
Proof of the Soundness and Completeness of ILASP2

Mark Law, Alessandra Russo and Krysia Broda

July 3, 2015

Abstract

In this document we provide the proofs of soundness and completeness of the ILASP2 (Inductive Learning of
Answer Set Programs) algorithm which were omitted from the paper Learning Weak Constraints in Answer Set
Programming. ILASP2 can learn ASP programs with normal rules, constraints, choice rules and weak constraints.

1 Introduction

In the next section, we recall the necessary definitions from the paper and give some extra definitions omitted from
the paper. In section 3 we introduce some extra notation used in this document. In section 4 we give some lemmas
necessary for the proofs.

The main content in the document is in sections 5, 6 and 7 where we describe various parts of our meta representation
(how we represent orderings, the construction of Tmeta and the construction of V Rmeta(T)) and prove necessary
results about them. In section 8, we give the proof of the soundness and completeness of our algorithm, ILASP2,
and in section 8, give an example encoding.

The second part of the document concerns some theoretical properties of our learning framework. In section 9, we
prove sufficient and necessary conditions for there to be a solution to an ILPLOAS task and in section 10, we prove
the complexity of deciding the existence of a solution to a task.

2 Definitions

Definition 2.1 [1]. A weak constraint is of the form: :∼ b1, . . . , bn, not c1, . . . , not cm.[w@l, t1, . . . tm] where
b1, . . . , bn, c1, . . . , cm are atoms, w and l are terms specifying the weight and the level, and t1, . . . , tm are terms.
A weak constraint W is said to be safe if every variable occurring anywhere in W occurs in at least one positive
literal in the body of W .

Definition 2.2. Given a program P and an answer set A of P , weak(P,A) is the list of ground terms (w, l, t1, . . . , tn)
for which there exist at least one weak constraint :∼ body.[w@l, t1, . . . , tn] in ground(P) such that body is satisfied
by A.

Definition 2.3. Given a program P and an answer set A in AS(P), weak(P,A) = {(w, l, t1, . . . , to) | :∼ b1, . . . , bn,
not c1, . . . ,not cm.[w@l, t1, . . . , to] ∈ ground(P) and A extends 〈{b1, . . . , bn}, {c1, . . . , cm}〉 and w ∈ Z}. For each
level l, P lA =

∑
(w,l,t1,...,to)∈weak(P,A) w.

Definition 2.4. For any A1, A2 ∈ AS(P), A1 dominates A2 (written A1 �P A2) iff ∃l such that P lA1
< P lA2

and
∀m > l, PmA1

= PmA2
. An answer set A∈AS(P) is optimal if it is not dominated by any other A2∈AS(P).

As we only use choice rules rather than programs allowing aggregates in the body of a rule, we are able to present
the slightly simplified semantics of ASP presented in [2]. For the subset of ASP programs that we consider, this
semantics is equivalent to the full semantics given in [3].

Definition 2.5. The reduct of a program P with respect to an interpretation I, is constructed in the following 4
steps.

1

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

1. Remove any rule whose body contains not a for some a ∈ I and remove any negative literals from the remaining
rules.

2. For any constraint R, :-body(R), replace R with ⊥ :-body+(R).

3. For any choice rule R, l{h1; . . . ; hn}u :-body(R) such that l ≤ |I ∩ {h1, . . . , hn}| ≤ u, replace R with the set of
rules {hi :-body+(R) | hi ∈ I ∩ {h1 . . . hn}}.

4. For any remaining choice rule R, l{h1; . . . ; hn}u :-body(R), replace R with the constraint ⊥ :-body+(R).

PX is a definite logic program, containing one additional atom ⊥ which cannot appear in an interpretation of P .
The idea is that if PX |= ⊥ then X is not an Answer Set.

Definition 2.6. Given any program P , X is an Answer Set of P if and only if X = M((ground(P))X) (where M(P)
denotes the least Herbrand model of P).

Definition 2.7 [4]. A Learning from Answer Sets task is a tuple T = 〈B,SLAS(Mh,Mb), E
+, E−〉 where B is the

background knowledge, SLAS(Mh,Mb) is the search space defined by a language bias M=〈Mh,Mb〉, E+ and E− are
sets of partial interpretations called, respectively, positive and negative examples. An hypothesis H is an inductive
solution of T , written H ∈ ILPLAS(T), if and only if H ⊆SLAS(Mh,Mb); ∀e+ ∈E+ ∃A∈AS(B ∪H) such that A
extends e+; and finally, ∀e−∈E− 6 ∃A∈AS(B ∪H) such that A extends e−.

Definition 2.8. A mode bias with ordering is a tuple M = 〈Mh,Mb,Mo,Mw, lmax〉, where Mh and Mb are respec-
tively head and body declarations, Mo is a set of mode declarations for body literals in weak constraints, Mw is a set
of integers and lmax is a positive integer. The search space SM is the set of rules R that satisfy one of the conditions:

• R ∈ SLAS(Mh,Mb).

• R is a safe weak constraint :∼ b1, . . . , bi, not bi+1, . . . , not bj .[w@l, t1, . . . , tn] such that ∀k∈ [1, j] bk is com-
patible with Mo; t1, . . . , tn is the set of terms in b1, . . . , bj ; w ∈Mw, l ∈ [0, lmax).

Definition 2.9. An ordering example is a tuple o= 〈e1, e2〉 where e1 and e2 are partial interpretations. An ASP
program P bravely respects o iff ∃A1, A2∈AS(P) such that A1 extends e1, A2 extends e2 and A1 �P A2. P cautiously
respects o iff ∀A1, A2∈AS(P) such that A1 extends e1 and A2 extends e2, it is the case that A1 �P A2.

Definition 2.10. A Learning from Ordered Answer Sets task is a tuple T = 〈B,SM , E+, E−, Ob, Oc〉 where B is an
ASP program, called the background knowledge, SM is the search space defined by a mode bias with ordering M ,
E+ and E− are sets of partial interpretations called, respectively, positive and negative examples, and Ob and Oc

are sets of ordering examples over E+ called brave and cautious orderings. A hypothesis H ⊆ SM is in ILPLOAS(T),
the inductive solutions of T , if and only if:

1. LetMh andMb be as inM andH ′ be the subset ofH with no weak constraints. H ′ ∈ ILPLAS(〈B,SLAS(Mh,Mb), E
+, E−〉)

2. ∀o ∈ Ob B ∪H bravely respects o

3. ∀o ∈ Oc B ∪H cautiously respects o

Definition 2.11. Let T = 〈B,SM , E+, E−, Ob, Oc〉 be an ILPLOAS task. Any H ⊆ SM is a positive hypothesis
iff ∀e ∈ E+ ∃A ∈ AS(B ∪ H) such that A extends e, and ∀o ∈ Ob H ∪ B bravely respects o. The set of positive
hypotheses of T is denoted P(T).

Definition 2.12. A positive hypothesis H is a violating hypothesis of T = 〈B,SM , E+, E−, Ob, Oc〉, written
H∈V(T), iff at least one of the following cases is true:

• ∃e−∈E− and ∃A∈AS(B ∪H) such that A extends e−. In this case we call A a violating interpretation of T
and write 〈H,A〉 ∈ VI(T).

• ∃A1, A2∈AS(B ∪H) and ∃〈e1, e2〉 ∈ Oc such that A1 extends e1, A2 extends e2 and A1 6�P A2 with respect
to B ∪H. In this case, we call 〈A1, A2〉 a violating pair of T and write 〈H, 〈A1, A2〉〉 ∈ VP(T).

2

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Definition 2.13. Let T be an ILPLOAS task, V I and V P (resp.) be sets of violating interpretations and pairs of
interpretations, and B be the background knowledge. Any H ∈ P(T) is a remaining hypothesis of T with respect to
V I∪V P iff V I∩AS(B∪H) = ∅ and ∀〈I1, I2〉 ∈ V P if I1, I2 ∈ AS(B∪H) then I1 �B∪H I2. A remaining hypothesis
H is a remaining violating hypothesis iff ∃R such that 〈H,R〉 ∈ VI(T) ∪ VP(T).

We will call those violating hypotheses which are not remaining violating hypotheses, known violating hypotheses
(they are already ruled out by some known violating reason).

Finally, Algorithm 1 is our algorithm, ILASP2.

Algorithm 1 ILASP2

procedure ILASP2(T)
V R = []
solution = solve(Tmeta ∪ V Rmeta(T))
while solution 6= nil && solution.optimality%2 == 0 do

A = solution.answer set
if v i ∈ A then

V R += M−1vi (A)
else if ∃t1, t2 such that v p(t1, t2) ∈ A then

V R += M−1vp (A)
end if
solution = solve(Tmeta ∪ V Rmeta(T))

end while
return {M−1hyp(A) | A∈AS∗(Tmeta ∪ V Rmeta(T))}

end procedure

3 Extra notation

Definition 3.1. For any ASP program P , predicate name pred and term term we will write reify(P, pred, term)
to mean the program constructed by replacing every atom a ∈ P by pred(a, term). We will use the same notation
for sets of literals/partial interpretations, so for a set S: reify(S, pred, term) = {pred(atom, term) : atom ∈ S}.

Definition 3.2. For any ASP program P and any atom a, append(P, a) is the program constructed by appending
a to every rule in P .

Definition 3.3. Given a set of rules SM such that all rules R ∈ SM have identifiers Rid and any program P such
that:

1. Some rules in P contain the atom in hyp(Rid) for some rules R ∈ SM

2. No rule contains more than one instance of in hyp (or a non ground atom with the predicate in hyp).

3. P contains the choice rule {in hyp(Rid) : R ∈ SM)}.

4. No other rule contains an in hyp atom in the head.

For any H ⊆ SM , P [H] is constructed in three steps:

1. Remove the choice rule {in hyp(Rid) : R ∈ SM)}.

2. Remove any rule with in hyp(Rid) in its body st R 6∈ H.

3. Remove the in hyp atoms from the remaining rules.

Definition 3.4. Given a set of rules SM such that all rules R ∈ SM have identifiers Rid and an interpretation I:

M−1hyp(I) = {R | in hyp(Rid) ∈ I,R ∈ SM}

3

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Definition 3.5. Given an interpretation I:

M−1vi (I) = {atom | in as(atom, n) ∈ I}

Definition 3.6. Given an interpretation I and two ground terms t1 and t2:

M−1vp (I, t1, t2) = 〈{atom | in as(atom, t1) ∈ I}, {atom | in as(atom, t2) ∈ I}〉

Definition 3.7. Given an interpretation I which contains the atom v p(t1, t2) for some ground terms t1 and t2:

M−1vp (I) =M−1vp (I, t1, t2).

If I contains more than one atom v p(t1, t2), then M−1vp (I) will choose a pair of terms; it is not gauranteed which.
If I contains no such atom, then M−1vp (I) is undefined.

Definition 3.8. For any ASP program P , normal(P) is the set of all normal rules in P .

Definition 3.9. For any ASP program P , constraints(P) is the set of all (hard) constraints in P .

Definition 3.10. For any ASP program P , choice(P) is the set of all choice rules in P .

Definition 3.11. For any ASP program P , weak(P) is the set of all weak constraints in P .

Definition 3.12. For any ASP program P , non weak(P) = normal(P) ∪ constraints(P) ∪ choice(P).

4 Lemmas

In this document ground(P) refers to all ground instances of rules in P , rather than the “relevant” grounding
produced by ASP solvers.

Lemma 4.1. Let P and Q be ASP program such that atoms(ground(P)) ∩ atoms(ground(Q)) = ∅.

Then AS(P ∪Q) = {A1 ∪A2 | A1 ∈ AS(P), A2 ∈ AS(Q)}.

Hence P ∪Q is satisfiable if and only if P and Q are both satisfiable.

Corollary 4.2. Let last terms(P) be a function which extracts the last argument from each atom in a program P .

Let P and Q be ASP programs (which contain no atoms of arity 0) st each term in last terms(P) and last terms(Q)
is ground and last terms(P) ∩ last terms(Q) = ∅

Then AS(P ∪Q) = {A1 ∪A2 | A1 ∈ AS(P), A2 ∈ AS(Q)}.

Hence P ∪Q is satisfiable if and only if P and Q are both satisfiable.

Corollary 4.3. Let p1 and p2 be two distinct predicate names and Terms1 and Terms2 be disjoint sets of ground
terms. Let P be any ASP program.

Let Q = append(reify(P, p1, X), p2(X))

Then AS(Q ∪ {p2(t) | t ∈ Terms1 ∪ Terms2}) = {A1 ∪A2 | i ∈ {1, 2}, Ai ∈ AS(Q ∪ {p2(t) | t ∈ Termsi})}.

Lemma 4.4. For any program P ∪Q in which the atom a does not occur:

AS(append(P, a) ∪Q ∪ {a.}) = {A ∪ {a.} : A ∈ AS(P ∪Q)}

Lemma 4.5. For any ASP program P any partial interpretation E = 〈Einc, Eexc〉 and any ground atom a which
does not appear in P or E.

AS(P ∪ {a :-
∧

lit∈Einc
lit,

∧
lit∈Eexc

not lit. :- not a.}) = {A ∪ {a} | A ∈ AS(P) st A extends E}.

Lemma 4.6. Let R be the rule h :- b1, . . . , bn,#sum{s1 = w1, . . . , sm = wm} < 0, where h, each of the bi’s and si’s
are ground atoms and each wi is an integer.

For any set of (ground) facts F (such that h 6∈ F):

h ∈M(R ∪ F) (the only Answer Set of this program) iff ∀0 < i ≤ n: bi ∈ F and
∑
sj∈F

(wj) < 0

4

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Corollary 4.7. Let R be the rule h :- b1, . . . , bn,#sum{s1 = w1, . . . , sm = wm} < 0, where h, each of the bi’s and si’s
are atoms and each wi is an integer.

