {Z’U(l) | l e L} uWwiu Wg)
= {dom 1v(t1,t2,1) |l € L,S! < St} U {non dom 1v(ts,ts,1) |1 € L,S! > S} uW, UWo U {1v(1) | I € L} (by
proposition

= {dom,lv(tl,t2, l) | le L7 (Zw(wt,l,al,...,an,tl)€weak(W,Il) wt) < (Zw(wt,l,al,...,an,tg)Eweak(W,Iz) ’U.)t)}
U {non,dom,lv(tl, ta, l) | le L7 (Zw(wt,l,al,...,an,tl))EUJeak(W,Il) wt) > (Zw(wt,l,al,...,(Ln,tg))Eweak(W,IQ) U)t)}
UWiUWoU{1lv(1) |l € L} (by definition of W7 and W)

= {dom_1v(t1,t2,1) [l € L,W} < W} }U{nondom 1v(ts,t2,1) |l € L, W} > W] YUW1UW,U{lv(1) |l € L}
(by definition of W} and W},)
O
Lemma 5.9. Let t; and ¢35 be two distinct terms. Let I; and I> be interpretations and W a set of weak constraints
and L be the set of levels in W.
For i € {1,2}, let W; = {w(weight,l,args(ai,...,an),t;) | (weight,l,a1,...,a,) € weak(P, I;)}
I =w I if and only if dom(t1,t2) € M (dominates(t1,t2) U{lv(l) |1 € L} UW; UWs)

Proof.

Let Myom = M(dominates(ty,t2) U{1v(1) |l € L} UW; UWs))

Maom = M (domy (t1,t2) Udoma(t1,t2) U{1lv(1) |l € L} UW; U Ws) (by definition of dominates).
= M (domaz(t1,t2) U M(domq (t1,t2) U{1lv(1) |l € L} UW; UW>)) (by the splitting set theorem).

= M (domy(t1,t2) U{dom 1v(t1,t2,1) [l € L, (W}) < (W},)} U {non_dom 1v(ts,t2,1) |l € L, (W})> (W})}
UW; UW, U {1v(1) | € L}) (by lemmalp.3).

Assume dom(t1,t2) € Myom
< Jl € L such that dom_1v(ty,ts,1) € Mgom and non-bef(ty, ta,1) € Miom

& 3l € L such that (W}) < (W}) and non_bef (t1,t2,1) & Maom

& 3l € L such that (W}) < (W}) and Al, € L such that I < I, and non_dom_1v(t1,t2,12) € Maom

2

I
& 3l € L such that (W}) < (W}

2

& 3l € L such that (W},) < (W},) and Vi, € L such that | < I, (W}?) < (W}2)

Iz

1)
)
) and Al € L such that [< Iy and (W) > (W}?)
)
1)

& 31 € L such that (W},) < (W},) and Vi, € L such that | < I, (W;?) = (W) (as L is finite)

< I =w Is by the definition of >
O

Lemma 5.10. Let ¢ be a ground term, W be a set of weak constraints and I be an interpretation. Let p; and ps be
predicate names.

M(metaweak:<m/7 P1,D2, t) U T@ify(],pl, t) U {PQ(t)})
= {w(wt,1,args(ai,...,an),t) | (wt, l,a1,...,a,) € weak(P,I)} Ureify(I,p1,t) U {pa(t)}

Proof. Let F = reify(I,pred;,t) U {preda(t)}
M(metaweak(vva P1, P2, t) U Teify(LPh t) U {P2 (t)})

_ w(wt,1,args(as,...,an),t) : = pa(t), i~ by,...,bg,n0t cq, ...,

_M({ p1(b1,t),...,p1(bn, t),not ps(cy,t),...,not py(ci,t) not ¢;.[wt@1, ay,...,a,] €W UF
o i~ bi,...,bm,HOt Clyenny F |:p1(b1,t),...,p1(bm,t),

o {w(wt,l,args(al, -5 2n),) not c;.[wt@1,ay,...,a,] €w, not ps(cy,t),...,not p1(cy,t) uF

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

_ i~ by,...,by,n0t cq,..., reify(I,p1,t) Epi(bi,t),...,p1(bn,t),

- {w(wt,l,args(al, . .,an),t)’ not ¢;.[wt@1, ay,...,a,] €W, not py(cy,t),...,n0t ps(cy,t) WE
o SNbi,...,bm,HOtC]_,..., Ilibl...,bm,

= 9wt 1,args(ay, .. "a“)’t)‘ not c;.[wt@1,ay,...,a,] €w, not cy,...,not ¢ UF

= {w(wt,1,args(as,...,an),t)|(wt,l,a1,...,a,) € weak(W, 1)} UF

We have now proved the properties required to prove lemma 7?7

Lemma Let t1 and ¢2 be two distinct terms and L be a set of integers. Let I; and I» be interpretations and
P be an ASP program.

For any predicates p; and ps (not used in the rest of the program):

metayeak (weak(P),p1, p2,t;)
Ureify(ly,p1,t1) contains the atom dom(ty, ty) if and only if I; > p Is.

U {p2(ti)}

dominates(ty, t2)U
{1v(1). |l e L}U

Proof.
The program can be split into 3:
Q1 = metayear(weak(P), p1, pa,t1) Ureify(Iy, p1,t1) U {pa(t1)}
Q2 = metayear(weak(P), p1, pa,t2) Ureify(la, p1,ta) U {p2(t2)}
Q3 = dominates(t1,t2) U{1v(1) |l € L}
Such that M(Q) = M(M(Q1) UM(Q2)) U Q3) (By the splitting set theorem).

< For i € {1,2}, M(Q;) = {w(wt,1,args(as,...,an),ti) | (wt,l,a1,...,a,) € weak(weak(P),I;)}
Ureify(I;, p1,t;) U {p2(t:)} (by lemmal5.10)

< Q1UQ2UQ3 has just one answer set A and A contains dom(ty, tz) if and only if Iy = cqr(p) L2 (by lemmal5.9)).
As only weak constraints effect >, this means that A contains dom(t;,ts) if and only if I1 >=p Is.

O

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

6 Encoding the search for positive solutions: T},

Throughout this section we will refer to the ILProas task T = (B, Sy, E*, E~, 0% 0°).

6.1 Meta Level Representation

Definition 6.1. The meta translation of the background knowledge B, written meta(B), is the program:
append(rei fy(non_weak(B),in_as, X),as(X)) Umetayeqr (weak(B),in_as, as, X).

Example 6.2. Consider the program B:

p(V) := q(V), not r(V).
r(V) :- q(V), not p(VN).
;7 p(V). [201, V]

meta(B) is the program:

in_as(p(V), X) :- in_as(q(V), X), not in_as(xr(V), X).
in_as(r(V), X) :- in_as(q(V), X), not in_as(p(V), X).
w(2, 1, args(V), X) :- in_as(p(V), X), as(X).

Definition 6.3. The meta translation of Sy; written meta(Sys) is the program:
{append(append(reify(R,in_as, X),as(X)),in_h(R;q)) | R € non_weak(Sy)}

U {append(W,in_h(Wiq)) | W € metayear(weak(Sar),in-as, as, X)}

U {:~ in h(Riq).[2 * |[R|@QO,Ri4] | R € Snr}

U { {1nll(R1d) :R € SM} }

Example 6.4. Let Sy, be:

p(V) :- not q(V), r(V).
= p(V). [201,V]

Then meta(Sar) is the program:

in_as(p(V), X) :- not in_as(q(V), X), in_as(r(V), X), as(X), in_h(rl).
w(2, 1, args(V), X) :- in_as(p(V), X), as(X), in_h(r2).

{ in_h(r1), in_h(r2) }.

:” in_h(r1). [6@0]

:” in_h(xr2).[200]

This definition will most likely move to the first proof section.

Definition 6.5. Given any term ¢ and any positive example e, cover(e,t) is the program:

{cov(t) < A IA A notl; < not cov(t)}

l€eine |geine

Definition 6.6. For any e € ET, meta(e) is the program: cover(reify(e,in_as, e;q), e;q) U{as(esq).}. Furthermore,

we write meta(E™) to denote the program |J meta(e).
ecE+

Example 6.7. Consider ET = { Eg’ %g% } meta(E™) is the program:

10

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

cov(el) :- in_as(p, el), in_as(q, el), not in_as(r, el).
:— not cov(el).
as(el).
cov(e2) :- in_as(q, e2), in_as(r, e2), not in_as(p, e2).
:— not cov(e2).
as(e2).
Definition 6.8. For any e € E—, meta(e) is the program: {v_i :-= A in.as(l,n)A A not in_as(1,n)}. Further-
leeinc lceexc
more, meta(E ") is the program {violating :-v_i. :~ not violating.[1@0,violating]}U |J meta(e)U{as(n)}.
ecE—
Example 6.9. Consider £~ = { ({p,ab, {rh), } meta(E™) is the program:
{a.r}. (o)) (&)
v_i :- in_as(p, n), in_as(q, n), not in_as(r, n).
v_i :- in_as(q, n), in_as(r, n), not in_as(p, n).
as(n).
violating :- v_i.
~ not violating.[1@0, violating]
Definition 6.10. Let o = (e, e2) be in O°.
meta(o) = dominates(0;41, 0ia2) U {as(0ia1). as(0iq2). :—not dom(0sa1, 0i42)} U cover(reify(er,in_as, 0;41), 0id1)

U cover(reify(es,in_as, 042), 0id2)

Furthermore, meta(O®) = |J meta(o) U {1v(1) |l € L}.
oeOb

Definition 6.11. Let o = (eq, e2) be in O°.

meta(o) = dominates(el,, e2;) U cover(reify(el,in_as, el;), el;) U cover(reify(e?,in_as, €2,)), e2;)
U{vp(eiq efa) :~ mot dom(ejy, ey)}
Furthermore, meta(O°) = {v_p :-v_p(T1,T2)} U |J meta(o) U {1lv(1) |l € L}
o€0e°

Definition 6.12. T},,c;a = meta(B) Umeta(Sy) Umeta(E1) Umeta(E~) Umeta(O®) Umeta(O°).

Note that this definition is slightly different to the definition given in the paper. To simplify the proofs, we have
partially ground the program. The task program in the paper is given in definition [6.13] The grounding of the
programs are the same, and therefore have the same answer sets.

Definition 6.13. Let T be the ILProas task (B, Sy, ET,E~,0% 0°¢). Then Tycta = meta(B) U meta(Sy) U
meta(ET) Umeta(E~) Umeta(O®) Umeta(O°) where each meta component is as follows:

e meta(B) = append(rei fy(non_weak(B),in_as, X), as(X))
U metaqyear (weak(B),in_as, as, X).

o meta(Sy) =
{append(append(reify(R,in-as, X),as(X)),in-h(Riq)) | R € non_weak(Syr)}
U {append(W,in_h(W;q)) | W € metayear(weak(Sar),in-as,as, X)}
U {:~ inh(Rsq).[2 * |R|@O,Rs4] | R € Sis}
U{ {inh(Riq) :R € Su}. }

° meta(E*) — { COUer(e,eid) ’<einc’eewc> c EJr}

as(eiq)-

v_i:-in_ as(el®® n),...,in as(el® n),
t in_ ¢ R ;
o meta(BT)={ IOT AL (e, e7¢) € B
_as(ef*¢ n).
as(n).
U violating :-v_i.
:~ not violating.[1@0]

11

Proof of the soundness and completeness of ILASP2

M. Law, A. Russo, K. Broda

as(0iq1)-

as(0iq2)-

cover(et, 0;q1)
o meta(O®) = { cover(e?,0;42)
dominates(0;q41, 0id2)

:— not dom(oidl,oidg).

, ‘ (e1,e2) € O° }U{

dominates(eq, e2)

o meta(O°) = { v.p(ely,e?y) :-
not dom(ey, ey

Example 6.14. Let B be the program:

p(W) :- r(V), not q(.
q() :- r(V), not p(\N).

r(1).
r(2).

a :- not b.
b :- not a.