For any set of (ground) facts F (such that h 6∈ F):

1. If

(∑
s∈F,∃θst s=siθ

wi

)
< 0 then AS(F ∪R) = AS(F ∪ {h :- b1, . . . , bn})

2. Otherwise AS(F ∪R) = AS(F).

Lemma 4.8. Given a set of rules SM such that all rules R ∈ SM have identifiers Rid and any program P such that:

1. Some rules in P contain the atom in hyp(Rid) for some rules R ∈ SM

2. No rule contains more than one instance of in hyp (or a non ground atom with the predicate in hyp).

3. P contains the choice rule {in hyp(Rid) : R ∈ SM)}.

4. No other rule contains an in hyp atom in the head.

Given any H ⊆ SM ,

AS(P [H]) = {A\{in hyp(Rid) | R ∈ H} | A ∈ AS(P) st M−1hyp(A) = H}.

5

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Part I

ILASP2

5 Repesentation of weak constraints

Before defining the main meta translations, we describe how we represent weak constraints. Essentially, we translate
them to normal rules such that each head corresponds to an element which could occur in the set weak(P,A) (which
is used to define the semantics of weak constraints). We then add rules to determine which interpretations dominate
other interpretations. In this section we define this representation and prove some of the properties we require in
later sections.

5.1 Meta Level Representation

Definition 5.1. Let p1 and p2 be distinct predicate names and t be a term. Given R as a weak constraint
:∼ b1, . . . , bm,not c1, . . . ,not cl.[wt@lev, t1, . . . , tn], metaweak(R, p1, p2, t) is the rule:

w(wt, lev, args(t1, ... ,tn), t) :-

p2(t), p1(b1,t), ... p1(bm, t),

not p1(c1,t), ... , not p1(cl,t).

For a set of weak constraints W , metaweak(W,p1, p2, t) = {metaweak(R, p1, p2, t) | R ∈W}.

Example 5.2. Let W be the set of weak constraints:

:~ p(X, Y), not q(X).[2@1, X, Y]

:~ p(X, Y).[-1@2, X]

Then metaweak(W, in as, as, V) is the program:

w(2, 1, args(X, Y), V) :- as(V), in_as(p(X, Y), V), not in_as(q(X), V).

w(-1, 2, args(X), V) :- as(V), in_as(p(X, Y), V).

The intuition of this meta encoding (when used with these two predicates) is that for each answer set V of some
program P , if in as defines the elements of V , then w(W, L, args(t1, . . . , tn), V) is true if and only if (W,L, t1, . . . , tn) ∈
weak(P, V).

Now that we have defined the predicate w to represent weak(P,A) for each answer set A, we can use some additional
rules to determine, given two interpretations, whether one dominates another.

Definition 5.3. Given any two terms t1 and t2, dominates(t1, t2) = dom1(t1, t2) ∪ dom2(t1, t2) where:

dom1(t1, t2):

dom_lv(t1,t2,L) :- lv(L), #sum{w(W,L,A,t1)=W, w(W,L,A,t2)=-W} < 0.

non_dom_lv(t1,t2,L) :- lv(L), #sum{w(W,L,A,t2)=W, w(W,L,A,t1)=-W} < 0.

dom2(t1, t2):

non_bef(t1,t2,L) :- lv(L), lv(L2), L < L2, non_dom_lv(t1,t2,L2).

dom(t1,t2) :- dom_lv(t1,t2,L), not non_bef(t1,t2,L).

The intuition is that dom(as1, as2) (where as1 and as2 represent two answer sets) should be true if and only if as1
dominates as2.

6

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

5.2 Properties

As the meta level programs considered in this section are each clearly stratified, for each program P there is a unique
answer set (equal to the minimal Herbrand model M(P)). For the rest of this section, therefore, we shall refer to
M(P) rather than AS(P).

This section is devoted to proving the following lemma (which proves that our representation of weak constraints is
correct).

Lemma 5.4. Let t1 and t2 be two distinct terms and L be a set of integers. Let I1 and I2 be interpretations and
P be an ASP program.

For any predicates p1 and p2 (not used in the rest of the program):

M

 dominates(t1, t2)∪
{lv(l). | l ∈ L}∪

 metaweak(weak(P), p1, p2, ti)
∪ reify(I1, p1, t1)
∪ {p2(ti)}


 contains the atom dom(t1, t2) if and only if I1 �P I2.

In order to do this, we need to first prove several intermediate lemmas. Some of the proofs of these lemmas have
been omitted from the main document, but can be found in the appendix.

Lemma 5.5. Let l be a constant, t1 and t2 be two distinct ground terms and head be an atom.

Let R be the rule head :- b1, . . . , bn,#sum{w(W, l, A, t1) = W, w(W, l, A, t2) = −W} < 0 and F be a set of (ground) facts
of the predicate w/4 and (where head has a different predicate name to w)

For i ∈ {1, 2}, let Si = (
∑
w(weight,l,args,ti)∈F weight)

1. If S1 ≥ S2 then M(F ∪R) = M(F)

2. If S1 < S2 then M(F ∪R) = F ∪ {head :- b1, . . . , bn})

Lemma 5.6. Let t1 and t2 be two distinct terms and L be a set of integers. F is a set of (ground) facts of the
predicate w/4.

M(dom1(t1, t2) ∪ {lv(l) | l ∈ L} ∪ F)

= M

({
dom lv(t1, t2, l) :-#sum{w(W, L, A, t1) = W, w(W, L, A, t2) = −W} < 0.
non dom lv(t1, t2, l) :-#sum{w(W, L, A, t2) = W, w(W, L, A, t1) = −W} < 0.

}
∪ F

)
∪ {lv(l) | l ∈ L}

Proof. Follows from repeated use of lemma ?? over the facts in {lv(l) | l ∈ L}.

Proposition 5.7. Let t1 and t2 be two distinct terms and L be a set of integers.

Let W1 be a set of facts which are ground instances of the form w(W, L, A, t1) and W2 be a set of facts which are
ground instances of the form w(W, L, A, t2).

For i ∈ {1, 2} and l ∈ L, let Sli = (
∑

w(weight,l,args,ti)∈Wi
weight)

M(dom1(t1, t2) ∪ {lv(l) | l ∈ L} ∪W1 ∪W2)
= {dom lv(t1, t2, l) | l ∈ L,Sl1 < Sl2} ∪ {non dom lv(t1, t2, l) | l ∈ L,Sl2 > Sl2} ∪W1 ∪W2 ∪ {lv(l) | l ∈ L}

Proof. Follows directly from lemma 5.5 and lemma 5.6.

Recall that for any interpretation I, program P and integer l, P lI is the sum of the weights w such that (w, l, . . .) ∈
weak(P, I). Recall also that this is used to determine which interpretations dominate each other. Lemma 5.8 shows
that if we represent weak(W, I1) and weak(W, I2) as facts, we can use dom1 to capture at each level whether I1 or
I2 dominates at that level.

Lemma 5.8. Let t1 and t2 be two distinct terms and L be a set of integers. Let I1 and I2 be interpretations and
W a set of weak constraints.

For i ∈ {1, 2} let Wi = {w(wt, l, args(a1, . . . , an), ti) | (wt, l, a1, . . . , an) ∈ weak(W, Ii)}

M(dom1(t1, t2) ∪ {lv(l) | l ∈ L} ∪W1 ∪W2)
= {dom lv(t1, t2, l) | l ∈ L,W l

I1
< W l

I2
}∪{non dom lv(t1, t2, l) | l ∈ L,W l

I1
> W l

I2
}∪W1 ∪W2 ∪{lv(l) | l ∈ L}

7

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Proof.

For i ∈ {1, 2} and l ∈ L, let Sli = (
∑

w(weight,l,args,ti)∈Wi
weight)

M(dom1(t1, t2) ∪ {lv(l) | l ∈ L} ∪W1 ∪W2)

= {dom lv(t1, t2, l) | l ∈ L,Sl1 < Sl2} ∪ {non dom lv(t1, t2, l) | l ∈ L,Sl1 > Sl2} ∪W1 ∪W2 ∪ {lv(l) | l ∈ L} (by
proposition 5.7)

= {dom lv(t1, t2, l) | l ∈ L, (
∑
w(wt,l,a1,...,an,t1)∈weak(W,I1) wt) < (

∑
w(wt,l,a1,...,an,t2)∈weak(W,I2) wt)}

∪ {non dom lv(t1, t2, l) | l ∈ L, (
∑
w(wt,l,a1,...,an,t1))∈weak(W,I1) wt) > (

∑
w(wt,l,a1,...,an,t2))∈weak(W,I2) wt)}

∪W1 ∪W2 ∪ {lv(l) | l ∈ L} (by definition of W1 and W2)

= {dom lv(t1, t2, l) | l ∈ L,W l
I1
< W l

I2
} ∪ {non dom lv(t1, t2, l) | l ∈ L,W l

I1
> W l

I2
} ∪W1 ∪W2 ∪ {lv(l) | l ∈ L}

(by definition of W l
I1

and W l
I2

)

Lemma 5.9. Let t1 and t2 be two distinct terms. Let I1 and I2 be interpretations and W a set of weak constraints
and L be the set of levels in W .

For i ∈ {1, 2}, let Wi = {w(weight, l, args(a1, . . . , an), ti) | (weight, l, a1, . . . , an) ∈ weak(P, Ii)}

I1 �W I2 if and only if dom(t1, t2) ∈M(dominates(t1, t2) ∪ {lv(l) | l ∈ L} ∪W1 ∪W2)

Proof.

Let Mdom = M(dominates(t1, t2) ∪ {lv(l) | l ∈ L} ∪W1 ∪W2))

Mdom = M(dom1(t1, t2) ∪ dom2(t1, t2) ∪ {lv(l) | l ∈ L} ∪W1 ∪W2) (by definition of dominates).

= M(dom2(t1, t2) ∪M(dom1(t1, t2) ∪ {lv(l) | l ∈ L} ∪W1 ∪W2)) (by the splitting set theorem).

= M(dom2(t1, t2) ∪ {dom lv(t1, t2, l) | l ∈ L, (W l
I1

) < (W l
I2

)} ∪ {non dom lv(t1, t2, l) | l ∈ L, (W l
I1

) > (W l
I2

)}
∪W1 ∪W2 ∪ {lv(l) | l ∈ L}) (by lemma 5.8).

Assume dom(t1, t2) ∈Mdom

⇔ ∃l ∈ L such that dom lv(t1, t2, l) ∈Mdom and non bef(t1, t2, l) 6∈Mdom

⇔ ∃l ∈ L such that (W l
I1

) < (W l
I2

) and non bef(t1, t2, l) 6∈Mdom

⇔ ∃l ∈ L such that (W l
I1

) < (W l
I2

) and 6 ∃l2 ∈ L such that l < l2 and non dom lv(t1, t2, l2) ∈Mdom

⇔ ∃l ∈ L such that (W l
I1

) < (W l
I2

) and 6 ∃l2 ∈ L such that l < l2 and (W l2
I1

) > (W l2
I2

)

⇔ ∃l ∈ L such that (W l
I1

) < (W l
I2

) and ∀l2 ∈ L such that l < l2, (W l2
I1

) ≤ (W l2
I2

)

⇔ ∃l ∈ L such that (W l
I1

) < (W l
I2

) and ∀l2 ∈ L such that l < l2, (W l2
I1

) = (W l2
I2

) (as L is finite)

⇔ I1 �W I2 by the definition of �

Lemma 5.10. Let t be a ground term, W be a set of weak constraints and I be an interpretation. Let p1 and p2 be
predicate names.

M(metaweak(W,p1, p2, t) ∪ reify(I, p1, t) ∪ {p2(t)})
= {w(wt, l, args(a1, . . . , an), t) | (wt, l, a1, . . . , an) ∈ weak(P, I)} ∪ reify(I, p1, t) ∪ {p2(t)}

Proof. Let F = reify(I, pred1, t) ∪ {pred2(t)}

M(metaweak(W,p1, p2, t) ∪ reify(I, p1, t) ∪ {p2(t)})

= M

({
w(wt, l, args(a1, . . . , an), t) :- p2(t),

p1(b1, t), . . . , p1(bm, t),not p1(c1, t), . . . ,not p1(cl, t)

∣∣∣∣ :∼ b1, . . . , bm,not c1, . . . ,
not cl.[wt@l, a1, . . . , an]

∈W
}
∪ F

)
=

{
w(wt, l, args(a1, . . . , an), t)

∣∣∣∣ :∼ b1, . . . , bm,not c1, . . . ,
not cl.[wt@l, a1, . . . , an]

∈W, F |= p1(b1, t), . . . , p1(bm, t),
not p1(c1, t), . . . ,not p1(cl, t)

}
∪ F

8

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

=

{
w(wt, l, args(a1, . . . , an), t)

∣∣∣∣ :∼ b1, . . . , bm,not c1, . . . ,
not cl.[wt@l, a1, . . . , an]

∈W, reify(I, p1, t) |= p1(b1, t), . . . , p1(bm, t),
not p1(c1, t), . . . ,not p1(cl, t)

}
∪F

=

{
w(wt, l, args(a1, . . . , an), t)

∣∣∣∣ :∼ b1, . . . , bm,not c1, . . . ,
not cl.[wt@l, a1, . . . , an]

∈W, I |= b1 . . . , bm,
not c1, . . . ,not cl

}
∪ F

= {w(wt, l, args(a1, . . . , an), t)|(wt, l, a1, . . . , an) ∈ weak(W, I)} ∪ F

We have now proved the properties required to prove lemma ??

Lemma 5.4. Let t1 and t2 be two distinct terms and L be a set of integers. Let I1 and I2 be interpretations and
P be an ASP program.

For any predicates p1 and p2 (not used in the rest of the program):

M

 dominates(t1, t2)∪
{lv(l). | l ∈ L}∪

 metaweak(weak(P), p1, p2, ti)
∪ reify(I1, p1, t1)
∪ {p2(ti)}


 contains the atom dom(t1, t2) if and only if I1 �P I2.

Proof.

The program can be split into 3:

Q1 = metaweak(weak(P), p1, p2, t1) ∪ reify(I1, p1, t1) ∪ {p2(t1)}

Q2 = metaweak(weak(P), p1, p2, t2) ∪ reify(I2, p1, t2) ∪ {p2(t2)}

Q3 = dominates(t1, t2) ∪ {lv(l) | l ∈ L}

Such that M(Q) = M((M(Q1) ∪M(Q2)) ∪Q3) (By the splitting set theorem).

⇔ For i ∈ {1, 2}, M(Qi) = {w(wt, l, args(a1, . . . , an), ti) | (wt, l, a1, . . . , an) ∈ weak(weak(P), Ii)}
∪ reify(Ii, p1, ti) ∪ {p2(ti)} (by lemma 5.10)

⇔ Q1∪Q2∪Q3 has just one answer set A and A contains dom(t1, t2) if and only if I1 �weak(P) I2 (by lemma 5.9).

As only weak constraints effect �, this means that A contains dom(t1, t2) if and only if I1 �P I2.

9

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

6 Encoding the search for positive solutions: Tmeta

Throughout this section we will refer to the ILPLOAS task T = 〈B,SM , E+, E−, Ob, Oc〉.

6.1 Meta Level Representation

Definition 6.1. The meta translation of the background knowledge B, written meta(B), is the program:

append(reify(non weak(B), in as,X), as(X)) ∪metaweak(weak(B), in as, as,X).

Example 6.2. Consider the program B:

p(V) :- q(V), not r(V).

r(V) :- q(V), not p(V).

:~ p(V).[2@1, V]

meta(B) is the program:

in_as(p(V), X) :- in_as(q(V), X), not in_as(r(V), X).

in_as(r(V), X) :- in_as(q(V), X), not in_as(p(V), X).

w(2, 1, args(V), X) :- in_as(p(V), X), as(X).

Definition 6.3. The meta translation of SM written meta(SM) is the program:

{append(append(reify(R, in as,X), as(X)), in h(Rid)) | R ∈ non weak(SM)}
∪ {append(W, in h(Wid)) |W ∈ metaweak(weak(SM), in as, as,X)}
∪ {:∼ in h(Rid).[2 ∗ |R|@0, Rid] | R ∈ SM}
∪ { {in h(Rid) : R ∈ SM}. }

Example 6.4. Let SM be:

p(V) :- not q(V), r(V).

:~ p(V).[2@1,V]

Then meta(SM) is the program:

in_as(p(V), X) :- not in_as(q(V), X), in_as(r(V), X), as(X), in_h(r1).

w(2, 1, args(V), X) :- in_as(p(V), X), as(X), in_h(r2).

{ in_h(r1), in_h(r2) }.

:~ in_h(r1).[6@0]

:~ in_h(r2).[2@0]

This definition will most likely move to the first proof section.

Definition 6.5. Given any term t and any positive example e, cover(e, t) is the program:

{cov(t)←
∧

l∈einc

l ∧
∧

l∈einc

not l; ← not cov(t)}

Definition 6.6. For any e ∈ E+, meta(e) is the program: cover(reify(e, in as, eid), eid)∪{as(eid).}. Furthermore,
we write meta(E+) to denote the program

⋃
e∈E+

meta(e).

Example 6.7. Consider E+ =

{
〈{p, q}, {r}〉,
〈{q, r}, {p}〉

}
. meta(E+) is the program:

10

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

cov(e1) :- in_as(p, e1), in_as(q, e1), not in_as(r, e1).

:- not cov(e1).

as(e1).

cov(e2) :- in_as(q, e2), in_as(r, e2), not in_as(p, e2).

:- not cov(e2).

as(e2).

Definition 6.8. For any e ∈ E−, meta(e) is the program: {v i :-
∧

l∈einc

in as(l, n)∧
∧

l∈eexc

not in as(l, n)}. Further-

more, meta(E−) is the program {violating :- v i. :∼ not violating.[1@0, violating]}∪
⋃

e∈E−
meta(e)∪{as(n)}.

Example 6.9. Consider E− =

{
〈{p, q}, {r}〉,
〈{q, r}, {p}〉

}
. meta(E−) is the program:

v_i :- in_as(p, n), in_as(q, n), not in_as(r, n).

v_i :- in_as(q, n), in_as(r, n), not in_as(p, n).

as(n).

violating :- v_i.

:~ not violating.[1@0, violating]

Definition 6.10. Let o = 〈e1, e2〉 be in Ob.

meta(o) = dominates(oid1, oid2) ∪ {as(oid1). as(oid2). :-not dom(oid1, oid2)} ∪ cover(reify(e1, in as, oid1), oid1)
∪ cover(reify(e2, in as, oid2), oid2)

Furthermore, meta(Ob) =
⋃

o∈Ob

meta(o) ∪ {lv(l) | l ∈ L}.

Definition 6.11. Let o = 〈e1, e2〉 be in Oc.

meta(o) = dominates(e1id, e
2
id) ∪ cover(reify(e1, in as, e1id), e

1
id) ∪ cover(reify(e2, in as, e2id), e

2
id)

∪ {vp(e1id, e
2
id) :- not dom(e1id, e

2
id)}

Furthermore, meta(Oc) = {v p :- v p(T1, T2)} ∪
⋃

o∈Oc

meta(o) ∪ {lv(l) | l ∈ L}

Definition 6.12. Tmeta = meta(B) ∪meta(SM) ∪meta(E+) ∪meta(E−) ∪meta(Ob) ∪meta(Oc).

Note that this definition is slightly different to the definition given in the paper. To simplify the proofs, we have
partially ground the program. The task program in the paper is given in definition 6.13. The grounding of the
programs are the same, and therefore have the same answer sets.

Definition 6.13. Let T be the ILPLOAS task 〈B,SM , E+, E−, Ob, Oc〉. Then Tmeta = meta(B) ∪ meta(SM) ∪
meta(E+) ∪meta(E−) ∪meta(Ob) ∪meta(Oc) where each meta component is as follows:

• meta(B) = append(reify(non weak(B), in as,X), as(X))
∪metaweak(weak(B), in as, as,X).

• meta(SM) =
{append(append(reify(R, in as,X), as(X)), in h(Rid)) | R ∈ non weak(SM)}
∪ {append(W, in h(Wid)) |W ∈ metaweak(weak(SM), in as, as,X)}
∪ {:∼ in h(Rid).[2 ∗ |R|@0, Rid] | R ∈ SM}
∪ { {in h(Rid) : R ∈ SM}. }

• meta(E+) =

{
cover(e, eid)
as(eid).

∣∣∣∣〈einc, eexc〉 ∈ E+

}

• meta(E−) =


v i :- in as(einc1 , n), . . . , in as(eincn , n),

not in as(eexc1 , n), . . . ,
not in as(eexcm , n).

as(n).

∣∣∣∣∣∣∣∣〈e
inc, eexc〉 ∈ E−


∪
{

violating :- v i.
:∼ not violating.[1@0]

}

11

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

• meta(Ob) =


as(oid1). as(oid2).
cover(e1, oid1)
cover(e2, oid2)
dominates(oid1, oid2)
:- not dom(oid1, oid2).

∣∣∣∣∣∣∣∣∣∣
o = 〈e1, e2〉 ∈ Ob

 ∪ {lv(l). | l ∈ L}

• meta(Oc) =

 dominates(e1, e2)
v p(e1id, e

2
id) :-

not dom(e1, e2).

∣∣∣∣∣∣ 〈e1, e2〉 ∈ Oc
 ∪

{
v p :- v p(T1, T2).
violating :- v p.

}

Example 6.14. Let B be the program:

p(V) :- r(V), not q(V).

q(V) :- r(V), not p(V).

r(1).

r(2).

a :- not b.

b :- not a.

Let SM be the set of rules:

q(1).

:~ q(V).[1@1, V, r2]

:~ b.[1@1, b, r3]

Let E+ =


〈{p(2)}, ∅〉,
〈∅, {p(2)}〉,
〈{a}, {b}〉,
〈∅, {a}〉

Let E− =
{
〈{p(1)}, ∅〉

Let Ob =
{
〈e+3 , e

+
4 〉

Let Oc =
{
〈e+1 , e

+
2 〉

Figure 1 shows Tmeta.

6.2 Properties

Lemma 6.15. For any H ⊆ SM ,

(meta(SM)∪meta(B))[H] = append(reify(non weak(B∪H), in as,X), as(X))∪metaweak(weak(B∪H), in as, as,X)

Proof. Follows directly from the definition of [H].

Proposition 6.16. For any H ⊆ SM , partial interpretation e and term id:

AS(append(reify(non weak(B ∪H), in as, id), as(id)) ∪meta(e))
= {reify(A, in as, id) ∪ {as(id), cov(id)} | A ∈ AS(B ∪H), A extends e}.

Proof.

AS(append(reify(non weak(B ∪H), in as, as(id))) ∪meta(e)).

AS(append(reify(non weak(B ∪H), in as, as(id))) ∪ {as(id)} ∪ cover(reify(e, in as, id), id)).

= {A | A ∈ AS(append(reify(non weak(B ∪H), in as, id), as(id)) ∪ {as(id)} ∪ cover(reify(e, in as, id), id))}

12

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

% meta(B)

in_as(p(V),X) :- in_as(r(V),X),

not in_as(q(V),X), as(X).

in_as(q(V),X) :- in_as(r(V),X),

not in_as(p(V),X), as(X).

in_as(r(1),X) :- as(X).

in_as(r(2),X) :- as(X).

in_as(a,X) :- not in_as(b,X), as(X).

in_as(b,X) :- not in_as(a,X), as(X).

% meta(S_M)

in_as(q(1),X) :- as(X), in_h(r1).

w(1,1,args(V,r2),X) :- in_as(q(V),X),

as(X), in_h(r2).

w(1,1,args(b,r3),X) :- in_as(b,X),

as(X), in_h(r3).

% meta(E^+)

as(1).

as(2).

as(3).

as(4).

cov(1) :- in_as(p(2),1).

cov(2) :- not in_as(p(2),2).

cov(3) :- in_as(a,3), not in_as(b,3).

cov(4) :- not in_as(a,4).

:- not cov(1).

:- not cov(2).

:- not cov(3).

:- not cov(4).

% meta(E^-)

as(n).

v_i :- in_as(p(1),n).

% meta(O^b)

as(5).

as(6).

dom_lv(5,6,L) :- lv(L),

#sum{w(W,L,A,5)=W, w(W,L,A,6)=-W} < 0.

wrong_dom_lv(5,6,L) :- lv(L),

#sum{w(W,L,A,6)=W, w(W,L,A,5)=-W} < 0.

wrong_bef(5,6,L) :- lv(L), L < L2,

wrong_dom_lv(5,6,L).

dom(5,6) :- dom_lv(5,6,L), not wrong_bef(5,6,L).

cov(5) :- in_as(a,5), not in_as(b,5).

cov(6) :- not in_as(a,6).

:- not cov(5).

:- not cov(6).

:- not dom(5,6).

lv(1).

% meta(O^c)

dom_lv(1,2,L) :- lv(L),

#sum{w(W,L,A,1)=W, w(W,L,A,2)=-W} < 0.

wrong_dom_lv(1,2,L) :- lv(L),

#sum{w(W,L,A,2)=W, w(W,L,A,1)=-W} < 0.

wrong_bef(1,2,L) :- lv(L), L < L2,

wrong_dom_lv(1,2,L).

dom(1,2) :- dom_lv(1,2,L), not wrong_bef(1,2,L).

v_p(1,2) :- not dom(1,2).

violating :- v_p(X,Y).

v_p :- v_p(X,Y).

violating :- v_i.

0 {in_h(r1), in_h(r2), in_h(r3)} 2.

:~ in_h(r1).[2@0,r1]

:~ in_h(r2).[2@0,r2]

:~ in_h(r3).[2@0,r3]

:~ not violating.[1@0, violating]

Figure 1: An example of Tmeta.

13

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

=

{
A ∪ {cov(id)}

∣∣∣∣ A ∈ AS(append(reify(non weak(B ∪H), in as, id), as(id)) ∪ {as(id)}),
A extends reify(e, in as, id)

}
(by lemma 4.5).

=

{
A ∪ {as(id), cov(id)}

∣∣∣∣ A ∈ AS(reify(non weak(B ∪H), in as, id)),
A extends reify(e, in as, id)

}
(by lemma 4.4).

= {reify(A, in as, id) ∪ {as(id), cov(id)} | A ∈ AS(B ∪H), A extends e}

Corollary 6.17. For any H ⊆ SM , positive example e:

append(reify(non weak(B ∪H), in as, eid), as(eid)) ∪meta(e) is satisfiable if and only if B ∪H covers e.

Proposition 6.18. For any H ⊆ SM :

(meta(B) ∪meta(SM) ∪meta(E+))[H] is satisfiable if and only if B ∪H covers all of the positive examples.

Proof.

Assume B ∪H covers each of E+

⇔ ∀e+ ∈ E+append(reify(non weak(B ∪H), in as, e+id), as(e
+
id)) ∪meta(e+) is satisfiable (by corollary 6.17).

⇔
⋃

e+∈E+

(append(reify(non weak(B ∪H), in as, e+id), as(e
+
id)) ∪meta(e+)) is satisfiable (by corollary 4.2).

⇔ append(reify(non weak(B ∪H), in as,X), as(X)) ∪
⋃

e+∈E+

(meta(e+)) is satisfiable.

⇔ append(reify(non weak(B ∪H), in as,X), as(X)) ∪meta(E+) is satisfiable.

⇔ append(reify(non weak(B ∪H), in as,X), as(X))∪metaweak(weak(B ∪H), in as, as,X)∪meta(E+) is sat-
isfiable by the splitting set theorem.

⇔ (meta(B) ∪meta(SM) ∪meta(E+))[H] is satisfiable.

Proposition 6.19. For any H ⊆ SM :

Let I be any interpretation.

I ∈ AS(B ∪H) and ∃e− ∈ E− st I extends e− if and only if there is an answer set A of (meta(B) ∪meta(SM) ∪
meta(E−))[H] such that v i ∈ A and I =M−1vi (A).

Proof. Let I be any interpretation.