Let Sjs be the set of rules:

q(1).
17 q(V).[1e1, Vv, r2]
:” b.[1e1, b, r3]

Let O = { (ef,ef)
Let O° = { (ef,e7)
Figure [1] shows Th,etq-

6.2 Properties

Lemma 6.15. For any H C Sy,

0= (e, ep) € O°

U{1v(1). |l e L}

v_p :-vp(T1,T2).
violating :-v_p.

(meta(Syr)Umeta(B))[H] = append(rei fy(non_weak(BUH),in_as, X), as(X))Umetayeqr (weak(BUH),in_as, as, X)

Proof. Follows directly from the definition of [H].

Proposition 6.16. For any H C S), partial interpretation e and term id:

AS(append(reify(non_weak(B U H),in_as,id), as(id)) U meta(e))

= {reify(A,in_as,id) U {as(id), cov(id)} | A € AS(BU H), A extends e}.

Proof.

AS(append(reify(non_weak(B U H),in_as, as(id))) Umeta(e)).

AS(append(reify(non_weak(B U H),in_as,as(id))) U {as(id)} U cover(reify(e, in_as,id),id)).
={A| A € AS(append(reify(non_weak(B U H),in_as,id),as(id)) U {as(id)} U cover(reify(e,in_as,id),id))}

12

O

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

% meta(B) % meta(0~b)
in_as(p(V),X) :- in_as(r(V),X), as(5).
not in_as(q(V),X), as(X). as(6).
in_as(q(V),X) :- in_as(r(V),X),
not in_as(p(V),X), as(X). dom_1v(5,6,L) :- 1v(L),
#sum{w(W,L,A,5)=W, w(W,L,A,6)=-W} < O.
in_as(r(1),X) :- as(X). wrong_dom_1v(5,6,L) :- 1v(L),
in_as(r(2),X) :- as(X). #sum{w(W,L,A,6)=W, w(W,L,A,5)=-W} < O.
wrong_bef(5,6,L) :- 1v(L), L < L2,
in_as(a,X) :- not in_as(b,X), as(X). wrong_dom_lv(5,6,L).
in_as(b,X) :- not in_as(a,X), as(X). dom(5,6) :- dom_1lv(5,6,L), not wrong_bef(5,6,L).
cov(5) :- in_as(a,5), not in_as(b,5).
% meta(S_M) cov(6) :- not in_as(a,6).

in_as(q(1),X) :- as(X), in_h(rl).
:— not cov(5).

w(l,1,args(V,r2),X) :- in_as(q(V),X), :— not cov(6).
as(X), in_h(xr2). :— not dom(5,6).
w(l,1,args(b,r3),X) :- in_as(b,X), 1v(1).

as(X), in_h(x3).
% meta(0~c)

% meta(E~+) dom_1v(1,2,L) :- 1v(L),
as(1). #sum{w(W,L,A,1)=W, w(W,L,A,2)=-W} < O.
as(2). wrong_dom_1v(1,2,L) :- 1v(L),
as(3). #sum{w(W,L,A,2)=W, w(W,L,A,1)=-W} < O.
as(4). wrong_bef(1,2,L) :- 1v(L), L < L2,
wrong_dom_1v(1,2,L).
cov(1l) :- in_as(p(2),1). dom(1,2) :- dom_lv(1,2,L), not wrong_bef(1,2,L).
cov(2) :- not in_as(p(2),2).
cov(3) :- in_as(a,3), not in_as(b,3). v_p(1,2) :- not dom(1,2).
cov(4) :- not in_as(a,4).
violating :- v_p(X,Y).
1= not cov(1). v_p - v_p(X,Y).
:= not cov(2). violating :- v_i.
:— not cov(3).
:— not cov(4). 0 {in_h(xr1), in_h(r2), in_h(r3)} 2.

:” in_h(r1).[200,r1]
% meta(E~-) :” in_h(r2).[200,r2]
as(n). :” in_h(r3).[200,r3]
v_i :- in_as(p(1),n).
not violating.[1@0, violating]

Figure 1: An example of Tyetq-

13

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

_ . A € AS(append(reify(nonweak(BU H),in_as,id),as(id)) U {as(id)}),
o {A Y {COV(ld)}‘ A extends reify(e,in_as,id) (by lemma 4.5).

_ {A U {as(id), cov(id)}’ A € AS(reify(non_weak(BU H),in_as,id)), } (by lemma.

A extends reify(e,in_as,id)
= {reify(A,in_as,id) U {as(id), cov(id)} | A € AS(BU H), A extends e}

Corollary 6.17. For any H C S), positive example e:
append(rei fy(non_weak(B U H),in_as, e;q), as(e;q)) Umeta(e) is satisfiable if and only if B U H covers e.

Proposition 6.18. For any H C Sy;:
(meta(B) Umeta(Sa) Umeta(ET))[H] is satisfiable if and only if B U H covers all of the positive examples.

Proof.

Assume B U H covers each of ET
& Vet € Etappend(reify(non-weak(B U H),in_as, e;;), as(e;;)) Umeta(et) is satisfiable (by corollary .
& U (append(reify(non_weak(B U H),in_as, e};),as(e};)) Umeta(eT)) is satisfiable (by corollary .

eteE+

& append(reify(non_weak(BU H),in_as, X),as(X))U |J (meta(e™)) is satisfiable.
eteE+

& append(rei fy(non_weak(B U H),in_as, X), as(X)) Umeta(ET) is satisfiable.

& append(rei fy(non_weak(BU H),in_as, X), as(X)) Umetayeqr(weak(B U H), in_as,as, X) Umeta(ET) is sat-
isfiable by the splitting set theorem.

& (meta(B) Umeta(Sy) Umeta(ET))[H] is satisfiable. O

Proposition 6.19. For any H C Sy;:
Let I be any interpretation.

I € AS(BUH) and Je~ € E~ st I extends e if and only if there is an answer set A of (meta(B) U meta(Sy) U
meta(E~))[H] such that v_.i € A and I = M '(A).

Proof. Let I be any interpretation.

Assume T € AS(BUH) and e~ € E~ st I extends e™
< I € AS(non_weak(B U H)) and Je~ € E~ st I extends e (as weak constraints do not affect answer sets).
< 3T € AS(non_weak(BU H)) and Je~ € E—, st reify(I,in_as,n) extends reify(e,in_as,n)
< reify(l,in_as,n) € AS(reify(nonweak(B U H),in_as,n)) and e~ € E~ st reify(l,in_as,n) extends
reify(e”,in_as,n) (by lemma ?7?)
& JA € AS(reify(non-weak(BU H),in_as,n)), Je~ € E~ st M }(A) = I and A extends reify(e”,in-as,n)
& JA € AS(reify(non-weak(B U H),in_as,n) Umeta(e™)), Je~ € E~ st v.i € Aand M} (A) =1

& 3JAc AS(U (meta(e™)) Ureify(nonweak(BU H),in_as,n)) st v.i € A and M (A) =1
e~ckE—

< JA € AS(U (meta(e™)) U{as(n)} U append(reify(non_weak(B U H),in_as,n),as(n))) st v.i € A and
e~ €k~

ML(A) = I (by lemma

& JA € AS(append(reify(non_weak(B U H),in_as,n),as(n)) Umeta(E™)) st v.i € A and M1 (A) =1

& JA € AS(append(reify(non-weak(B U H),in-as, X),as(X)) Umeta(E7)) st v.i € A and M (A) =T (as

the ground program is the same)

< JA € AS(append(reify(non-weak(BUH),in_as, X), as(X))Umetayeqr(weak(BUH), in_as, as, X)Umeta(E ™))
st v.i € A and M_'(A) = I (by the splitting set theorem)

14

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

& 3JA€ AS(U ((meta(B) Umeta(Syr) Umeta(E7))[H])) st v-i € A and M H(A) =1
e~cE—

Proposition 6.20. For any H C Sy;:
AS((meta(B) Umeta(Syr) Umeta(OP))[H]) is satisfiable if and only if B U H bravely respects every brave ordering.

Proof. For any o = (01,02) € O, we define:
Py (0) = append(reify(non_weak(BU H),in_as, 0;41),as(0;q1)) U cover(reify(or, in_as, 0;41), 0iq1) U {as(0ia1)}
P5(0) = append(reify(nonweak(B U H),in_as, 0,42), as(0;q2)) U cover(reify(oz, in_as, 0;42), 0ia2) U {as(0ia2)}

dominates(0iq41, 0id2)

U metayear(weak(B U H),in_as, as, 041)

U metaypear(weak(B U H),in_as, as, 0;42)

U {as(0iq1). as(0ig2). :— not dom(0iq1,01i42)-}

P,(A,id) = {in_as(atom, id) | atom € A}

Ps(0) = 0€ O s U{lv(1) |l € L}

Assume B U H bravely respects an ordering o € (01, 02)
Let a; and as be answer sets of B U H which bravely respect o.
= ai,az € AS(non_weak(B U H)) and a; extends o1, as extends oz and a1 = yeak(BUH) G2-

= Vi€ {1,2},34 € AS(P;(0)) st a; = {atom | in_as(atom,0i43) € A} € AS(non_weak(BU H)) and a; extends
o; and a; >'weak(BUH) az.

= JA € AS(P1(0) U P2(0)) st Vi € {1,2},a; = {atom | in_as(atom,0i4;) € A} € AS(non_-weak(B U H)) and a;
extends o; and a1 =yeqk(BUH) A2-

= JA € AS(Pi(o) U P2(0)) st Vi € {1,2},a; = {atom | in_as(atom,0iq1) € A} € AS(non_weak(B U H)) and
P5(0) U Py(a1,0iq1) U Py(ag, 0;42) is satisfiable by lemma ?7.

= JA € AS(Pi(0) U P2(0)) st AU Ps(o) is satisfiable.
= P;(0) U Py(0) U P5(0) is satisfiable by the splitting set theorem.

Conversely, assume Jo € O that is not bravely respected by BU H.

Case 1: 07 is not extended by any Answer Set of BU H
= Py (0) is unsatisfiable.
= (Py1(0) U Py(0) U P3(0)) is unsatisfiable.

Case 2: 07 is not extended by any Answer Set of BU H
= P,(0) is unsatisfiable.
= (P1(0) U Py(0) U P3(0)) is unsatisfiable.

Case 3: For each pair of Answer Sets (a1, as) which extend o1 and 09, a1 ¥ pun as.
= VA € AS(Pi(0) U P2(0)), Vi € {1,2}a; = {atom | in_as(atom,0i49;) € A} € AS(non_weak(B U H)) and
ay ?éweak(BUH) az.

= VA € AS(P1(0) U Py(0)), a; = {atom | in_as(atom,0i4:) € A} € AS(non_weak(B U H)) and P3(0) U
Py(0,a1,0iq1) U Py(0, az,0:42) is unsatisfiable by lemma ?7.

= (P1(0) U Py(0) U P3(0)) is unsatisfiable.
Hence Yo € O, B U H bravely respects o < Vo € O°, (P;(0) U P2(0) U P3(0)) is satisfiable

< (U Pi(o) U Pz2(o) U Ps(0))) is satisfiable
o€O®

& AS((meta(B) U meta(Syr) U meta(O®))[H]) is satisfiable (by corol-
lary {4.3)
O

15

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Corollary 6.21. (meta(B) U meta(Sy) U meta(ET) U meta(O°))[H] is satisfiable if and only if H is a positive
hypothesis of the task.

Proof. Assume (meta(B) Umeta(Syr) Umeta(E1) Umeta(O))[H] is satisfiable.