Assume I ∈ AS(B ∪H) and ∃e− ∈ E− st I extends e−

⇔ I ∈ AS(non weak(B ∪H)) and ∃e− ∈ E− st I extends e− (as weak constraints do not affect answer sets).

⇔ ∃I ∈ AS(non weak(B ∪H)) and ∃e− ∈ E−, st reify(I, in as, n) extends reify(e−, in as, n)

⇔ reify(I, in as, n) ∈ AS(reify(non weak(B ∪ H), in as, n)) and ∃e− ∈ E− st reify(I, in as, n) extends
reify(e−, in as, n) (by lemma ??)

⇔ ∃A ∈ AS(reify(non weak(B ∪H), in as, n)), ∃e− ∈ E− st M−1vi (A) = I and A extends reify(e−, in as, n)

⇔ ∃A ∈ AS(reify(non weak(B ∪H), in as, n) ∪meta(e−)), ∃e− ∈ E− st v i ∈ A and M−1vi (A) = I

⇔ ∃A ∈ AS(
⋃

e−∈E−
(meta(e−)) ∪ reify(non weak(B ∪H), in as, n)) st v i ∈ A and M−1vi (A) = I

⇔ ∃A ∈ AS(
⋃

e−∈E−
(meta(e−)) ∪ {as(n)} ∪ append(reify(non weak(B ∪ H), in as, n), as(n))) st v i ∈ A and

M−1vi (A) = I (by lemma 4.4)

⇔ ∃A ∈ AS(append(reify(non weak(B ∪H), in as, n), as(n)) ∪meta(E−)) st v i ∈ A and M−1vi (A) = I

⇔ ∃A ∈ AS(append(reify(non weak(B ∪ H), in as,X), as(X)) ∪meta(E−)) st v i ∈ A and M−1vi (A) = I (as
the ground program is the same)

⇔ ∃A ∈ AS(append(reify(non weak(B∪H), in as,X), as(X))∪metaweak(weak(B∪H), in as, as,X)∪meta(E−))
st v i ∈ A and M−1vi (A) = I (by the splitting set theorem)

14

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

⇔ ∃A ∈ AS(
⋃

e−∈E−
((meta(B) ∪meta(SM) ∪meta(E−))[H])) st v i ∈ A and M−1vi (A) = I

Proposition 6.20. For any H ⊆ SM :

AS((meta(B)∪meta(SM)∪meta(Ob))[H]) is satisfiable if and only if B ∪H bravely respects every brave ordering.

Proof. For any o = 〈o1, o2〉 ∈ Ob, we define:

P1(o) = append(reify(non weak(B ∪H), in as, oid1), as(oid1)) ∪ cover(reify(o1, in as, oid1), oid1) ∪ {as(oid1)}
P2(o) = append(reify(non weak(B ∪H), in as, oid2), as(oid2)) ∪ cover(reify(o2, in as, oid2), oid2) ∪ {as(oid2)}

P3(o) =


dominates(oid1, oid2)
∪ metaweak(weak(B ∪H), in as, as, oid1)
∪ metaweak(weak(B ∪H), in as, as, oid2)
∪ {as(oid1). as(oid2). :- not dom(oid1, oid2).}

∣∣∣∣∣∣∣∣o ∈ O
b

 ∪ {lv(l) | l ∈ L}

P4(A, id) = {in as(atom, id) | atom ∈ A}
Assume B ∪H bravely respects an ordering o ∈ 〈o1, o2〉
Let a1 and a2 be answer sets of B ∪H which bravely respect o.

⇒ a1, a2 ∈ AS(non weak(B ∪H)) and a1 extends o1, a2 extends o2 and a1 �weak(B∪H) a2.

⇒ ∀i ∈ {1, 2},∃A ∈ AS(Pi(o)) st ai = {atom | in as(atom, oid i) ∈ A} ∈ AS(non weak(B ∪H)) and ai extends
oi and a1 �weak(B∪H) a2.

⇒ ∃A ∈ AS(P1(o) ∪ P2(o)) st ∀i ∈ {1, 2}, ai = {atom | in as(atom, oid i) ∈ A} ∈ AS(non weak(B ∪H)) and ai
extends oi and a1 �weak(B∪H) a2.

⇒ ∃A ∈ AS(P1(o) ∪ P2(o)) st ∀i ∈ {1, 2}, ai = {atom | in as(atom, oid i) ∈ A} ∈ AS(non weak(B ∪ H)) and
P3(o) ∪ P4(a1, oid1) ∪ P4(a2, oid2) is satisfiable by lemma ??.

⇒ ∃A ∈ AS(P1(o) ∪ P2(o)) st A ∪ P3(o) is satisfiable.

⇒ P1(o) ∪ P2(o) ∪ P3(o) is satisfiable by the splitting set theorem.

Conversely, assume ∃o ∈ Ob that is not bravely respected by B ∪H.

Case 1: o1 is not extended by any Answer Set of B ∪H
⇒ P1(o) is unsatisfiable.

⇒ (P1(o) ∪ P2(o) ∪ P3(o)) is unsatisfiable.

Case 2: o2 is not extended by any Answer Set of B ∪H
⇒ P2(o) is unsatisfiable.

⇒ (P1(o) ∪ P2(o) ∪ P3(o)) is unsatisfiable.

Case 3: For each pair of Answer Sets 〈a1, a2〉 which extend o1 and o2, a1 6�B∪H a2.

⇒ ∀A ∈ AS(P1(o) ∪ P2(o)), ∀i ∈ {1, 2}ai = {atom | in as(atom, oid i) ∈ A} ∈ AS(non weak(B ∪ H)) and
a1 6�weak(B∪H) a2.

⇒ ∀A ∈ AS(P1(o) ∪ P2(o)), ai = {atom | in as(atom, oid i) ∈ A} ∈ AS(non weak(B ∪ H)) and P3(o) ∪
P4(o, a1, oid1) ∪ P4(o, a2, oid2) is unsatisfiable by lemma ??.

⇒ (P1(o) ∪ P2(o) ∪ P3(o)) is unsatisfiable.

Hence ∀o ∈ Ob, B ∪H bravely respects o ⇔ ∀o ∈ Ob, (P1(o) ∪ P2(o) ∪ P3(o)) is satisfiable

⇔ (
⋃

o∈Ob

P1(o) ∪ P2(o) ∪ P3(o))) is satisfiable

⇔ AS((meta(B) ∪ meta(SM) ∪ meta(Ob))[H]) is satisfiable (by corol-
lary 4.3)

15

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Corollary 6.21. (meta(B) ∪ meta(SM) ∪ meta(E+) ∪ meta(Ob))[H] is satisfiable if and only if H is a positive
hypothesis of the task.

Proof. Assume (meta(B) ∪meta(SM) ∪meta(E+) ∪meta(Ob))[H] is satisfiable.

⇔ (meta(B) ∪meta(SM) ∪meta(E+))[H] is satisfiable and (meta(B) ∪meta(SM) ∪meta(Ob))[H] is satisfiable
by corollary 4.3.

⇔ B ∪ H covers all the positive examples (by proposition 6.18) and B ∪ H bravely respects all brave ordering
examples (proposition 6.20).

⇔ H is a positive hypothesis.

Proposition 6.22. For any H ⊆ SM and any o = 〈e1, e2〉 ∈ Oc (e1 and e2 are positive examples)

∃S ∈ AS

 append(reify(non weak(B ∪H), in as, eiid))
∪meta(ei)
∪metaweak(weak(B ∪H), in as, as, eiid)

∣∣∣∣∣∣i ∈ {1, 2}
 ∪ {lv(l) | l ∈ L} ∪meta(o)

 such that vp(e1id, e
2
id) ∈

S if and only if M−1vp (S, e1id, e
2
id) is a violating pair of B ∪H (which violates o).

Proof. Let 〈A1, A2〉 be a violating pair of B ∪H which violates o

⇔ ∀i ∈ {1, 2}, Ai ∈ AS(B ∪H) and Ai extends ei and A1 6�B∪H A2.

⇔ ∀i ∈ {1, 2},∃Si ∈ AS(append(reify(non weak(B∪H), in as, eiid))∪meta(ei)) stAi = {atom | in as(atom, eiid) ∈
Si} and A1 6�B∪H A2 by proposition 6.16.

⇔ ∃S ∈ AS
({

append(reify(non weak(B ∪H), in as, eiid))
∪meta(ei)

∣∣∣∣i ∈ {1, 2}})
st ∀i ∈ {1, 2}, Ai = {atom | in as(atom, eiid) ∈ S} and A1 6�B∪H A2 (by corollary 4.2).

⇔ ∃S ∈ AS
({

append(reify(non weak(B ∪H), in as, eiid))
∪meta(ei)

∣∣∣∣i ∈ {1, 2}})
st ∀i ∈ {1, 2}, Ai = {atom | in as(atom, eiid) ∈ S}

and dom(e1id, e
2
id) 6∈M

({
metaweak(weak(B ∪H), in as, as, eiid)
∪ reify(Ai, in as, e

i
id) ∪ {as(eiid)}

∣∣∣∣i ∈ {1, 2}} ∪dominates(e1id, e2id)∪{lv(l) | l ∈ L}

)
(by

lemma ??).

⇔ ∃S ∈ AS
({

append(reify(non weak(B ∪H), in as, eiid))
∪meta(ei)

∣∣∣∣i ∈ {1, 2}})
st M−1vp (S, e1id, e

2
id) = 〈A1, A2〉

and dom(e1id, e
2
id) 6∈M

(
S ∪ {metaweak(weak(B ∪H), in as, as, eiid) | i ∈ {1, 2}}
∪ dominates(e1id, e2id) ∪ {lv(l) | l ∈ L}

)

⇔ ∃S ∈ AS

 append(reify(non weak(B ∪H), in as, eiid))
∪meta(ei)
∪metaweak(weak(B ∪H), in as, as, eiid)

∣∣∣∣∣∣i ∈ {1, 2}
 ∪ dominates(e1id, e2id) ∪ {lv(l) | l ∈ L}


st M−1vp (S, e1id, e

2
id) = 〈A1, A2〉

and dom(e1id, e
2
id) 6∈ S (by the splitting set theorem)

⇔ ∃S ∈ AS

 append(reify(non weak(B ∪H), in as, eiid))
∪meta(ei)
∪metaweak(weak(B ∪H), in as, as, eiid)

∣∣∣∣∣∣i ∈ {1, 2}
 ∪dominates(e1id, e2id)
∪{lv(l) | l ∈ L}
∪{v p(e1id, e

2
id) :- not dom(e1id, e

2
id).}


st M−1vp (S, e1id, e

2
id) = 〈A1, A2〉 and v p(e1id, e

2
id) ∈ S

⇔ ∃S ∈ AS

 append(reify(non weak(B ∪H), in as, eiid))
∪meta(ei)
∪metaweak(weak(B ∪H), in as, as, eiid)

∣∣∣∣∣∣i ∈ {1, 2}
 ∪{lv(l) | l ∈ L}
∪meta(o)


st M−1vp (S, e1id, e

2
id) = 〈A1, A2〉 and v p(e1id, e

2
id) ∈ S

16

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Proposition 6.23. For any H ⊆ SM :

Let 〈I1, I2〉 be any pair of interpretations.

H is a violating hypothesis with violating pair 〈I1, I2〉 if and only if ∃A ∈ AS((meta(B) ∪meta(SM) ∪meta(E+) ∪
meta(Oc))[H]) such that v p ∈ A and M−1vp (A) = 〈I1, I2〉

Proof.

AS
((

meta(B) ∪meta(SM) ∪meta(E+) ∪meta(Ob) ∪meta(Oc)
)

[H]
)

=

M
 (

n⋃
i=1

Ai) ∪

{v p :- v p(V1, V2)}

∣∣∣∣∣∣
A1 ∈ AS((meta(o1) ∪meta(Ob) ∪meta(B) ∪meta(SM) ∪meta(E+))[H]),

. . . ,
An ∈ AS((meta(on) ∪meta(Ob) ∪meta(B) ∪meta(SM) ∪meta(E+))[H])


(By repeated applications of lemma ??)

Hence:

∃A ∈ AS((meta(B) ∪meta(SM) ∪meta(E+) ∪meta(Ob) ∪meta(Oc))[H]) st v p ∈ A and M−1vp (A) = 〈I1, I2〉

⇔ ∀o ∈ Oc, (meta(o)∪meta(B)∪meta(SM)∪meta(E+)∪meta(Ob))[H] is satisfiable and ∃o = 〈e1, e2〉 ∈ Oc
st ∃A ∈ AS((meta(o)∪meta(B)∪meta(SM)∪meta(E+)∪meta(Ob))[H]) st vp(e1id, e

2
id) ∈ A andM−1vp (A) =

〈I1, I2〉.

⇔ (meta(B) ∪meta(SM) ∪meta(E+) ∪meta(Ob))[H] is satisfiable (as meta(o) is stratified and contains no
atom which appears in the bodies of the rest of the program) and ∃o = 〈e1, e2〉 ∈ Oc st ∃A ∈ AS((meta(o) ∪
meta(B) ∪meta(SM) ∪meta(E+) ∪meta(Ob))[H]) st v p(e1id, e

2
id) ∈ A and M−1vp (A, e1id, e

2
id) = 〈I1, I2〉.

⇔ H is a positive hypothesis (by corollary 6.21) and ∃o = 〈e1, e2〉 ∈ Oc st ∃A ∈ AS((meta(o) ∪meta(B) ∪
meta(SM) ∪meta(E+) ∪meta(Ob))[H]) st vp(e1id, e

2
id) ∈ A and M−1vp (A, e1id, e

2
id) = 〈I1, I2〉

⇔ H is a positive hypothesis and ∃o = 〈e1, e2〉 ∈ Oc st ∃A ∈ AS((meta(o)∪meta(B)∪meta(SM)∪meta(E+)∪
{lv(l) | l ∈ L} st v p(e1id, e

2
id) ∈ A and M−1vp (A, e1id, e

2
id) = 〈I1, I2〉 (as the rest of Ob has no heads used in the

body of the remaining rules).