& (meta(B) Umeta(Syr) Umeta(EY))[H] is satisfiable and (meta(B) U meta(Sys) U meta(OP))[H] is satisfiable
by corollary [4-3]

< B U H covers all the positive examples (by proposition [6.18) and B U H bravely respects all brave ordering
examples (proposition [6.20]).
< H is a positive hypothesis. O

Proposition 6.22. For any H C Sy and any o = {e!,e?) € O° (e! and e? are positive examples)

append(rei fy(non-weak(B U H),in_as, e;))
1S e AS U meta(e?) i€{1,2} » U{lv(l) |l € L} Umeta(o) | such that vp(e},, e?;) €
U metaweak (weak(B U H),in_as,as, e} ;)
S if and only if M (S, el;,e2;) is a violating pair of BU H (which violates o).

Proof. Let (A1, As) be a violating pair of B U H which violates o
& Vie{l,2},A; € AS(BUH) and A; extends e' and Ay ¥ puy As.

& Vi € {1,2},3S; € AS(append(reify(nonweak(BUH),in_as,et;))Umeta(e’)) st A; = {atom | in_as(atom,ely) €
Si} and Ay ¥ pum As by proposition

o 39 ¢ AS append(relf%(non,weak(B UH),in_as,é€l;)) ic{1,2)
U meta(e’)
st Vi € {1,2}, A; = {atom | in_as(atom, el,y) € S} and Ay ¥ gug A2 (by corollary .
<35 € AS ({ Umetale?)

i€ {1, 2}})
st Vi € {1,2}, A; = {atom | in_as(atom,el,) € S}
L 9 metayear(weak(B U H),in_as, as,el;) |. Udominates(ejy, eZ;)
and aontet o) ¢ 01 ({ "Gt T TG e v} DA) o
& 35 € AS U meta(e’)

lemma ?77).
ie{1,2}}>
st M, (S, eig,€3) = (A1, Ag)

S U{metayear(weak(B U H),in_as,as,et;) | i € {1,2}}
and don(eiq, efy) & M (U dominates(e};, e2,) U{1lv(1) |l € L}

append(rei fy(non-weak(B U H),in_as, e;))

append(rei fy(non-weak(B U H), in_as, ety)

append(reify(non-weak(B U H),in-as, e eld)

<35 € AS U meta(e?) i € {1,2} p Udominates(e};, e2,) U{lv(1) |l € L}
U metaweak(weak(B U H),in_as,as,e’;)

st M (S 6 d’ zd Al,A2>

and dom(eid e?,) & S (by the splitting set theorem)
append(rei fy(non-weak(B U H), in_as, ¢; i) Udominates(el;, e2;)
<3S e AS U meta(e’) ie{1,2} p U{1v(1)|l€L}
Umetaweak(weak(B UH),in_ as ,as, et U{v_p(eiq, e?y) : - not dom(ely, e?y).}

st My, 1(S, ety e2;) = (A1, As) and v_p(ely,e?y) € S
(append(reify(non-weak(B U H),in-as, e etd) Ufv(1) |1 € L}
vp

|
&3S € AS Ometa(o)

U meta(e?) o lie{l,2}
U metaweak(weak(B UH),in_ as as,ely)

(Sv ezdv zd AlaA2> and v p(€iq> €) €S

st M,

16

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Proposition 6.23. For any H C Sy;:
Let (I, I2) be any pair of interpretations.

H is a violating hypothesis with violating pair (I3, I5) if and only if 3A € AS((meta(B) U meta(Sar) Umeta(ET) U
meta(O°))[H]) such that v_p € A and M,) (A) = (I}, I5)

Proof.

AS ((meta(B)U meta(SM) Umeta(E™) Umeta(O°) Umeta(O°)) [H])
(U A) U Ay € AS((meta(o*) Umeta(O®) Umeta(B) Umeta(Sar) Umeta(ET))[H]),
=M

{vp:-vp(Vi,v2)} A, € AS((meta(o™) Umeta(O®) Umeta(B) Umeta(Sy) Umeta(ET))[H])
(By repeated applications of lemma ?7?)
Hence:
JA € AS((meta(B) Umeta(Sar) Umeta(ET) Umeta(O°) Umeta(O°))[H]) st vp € A and M)} (A) = (I, I)
& Yo € 0°, (meta(o) Umeta(B) Umeta(Syr) Umeta(ET) Umeta(OP))[H] is satisfiable and 3o = (e!, e?) € O°
st JA € AS((meta(o) Umeta(B) Umeta(Sy) Umeta(ET) Umeta(O°))[H]) st vp(ely,e2;) € A and M,) (A) =
(I, I).

& (meta(B) Umeta(Sy) Umeta(ET) Umeta(O®))[H] is satisfiable (as meta() is stratified and contains no
atom which appears in the bodies of the rest of the program) and Jo = (e}, €?) € O° st JA € AS((meta(o) U
meta(B) Umeta(Sy) Umeta(ET) U meta(Ob))[]) st vp(ejy e2;) € A and M) (A, ely,e2)) = (I, Iz).

& H is a positive hypothesis (by corollary [6.21)) and Jo = (e!,e?) € O°¢ st 34 € AS((meta(o) U meta(B) U
meta(Syr) Umeta(ET) Umeta(OP))[H]) st vp(eigreiy) € Aand M1 (A ey, e2)) = (11, I2)

< H is a positive hypothesm and Jo = (e!,e?) € O° st 3A € AS((meta(o)Umeta(B)Umeta(Sy)Umeta(ET)U
{1v(1) | 1 € L} st vp(ely, e3y) € A and My} (A, ely, e2y) = (I1, I5) (as the rest of O” has no heads used in the
body of the remaining rules).

& H is a positive hypothesis and 3o = (e!, e?) € O° st A € AS((meta(o)Umeta(B)Umeta(Syr)Umeta(el,)U
meta(eZ;) U{1v(1) | L € L} st vp(ejy, ez;) € A and M} (A, e}y, eZ;) = (I1, I2) (as the rest of meta(E™) has
no heads used in the body of the remaining rules).

& H is a positive hypothesis and Jo = (e!,e?) € O°
append(rezfy(non,weak(B U H),in-as,el;))
st 3A € AS U meta(e?) 1€ {1,2} p U{1lv(1) |l € L} Umeta(o)
U metaweak (weak(B U H),in_as,as, el;)
st vp(ejy, 2;) € A and M} (A, e}y, €2;) = (11, I2) (as the relevant grounding of the two programs is the same).

< H is a positive hypothesis and Jo € O¢ such that o (I1, I2) is a violating pair of H (by proposition [6.22)).
< H is a violating hypothesis with violating pair (I, I5).

Theorem 6.24. For any H C Sy;:

1. ThetaH] is satisfiable if and only if H is a positive hypothesis of T'.

2. A € AS(Tineta)[H]) such that A contains the atom v_i if and only if H is a violating hypothesis such that
BU H has the violating interpretation M (A).

3. A € AS(Timeta)[H]) such that A contains the atom v_p if and only if H is a violating hypothesis with violating
pair ./\/lvp (A)

Proof. 1. Tyeta = meta(B) Umeta(Syr) Umeta(EY) Umeta(E~) Umeta(O®) Umeta(O°)
Assume T;,,0, is satisfiable.

& (meta(B)Umeta(Sy) Umeta(ET)Umeta(O®))[H] is satisfiable, as no head literal in meta(O°)Umeta(E™)
unifies with any body literal in the rest of the program and meta(O¢) U meta(E ™) is stratified.

< H is a positive hypothesis by corollary

17

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

2. Let A be an answer set of Ty,erq[H] which contains v_i and let V = M ' (A).

& S € AS((meta(B) Umeta(Sy) Umeta(ET) Umeta(O) Umeta(O°) U {as(n)})[H]) and 355 € AS(SU
meta(E~)\{as(n)})[H] st v.i € Sy and V = M (Sy) by the splitting set theorem.

& 35 € AS((meta(B)Umeta(Sy)Umeta(EY)Umeta(O°)U{as(n)})[H]) st 3S2 € AS(SUmeta(E~)\{as(n)})[H])
st v.i € Sy and V = M (Sy) (as OF is stratified and contains no atom in E7)

< 38, € AS((meta(B)Umeta(Syr)Umeta(E1)Umeta(0%)),3Sy € AS((meta(B)Umeta(Sy)U{as(n)})[H])
st 3593 € AS(S; U Sy U (meta(E~)\{as(n)}))[H] st iv_i € S3 and V = M (S3) (by corollary 4.3).

& 391 € AS((meta(B) U meta(Syr) U meta(E') U meta(OP))[H]),3S2 € AS((meta(B) U meta(Sys) U
{as(n)})[H]) st(3333)6 AS(S2 U (meta(E~)\{as(n)}))[H] st v-i € S3 and V = M (S3) (as no atom in S
occurs in meta(E7)).

< H is a positive hypothesis and 357 € AS((meta(B) U meta(Sy) U {as(n)})[H]) st IS5 € AS(S1 U
(meta(E~)\{as(n)})[H]) st v_i € Sy and V = M} (Ss)

& H is a positive hypothesis and 351 € AS((meta(B) U meta(Sy) U {as(n)})[H]) st 352 € AS(S; U
(meta(E7))[H]) st vi € So and V = M (Ss)

< H is a positive hypothesis and 35 € AS((meta(B) U meta(Syr) U meta(E~))[H]) st v.i € S and
V= M;il (5)

< H is a positive hypothesis with violating interpretation V' (by proposition [6.19)).

< H is a violating hypothesis with violating interpretation V.

3. Let A be an answer set of Tieqq[H] which contains v_p and let P = M} (A)

& 35 € AS((meta(B) Umeta(Sy) Umeta(E') Umeta(O”) Umeta(O°))[H]) st v.p € S and P = M, }(S5)
and (meta(B) U meta(Sy) Umeta(E~))[H] is satisfiable (by corollary

Notice that if (meta(B) U meta(Sy) U meta(E™))[H] were unsatisfiable then Ti,ct, would be too (by the
splitting set theorem). Hence:

& 35 € AS((meta(B) Umeta(Sar) Umeta(ET) Umeta(O®) Umeta(O°))[H]) st vp € S and P = M }(S)
< H is a violating hypothesis with violating pair V' (by proposition [6.23)).
O

18

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

7 Ruling out classes of violating hypothesis: VR,

In this section, as before we will assume an ILPpoas task T'= (B, Sy, BT, E™, o°, 0¢). We will also assume a set
of violating reasons VR = VI UV P, where VI are violating interpretations and V P are violating pairs.

7.1 Meta Level representation

Definition 7.1. Given any choice rule R = 1{hy,...,hy}u :-body, reductify(R) is the program:

mmr(hy, X) :-reify(body™t,mmr, X), reify(body~, not in vs,X),
1{in_vs(hy,X),...,in_vs(hy, X)}u, in_vs(hy, X).

mmr (hy, X) :-reify(body™, mmr, X), reify(body ™, not in_vs,X),
1{in vs(hy,X),...,invs(hy, X)}u, in_vs(hy, X).
mmr (L, X) :-reify(body™, mmr, X), reify(body~, not in_vs,X),
u+ 1{invs(hy,X),...,invs(hy,X)}.
mmr (L, X) :-reify(body™, mmr, X), reify(body~, not in_vs,X),
{in_vs(hy,X),...,in vs(h,,X)}1 — 1.

Definition 7.2. Let P be an ASP program and t be a term. reductify(P,t) is the program:
{mmr(head, t) :-reify(body* (R), mmr,t),reify(body (R), not in vs,t),vs(t).| R € normal(P)}
U {mmr(L,t) :-reify(body™ (R),mmr,t),reify(body (R), not in_vs,t),vs(t). | R € constraint(P)}
U {reductify(R,t) | R € choice(P)}.

For any term t we write:

Ry (t) = nas(t) :-in_vs(ATOM, t), not mmr(ATOM,t)

R5(t) = nas(t) : - not in_vs(ATOM, t), mmr(ATOM,t)

We will also use the shorthand nas_rules(t) to denote Ry (t) U Ra(t).
Definition 7.3. VI,,c4(T) is the program:

{:- not nas(Ii).}
Ureify(l,invs, ;) |I € VI

{ reductify(B, X) Unas_rules(X)U
U{VS(Iid).}

{append(reductify(R, X),in_hyp(R;q)) | R € S} } Y

Definition 7.4. For any violating pair vp = (I3, I3), meta(vp) is the program:

reify(Ih,in_vs, vp;q)U :- not nas(vpia1),
dominates(vpia1, vpige) J{1v(1). | I € L}UL nas_rules(vpiq)U ie{l,2} U not nas(vpiaz),
{vs(vpiai)-} not dom(Vpid1, VPid2)-
Definition 7.5. V P,,cq(T)) is the program:
append(reducti fy(R, X), in_hyp(R;q)) | R € Su
reductify(B, X)U] append(metayeqr (W, inws,vs, X),in-hyp(Wyq)) | W € weak(Sp) pU{meta(vp) | vp € VP}
metayeak (W, invs,vs, X) | W € weak(B)

Definition 7.6. VR,,cta(T) = Vieta(T) UV Preta(T)
Similar to the previous section, we again partially ground the program to simplify the proofs. The representation
given in the paper is given in definition

Definition 7.7. Let T be the ILProas task (B, Sy, ET,E~,0° 0° and VR be the set of violating reasons
VIUV P, where VI are violating interpretations and V P are violating pairs.

V Rpeta(T) is the program meta(VI) U meta(V P) U meta(Auz) where the meta components are defined as follows:

19

Proof of the soundness and completeness of ILASP2

M. Law, A. Russo, K. Broda

e meta(VI) =

o meta(VP) =

reify(I,inwvs, I;q)

:- not nas(Ii4). | €VI

VS(Iid).

dominates(vp;iq1, vPide)
reify(Ily,in_vs, vp;q1)
reify(la, in_vs, vp;42)
vs(Vpia)-

vs(VPiga)-

:- not nas(vpiq1), not nas(vpiqg),

not dom(vpidi, VPid2)-

vp=(I,L) e VP

e meta(Aux) =
reductify(B)

nas(X
Y { nas(X

Example 7.8. Let B be the program:

p(V) := (W), not q(V).
q(V) = r(V), not p(\N).

r(1).
r(2).

a :—- not b.
b :- not a.

Let Sj; be the set of rules:

q(1).
17 q(V).[1e1, Vv, r2]
:” b.[1e1, b, r3]

o

_ ;P 5

Let BV =9 (ta). (o)),
(0. {a})

Let E= = { ({p(1)},0)
Let OY = { <€3T>€jf>
Let O° = { (e],e7)

Let VI ={ {p(1),p(2),7(1),7(2),a}

) :-in_vs(ATOM, X), not mmr(ATOM, X).

) := not in_vs(ATOM,X), mmr(ATOM, X).

U {append(reductify(R), in-hyp(R;q)) | R € non_weak(Sn)}

U {append(metayeqr (W, in_vs,vs, X), in_hyp(W;q)) | W € weak(Syr)}
U {metayear (W, in_vs,vs, X) | W € weak(B)}

u{1v(1).|le L}

Let VP = { ({p(2),q(1),7(1),7(2),a},{q(1),q(2),7(1),7(2),a})
Let the set of violating reasons VR be VI UV P. Then figure [2| shows V Rpeta(T).

7.2 Properties

Lemma 7.9. Given any program P (with no weak constraints), term t and interpretation I:
Let @ be the program reductify(P,t) Ureify(I,invs,t) U{vs(t)}.
Q is globally stratified and thus has a unique Answer Set denoted M (Q).

20

Proof of the soundness and completeness of ILASP2

M. Law, A. Russo, K. Broda

% reductify(B,X)

mnr (p(V) ,X) :- mmr(r(V),X),
not in_vs(q(V),X), vs(X).

mmr (q(V),X) :- mmr(z(V),X),
not in_vs(p(V),X), vs(X).

mmr (r(1) ,X) :- vs(X).

mmr (r(2),X) :- vs(X).

mmr (a, X)

mmr (b,X)

% reductify(S_M) + in_hyp
mnr (q(1),X) :- vs(X), in_h(rl).

w(1l,1,ts(V),X) :- vs(X),
in_vs(q(V),X), in_h(r2).

w(l,1,args(b,r3),X) :- vs(X),
in_vs(b,X), in_h(xr3).

% mnas_rules(X)

nas(X) :- in_vs(A,X), not mmr(A,X).
nas(X) :- not in_vs(A,X), mmr(A,X).
% VI

in_vs(p(1),vl).
in_vs(p(2),vl).
in_vs(r(1),vl).
in_vs(r(2),vl).
in_vs(a,vl).
vs(vl).

:— not nas(vl).

% VP
in_vs(p(2),v2).
in_vs(q(1),v2).
in_vs(r(1),v2).
in_vs(r(2),v2).
in_vs(a,v2).
vs(v2).

:— not in_vs(b,X), vs(X).
:— not in_vs(a,X), vs(X).

in_vs(q(1),v3).
in_vs(q(2),v3).
in_vs(r(1),v3).
in_vs(r(2),v3).
in_vs(a,v3).
vs(v3).

dom_1v(v2,v3,L)

= 1v(L),

#sum{w(W,L,A,v2)=W, w(W,L,A,v3)=-W} < O.

wrong_dom_lv(v2,v3,L)

- 1v(L),

#sum{w(W,L,A,v3)=W, w(W,L,A,v2)=-W} < O.

wrong_bef (v2,v3,L)
wrong_dom_1v(1,2,L).
:— dom_1lv(v2,v3,L),

dom(v2,v3)

- 1v(L), L < L2,

not wrong_bef (v2,v3,L).

:— not nas(v2), not nas(v3),

not dom(v2,v3).

Figure 2: An example of V Rpeta(T).

21

Proof of the soundness and completeness of ILASP2

M. Law, A. Russo, K. Broda

Lemma 7.10. Given any program P, term t and interpretation I:
Let Q = reductify(P,t) Ureify(l,in_vs,t) U {vs(t)}
M(P') = {atom | mmr(atom,t) € M(Q)}

Proof.
M(Q)
= M({
=M
_ {vs(t)}U
=M reify(I,in_vs,t)U
_ {vs(t)}u
=M reify(I,in_vs,t)U
B {vs(t)}U
=M reify(l,in_wvs,t)J

vs(t)} Ureify(l,in-vs,t) Ureductify(P,t))
({vs(t)} Ureify(I,in_vs,t) Ureductify(ground(P),t))

mmr (head, t) : - reify(body™ (R), mmr, t),
reify(body (R), not in vs,t),vs(t).
mmr(L,t) :-reify(body™ (R), mmr, t),
reify(body (R), not in_vs,t),vs(t).
reductify(R)

mmr (head, t) : - reify(body™ (R), mmr, t),
reify(body (R), not in vs,t),vs(t).

mmr (1, t) :-reify(body™ (R), mmr,t),
reify(body (R), not in_vs,t),vs(t).

mmr(h, t) :-reify(body™ (R), mmr,t),
reify(body (R), not in_vs,t),vs(t),

1{in vs(hy,t),...,in_vs(h,)}u, in vs(h)

mmr (1, t) :-reify(body™ (R), mmr,t),
reify(body (R), not in_vs,t),vs(t),
{invs(hy,t),...,invs(h,)}1 — 1

mmr(L,t) :-reify(body™ (R), mmr, t),
reify(body (R), not in vs,t),vs(t),
u—+ 1{invs(hs,t),...,invs(h,)}

mmr (head, t) : - reify(body™ (R), mmr, t),
reify(body (R), not in_vs,t),vs(t).

mmr(Ll,t) :-reify(body™ (R), mmr,t),
reify(body (R), not in vs,t),vs(t).

mmr(h, t) :-reify(body™ (R), mmr,t),
reify(body (R), not in_vs,t),vs(t),
1{in_vs(hy,t),...,invs(hy)}u.

mmr(l,t) :-reify(body™ (R), mmr,t),
reify(body (R), not in_vs,t),vs(t),
{in_vs(hs,t),...,invs(hy)}1 — 1

mmr (1, t) :-reify(body™ (R), mmr,t),
reify(body (R), not in_vs,t),vs(t),
u+ 1{invs(hy,t),...,invs(hy)}

‘ R € normal(ground(P))

‘ R € constraint(ground(P))
| R € choice(ground(P))

R € normal(ground(P))

R € constraint(ground(P))}

R € choice(ground(P)),
head(R) = 1{hy,...,hy}u,
h e {hl, - h"}

R € choice(ground(P))

R € choice(ground(P))

R € normal(ground(P))

R € constraint(ground(P))}

R € choice(ground(P)),
head(R) = 1{hy,...,hy}u,
he {hy,.. ha)0I

R € choice(ground(P))

R € choice(ground(P))

(because in_vs(atom,t) is true if and only if atom € I as these atoms come from reify(l,in_vs,t)).

22

Proof of the soundness and

completeness of ILASP2

M. Law, A. Russo, K. Broda

{vs(t)}U

reify(I,in_vs,t)U

(the programs are the same as the new conditions are exhaustive)

mmr (head, t) : -reify(body™ (R), mmr, t),

reify(body (R), not in vs,t),vs(t).

mmr (1, t) :-reify(body™ (R), mmr,t),

reify(body~ (R), not in_vs,t),vs(t).

mmr(h, t) :-reify(body™ (R), mmr,t),

reify(body (R), not in_vs,t),vs(t),

1{in vs(hy,t),...,in_vs(h,)}u.

mmr(h, t) :-reify(body™ (R), mmr,t),

reify(body (R), not in_vs,t),vs(t),

1{in vs(hy,t),...,invs(h,)}u

mmr(h,t) :-reify(body™ (R), mmr, t),

reify(body (R), not in_vs,t),vs(t),

1{in vs(hy,t),...,invs(h,)}u

mmr(l,t) :-reify(body™ (R), mmr,t),

reify(body (R), not in vs,t),vs(t),

{in_vs(hi,t),...,invs(hy)}1 — 1

mmr (1, t) :-reify(body™ (R), mmr,t),

reify(body (R), not in_vs,t),vs(t),

{in-vs(hy,t),...,in vs(h,)}1 — 1

mmr(L,t) :-reify(body™ (R), mmr, t),

reify(body (R), not in_vs,t),vs(t),

{invs(hy,t),...,invs(h,)}1 — 1

mmr(L,t) :-reify(body™ (R), mmr, t),

reify(body (R), not in vs,t),vs(t),

u—+ 1{invs(hs,t),...,in vs(hy)}

mmr(l,t) :-reify(body™ (R), mmr,t),

reify(body (R), not in vs,t),vs(t),

u+ 1{invs(hy,t),...,invs(hy)}

mmr (1, t) :-reify(body™ (R), mmr,t),

reify(body (R), not in_vs,t),vs(t),

u+ 1{invs(hy,t),...,invs(hy)}

23

R € normal(ground(P))

R € constraint(ground(P))}

R € choice(ground(P)),
head(R) = 1{hy,...,hy }u,
h e {hl,hn}ﬂl
I<H{h1,...ha} NI <u

R € choice(ground(P)),
head(R) = 1{hy,...,hy }u,
he{hi,...hy} NI

1> {h1,...ha} NI|

R € choice(ground(P)),
head(R) = 1{hy,...,hy }u,
hef{h,...hy}NI
{hi,...hn} NI >u

R € choice(ground(P))
head(R) = 1{hy,...,hy }u,
I<H{hi,...hp NI <u

R € choice(ground(P))
head(R) = 1{hy, ... ,hy}u,
1> |{h1,...ho} NI|

R € choice(ground(P))
head(R) = 1{hy,...,hy}u,
{hi,...hn} NI >u

R € choice(ground(P))
head(R) = 1{hy,...,hy }u,
[l <A{hi,...h,} NI <u

R € choice(ground(P))
head(R) = 1{hy,...,hy }u,
[> {hi,...hp} NI

R € choice(ground(P))
head(R) = 1{hy, ... ,hy}u,

Proof of the soundness and

completeness of ILASP2

M. Law, A. Russo, K. Broda

false).