⇔ H is a positive hypothesis and ∃o = 〈e1, e2〉 ∈ Oc st ∃A ∈ AS((meta(o)∪meta(B)∪meta(SM)∪meta(e1id)∪
meta(e2id) ∪ {lv(l) | l ∈ L} st v p(e1id, e

2
id) ∈ A and M−1vp (A, e1id, e

2
id) = 〈I1, I2〉 (as the rest of meta(E+) has

no heads used in the body of the remaining rules).

⇔ H is a positive hypothesis and ∃o = 〈e1, e2〉 ∈ Oc

st ∃A ∈ AS

 append(reify(non weak(B ∪H), in as, eiid))
∪meta(ei)
∪metaweak(weak(B ∪H), in as, as, eiid)

∣∣∣∣∣∣i ∈ {1, 2}
 ∪ {lv(l) | l ∈ L} ∪meta(o)


st vp(e1id, e

2
id) ∈ A andM−1vp (A, e1id, e

2
id) = 〈I1, I2〉 (as the relevant grounding of the two programs is the same).

⇔ H is a positive hypothesis and ∃o ∈ Oc such that o 〈I1, I2〉 is a violating pair of H (by proposition 6.22).

⇔ H is a violating hypothesis with violating pair 〈I1, I2〉.

Theorem 6.24. For any H ⊆ SM :

1. Tmeta[H] is satisfiable if and only if H is a positive hypothesis of T .

2. ∃A ∈ AS(Tmeta)[H]) such that A contains the atom v i if and only if H is a violating hypothesis such that
B ∪H has the violating interpretation M−1vi (A).

3. ∃A ∈ AS(Tmeta)[H]) such that A contains the atom v p if and only if H is a violating hypothesis with violating
pair M−1vp (A)

Proof. 1. Tmeta = meta(B) ∪meta(SM) ∪meta(E+) ∪meta(E−) ∪meta(Ob) ∪meta(Oc)

Assume Tmeta is satisfiable.

⇔ (meta(B)∪meta(SM)∪meta(E+)∪meta(Ob))[H] is satisfiable, as no head literal in meta(Oc)∪meta(E−)
unifies with any body literal in the rest of the program and meta(Oc) ∪meta(E−) is stratified.

⇔ H is a positive hypothesis by corollary 6.21.

17

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

2. Let A be an answer set of Tmeta[H] which contains v i and let V =M−1vi (A).

⇔ S ∈ AS((meta(B) ∪meta(SM) ∪meta(E+) ∪meta(Ob) ∪meta(Oc) ∪ {as(n)})[H]) and ∃S2 ∈ AS(S ∪
meta(E−)\{as(n)})[H] st v i ∈ S2 and V =M−1vi (S2) by the splitting set theorem.

⇔ ∃S ∈ AS((meta(B)∪meta(SM)∪meta(E+)∪meta(Ob)∪{as(n)})[H]) st ∃S2 ∈ AS(S∪meta(E−)\{as(n)})[H])
st v i ∈ S2 and V =M−1vi (S2) (as Oc is stratified and contains no atom in E−)

⇔ ∃S1 ∈ AS((meta(B)∪meta(SM)∪meta(E+)∪meta(Ob)),∃S2 ∈ AS((meta(B)∪meta(SM)∪{as(n)})[H])
st ∃S3 ∈ AS(S1 ∪ S2 ∪ (meta(E−)\{as(n)}))[H] st iv i ∈ S3 and V =M−1vi (S3) (by corollary 4.3).

⇔ ∃S1 ∈ AS((meta(B) ∪ meta(SM) ∪ meta(E+) ∪ meta(Ob))[H]),∃S2 ∈ AS((meta(B) ∪ meta(SM) ∪
{as(n)})[H]) st ∃S3 ∈ AS(S2 ∪ (meta(E−)\{as(n)}))[H] st v i ∈ S3 and V =M−1vi (S3) (as no atom in S1

occurs in meta(E−)).

⇔ H is a positive hypothesis and ∃S1 ∈ AS((meta(B) ∪ meta(SM) ∪ {as(n)})[H]) st ∃S2 ∈ AS(S1 ∪
(meta(E−)\{as(n)})[H]) st v i ∈ S2 and V =M−1vi (S2)

⇔ H is a positive hypothesis and ∃S1 ∈ AS((meta(B) ∪ meta(SM) ∪ {as(n)})[H]) st ∃S2 ∈ AS(S1 ∪
(meta(E−))[H]) st v i ∈ S2 and V =M−1vi (S2)

⇔ H is a positive hypothesis and ∃S ∈ AS((meta(B) ∪ meta(SM) ∪ meta(E−))[H]) st v i ∈ S and
V =M−1vi (S)

⇔ H is a positive hypothesis with violating interpretation V (by proposition 6.19).

⇔ H is a violating hypothesis with violating interpretation V .

3. Let A be an answer set of Tmeta[H] which contains v p and let P =M−1vp (A)

⇔ ∃S ∈ AS((meta(B) ∪meta(SM) ∪meta(E+) ∪meta(Ob) ∪meta(Oc))[H]) st v p ∈ S and P =M−1vp (S)
and (meta(B) ∪meta(SM) ∪meta(E−))[H] is satisfiable (by corollary 4.3)

Notice that if (meta(B) ∪meta(SM) ∪meta(E−))[H] were unsatisfiable then Tmeta would be too (by the
splitting set theorem). Hence:

⇔ ∃S ∈ AS((meta(B) ∪meta(SM) ∪meta(E+) ∪meta(Ob) ∪meta(Oc))[H]) st v p ∈ S and P =M−1vp (S)

⇔ H is a violating hypothesis with violating pair V (by proposition 6.23).

18

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

7 Ruling out classes of violating hypothesis: V Rmeta

In this section, as before we will assume an ILPLOAS task T = 〈B,SM , E+, E−, Ob, Oc〉. We will also assume a set
of violating reasons V R = V I ∪ V P , where V I are violating interpretations and V P are violating pairs.

7.1 Meta Level representation

Definition 7.1. Given any choice rule R = l{h1, . . . , hn}u :- body, reductify(R) is the program:

mmr(h1, X) :- reify(body+, mmr, X), reify(body−, not in vs, X),
l{in vs(h1, X), . . . , in vs(hn, X)}u, in vs(h1, X).

. . .
mmr(hn, X) :- reify(body+, mmr, X), reify(body−, not in vs, X),

l{in vs(h1, X), . . . , in vs(hn, X)}u, in vs(hn, X).
mmr(⊥, X) :- reify(body+, mmr, X), reify(body−, not in vs, X),

u + 1{in vs(h1, X), . . . , in vs(hn, X)}.
mmr(⊥, X) :- reify(body+, mmr, X), reify(body−, not in vs, X),

{in vs(h1, X), . . . , in vs(hn, X)}l− 1.


Definition 7.2. Let P be an ASP program and t be a term. reductify(P, t) is the program:

{mmr(head, t) :- reify(body+(R), mmr, t), reify(body−(R), not in vs, t), vs(t). | R ∈ normal(P)}

∪ {mmr(⊥, t) :- reify(body+(R), mmr, t), reify(body−(R), not in vs, t), vs(t). | R ∈ constraint(P)}

∪ {reductify(R, t) | R ∈ choice(P)}.

For any term t we write:

R1(t) = nas(t) :- in vs(ATOM, t), not mmr(ATOM, t)

R2(t) = nas(t) :- not in vs(ATOM, t), mmr(ATOM, t)

We will also use the shorthand nas rules(t) to denote R1(t) ∪R2(t).

Definition 7.3. V Imeta(T) is the program:{
reductify(B,X) ∪ nas rules(X)∪
{append(reductify(R,X), in hyp(Rid)) | R ∈ SM}

}
∪

 {:- not nas(Iid).}
∪reify(I, in vs, Iid)
∪{vs(Iid).}

∣∣∣∣∣∣I ∈ V I


Definition 7.4. For any violating pair vp = 〈I1, I2〉, meta(vp) is the program:

dominates(vpid1, vpid2)∪{lv(l). | l ∈ L}∪

 reify(I1, in vs, vpid1)∪
nas rules(vpid1)∪
{vs(vpid i).}

∣∣∣∣∣∣i ∈ {1, 2}
∪

 :- not nas(vpid1),
not nas(vpid2),
not dom(vpid1, vpid2).


Definition 7.5. V Pmeta(T)) is the program:

reductify(B,X)∪

 append(reductify(R,X), in hyp(Rid)) | R ∈ SM
append(metaweak(W, in vs, vs,X), in hyp(Wid)) |W ∈ weak(SM)
metaweak(W, in vs, vs,X) |W ∈ weak(B)

∪{meta(vp) | vp ∈ V P}

Definition 7.6. V Rmeta(T) = V Imeta(T) ∪ V Pmeta(T)

Similar to the previous section, we again partially ground the program to simplify the proofs. The representation
given in the paper is given in definition 7.7.

Definition 7.7. Let T be the ILPLOAS task 〈B,SM , E+, E−, Ob, Oc〉 and V R be the set of violating reasons
V I ∪ V P , where V I are violating interpretations and V P are violating pairs.

V Rmeta(T) is the program meta(V I) ∪meta(V P) ∪meta(Aux) where the meta components are defined as follows:

19

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

• meta(V I) =

 reify(I, in vs, Iid)
:- not nas(Iid).
vs(Iid).

∣∣∣∣∣∣I ∈ V I


• meta(V P) =



dominates(vpid1, vpid2)
reify(I1, in vs, vpid1)
reify(I2, in vs, vpid2)
vs(vpid1).
vs(vpid2).
:- not nas(vpid1), not nas(vpid2),

not dom(vpid1, vpid2).

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
vp = 〈I1, I2〉 ∈ V P


• meta(Aux) =

reductify(B)

∪
{

nas(X) :- in vs(ATOM, X), not mmr(ATOM, X).
nas(X) :- not in vs(ATOM, X), mmr(ATOM, X).

}
∪ {append(reductify(R), in hyp(Rid)) | R ∈ non weak(SM)}
∪ {append(metaweak(W, in vs, vs,X), in hyp(Wid)) |W ∈ weak(SM)}
∪ {metaweak(W, in vs, vs,X) |W ∈ weak(B)}
∪ {lv(l). | l ∈ L}


Example 7.8. Let B be the program:

p(V) :- r(V), not q(V).

q(V) :- r(V), not p(V).

r(1).

r(2).

a :- not b.

b :- not a.

Let SM be the set of rules:

q(1).

:~ q(V).[1@1, V, r2]

:~ b.[1@1, b, r3]

Let E+ =


〈{p(2)}, ∅〉,
〈∅, {p(2)}〉,
〈{a}, {b}〉,
〈∅, {a}〉

Let E− =
{
〈{p(1)}, ∅〉

Let Ob =
{
〈e+3 , e

+
4 〉

Let Oc =
{
〈e+1 , e

+
2 〉

Let V I =
{
{p(1), p(2), r(1), r(2), a}

Let V P =
{
〈{p(2), q(1), r(1), r(2), a}, {q(1), q(2), r(1), r(2), a}〉

Let the set of violating reasons V R be V I ∪ V P . Then figure 2 shows V Rmeta(T).

7.2 Properties

Lemma 7.9. Given any program P (with no weak constraints), term t and interpretation I:

Let Q be the program reductify(P, t) ∪ reify(I, in vs, t) ∪ {vs(t)}.
Q is globally stratified and thus has a unique Answer Set denoted M(Q).

20

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

% reductify(B,X)

mmr(p(V),X) :- mmr(r(V),X),

not in_vs(q(V),X), vs(X).

mmr(q(V),X) :- mmr(r(V),X),

not in_vs(p(V),X), vs(X).

mmr(r(1),X) :- vs(X).

mmr(r(2),X) :- vs(X).

mmr(a,X) :- not in_vs(b,X), vs(X).

mmr(b,X) :- not in_vs(a,X), vs(X).

% reductify(S_M) + in_hyp

mmr(q(1),X) :- vs(X), in_h(r1).

w(1,1,ts(V),X) :- vs(X),

in_vs(q(V),X), in_h(r2).

w(1,1,args(b,r3),X) :- vs(X),

in_vs(b,X), in_h(r3).

% nas_rules(X)

nas(X) :- in_vs(A,X), not mmr(A,X).

nas(X) :- not in_vs(A,X), mmr(A,X).

% VI

in_vs(p(1),v1).

in_vs(p(2),v1).

in_vs(r(1),v1).

in_vs(r(2),v1).

in_vs(a,v1).

vs(v1).

:- not nas(v1).

% VP

in_vs(p(2),v2).

in_vs(q(1),v2).

in_vs(r(1),v2).

in_vs(r(2),v2).

in_vs(a,v2).

vs(v2).

in_vs(q(1),v3).

in_vs(q(2),v3).

in_vs(r(1),v3).

in_vs(r(2),v3).

in_vs(a,v3).

vs(v3).

dom_lv(v2,v3,L) :- lv(L),

#sum{w(W,L,A,v2)=W, w(W,L,A,v3)=-W} < 0.

wrong_dom_lv(v2,v3,L) :- lv(L),

#sum{w(W,L,A,v3)=W, w(W,L,A,v2)=-W} < 0.

wrong_bef(v2,v3,L) :- lv(L), L < L2,

wrong_dom_lv(1,2,L).

dom(v2,v3) :- dom_lv(v2,v3,L),

not wrong_bef(v2,v3,L).

:- not nas(v2), not nas(v3),

not dom(v2,v3).

Figure 2: An example of V Rmeta(T).

21

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Lemma 7.10. Given any program P , term t and interpretation I:

Let Q = reductify(P, t) ∪ reify(I, in vs, t) ∪ {vs(t)}

M(P I) = {atom | mmr(atom, t) ∈M(Q)}

Proof.

M(Q)

= M({vs(t)} ∪ reify(I, in vs, t) ∪ reductify(P, t))

= M({vs(t)} ∪ reify(I, in vs, t) ∪ reductify(ground(P), t))

= M

 {vs(t)}∪
reify(I, in vs, t)∪


mmr(head, t) :- reify(body+(R), mmr, t),

reify(body−(R), not in vs, t), vs(t).