{vs(t)}U

reify(l,inwvs,t)U

mmr (head, t) : - reify(body™ (R), mmr, t),

reify(body (R), not in vs,t),vs(t).

mmr (1, t) :-reify(body™ (R), mmr,t),

reify(body~ (R), not in_vs,t),vs(t).

mmr(h, t) :-reify(body™ (R), mmr,t),

reify(body (R), not in vs,t),vs(t),

1{in vs(hy,t),...,invs(h,)}u.

mmr(L,t) :-reify(body™ (R), mmr, t),

reify(body (R), not in vs,t),vs(t),

{in_vs(hs,t),...,invs(hy)}1 — 1

mmr(l,t) :-reify(body™ (R), mmr,t),

reify(body (R), not in_vs,t),vs(t),

u+ 1{invs(hy,t),...,invs(hy)}

R € normal(ground(P))

R € constraint(ground(P))}

R € choice(ground(P)),
head(R) = 1{hy,...,hy }u,
h e {hl,hn}ﬂl
I<Whi,...hp NI <u

R € choice(ground(P))
head(R) = 1{hy,...,hy }u,
1> |{h1,...hp} N |

R € choice(ground(P))
head(R) = 1{hy,...,hy}u,
|{h1,hn}ﬂl‘ >u

(by corollary (part 2), as we have only removed rules whose bodies were false due to the sum being

{vs(t)}U

reify(I,in_vs,t)U

mmr (head, t) : - reify(body™ (R), mmr, t),

reify(body (R), not in_vs,t),vs(t).

mmr(l,t) :-reify(body™ (R), mmr,t),

reify(body~ (R), not in_vs,t),vs(t).

mmr (h,t) :-reify(body™* (R), mmr,t),

reify(body (R), not in_vs,t),vs(t).

mmr(l,t) :-reify(body™ (R), mmr,t),

reify(body (R), not in_vs,t),vs(t).

mmr(l,t) :-reify(body™ (R), mmr,t),

reify(body (R), not in vs,t),vs(t).

R € normal(ground(P))
reify(body~ (R),in_vs,t)
Nreify(l,invs,t) =0
R € constraint(ground(P))
reify(body™ (R),in_vs,t)
Nreify(l,invs,t) =0
R € choice(ground(P)),
reify(body™ (R),in_vs,t)
Nreify(l,in_vs,t) =0
head(R) = 1{hy,...,hy}u,
he{h,. . .hat0l
I<Hh1,.. ha 30 I <u

R € choice(ground(P))
reify(body~ (R),in_vs,t)

Nreify(I,invs,t) =0
head(R) = 1{hy,...,hy }u,
1> {h1,...hy} NI

R € choice(ground(P))
reify(body™ (R),in_vs,t)
Nreify(I,invs,t) =0
head(R) = 1{hy,...,hy }u,
|{h1,...hn}ﬂl‘ >u

(As the rules which have been removed contain the negation of at least one fact in the program).

24

Proof of the soundness and completeness of ILASP2

M. Law, A. Russo, K. Broda

_ {vs(t)}U
=M reify(I,in_vs,t)U

mmr (head, t) : - reify(body™ (R), mmr, t),
vs(t).

mmr(l,t) :-reify(body™ (R), mmr,t),
vs(t).

mmr(h,t) :-reify(body™ (R), mmr,t),
vs(t).

mmr(l,t) :-reify(body™ (R), mmr,t),
vs(t).

mmr(L,t) :-reify(body™ (R), mmr, t),
vs(t).

R € normal(ground(P))
‘ reify(body~ (R),in_vs,t)
Nreify(l,invs,t) =
R € constraint(ground(P))
’ reify(body= (R),in_vs,t)
Nreify(l,in_vs,t) =0
R € choice(ground(P)),
reify(body~ (R),in_vs,t)
Nreify(l,in_vs,t) =
| head(R) = 1{hy,...,hy}u,
hef{hy,...hy}NIT
I<Hhi,...ho} NI <w

R € choice(ground(P))
reify(body~ (R),in_vs,t)

Nreify(I,invs,t) =0
head(R) = 1{hy,...,hy}u,
1> {h1,...hn} NI

R € choice(ground(P))
reify(body= (R),in_vs,t)
Nreify(l,inwvs,t) =0
head(R) = 1{hy,...,h, }u,
H{hi, .. ho} NI > u

(As the literals which were removed were definitely true given the facts in the program)

reify(I,in_vs,t)J

{vs(t)}U

mmr (head, t) :-reify(body™ (R), mmr,t). ‘

mmr (L, t) :-reify(body™ (R), mmr,t). ‘

mmr (h,t) : - reify(body™ (R), mmr, t). |

mmr (L, t) :-reify(body™ (R), mmr,t). ‘

mmr (L, t) :-reify(body™ (R), mmr,t). ‘

R € normal(ground(P))
reify(body~ (R),in_vs,t)
Nreify(l,invs,t) =0
R € constraint(ground(P))
reify(body~ (R),in_vs,t)
Nreify(l,in_vs,t) =0
R € choice(ground(P)),
reify(body™ (R),in_vs,t)
Nreify(l,invs,t) =0
head(R) = 1{hy,...,hy }u,
hef{hy,...hp}NI
< H{hi,...ho} NI <u

R € choice(ground(P))
reify(body~ (R),in_vs,t)

Nreify(l,invs,t) =0
head(R) = 1{hy,...,hy}u,
1> {h1,...hn} NI|

R € choice(ground(P))
reify(body~ (R),in_vs,t)
Nreify(l,invs,t) =0
head(R) = 1{hs,...,hy }u,
[{h1,...hn} NI >u

(As the literals which were removed were definitely true given the facts in the program)

25

Proof of the soundness and completeness of ILASP2

M. Law, A. Russo, K. Broda

=M
head :-body™ (R).
L :-body™*(R).
h :-body™*(R).
= M(reify(
L :-body™*(R). ‘
L :-body™*(R). ‘

mmr (head, t) : - reify(body™ (R), mmr, t). ‘

mmr(h,t) :-reify(body™* (R), mmr,t). |

mmr(l,t) :-reify(body™ (R), mmr, t). ‘

mmr(l,t) :-reify(body™ (R), mmr, t). ‘

R € normal(ground(P))
reify(body™ (R),in_vs,t)
Nreify(l,in-vs,t) =0
R € constraint(ground(P))
mmr(1,t) :-reify(body™ (R), mmr, t). ‘ reify(body™ (R),in_vs,t)
Nreify(l,in_vs,t) =0
R € choice(ground(P)),
reify(body™ (R),in_vs,t)
Nreify(I,invs,t) =0
head(R) = 1{hy,...,hy }u,
hef{hy,...hp}NI
< Hhi,.. ho} NI <u

Ureify(I,in_vs, t)U

R € choice(ground(P)) {vs(v)}

R € choice(ground(P))
reify(body~ (R),in_vs,t)
Nreify(l,in_vs,t) =0
head(R) = 1{hy,...,hy }u,
{h1,...hn} NI >u

R € normal(ground(P))
body~" (R)yNI =10

R € constraint(ground(P))
body"(RYNI =10

R € choice(ground(P)),
body " (RYNI =10

head(R) = 1{hy,...,hy }u,
hef{h,...hy}NI
IL<H{hy,...hp NI <u

R € choice(ground(P))
body " (RYNI =10
head(R) = 1{hy,...,hy }u,
1> H{h,...hy} NI|

R € choice(ground(P))
body~— (R)yNI=10
head(R) = 1{hy,...,hy }u,

= M(reify(PL),mmr,t) Ureify(I,in_vs,t) U {vs(t)}
=reify(M(P!),mmr t) Ureify(l,invs,t) U {vs(t)}
Hence M(P!) = {atom | mmr(atom,t) € M(Q)}

Lemma 7.11. Given any program P, term t and interpretation I:
Let Q = reductify(P,t) Ureify(l,in_vs,t) U {vs(t)}
I € AS(P) if and only if nas(t) € M (Q Unas_rules(t)).

26

reify(body™ (R),in_vs,t)
Nreify(l,in_vs,t) =0
head(R) = 1{hy,...,hy }u,

1> [{hy,. .. ha} O 1|

;mmr,t)) Ureify(I,invs,t) U {vs(t)}

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Proof. Assume I ¢ AS(P)
& (FJae M(P)ystagl)Vv(3aelstag M(P)).
Case 1: Jac M(Pl)stagI
& Ja € {atom | mmr(atom,t) € M(Q)} st a ¢ I (By lemma|[7.10).

< Ja st mmr(a,t) € M(Q) and in_vs(a,t) ¢ M(Q) (as the in_vs atoms in M(Q) are reify(I,in_vs,t) and

a¢gl).

< 3RY (a ground instance of Ry (t)) st body(RY) is satisfied by M(Q).
Case 2: Jac [st a g M(PF)

& Ja€elstad{atom|mnr(atom,t) € M(Q)} (By lemma [7.10).

< Ja st invs(a,t) € M(Q) and mnr(a,t) € M(Q). (as the in_vs atoms in M(Q) are reify(I,in_vs,t) and

acl).
< 3RJ (a ground instance of Ry(t)) st body(R3) is satisfied by M(Q).
Hence:

I¢ AS(P)

& (3R] € ground(R:(t)) st M(Q) satisfies body(R])) V (IR§ € ground(Ra(t)) st M(Q) satisfies body(R3)).

< JRY € ground(nas_rules(t)) st M(Q) satisfies body(R7).
< nas(t) € M(M(Q) Unas_rules(t))

< nas(t) € M(Q Unas_rules(t)) as nas(t) occurs nowhere in Q.

Lemma 7.12. Let H C Sy
VIneta(T)[H] is satisfiable if and only if VI € VI, I & AS(BU H).

Proof. Assume VI, (T)[H] is satisfiable.

{:- not nas(Ii). vs(Iiq).}

< reductify(BU H, X)Unas_rules(X) U { reify(I, in.vs, I1y)

‘I S VI} is satisfiable.

{:- not nas(Iig). vs(Iig).}
reify(I,invs, I;q)

& reductify(B U H, Ly) I € VI ; is satisfiable (as the relevant grounding is the same).
nas_rules(l;q)
{:- not nas(Iiq). vs(Iia)-}
SVIeVl: reify(l, in-vs, Lia) is satisfiable (by corollary [4.2)).

reductify(BU H, I;4)
nas_rules(l;q)

{VS(Iid).}
reify(l,inws, I;q)
reductify(BU H, I;q)
nas_rules(l;q)

& VIeVI: I¢AS(BUH) (by lemmal[7.11).

VI eVI:nas(ly) € M is satisfiable (by lemma ?7).

Lemma 7.13. Let t; and t, be two distinct terms and L be a set of integers. Let I; and Iy be interpretations.

metayear(weak(B U H),in_vs,vs,t;)

reify(l;, in_vs, t;) := not nas(ty),
dominates(t1, t2)U{1v(1) |l € L}US nas_rules(t;) i€ {1,2} pU not nas(tz),
reducti fy(normal(B U H),t;) not dom(ty,ta)

{vs(vpias).}
is satisfiable if and only if (Iy ¢ AS(BUH)V Iy ¢ AS(BUH)V I =pun I2).