∣∣∣ R ∈ normal(ground(P))

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t).

∣∣∣ R ∈ constraint(ground(P))

reductify(R) | R ∈ choice(ground(P))





= M



{vs(t)}∪
reify(I, in vs, t)∪



mmr(head, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t).

∣∣∣ R ∈ normal(ground(P))

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t).

∣∣∣ R ∈ constraint(ground(P))}

mmr(h, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
l{in vs(h1, t), . . . , in vs(hn)}u, in vs(h)

∣∣∣∣∣ R ∈ choice(ground(P)),
head(R) = l{h1, . . . , hn}u,
h ∈ {h1, . . . hn}

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
{in vs(h1, t), . . . , in vs(hn)}l− 1

∣∣∣∣∣ R ∈ choice(ground(P))

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
u + 1{in vs(h1, t), . . . , in vs(hn)}

∣∣∣∣∣ R ∈ choice(ground(P))





= M



{vs(t)}∪
reify(I, in vs, t)∪



mmr(head, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t).

∣∣∣ R ∈ normal(ground(P))

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t).

∣∣∣ R ∈ constraint(ground(P))}

mmr(h, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
l{in vs(h1, t), . . . , in vs(hn)}u.

∣∣∣∣∣ R ∈ choice(ground(P)),
head(R) = l{h1, . . . , hn}u,
h ∈ {h1, . . . hn}∩I

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
{in vs(h1, t), . . . , in vs(hn)}l− 1

∣∣∣∣∣ R ∈ choice(ground(P))

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
u + 1{in vs(h1, t), . . . , in vs(hn)}

∣∣∣∣∣ R ∈ choice(ground(P))




(because in vs(atom, t) is true if and only if atom ∈ I as these atoms come from reify(I, in vs, t)).

22

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

= M



{vs(t)}∪
reify(I, in vs, t)∪



mmr(head, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t).

∣∣∣ R ∈ normal(ground(P))

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t).

∣∣∣ R ∈ constraint(ground(P))}

mmr(h, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
l{in vs(h1, t), . . . , in vs(hn)}u.

∣∣∣∣∣
R ∈ choice(ground(P)),
head(R) = l{h1, . . . , hn}u,
h ∈ {h1, . . . hn} ∩ I
l ≤ |{h1, . . . hn} ∩ I| ≤ u

mmr(h, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
l{in vs(h1, t), . . . , in vs(hn)}u.

∣∣∣∣∣
R ∈ choice(ground(P)),
head(R) = l{h1, . . . , hn}u,
h ∈ {h1, . . . hn} ∩ I
l > |{h1, . . . hn} ∩ I|

mmr(h, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
l{in vs(h1, t), . . . , in vs(hn)}u.

∣∣∣∣∣
R ∈ choice(ground(P)),
head(R) = l{h1, . . . , hn}u,
h ∈ {h1, . . . hn} ∩ I
|{h1, . . . hn} ∩ I| > u

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
{in vs(h1, t), . . . , in vs(hn)}l− 1

∣∣∣∣∣
R ∈ choice(ground(P))
head(R) = l{h1, . . . , hn}u,
l ≤ |{h1, . . . hn} ∩ I| ≤ u

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
{in vs(h1, t), . . . , in vs(hn)}l− 1

∣∣∣∣∣
R ∈ choice(ground(P))
head(R) = l{h1, . . . , hn}u,
l > |{h1, . . . hn} ∩ I|

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
{in vs(h1, t), . . . , in vs(hn)}l− 1

∣∣∣∣∣
R ∈ choice(ground(P))
head(R) = l{h1, . . . , hn}u,
|{h1, . . . hn} ∩ I| > u

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
u + 1{in vs(h1, t), . . . , in vs(hn)}

∣∣∣∣∣
R ∈ choice(ground(P))
head(R) = l{h1, . . . , hn}u,
|l ≤ {h1, . . . hn} ∩ I| ≤ u

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
u + 1{in vs(h1, t), . . . , in vs(hn)}

∣∣∣∣∣
R ∈ choice(ground(P))
head(R) = l{h1, . . . , hn}u,
|l > {h1, . . . hn} ∩ I|

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
u + 1{in vs(h1, t), . . . , in vs(hn)}

∣∣∣∣∣
R ∈ choice(ground(P))
head(R) = l{h1, . . . , hn}u,
|{h1, . . . hn} ∩ I| > u




(the programs are the same as the new conditions are exhaustive)

23

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

= M



{vs(t)}∪
reify(I, in vs, t)∪



mmr(head, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t).

∣∣∣ R ∈ normal(ground(P))

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t).

∣∣∣ R ∈ constraint(ground(P))}

mmr(h, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
l{in vs(h1, t), . . . , in vs(hn)}u.

∣∣∣∣∣
R ∈ choice(ground(P)),
head(R) = l{h1, . . . , hn}u,
h ∈ {h1, . . . hn} ∩ I
l ≤ |{h1, . . . hn} ∩ I| ≤ u

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
{in vs(h1, t), . . . , in vs(hn)}l− 1

∣∣∣∣∣
R ∈ choice(ground(P))
head(R) = l{h1, . . . , hn}u,
l > |{h1, . . . hn} ∩ I|

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t),
u + 1{in vs(h1, t), . . . , in vs(hn)}

∣∣∣∣∣
R ∈ choice(ground(P))
head(R) = l{h1, . . . , hn}u,
|{h1, . . . hn} ∩ I| > u




(by corollary 4.7 (part 2), as we have only removed rules whose bodies were false due to the sum being

false).

= M



{vs(t)}∪
reify(I, in vs, t)∪



mmr(head, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t).

∣∣∣ R ∈ normal(ground(P))
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t).

∣∣∣ R ∈ constraint(ground(P))
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

mmr(h, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t).

∣∣∣∣∣
R ∈ choice(ground(P)),
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

head(R) = l{h1, . . . , hn}u,
h ∈ {h1, . . . hn} ∩ I
l ≤ |{h1, . . . hn} ∩ I| ≤ u

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t).

∣∣∣∣∣
R ∈ choice(ground(P))
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

head(R) = l{h1, . . . , hn}u,
l > |{h1, . . . hn} ∩ I|

mmr(⊥, t) :- reify(body+(R), mmr, t),
reify(body−(R), not in vs, t), vs(t).

∣∣∣∣∣
R ∈ choice(ground(P))
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

head(R) = l{h1, . . . , hn}u,
|{h1, . . . hn} ∩ I| > u




(As the rules which have been removed contain the negation of at least one fact in the program).

24

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

= M



{vs(t)}∪
reify(I, in vs, t)∪



mmr(head, t) :- reify(body+(R), mmr, t),
vs(t).

∣∣∣ R ∈ normal(ground(P))
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

mmr(⊥, t) :- reify(body+(R), mmr, t),
vs(t).

∣∣∣ R ∈ constraint(ground(P))
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

mmr(h, t) :- reify(body+(R), mmr, t),
vs(t).

∣∣∣∣∣
R ∈ choice(ground(P)),
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

head(R) = l{h1, . . . , hn}u,
h ∈ {h1, . . . hn} ∩ I
l ≤ |{h1, . . . hn} ∩ I| ≤ u

mmr(⊥, t) :- reify(body+(R), mmr, t),
vs(t).

∣∣∣∣∣
R ∈ choice(ground(P))
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

head(R) = l{h1, . . . , hn}u,
l > |{h1, . . . hn} ∩ I|

mmr(⊥, t) :- reify(body+(R), mmr, t),
vs(t).

∣∣∣∣∣
R ∈ choice(ground(P))
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

head(R) = l{h1, . . . , hn}u,
|{h1, . . . hn} ∩ I| > u




(As the literals which were removed were definitely true given the facts in the program)

= M



reify(I, in vs, t)∪
{vs(t)}∪



mmr(head, t) :- reify(body+(R), mmr, t).
∣∣∣ R ∈ normal(ground(P))
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

mmr(⊥, t) :- reify(body+(R), mmr, t).
∣∣∣ R ∈ constraint(ground(P))
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

mmr(h, t) :- reify(body+(R), mmr, t).

∣∣∣∣∣
R ∈ choice(ground(P)),
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

head(R) = l{h1, . . . , hn}u,
h ∈ {h1, . . . hn} ∩ I
l ≤ |{h1, . . . hn} ∩ I| ≤ u

mmr(⊥, t) :- reify(body+(R), mmr, t).

∣∣∣∣∣
R ∈ choice(ground(P))
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

head(R) = l{h1, . . . , hn}u,
l > |{h1, . . . hn} ∩ I|

mmr(⊥, t) :- reify(body+(R), mmr, t).

∣∣∣∣∣
R ∈ choice(ground(P))
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

head(R) = l{h1, . . . , hn}u,
|{h1, . . . hn} ∩ I| > u




(As the literals which were removed were definitely true given the facts in the program)

25

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

= M





mmr(head, t) :- reify(body+(R), mmr, t).
∣∣∣ R ∈ normal(ground(P))
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

mmr(⊥, t) :- reify(body+(R), mmr, t).
∣∣∣ R ∈ constraint(ground(P))
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

mmr(h, t) :- reify(body+(R), mmr, t).

∣∣∣∣∣
R ∈ choice(ground(P)),
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

head(R) = l{h1, . . . , hn}u,
h ∈ {h1, . . . hn} ∩ I
l ≤ |{h1, . . . hn} ∩ I| ≤ u

mmr(⊥, t) :- reify(body+(R), mmr, t).

∣∣∣∣∣
R ∈ choice(ground(P))
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

head(R) = l{h1, . . . , hn}u,
l > |{h1, . . . hn} ∩ I|

mmr(⊥, t) :- reify(body+(R), mmr, t).

∣∣∣∣∣
R ∈ choice(ground(P))
reify(body−(R), in vs, t)
∩ reify(I, in vs, t) = ∅

head(R) = l{h1, . . . , hn}u,
|{h1, . . . hn} ∩ I| > u





∪reify(I, in vs, t)∪
{vs(t)}

= M(reify(



head :- body+(R).
∣∣∣ R ∈ normal(ground(P))
body−(R) ∩ I = ∅

⊥ :- body+(R).
∣∣∣ R ∈ constraint(ground(P))
body−(R) ∩ I = ∅

h :- body+(R).

∣∣∣∣∣
R ∈ choice(ground(P)),
body−(R) ∩ I = ∅
head(R) = l{h1, . . . , hn}u,
h ∈ {h1, . . . hn} ∩ I
l ≤ |{h1, . . . hn} ∩ I| ≤ u

⊥ :- body+(R).

∣∣∣∣∣
R ∈ choice(ground(P))
body−(R) ∩ I = ∅
head(R) = l{h1, . . . , hn}u,
l > |{h1, . . . hn} ∩ I|

⊥ :- body+(R).

∣∣∣∣∣
R ∈ choice(ground(P))
body−(R) ∩ I = ∅
head(R) = l{h1, . . . , hn}u,
|{h1, . . . hn} ∩ I| > u



,mmr, t)) ∪ reify(I, in vs, t) ∪ {vs(t)}

= M(reify(P I),mmr, t) ∪ reify(I, in vs, t) ∪ {vs(t)}

= reify(M(P I),mmr, t) ∪ reify(I, in vs, t) ∪ {vs(t)}

Hence M(P I) = {atom | mmr(atom, t) ∈M(Q)}

Lemma 7.11. Given any program P , term t and interpretation I:

Let Q = reductify(P, t) ∪ reify(I, in vs, t) ∪ {vs(t)}

I ∈ AS(P) if and only if nas(t) 6∈M(Q ∪ nas rules(t)).

26

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Proof. Assume I 6∈ AS(P)

⇔ (∃a ∈M(P I) st a 6∈ I) ∨ (∃a ∈ I st a 6∈M(P I)).

Case 1: ∃a ∈M(P I) st a 6∈ I

⇔ ∃a ∈ {atom | mmr(atom, t) ∈M(Q)} st a 6∈ I (By lemma 7.10).

⇔ ∃a st mmr(a, t) ∈ M(Q) and in vs(a, t) 6∈ M(Q) (as the in vs atoms in M(Q) are reify(I, in vs, t) and
a 6∈ I).

⇔ ∃Rg1 (a ground instance of R1(t)) st body(Rg1) is satisfied by M(Q).

Case 2: ∃a ∈ I st a 6∈M(P I)

⇔ ∃a ∈ I st a 6∈ {atom | mmr(atom, t) ∈M(Q)} (By lemma 7.10).

⇔ ∃a st in vs(a, t) ∈ M(Q) and mmr(a, t) 6∈ M(Q). (as the in vs atoms in M(Q) are reify(I, in vs, t) and
a ∈ I).

⇔ ∃Rg2 (a ground instance of R2(t)) st body(Rg2) is satisfied by M(Q).

Hence:

I 6∈ AS(P)

⇔ (∃Rg1 ∈ ground(R1(t)) st M(Q) satisfies body(Rg1)) ∨ (∃Rg2 ∈ ground(R2(t)) st M(Q) satisfies body(Rg2)).

⇔ ∃Rg ∈ ground(nas rules(t)) st M(Q) satisfies body(Rg).

⇔ nas(t) ∈M(M(Q) ∪ nas rules(t))

⇔ nas(t) ∈M(Q ∪ nas rules(t)) as nas(t) occurs nowhere in Q.

Lemma 7.12. Let H ⊆ SM
V Imeta(T)[H] is satisfiable if and only if ∀I ∈ V I, I 6∈ AS(B ∪H).

Proof. Assume V Imeta(T)[H] is satisfiable.

⇔ reductify(B ∪H,X) ∪ nas rules(X) ∪
{
{:- not nas(Iid). vs(Iid).}

reify(I, in vs, Iid)

∣∣∣∣I ∈ V I} is satisfiable.