27

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Proof.
reify(Il;,in_vs,t;)

{vs(ts)}
nas_rules(t;)
reducti fy(normal(B U H),t;)

metayear(weak(B U H),in_vs,vs,t;)

For i € {1,2} Let Q; =

Let Q3 = dominates(t1,t2) U{lv(l) |l € L} U ¢ reify(l;,invs,t;) ie{l,2}
{vs(t)}
AS(Q1UQ2UQ3) =4 A1 U A, A1 € AS(Q1UQ2), as the only atoms in both ground(@Q1 U Q2) and ground(Qs)
Az € AS(Q3)

are facts in both programs.
S M(Q1UQ2UQ3) = M(Q1UQ2) UM(Q3)

:- not nas(ty),
Hence not nas(ts), U @ is satisfiable
not dom(tl,tg)

:- not nas(ty),
= not nas(tz2), UM(Q1UQ2)UM(Qs3) is satisfiable
not dom(ty,ta)

< mnas(ty) € M(Q1UQ2) Vnas(ty) € M(Q1 UQ2)V dom(ty, ts) € M(Q3).

< nas(ty) € M(Q1) Vnas(tz) € M(Q2) V dom(ty, t2) € M(Q3) (by corollary [£.2)).
oI ¢ AS(BBUH)V I, ¢ AS(BUH) V dom(ty,t2) € M(Q3) (by lemma[7.11).
oL AS(BUH)VI, ¢ AS(BUH)V I, =pung I (by lemma ?7?)

Lemma 7.14. Let H C Sy
V Preta(T)[H] is satisfiable if and only if V(I1,Is) e VP : I, ¢ AS(BUH)V Is ¢ AS(BUH)V I =pun I>.

Proof.
Assume V P10 (T)[H] is satisfiable.
< {meta(vp) | vp € VP} Ureductify(normal(B U H), X) Umetayeqr(weak(B U H),invs,vs, X)

metayear(weak(B U H), in_vs, vs, vp;q ;)
< < meta(vp) U reductify(normal(BU H),vp;q ;) 1€ {1,2} p|lvp € VP 3 is satisfiable.

{vs(vpia1).}
(by partial grounding and removing rules whose bodies can’t be satisfied).
metayear(weak(B U H),in_vs,vs, vpiq ;)
& Yop € VP, meta(vp) U reductify(normal(B U H),vpiq ;) 1 € {1,2} » is satisfiable.
{ {vs(vpiai).} }

e VY(I,L)eVP: I, g AS(BUH)V I, ¢ AS(BUH)V I; »pun I> (by lemmal7.13). O
Theorem 7.15. Let H C Sy,
V Rimeta(T)[H] is satisfiable if and only if H is not a known violating hypothesis.

Proof.

Assume H is not a known violating hypothesis.
SVIeVI,I¢AS(BUH) and V(I,,I,) € VP : I, ¢ AS(BUH)V I, ¢ AS(BUH)V I, = puy .
& (by lemma [T.12)) VIpero(T)[H] is satisfiable and (by lemma V Ppera(T)[H] is satisfiable.
S (VIneta(T) UV P (T))[H] is satisfiable.

28

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

8 Proof of the soundness and completeness of ILASP2

In this section we use the results that we have already proved in order to prove the soundness and completeness of
ILASP2.

Lemma 8.1. For any task T, any hypothesis H C Sj; and any set of violating reasons V R:

Ay € AS(Thera(H), }

AS(TmetaH) UV Rpnera(T)[H]) = {Al VA2 A € AS(V Ropra (T)[H))

Proof.

The only predicate names which appear in both Tyetq[H] and V Ryera(T)[H] are dom, lv, dom_lv, weak, wrong_bef
and wrong_dom_lv.

Other than [v, as these are all parameterised by unique ids, none of the atoms in Ty,etq[H| unify with any atom in
V Rpmeta(T)[H]. The atoms lv only appear as facts in both programs and are the same facts in both.

Al € AS(TmetCL[H])7 }

A € AS(VRmeta(T)[HD .

Hence AS(Tyeta[H] UV Ryeta(T)[H]) = {A1 U Ay

Theorem 8.2. For any task T, any hypothesis H C Sy and any set of violating reasons VR :
(Trneta UV Rmeta(T))[H] is satisfiable if and only if H is a remaining hypothesis of T wrt VR.

Proof.
Assume (Theta UV Rera(T))[H] is satisfiable
& Thneta[H] UV Rpeta(T)[H] is satisfiable
& Tmeta|H| satisfiable and V Ry,etq (T)[H] is satisfiable (by lemma .

< H is a positive hypothesis of T and H is a remaining hypothesis of T wrt VR (by theorem and theo-
rem [7.15). O

Corollary 8.3. For any task 7', any hypothesis H C Sj; and any set of violating reasons V R:
JA € AS(Tieta UV Rieta(T)) such that meta;bylp(A) = H if and only if H is a remaining positive hypothesis.

Proof. Follows from theorem [8.2] and lemma [4.§ O

Lemma 8.4. For any task 7', any hypothesis H C Sy, and any set of violating reasons V R:
VA € AS(Treta UV Rieta(T))

P} = |./\/l,:ylp(A)| + v (where v is 0 if A contains violating and 1 otherwise).

Proof.
Let P = Theta UV Rppeta(T)
weak(P) = {: ~ in hyp(Riq).[2 * |R|@QO,Rsq] | R € Sy} U {: ~ not violating.[1@0,violating]}
= VA e AS(P), W € weak(P, A) iff W = (w,0,t) st (t = violating A\w=1)V (IR € Sy st t = Rjg Aw = |R)|)
=P = (> |R|> + v where v is 0 if violating € A and 1 otherwise.
ReS N in_hyp(R;q)€EA
(as 0 is the only level with any weak constraints we can just call this the optimality)

= P} = |M,:y1p(A)| + v (where v is 0 if A contains violating and 1 otherwise).

29

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Theorem 8.5. Given any hypothesis H C Syy:

JA € AS(Tineta UV Rppeta) such that vi € A and H = Mt

hyp(A)

< H is a remaining violating hypothesis and ./\/l;i1 (A) is a violating interpretation of BU H.

Proof.

Let A € AS(Tieta UV Rieta) and assume H = ./\/l;ylp

(A), vi € Aand V =M'(A).

& JA € AS((Tmeta UV Ryera)[H]) st v-i € A and V = M} (A) (by lemma [4.8)

& V Rpneta(T)[H] is satisfiable and 3A € Tppeta(H) st vi € A and M (A) =V
(by lemma [8.1] and as no instance of in_as occurs in V Ryyerq(T)[H]).

< H is a remaining hypothesis of T (by theorem and a violating hypothesis with violating interpretation V/
(by theorem [6.24).

< H be a remaining violating hypothesis with a violating interpretation V'

Theorem 8.6. Given any hypothesis H C Syy:

JA € AS(Timeta UV Rpeta) stvp € A and H = M} (A)

& H is a remaining violating hypothesis with violating pair ./\/l;p1 (4).

Proof.
Let H be a remaining violating hypothesis of T with violating pair vp.

& Vipeto(T)[H] is satisfiable by theorem and 3A € Tpera(H) st vp € A and M} (A) = vp (by theo-
rem [6.24]).
< JA € AS(Trmeta UV Rieta)[H]) st vop € A and ./\/l;p1 (A) = vp is a violating pair.
(by lemma [8.1] and the fact that no atom with the predicate in_as appears in V Ryeq(T)[H])
& 3A € AS(Tpeta UV Ripera) st H = M, (A), vp € A and My} (A) = vp (by lemmal[L.§).

Corollary 8.7. Given any hypothesis H C Sy;:

JA € AS(Tineta UV Rpneta) St violating € A and H = ./\/l,;ylp(A) iff H is a remaining violating hypothesis of T

Theorem [8.§] is Theorem 1 from the paper.

Theorem 8.8. Given an ILProas task and a set of violating reasons VR. Let AS be the set of optimal Answer
Sets of Trneta UV Rpmeta(T).

If 4A € AS st violating € A then the set of optimal remaining violating hypotheses V H is non empty and is exactly
equal to the set {./\/l;ylp(A) : A e ASY.

If no A € AS contains violating, then the set of optimal remaining hypotheses (none of which are violating) is exactly
equal to the set {./\/l,;ylp(A) : Ae AS}.

Proof.

1. Assume 3A € AS such that violating € A.
Let opt be the optimality of A.
= opt is an even number.
= VA € AS, violating € A, the optimality of A = opt (and AS is non empty).
= VA e AS, M,:ylp(A) is a remaining violating hypothesis of length opt/2

30

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

(by corollary and lemma .

= VA e AS, ./\/l,:ylp(A) is an optimal remaining violating hypothesis

(if there were any more optimal hypotheses remaining there would be a more optimal answer set).

Let H be an optimal remaining violating hypothesis
= JA € AS(Tineta UV Rppeta) st violating € A and H = M,:ylp(A) by corollary and |H| = opt/2.
= 3A € AS(Tieta UV Rppeta) st violating € A and H = M;ylp(A) and the optimality of A = opt
(by lemma [8.4)).
= JA € AS st violating € A and H = M,;ylp(A)
Hence, {./\/l;ylp(A) | A € AS} is exactly the set of optimal remaining violating hypotheses.
2. Assume no A € AS contains the atom violating. Let opt be the optimality of these Answer Sets.

=VAc AS, ./\/l,;ylp(A) is a remaining hypothesis of length (opt — 1)/2 (by corollary [8.7| and lemma.

Assume there is a remaining violating hypothesis H of shorter or equal length to these hypotheses.
= 3A € AS(Tineta UV Rppeta) st violating € A and H = /\/l,:ylp(A) and the optimality of A = 2 x|H|

(by corollary and lemma .

Contradiction as this would mean that there is a more optimal Answer Set than those in AS.

Assume there is a remaining hypothesis H of shorter length to these hypotheses.
= H is a positive hypothesis.
= 3A € AS(Tieta UV Ripeta) st violating € Aand H = M;ylp(A) and the optimality of A = 2x|H|+1

(by corollary and lemma [3.4).

Contradiction as this would mean that there is a more optimal Answer Set than those in AS.

Assume there is a remaining hypothesis H of equal length to these hypotheses.
= H is a positive hypothesis.
= JA € AS(Timeta UV Rpeta) st violating € A, H = M;ylp(A) and the optimality of A is opt

(by corollary and lemma [3.4).
= He{M,, (A)| Ac AS}.

Hence, {M;;p(A) | A € AS} is exactly the set of optimal remaining hypotheses, none of which are violating.
O

Theorem is Theorem 2 from the paper, it proves the soundness and completeness of our new algorithm, WCL.
Theorem 8.9. Let T be any ILProas task. If the process WCL(T) terminates, then WCL(T) is equal to the set
of optimal solutions of ILProas(T).

Proof. At every step through the while loop, VR is a set violating reasons of T'.

Base Case: Before the loop has been entered, VR = |].

Inductive Hypothesis: Let V Ry be a set of violating reasons. If VR = V Ry at the start of an interation through the
loop, then V Ry, the value of V R after one iteration of the loop, is still a set of violating reasons of T'.

Proof of Inductive Hypothesis:
Case 1: viig AANvp ¢ A
= VRy=VR;

31

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

= V' R; is a set of violating reasons.
Case 2: v_i € A.

= vi = M (A) is a violating interpetation of B U M *(A) (by theorem 8.5

vi
= VR; = VRy+ viis a set of violating reasons of T'.
Case 3: v.p € A.
= vp = M} (A) is a violating pair of BUM; ' (A) (by theorem .
= V Ry = VRy+ vpis a set of violating reasons of 7.
Hence at each step through the loop, VR is a set of violating reasons of 7.
When WCL(T) terminates, either opt is odd or Tyetq UV Rypeta has no answer sets.
Case 1: opt is odd.

Each as € ASopi(Tmeta U VRmera(T)) has optimality opt; hence, by lemma vi & as,vp & as and
violating € as. Hence by theorem {./\/l,:,;p(as) | as € ASopt(Tmeta UV Rmeta(T'))} is the set of optimal
remaining hypotheses, none of which are violating. This means that they are the optimal inductive solutions
of T.

Case 2: Tyetq UV Ryetq has no answer sets.

There are no remaining positive hypotheses (by corollary . Hence, as VR is a set of violating reasons,
there are no inductive hypotheses. So ILProas(T) =0 = ILASP2(T).

O

32

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Part 11

Theoretical Properties

9 Sufficient and Necessary conditions for existence of solutions

In this section, we prove sufficient and necessary conditions for a Learning from Ordered Answer Sets task to have
at least one solution. We consider a learning task with an unrestricted search space (hypotheses can be any set of
normal rules, choice rules and hard and soft constraints).

Theorem 9.1. Let T be the ILProas task (B, ET,E~,0% 0O¢). The following conditions (in conjunction) are
sufficient for there to exist at least one solution of T

1. Ve € ET, there is at least one model of B which extends e.

2. Ve; € Et, Pey € (ET U E7) such that e; extends es.

3. There is no cyclic chain of ordering examples (in O® U O°) (e, ea), {€2,€3),. .., {en_1,€n),), {€n,€1)

Proof. We show this by assuming that all of the conditions hold and constructing an inductive solution H.

For each positive example 6;" € ET, we know by condition 1 that there is at least one model of B which does extends
e;. We denote this model as Mp,s(e}).

As there are no cycles in the ordering examples, there must be a mapping || || from positive examples to positive
integers such that for each ordering example (e, ez) € (O U O°), |le1]| > ||e2]|-

Let s1,..., 8 g+ be new atoms not occuring in B or the examples H be the program:
i~ 85.[—1Q]|es]]]
mp :—8;5.
. {m,...,mp} = Mpos(e;)
{ s, s 1. }U m, :-S;. e; = ({incy, ... inc}, {exe, ... exc,} € ET
:—8;,eXCq....
1-Si,eXCqy.

For each positive example e;" € BT, Myos(ei) U{s;} is an answer set of BU H and hence as Mp,s(e;) extends ej', H
covers all the positive examples.

Every answer set of B U H must contain exactly one s; atom and hence cover at least one positive example (as
e C Mpos(ei) and there are constraints ruling out any atom in e®®® occuring together with s;). Hence, as no
positive examples extend other positive examples or negative examples, each answer set of BU H extends exactly one
positive example (corresponding to the s; atom it contains) and no negative examples (hence, the negative examples
are covered).

It remains to show that the ordering examples are all respected; in fact, we can show that all the ordering examples
(brave and cautious) are cautiously respected (and hence also bravely respected as there are answer sets which cover
each positive example).

For any ordering example (e1,es) € (O” U O°), each answer set A; of B U H that extends e; contains s; (and no
other s; atom); similarly each answer set As of B U H that extends es contains se and no other s atom. For all
levels [in the program other than ||e||, (BU H)!, = 0 and for all levels [other than ||es||, (BU H)', = 0. Hence,
as ||e1]| > ||ez||, the first level on which A; and A, differ is ||e1]|| for which A;’s score is —1 and Ag’s is 0. Hence, Ay
dominates As.

So all the brave and cautious ordering examples are both bravely and cautiously respected.

Hence, H is an inductive solution of T.

33

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

We now give a slightly weakened condition which is necessary for there to exist solutions of a learning from ordered
answer sets task.

Theorem 9.2. Let T be the ILProas task (B, E*, E=, 0" O°). The following conditions are all necessary for there
to exist at least one solution of T

1. Ve € ET, there is at least one model of B which extends e.
2. VYey € Et, fles € E~ such that e extends es.

3. There is no cyclic chain of ordering examples (in O°) (e1, e2), (€2, €3), ..., (€n_1,€n), (€n,€1).

Proof. We prove this by assuming that there is an inductive solution H € ILProas(T) and show that each of the
conditions (1)-(3) must hold.

1. For each positive example e € E™T, there is an answer set A of B U H which extends e. A is a model of BU H
(as all answer sets are models) and hence is also a model of B.

2. Assume for contradiction that there is a positive example et = (ef ek) and a negative example e~ =
(€50 €one) SUch that e, Cef ande,,. C el

inc’ “exc nc = erc’

As H is an inductive solution of T, there is an answer set A of B U H which extends e™.

So there is an A € AS(B U H) such that ¢f, € A and ef,, N A = (. Hence e;,, C Aand e, NA =10. So
A extends e~. Contradiction, as H was an inductive solution and therefore B U H must have no answer sets

which extend e™!

3. Again, assume for contradiction that there is such a chain. As there is at least one answer set which extends
each e;, this implies both that all answer sets of BU H which extend e; dominate all answer sets which extend
en (domination is clearly transitive) and that all answer sets which extend e, dominate all answer sets which
extend eq.

As there is at least one answer set A; extending e; and one answer set A, which extends e,, this implies that
Ay dominates A,, and A,, dominates A;. This is impossible, and hence a contradiction.

34

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

10 Complexity Results

In this section, we prove the complexities of ILProas and ILPp s with respect to deciding, given a learning task
T, whether there are any inductive solutions of T'. In this report we consider the propositional case (where both the
background knowledge B and the hypothesis space Sy, are ground). This decision problem is N PV*-complete for
both ILPLOAS and ILPLAs.

10.1 Learning from Answer Sets with Stratified Summing Aggregates

Before proving the complexity results, we introduce a new learning task, ILP} ,o (Learning from Answer Sets with
Stratified Summing Aggregates). First we recall the definition of aggregate stratification from [5]. We slightly
simplify the definition by considering only propositional programs without disjunction.

Definition 10.1. A propositional logic program P, only containing aggregates in the bodies of rules, is stratified
on an aggregate a if there is a level mapping || || from Atoms(P) to ordinals, such that for each rule R € P, the
following holds:

1. Vb € Atoms(body(R)) : ||b|| < ||head(R)||
2. If a € body(R), then Vb € Atoms(a) : ||b]| < ||head(R)||

P is said to be aggregate stratified if it is stratified on every aggregate in P.

The intuition is that aggregate stratification forbids recursion through aggregates.

Note that constraints and choice rules can be added in to any aggregate stratified program without breaking strati-
fication so long as no atoms in the head of the choice rule are on a lower level than any atom in the body. This is
illustrated by the following example.

Example 10.2. Any constraint :=by,...,by, not cy,..., not ¢, can be rewritten as s :-=by,...,by, not cy4,..., not cy, not s
where s is a new atom. s can then be mapped to a higher level than any other atom.

A choice rule 1{h;,...,h }u:=by,...,b,, not cy,...,cy can be rewritten as:

hl :- b1, ..., bn, not c1, ..., cm, not hl’.

hi’ :- b1, ..., bn, not c1, ..., cm, not hil.

ho :- b1, ..., bn, not c1, ..., cm, not ho’.

ho’ :- bl, ..., bn, not c1, ..., cm, not ho.

s :-bl, ..., bn, not ¢1, ...,, cm, {thi, ..., hn} 1 - 1, not s.

s’ :-bl, ..., bn, not ¢1, ...,, cm, u + 1 {h1, ..., hn}, not s’.

where hi,...,hl,s,s" are all new atoms. s and s’ can both be given a new highest level and each h; can be given

the same level as h; (if they did not occur in the previous program then they should be given a new level one below
s and s’). Provided the previous program was aggregate stratified, then this new one is too.

To avoid constantly using this mapping, we will refer to programs with choice rules and constraints as also being
aggregate stratified.

Lemma 10.3. Deciding whether an aggregate stratified propositional program without disjunction cautiously entails
an atom is is co-IN P-complete [5].

Corollary 10.4. Deciding whether an aggregate stratified propositional program without disjunction bravely entails

an atom is is N P-complete.

We can now introduce our extra learning task, Learning from Answer Sets with Stratified Aggregates. It is essentially
the same as Learning from Answer Sets, but allowing summing aggregates in the bodies of rules, so long as they are
stratified.

35

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Definition 10.5. A Learning from Answer Sets with Stratified Aggregates task is a tuple T = (B, Sy, ET,E™)
where B is program which can contain summing aggregates in the bodies of rules called the background knowledge,
S is a set of rules which possibly contain summing aggregates called the search space and E~ are sets of partial
interpretations called, respectively, positive and negative examples.

For this task to be well defined, B U Sj; must be aggregate stratified.

An hypothesis H is an inductive solution of T, written H € ILP§ ,4(T), if and only if H C Sy; Vet € ET
JAe AS(B U H) such that A extends e™; and finally, Ve~ € E~ AA€ AS(B U H) such that A extends e™.

Note that the condition of B U Sy, being aggregate stratified, implies that for any hypothesis H C Sy, BU H is
aggregate stratified.

10.2 Proof of Complexity

As we can show that ILPr s reduces to ILProas and ILProag reduces to ILP} 44 (in polynomial time), it suffices
to show that ILPj 4g is NPNP hard (thus also proving the hardness of the other frameworks) and that ILP} ,¢ is
a member of NPN (thus proving membership of the other frameworks). This shows that each framework is both
a member of NPN? and also NPN”-hard, and therefore must be N PN"-complete.

Lemma 10.6. Deciding whether an ILPrpas task has any solutions reduces polynomially to deciding whether
ILP} 44 has any solutions.

Proof. To show this, we use part of the ILASP2 meta encoding in the background knowledge.

As we cannot use non-ground atoms in our reduction, we use a slightly different representation of dominates(t1,t2)
described in section [5.11

Let weak_atoms(l, P) define a set of tuples representing the weak constraints at level [in P. Each weak constraint
W is represented by a tuple (atom?, atom?, wt,body) (where atom! and atom? are new atoms unique to W, wt is
the weight of W and body is the body of W.

dominates(t1,t2) =

dom_1v(t1,t2,1) : -
#sum{atom} = wty,...,atom} = wty,
2 _ 2 _
atom; =wty, ..., atom; = Wy} lisalevel in BUH,
non dom 1lv(t1,t2,1) : - 1 5 A 1
#sum{aton? — wty aton? — wt {(atomi, atom?, wty, body;), ...,
aton! —lwtl "E'I:C’omril —eta) ™ 1 (atoml,, atom?,, wt,,, body,)} = weak_atoms(l, BU Sy)
1 — gy - n
dom(t1,t2) :-dom_1v(t1,t2,1),
not non bef(t1,t2,1).

U { non_bef(t1,t2,1;) :-non_dom_1lv(tl,t2,1,). ’ b, I are levels in BU S, }

1 <o
This is essentially a ground version of dominates(t1,t2).

B — atom! :-reify(body, in as,1). | (atom!,atom?, wt,body) € weak_atoms(l, B),
" | atom?:-reify(body,in as,?2). | [is a level in B
Ureify(B,in_as, 1) Ureify(B,in_as,2)

U append(reify(R,in_as, 1), active(R;q)), Re Sy
append(reify(R,in-as,2), active(R;q)) M
1 2
Let atom! :-reify(body, in as, 1),active(id). (qtqm , atom”, wt, b(?dy) < weak,atoms(l,weqk(SM)),
U 2 . . . (¢d is a unique identifier for the weak constraint),
atom? : - reify(body, in_as, 2), active(id). . .
[is a level in Sy,
+
U cover(ezﬁ,l) ot c BF
cover(e;;, 2)
cover(e;;,1) | _ _ as(1))
U{ cover(e.q.2) e" el }U{ as(2) U dominates(1, 2)
active(idy).

active(idg,).

36

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

EY = {<{CO"U(€:17 1)}a®>|6+ € E+} U {<{00’U(€Zﬂ» 1),cov(e;%2),d0m(e;tﬂ,652)},0))’(6;;1,6;22) € Ob}

E= = {{{cov(e;g;)}, 0)|e™ € B~} U {({cov(efyy, 1), covlefyy, 2)}, {dom(ely, i) 1| (e eihn) € O°}
For any hypothesis H' € S}, Let H be the corresponding hypothesis in Syps. The answer sets of B’U H’ correspond
to the pairs of answer sets of BU H.

Each positive example et € ET is mapped to an example in Et ensuring that at least one of the pairs of answer
sets’ first answer set covers e*. Note that as each answer set of BU H must be the first element of one of these pairs
at least once, this is true if and only if B U H covers each positive example.