⇔


{:- not nas(Iid). vs(Iid).}

reify(I, in vs, Iid)
reductify(B ∪H, Iid)

nas rules(Iid)

∣∣∣∣∣∣∣∣I ∈ V I
 is satisfiable (as the relevant grounding is the same).

⇔ ∀I ∈ V I :


{:- not nas(Iid). vs(Iid).}

reify(I, in vs, Iid)
reductify(B ∪H, Iid)

nas rules(Iid)

 is satisfiable (by corollary 4.2).

⇔ ∀I ∈ V I : nas(Iid) ∈M




{vs(Iid).}
reify(I, in vs, Iid)

reductify(B ∪H, Iid)
nas rules(Iid)


 is satisfiable (by lemma ??).

⇔ ∀I ∈ V I: I 6∈ AS(B ∪H) (by lemma 7.11).

Lemma 7.13. Let t1 and t2 be two distinct terms and L be a set of integers. Let I1 and I2 be interpretations.

dominates(t1, t2)∪{lv(l) | l ∈ L}∪


metaweak(weak(B ∪H), in vs, vs, ti)
reify(Ii, in vs, ti)
nas rules(ti)
reductify(normal(B ∪H), ti)
{vs(vpid i).}

∣∣∣∣∣∣∣∣∣∣
i ∈ {1, 2}

∪
 :- not nas(t1),

not nas(t2),
not dom(t1, t2)


is satisfiable if and only if (I1 6∈ AS(B ∪H) ∨ I2 6∈ AS(B ∪H) ∨ I1 �B∪H I2).

27

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Proof.

For i ∈ {1, 2} Let Qi =


reify(Ii, in vs, ti)
{vs(ti)}
nas rules(ti)
reductify(normal(B ∪H), ti)


Let Q3 = dominates(t1, t2) ∪ {lv(l) | l ∈ L} ∪

 metaweak(weak(B ∪H), in vs, vs, ti)
reify(Ii, in vs, ti)
{vs(ti)}

∣∣∣∣∣∣i ∈ {1, 2}


AS(Q1 ∪Q2 ∪Q3) =

{
A1 ∪A2

∣∣∣∣ A1 ∈ AS(Q1 ∪Q2),
A2 ∈ AS(Q3)

}
as the only atoms in both ground(Q1 ∪Q2) and ground(Q3)

are facts in both programs.

∴M(Q1 ∪Q2 ∪Q3) = M(Q1 ∪Q2) ∪M(Q3)

Hence

 :- not nas(t1),
not nas(t2),
not dom(t1, t2)

 ∪Q is satisfiable

⇔

 :- not nas(t1),
not nas(t2),
not dom(t1, t2)

 ∪M(Q1 ∪Q2) ∪M(Q3) is satisfiable

⇔ nas(t1) ∈M(Q1 ∪Q2) ∨ nas(t2) ∈M(Q1 ∪Q2) ∨ dom(t1, t2) ∈M(Q3).

⇔ nas(t1) ∈M(Q1) ∨ nas(t2) ∈M(Q2) ∨ dom(t1, t2) ∈M(Q3) (by corollary 4.2).

⇔ I1 6∈ AS(B ∪H) ∨ I2 6∈ AS(B ∪H) ∨ dom(t1, t2) ∈M(Q3) (by lemma 7.11).

⇔ I1 6∈ AS(B ∪H) ∨ I2 6∈ AS(B ∪H) ∨ I1 �B∪H I2 (by lemma ??)

Lemma 7.14. Let H ⊆ SM
V Pmeta(T)[H] is satisfiable if and only if ∀〈I1, I2〉 ∈ V P : I1 6∈ AS(B ∪H) ∨ I2 6∈ AS(B ∪H) ∨ I1 �B∪H I2.

Proof.

Assume V Pmeta(T)[H] is satisfiable.

⇔ {meta(vp) | vp ∈ V P} ∪ reductify(normal(B ∪H), X) ∪metaweak(weak(B ∪H), in vs, vs,X)

⇔

meta(vp) ∪

 metaweak(weak(B ∪H), in vs, vs, vpid i)
reductify(normal(B ∪H), vpid i)
{vs(vpid i).}

∣∣∣∣∣∣i ∈ {1, 2}

∣∣∣∣∣∣vp ∈ V P

 is satisfiable.

(by partial grounding and removing rules whose bodies can’t be satisfied).

⇔ ∀vp ∈ V P,meta(vp) ∪

 metaweak(weak(B ∪H), in vs, vs, vpid i)
reductify(normal(B ∪H), vpid i)
{vs(vpid i).}

∣∣∣∣∣∣i ∈ {1, 2}
 is satisfiable.

⇔ ∀〈I1, I2〉 ∈ V P : I1 6∈ AS(B ∪H) ∨ I2 6∈ AS(B ∪H) ∨ I1 �B∪H I2 (by lemma 7.13).

Theorem 7.15. Let H ⊆ SM
V Rmeta(T)[H] is satisfiable if and only if H is not a known violating hypothesis.

Proof.

Assume H is not a known violating hypothesis.

⇔ ∀I ∈ V I, I 6∈ AS(B ∪H) and ∀〈I1, I2〉 ∈ V P : I1 6∈ AS(B ∪H) ∨ I2 6∈ AS(B ∪H) ∨ I1 �B∪H I2.

⇔ (by lemma 7.12) V Imeta(T)[H] is satisfiable and (by lemma 7.14) V Pmeta(T)[H] is satisfiable.

⇔ (V Imeta(T) ∪ V Pmeta(T))[H] is satisfiable.

28

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

8 Proof of the soundness and completeness of ILASP2

In this section we use the results that we have already proved in order to prove the soundness and completeness of
ILASP2.

Lemma 8.1. For any task T , any hypothesis H ⊆ SM and any set of violating reasons V R:

AS(Tmeta[H] ∪ V Rmeta(T)[H]) =

{
A1 ∪A2

∣∣∣∣ A1 ∈ AS(Tmeta(H),
A2 ∈ AS(V Rmeta(T)[H])

}
Proof.

The only predicate names which appear in both Tmeta[H] and V Rmeta(T)[H] are dom, lv, dom lv, weak, wrong bef
and wrong dom lv.

Other than lv, as these are all parameterised by unique ids, none of the atoms in Tmeta[H] unify with any atom in
V Rmeta(T)[H]. The atoms lv only appear as facts in both programs and are the same facts in both.

Hence AS(Tmeta[H] ∪ V Rmeta(T)[H]) =

{
A1 ∪A2

∣∣∣∣ A1 ∈ AS(Tmeta[H]),
A2 ∈ AS(V Rmeta(T)[H])

}
Theorem 8.2. For any task T , any hypothesis H ⊆ SM and any set of violating reasons V R :

(Tmeta ∪ V Rmeta(T))[H] is satisfiable if and only if H is a remaining hypothesis of T wrt V R.

Proof.

Assume (Tmeta ∪ V Rmeta(T))[H] is satisfiable

⇔ Tmeta[H] ∪ V Rmeta(T)[H] is satisfiable

⇔ Tmeta[H] satisfiable and V Rmeta(T)[H] is satisfiable (by lemma 8.1).

⇔ H is a positive hypothesis of T and H is a remaining hypothesis of T wrt V R (by theorem 6.24 and theo-
rem 7.15).

Corollary 8.3. For any task T , any hypothesis H ⊆ SM and any set of violating reasons V R:

∃A ∈ AS(Tmeta ∪ V Rmeta(T)) such that meta−1hyp(A) = H if and only if H is a remaining positive hypothesis.

Proof. Follows from theorem 8.2 and lemma 4.8.

Lemma 8.4. For any task T , any hypothesis H ⊆ SM and any set of violating reasons V R:

∀A ∈ AS(Tmeta ∪ V Rmeta(T))

P 0
A = |M−1hyp(A)|+ v (where v is 0 if A contains violating and 1 otherwise).

Proof.

Let P = Tmeta ∪ V Rmeta(T)

weak(P) = {:∼ in hyp(Rid).[2 ∗ |R|@0, Rid] | R ∈ SM} ∪ {:∼ not violating.[1@0, violating]}

⇒ ∀A ∈ AS(P), W ∈ weak(P,A) iff W = (w, 0, t) st (t = violating ∧ w = 1) ∨ (∃R ∈ SM st t = Rid ∧ w = |R|)

⇒ P 0
A =

(∑
R∈SM ,in hyp(Rid)∈A

|R|

)
+ v where v is 0 if violating ∈ A and 1 otherwise.

(as 0 is the only level with any weak constraints we can just call this the optimality)

⇒ P 0
A = |M−1hyp(A)|+ v (where v is 0 if A contains violating and 1 otherwise).

29

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Theorem 8.5. Given any hypothesis H ⊆ SM :

∃A ∈ AS(Tmeta ∪ V Rmeta) such that v i ∈ A and H =M−1hyp(A)

⇔ H is a remaining violating hypothesis and M−1vi (A) is a violating interpretation of B ∪H.

Proof.

Let A ∈ AS(Tmeta ∪ V Rmeta) and assume H =M−1hyp(A), v i ∈ A and V =M−1vi (A).

⇔ ∃A ∈ AS((Tmeta ∪ V Rmeta)[H]) st v i ∈ A and V =M−1vi (A) (by lemma 4.8)

⇔ V Rmeta(T)[H] is satisfiable and ∃A ∈ Tmeta(H) st v i ∈ A and M−1vi (A) = V

(by lemma 8.1 and as no instance of in as occurs in V Rmeta(T)[H]).

⇔ H is a remaining hypothesis of T (by theorem 7.15) and a violating hypothesis with violating interpretation V

(by theorem 6.24).

⇔ H be a remaining violating hypothesis with a violating interpretation V

Theorem 8.6. Given any hypothesis H ⊆ SM :

∃A ∈ AS(Tmeta ∪ V Rmeta) st v p ∈ A and H =M−1hyp(A)

⇔ H is a remaining violating hypothesis with violating pair M−1vp (A).

Proof.

Let H be a remaining violating hypothesis of T with violating pair vp.

⇔ V Imeta(T)[H] is satisfiable by theorem 7.15 and ∃A ∈ Tmeta(H) st v p ∈ A and M−1vp (A) = vp (by theo-
rem 6.24).

⇔ ∃A ∈ AS((Tmeta ∪ V Rmeta)[H]) st v p ∈ A and M−1vp (A) = vp is a violating pair.

(by lemma 8.1 and the fact that no atom with the predicate in as appears in V Rmeta(T)[H])

⇔ ∃A ∈ AS(Tmeta ∪ V Rmeta) st H =M−1hyp(A), v p ∈ A and M−1vp (A) = vp (by lemma 4.8).

Corollary 8.7. Given any hypothesis H ⊆ SM :

∃A ∈ AS(Tmeta ∪ V Rmeta) st violating ∈ A and H =M−1hyp(A) iff H is a remaining violating hypothesis of T .

Theorem 8.8 is Theorem 1 from the paper.

Theorem 8.8. Given an ILPLOAS task and a set of violating reasons V R. Let AS be the set of optimal Answer
Sets of Tmeta ∪ V Rmeta(T).

If ∃A ∈ AS st violating ∈ A then the set of optimal remaining violating hypotheses V H is non empty and is exactly
equal to the set {M−1hyp(A) : A ∈ AS}.

If no A ∈ AS contains violating, then the set of optimal remaining hypotheses (none of which are violating) is exactly
equal to the set {M−1hyp(A) : A ∈ AS}.

Proof.

1. Assume ∃A ∈ AS such that violating ∈ A.

Let opt be the optimality of A.

⇒ opt is an even number.

⇒ ∀A ∈ AS, violating ∈ A, the optimality of A = opt (and AS is non empty).

⇒ ∀A ∈ AS, M−1hyp(A) is a remaining violating hypothesis of length opt/2

30

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

(by corollary 8.7 and lemma 8.4).

⇒ ∀A ∈ AS, M−1hyp(A) is an optimal remaining violating hypothesis

(if there were any more optimal hypotheses remaining there would be a more optimal answer set).

Let H be an optimal remaining violating hypothesis

⇒ ∃A ∈ AS(Tmeta ∪ V Rmeta) st violating ∈ A and H =M−1hyp(A) by corollary 8.7 and |H| = opt/2.

⇒ ∃A ∈ AS(Tmeta ∪ V Rmeta) st violating ∈ A and H =M−1hyp(A) and the optimality of A = opt

(by lemma 8.4).

⇒ ∃A ∈ AS st violating ∈ A and H =M−1hyp(A)

Hence, {M−1hyp(A) | A ∈ AS} is exactly the set of optimal remaining violating hypotheses.

2. Assume no A ∈ AS contains the atom violating. Let opt be the optimality of these Answer Sets.

⇒ ∀A ∈ AS, M−1hyp(A) is a remaining hypothesis of length (opt− 1)/2 (by corollary 8.7 and lemma 8.4).

Assume there is a remaining violating hypothesis H of shorter or equal length to these hypotheses.

⇒ ∃A ∈ AS(Tmeta ∪ V Rmeta) st violating ∈ A and H =M−1hyp(A) and the optimality of A = 2 ∗ |H|
(by corollary 8.7 and lemma 8.4).

Contradiction as this would mean that there is a more optimal Answer Set than those in AS.

Assume there is a remaining hypothesis H of shorter length to these hypotheses.

⇒ H is a positive hypothesis.

⇒ ∃A ∈ AS(Tmeta∪V Rmeta) st violating ∈ A and H =M−1hyp(A) and the optimality of A = 2∗|H|+1

(by corollary 8.7 and lemma 8.4).

Contradiction as this would mean that there is a more optimal Answer Set than those in AS.

Assume there is a remaining hypothesis H of equal length to these hypotheses.

⇒ H is a positive hypothesis.

⇒ ∃A ∈ AS(Tmeta ∪ V Rmeta) st violating ∈ A, H =M−1hyp(A) and the optimality of A is opt

(by corollary 8.7 and lemma 8.4).

⇒ H ∈ {M−1hyp(A) | A ∈ AS}.

Hence, {M−1hyp(A) | A ∈ AS} is exactly the set of optimal remaining hypotheses, none of which are violating.