Similarly each negative example e~ € E~ is mapped to an example in F - ensuring that none of the pairs of answer
sets’ first answer set covers e~. This is true if and only if B U H does not cover any negative examples.

As dominates(t1,t2) behaves similarly to dominates(t1,t2) from section the answer sets of B'UH’ corresponding
to each pair (A, Ay) contains dom(1,2) if and only if A; dominates Ay (with respect to the weak constraints in
BUH.

Each brave ordering example (eq, es) € 0" is mapped to a positive example ensuring that there is a pair of answer
sets (Aq, A2) of BUH such that Ay covers ey, A covers es and A; dominates Ao with respect to the weak constraints
in BU H. This is true if and only if B U H bravely respects the ordering example.

Each cautious ordering example (ej,es) € O¢ is mapped to a negative example ensuring that there is no pair of
answer sets (Ay, As) of BU H such that A; covers e;, As covers eo and A; dominates Ay with respect to the weak
constraints in B U H. This is true if and only if B U H cautiously respects the ordering example.

Hence, H’ is an inductive solution of ILPEAS(<B’,S}V[,E+/,E’/>) if and only if H is an inductive solution of
ILPLOA5(<B,SM,EJF,E*,Ob,OC)).

This means that we can check the existence of solutions of any ILProas task by mapping if to an ILP} ,¢ task as
above. Note that this is a well defined ILP; 44 task as B contains only stratified aggregates.

As this mapping is polynomial in size of the original task, this means that checking the existence of I LP;o g reduces
polynomially to checking the existence of I LPE AS-

O

Lemma 10.7. Deciding the existence of solutions for an I L Py, 45 task reduces polynomially to deciding the existence
of solutions for an ILPrpas task.

Proof. Take any ILPpas task T = (B, Sy, ET, E™). Clearly ILP,a5(T) = 0 if and only if ILProas((B, Sy, EY, E~,0,0)) =
(). Hence checking the existence of a solution for T is equivalent to checking the existance of a solution to
<BaSM7E+7E7a®7®>' O

Lemma 10.8. Let B be any ground program containing normal rules choice rules, constraints and summing aggre-
gates in the body, Sis be a set of ground normal rules, choice rules and constraints and ET and E~ be any sets of
partial interpretations. BU Sy must also be aggregate stratified (ensuring that for each H C Sy, BUH is aggregate
stratified).

Deciding whether a given hypothesis H C Sy is in ILP; ,4(B, Sy, EY, E7) is a member of PNP.

Proof. Checking whether H is an inductive solution of T = (B, Sy, ET, E~) can be done by checking for each
positive example et € ET, that there is an answer set A of B U H such that A extends e™ and for each negative
example e~ there is not any answer set of B U H which extends e™.

This is equivalent to checking that for each positive example e™ = ({incy,...,inc,},{exc,...,excn}), BUHU
{a + incy,...,inc,, not excy,..., not excy} | a (where a is a new atom) and for each negative example e~ =
({incy, ... incy}, {excey, ... exey, }), BUH U{a + incy,...,inc,, not excy,..., not excy} [~ a (where a is a new
atom).

As deciding whether an atom is bravely entailed by an aggregate stratified propositional program (containing normal
rules, choice rules, constraints and summing aggregates in the bodys) is in NP the property can be verified in
polynomial time by a deterministic Turing machine with an oracle capable of solving problems in N P.

Hence verifying the property is in PNF.

37

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Due to this result on the verification of a solution, we can now show the related result for deciding the existance of
a solution for a given learning task.

Lemma 10.9. Let B be any ground program containing normal rules choice rules, constraints and summing aggre-
gates in the body, Sjs be a set of ground normal rules, choice rules and constraints and E* and E~ be any sets of
partial interpretations. B U .Sy, must also be aggregate stratified.

Deciding whether ILP} 44(B, Sy, ET, E7) has a solution is in NPVP,

Proof. A non-deterministic Turing Machine can have |S)ys| choices to make (corresponding to selecting each rule
as part of the hypothesis). This hypothesis can then be verified in polynomial time using an NP oracle (as in

lemma |10.8)).

Such a Turing Machine would terminate answering yes if and only if the task is satisfiable (as there is a path through
the Turing Machine which answers yes if and only if there is an hypothesis in Sy, which is an inductive solution of
the task).

Hence, deciding the existence of a solution for a general (ground) ILPr a5 task is in NPNP,

O

Lemma 10.10. Let B be any ground program containing normal rules choice rules and constraints, Sy; be a set of
ground normal rules, choice rules and constraints and E+ and E~ be any sets of partial interpretations.

Deciding whether ILPras(B, Sy, ET, E7) has a solution is NPN* — hard.

Proof. We show this by reducing a known NPN* — complete problem (deciding the existence of an answer set for a
ground disjunctive logic program) to an ILP 45 task.

Take any ground disjunctive logic program P. We will define an ILPr, 45 task T'(P) which has a solution if and only
if P has an answer set.

Let Atoms be the set of atoms in P. Let P’ be the program constructed by replacing each negative literal not a with
the literal not in_as(a) (where in_as is a new predicate) and replacing each head hy V ...V hy, with the counting
aggregate 1{hy, ..., hy, }m (empty heads are mapped to 1{}0 - this is equivalent to L).

We define the learning task T'(P) as follows:

B =P U{ :-a, not inas(a) |a € Atoms}
Sy = {in_as(a) | a € Atoms}

ET ={(0,0)}

E~ ={({{in-as(a)}, {a})|a € Atoms}

This task has a solution if there exists an H C Sj; such that BU H is satisfiable and no negative example is extended
by any answer set of BU H.

l{hl,...,hm}m:—bi,...,bn, EP/
& JdH C Sy st 3A € AS 1{hy,...,hym:=by,...,by not in-as(cy),..., not in_as(c,). ’
{in-as(c1),...,in_as(co,)} N H = {

such that A C {a | in-as(a) € H} and no negative example is extended by any answer set of this program.

1{h17...,hm}mZ—bi,...,bn, EP/
& dH C Sy st 3JA € AS 1{hy,...,hytm:=by,...,by not in as(cy),..., not in_as(c,). ’
{in-as(c1),...,in-as(co,)} NH =10

such that A = {a | in_as(a) € H} and there is no strict subset of A which is also an answer set (the nega-
tive examples prevent this).

< JH C Sy st {a | in-as(a) € H} is a minimal model of

1{h17 N ,hm}m :—bl, N ,bn,
hyV...Vhyjm:=by,..., by not in-as(cy),..., not in_as(c,).
{in_as(c1),...,in_as(c,)} N H =10

e P,

< JH C Sy st {a | in-as(a) € H} is a minimal model of

38

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

1{h1,...,hm}m:—bi,...,bn,

e P,
hy V...Vhytm:=by,...,b, not cy,..., not c,.
{in_as(cy),...,in-as(c,)} N H =0
& JA C Atoms st A is a minimal model of

1{hy,...,hytm:=by,..., by,
hy V...Vhytm:=by,...,b, not cy,..., not c,.
{e1,...,co} NH =10

< JA C Atoms such that A is a minimal model of P4

€ P,

& JA C Atoms such that A an answer set of P.
& P is satisfiable.

Hence, deciding whether a disjunctive logic program can in general be mapped to the decision problem of checking
the existence of solutions of a learning from answer sets task.

Therefore, deciding the existence of solutions of a ground ILPy s task is NPNP — hard.

Theorem 10.11. Deciding the existence of ILProas and ILPr 45 tasks are both NPNP_complete.

Proof. By lemma [10.10, deciding the existence of solutions for ILPp s is NPNP-hard. Deciding the existence
of solutions for ILPrag reduces to deciding the existence of solutions for ILP} 4o (trivially) and by lemma m

deciding the existence of solutions for ILP; , 4 is in NPN?. Hence deciding the existence of solutions for ILPp 45 is
NPNP_complete.

By lemmal[10.6] deciding the existence of solutions for an I LPp0 s task polynomially reduces to deciding the existence
of solutions for an ILP§ ,¢ task; hence, deciding the existence of solutions for an ILProas task is in NPNP. As
deciding the existence of solutions of an ILPy 45 task is NPNP-hard and ILP; 45 reduces trivially to an ILProas
task (by lemma , ILProas is NPNP_hard. Hence, deciding the existence of solutions for an ILProag task is
also NPNP_complete.

O

References

[1] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone, F. Ricca, T. Schaub,
Asp-core-2 input language format (2013).

[2] M. Law, A. Russo, K. Broda, Simplified reduct for choice rules in asp., Tech. Rep. DTR2015-2, Imperial College
of Science, Technology and Medicine, Department of Computing (2015).

[3] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Answer Set Solving in Practice, Synthesis Lectures on
Artificial Intelligence and Machine Learning, Morgan and Claypool Publishers, 2012.

[4] M. Law, A. Russo, K. Broda, Inductive learning of answer set programs, in: Logics in Artificial Intelligence
(JELIA 2014), Springer, 2014.

[5] W. Faber, G. Pfeifer, N. Leone, Semantics and complexity of recursive aggregates in answer set programming,
Artificial Intelligence 175 (1) (2011) 278-298.

39

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Appendix

A Proofs omitted from the report

Lemma Let [be a constant, ¢; and to be two distinct ground terms and head be an atom.

Let R be the rule head :=by,...,b,, #sum{w(W,1,A t;) = W, w(W,1,A ty) = —W} < 0 and F be a set of (ground) facts
of the predicate w/4 and (where head has a different predicate name to w)

For i e {17 2}’ let Sl = (Zw(weight,l,args,ti)EF welght)

1. If & > Sy then M(FUR) = M(F)
2. If §; < S then M(FUR) = FU{head :-by,...,by})

Proof. Follows from corollary
Let s1 = w(W, 1, A, t1), 82 = w(W, 1, A, t2),wy = W,wy = =W

1. Assume &1 > S
= Z (weight,l,args, tl)GF(weZght) Z
= Z (weight,l,args, tl)GF(weZght) Z (weight,l,args, tg)EF(weight) >0
= Z (weight,l,args, tl)GF(weZght) + Z (weight,l,args, tg)GF(weZght) >0
= D ser30st smwwil, A0 WO) + 2 e p 305t smw(wii, A0 (W) =0

= ZsEF,EOst s:slﬁ(w19> + ZseFﬂé‘st 32320(w20) Z 0
—g,0(wif) >0

= 2 scF,303ic{1,2} st s=5,0
= (by corollary AS(FUR) = AS(F)

w(weight,l,args, tQ)GF(weight)

2. Assume S; < Sy

= ZW(WEithJ,GTgS,tl)EF(WEight) < Ew(wezght l,args, tz)eF(welght)

= ZW(WEight7l,aTgS,t1)€F(weight) w(wezght,l,aTgs,tg)EF(wezgh’t) <0
= Zw(w&ight,l,args,tl)EF(weight) + Z weight’lmgs,tz)eF(—weight) <0
= D ser30st smwWil, A0 W O) + D e p 305t smw(wii, A1)0 (W) <0

= D ser30st sms,0(W10) + D0 p3g5s s, (w20) <0
—s8; (wzﬂ) <0

= 2_scF,303ic{1,2} st s=5,0
= (by corollary AS(FUR) = AS(F U {head :=by,...,b,})

40

	Introduction
	Definitions
	Extra notation
	Lemmas
	I ILASP2
	Repesentation of weak constraints
	Meta Level Representation
	Properties

	Encoding the search for positive solutions: Tmeta
	Meta Level Representation
	Properties

	Ruling out classes of violating hypothesis: VRmeta
	Meta Level representation
	Properties

	Proof of the soundness and completeness of ILASP2

	II Theoretical Properties
	Sufficient and Necessary conditions for existence of solutions
	Complexity Results
	Learning from Answer Sets with Stratified Summing Aggregates
	Proof of Complexity

	Proofs omitted from the report