Theorem 8.9 is Theorem 2 from the paper, it proves the soundness and completeness of our new algorithm, WCL.

Theorem 8.9. Let T be any ILPLOAS task. If the process WCL(T) terminates, then WCL(T) is equal to the set
of optimal solutions of ILPLOAS(T).

Proof. At every step through the while loop, V R is a set violating reasons of T .

Base Case: Before the loop has been entered, V R = [].

Inductive Hypothesis: Let V R0 be a set of violating reasons. If V R = V R0 at the start of an interation through the
loop, then V R1, the value of V R after one iteration of the loop, is still a set of violating reasons of T .

Proof of Inductive Hypothesis:

Case 1: v i 6∈ A ∧ v p 6∈ A.

⇒ V R0 = V R1

31

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

⇒ V R1 is a set of violating reasons.

Case 2: v i ∈ A.

⇒ vi =M−1vi (A) is a violating interpetation of B ∪M−1h (A) (by theorem 8.5)

⇒ V R1 = V R0 + vi is a set of violating reasons of T .

Case 3: v p ∈ A.

⇒ vp =M−1vp (A) is a violating pair of B ∪M−1h (A) (by theorem 8.6).

⇒ V R1 = V R0 + vp is a set of violating reasons of T .

Hence at each step through the loop, V R is a set of violating reasons of T .

When WCL(T) terminates, either opt is odd or Tmeta ∪ V Rmeta has no answer sets.

Case 1: opt is odd.

Each as ∈ ASopt(Tmeta ∪ V Rmeta(T)) has optimality opt; hence, by lemma 8.4, v i 6∈ as, v p 6∈ as and
violating 6∈ as. Hence by theorem 8.8, {M−1hyp(as) | as ∈ ASopt(Tmeta ∪ V Rmeta(T))} is the set of optimal
remaining hypotheses, none of which are violating. This means that they are the optimal inductive solutions
of T .

Case 2: Tmeta ∪ V Rmeta has no answer sets.

There are no remaining positive hypotheses (by corollary 8.3). Hence, as V R is a set of violating reasons,
there are no inductive hypotheses. So ILPLOAS(T) = ∅ = ILASP2(T).

32

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Part II

Theoretical Properties

9 Sufficient and Necessary conditions for existence of solutions

In this section, we prove sufficient and necessary conditions for a Learning from Ordered Answer Sets task to have
at least one solution. We consider a learning task with an unrestricted search space (hypotheses can be any set of
normal rules, choice rules and hard and soft constraints).

Theorem 9.1. Let T be the ILPLOAS task 〈B,E+, E−, Ob, Oc〉. The following conditions (in conjunction) are
sufficient for there to exist at least one solution of T :

1. ∀e ∈ E+, there is at least one model of B which extends e.

2. ∀e1 ∈ E+, @e2 ∈ (E+ ∪ E−) such that e1 extends e2.

3. There is no cyclic chain of ordering examples (in Ob ∪Oc) 〈e1, e2〉, 〈e2, e3〉, . . . , 〈en−1, en〉, 〉, 〈en, e1〉

Proof. We show this by assuming that all of the conditions hold and constructing an inductive solution H.

For each positive example e+i ∈ E+, we know by condition 1 that there is at least one model of B which does extends
e+i . We denote this model as Mpos(e

+
i).

As there are no cycles in the ordering examples, there must be a mapping || || from positive examples to positive
integers such that for each ordering example 〈e1, e2〉 ∈ (Ob ∪Oc), ||e1|| > ||e2||.

Let s1, . . . , s|E+| be new atoms not occuring in B or the examples H be the program:

{
1{s1, . . . , s|E+|}1.

}
∪



:∼ si.[−1@||ei||]
m1 :- si.
. . .

mn :- si.
:- si, exc1. . . .
:- si, excv.

∣∣∣∣∣∣∣∣∣∣∣∣
{m1, . . . ,mn} = Mpos(ei)

ei = 〈{inc1, . . . , inct}, {exc1, . . . , excv} ∈ E+


For each positive example e+i ∈ E+, Mpos(ei)∪ {si} is an answer set of B ∪H and hence as Mpos(ei) extends e+i , H
covers all the positive examples.

Every answer set of B ∪ H must contain exactly one si atom and hence cover at least one positive example (as
einci ⊆ Mpos(ei) and there are constraints ruling out any atom in eexc occuring together with si). Hence, as no
positive examples extend other positive examples or negative examples, each answer set of B∪H extends exactly one
positive example (corresponding to the si atom it contains) and no negative examples (hence, the negative examples
are covered).

It remains to show that the ordering examples are all respected; in fact, we can show that all the ordering examples
(brave and cautious) are cautiously respected (and hence also bravely respected as there are answer sets which cover
each positive example).

For any ordering example 〈e1, e2〉 ∈ (Ob ∪ Oc), each answer set A1 of B ∪ H that extends e1 contains s1 (and no
other si atom); similarly each answer set A2 of B ∪ H that extends e2 contains s2 and no other s2 atom. For all
levels l in the program other than ||e1||, (B ∪H)lA1

= 0 and for all levels l other than ||e2||, (B ∪H)lA2
= 0. Hence,

as ||e1|| > ||e2||, the first level on which A1 and A2 differ is ||e1|| for which A1’s score is −1 and A2’s is 0. Hence, A1

dominates A2.

So all the brave and cautious ordering examples are both bravely and cautiously respected.

Hence, H is an inductive solution of T .

33

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

We now give a slightly weakened condition which is necessary for there to exist solutions of a learning from ordered
answer sets task.

Theorem 9.2. Let T be the ILPLOAS task 〈B,E+, E−, Ob, Oc〉. The following conditions are all necessary for there
to exist at least one solution of T :

1. ∀e ∈ E+, there is at least one model of B which extends e.

2. ∀e1 ∈ E+, @e2 ∈ E− such that e1 extends e2.

3. There is no cyclic chain of ordering examples (in Oc) 〈e1, e2〉, 〈e2, e3〉, . . . , 〈en−1, en〉, 〈en, e1〉.

Proof. We prove this by assuming that there is an inductive solution H ∈ ILPLOAS(T) and show that each of the
conditions (1)-(3) must hold.

1. For each positive example e ∈ E+, there is an answer set A of B ∪H which extends e. A is a model of B ∪H
(as all answer sets are models) and hence is also a model of B.

2. Assume for contradiction that there is a positive example e+ = 〈e+inc, e+exc〉 and a negative example e− =
〈e−inc, e−exc〉 such that e−inc ⊆ e

+
inc and e−exc ⊆ e+exc.

As H is an inductive solution of T , there is an answer set A of B ∪H which extends e+.

So there is an A ∈ AS(B ∪ H) such that e+inc ⊆ A and e+exc ∩ A = ∅. Hence e−inc ⊆ A and e−exc ∩ A = ∅. So
A extends e−. Contradiction, as H was an inductive solution and therefore B ∪H must have no answer sets
which extend e−!

3. Again, assume for contradiction that there is such a chain. As there is at least one answer set which extends
each ei, this implies both that all answer sets of B ∪H which extend e1 dominate all answer sets which extend
en (domination is clearly transitive) and that all answer sets which extend en dominate all answer sets which
extend e1.

As there is at least one answer set A1 extending e1 and one answer set An which extends en, this implies that
A1 dominates An and An dominates A1. This is impossible, and hence a contradiction.

34

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

10 Complexity Results

In this section, we prove the complexities of ILPLOAS and ILPLAS with respect to deciding, given a learning task
T , whether there are any inductive solutions of T . In this report we consider the propositional case (where both the
background knowledge B and the hypothesis space SM are ground). This decision problem is NPNP -complete for
both ILPLOAS and ILPLAS .

10.1 Learning from Answer Sets with Stratified Summing Aggregates

Before proving the complexity results, we introduce a new learning task, ILP sLAS (Learning from Answer Sets with
Stratified Summing Aggregates). First we recall the definition of aggregate stratification from [5]. We slightly
simplify the definition by considering only propositional programs without disjunction.

Definition 10.1. A propositional logic program P , only containing aggregates in the bodies of rules, is stratified
on an aggregate a if there is a level mapping || || from Atoms(P) to ordinals, such that for each rule R ∈ P , the
following holds:

1. ∀b ∈ Atoms(body(R)) : ||b|| ≤ ||head(R)||

2. If a ∈ body(R), then ∀b ∈ Atoms(a) : ||b|| < ||head(R)||

P is said to be aggregate stratified if it is stratified on every aggregate in P .

The intuition is that aggregate stratification forbids recursion through aggregates.

Note that constraints and choice rules can be added in to any aggregate stratified program without breaking strati-
fication so long as no atoms in the head of the choice rule are on a lower level than any atom in the body. This is
illustrated by the following example.

Example 10.2. Any constraint :- b1, . . . , bn, not c1, . . . , not cm can be rewritten as s :- b1, . . . , bn, not c1, . . . , not cm, not s

where s is a new atom. s can then be mapped to a higher level than any other atom.

A choice rule l{h1, . . . , ho}u :- b1, . . . , bn, not c1, . . . , cm can be rewritten as:

h1 :- b1, ..., bn, not c1, ..., cm, not h1’.

h1’ :- b1, ..., bn, not c1, ..., cm, not h1.

...

ho :- b1, ..., bn, not c1, ..., cm, not ho’.

ho’ :- b1, ..., bn, not c1, ..., cm, not ho.

s :- b1, ..., bn, not c1, ...,, cm, {h1, ..., hn} l - 1, not s.

s’ :- b1, ..., bn, not c1, ...,, cm, u + 1 {h1, ..., hn}, not s’.

where h′1, . . . , h
′
o, s, s

′ are all new atoms. s and s′ can both be given a new highest level and each h′i can be given
the same level as hi (if they did not occur in the previous program then they should be given a new level one below
s and s′). Provided the previous program was aggregate stratified, then this new one is too.

To avoid constantly using this mapping, we will refer to programs with choice rules and constraints as also being
aggregate stratified.

Lemma 10.3. Deciding whether an aggregate stratified propositional program without disjunction cautiously entails
an atom is is co-NP -complete [5].

Corollary 10.4. Deciding whether an aggregate stratified propositional program without disjunction bravely entails
an atom is is NP -complete.

We can now introduce our extra learning task, Learning from Answer Sets with Stratified Aggregates. It is essentially
the same as Learning from Answer Sets, but allowing summing aggregates in the bodies of rules, so long as they are
stratified.

35

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Definition 10.5. A Learning from Answer Sets with Stratified Aggregates task is a tuple T = 〈B,SM , E+, E−〉
where B is program which can contain summing aggregates in the bodies of rules called the background knowledge,
SM is a set of rules which possibly contain summing aggregates called the search space and E− are sets of partial
interpretations called, respectively, positive and negative examples.

For this task to be well defined, B ∪ SM must be aggregate stratified.

An hypothesis H is an inductive solution of T , written H ∈ ILP sLAS(T), if and only if H ⊆ SM ; ∀e+ ∈ E+

∃A∈AS(B ∪H) such that A extends e+; and finally, ∀e−∈E− 6 ∃A∈AS(B ∪H) such that A extends e−.

Note that the condition of B ∪ SM being aggregate stratified, implies that for any hypothesis H ⊆ SM , B ∪ H is
aggregate stratified.

10.2 Proof of Complexity

As we can show that ILPLAS reduces to ILPLOAS and ILPLOAS reduces to ILP sLAS (in polynomial time), it suffices
to show that ILPLAS is NPNP -hard (thus also proving the hardness of the other frameworks) and that ILP sLAS is
a member of NPNP (thus proving membership of the other frameworks). This shows that each framework is both
a member of NPNP and also NPNP -hard, and therefore must be NPNP -complete.

Lemma 10.6. Deciding whether an ILPLOAS task has any solutions reduces polynomially to deciding whether
ILP sLAS has any solutions.

Proof. To show this, we use part of the ILASP2 meta encoding in the background knowledge.

As we cannot use non-ground atoms in our reduction, we use a slightly different representation of dominates(t1, t2)
described in section 5.1.

Let weak atoms(l, P) define a set of tuples representing the weak constraints at level l in P . Each weak constraint
W is represented by a tuple (atom1, atom2, wt, body) (where atom1 and atom2 are new atoms unique to W , wt is
the weight of W and body is the body of W .

dominates(t1, t2) =

dom lv(t1, t2, l) :-
#sum{atom11 = wt1, . . . , atom

1
m = wtm,

atom21 = wt1, . . . , atom
2
n = wtn}

non dom lv(t1, t2, l) :-
#sum{atom21 = wt1, . . . , atom

2
m = wtm,

atom11 = wt1, . . . , atom
1
n = wtn}

dom(t1, t2) :- dom lv(t1, t2, l),
not non bef(t1, t2, l).

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l is a level in B ∪H,
{(atom1

1, atom
2
1, wt

1
1, body

1
1), . . . ,

(atom1
m, atom

2
m, wtm, bodym)} = weak atoms(l, B ∪ SM)


∪
{

non bef(t1, t2, l1) :- non dom lv(t1, t2, l2).

∣∣∣∣ l1, l2 are levels in B ∪ SM ,
l1 < l2

}
This is essentially a ground version of dominates(t1, t2).

Let

B′ =

{
atom1 :- reify(body, in as, 1).
atom2 :- reify(body, in as, 2).

∣∣∣∣ (atom1, atom2, wt, body) ∈ weak atoms(l, B),
l is a level in B

}
∪ reify(B, in as, 1) ∪ reify(B, in as, 2)

∪
{
append(reify(R, in as, 1), active(Rid)),
append(reify(R, in as, 2), active(Rid))

∣∣∣∣ R ∈ SM }
∪

 atom1 :- reify(body, in as, 1), active(id).
atom2 :- reify(body, in as, 2), active(id).

∣∣∣∣∣∣
(atom1, atom2, wt, body) ∈ weak atoms(l, weak(SM)),
(id is a unique identifier for the weak constraint),
l is a level in SM ,


∪
{
cover(e+id, 1)
cover(e+id, 2)

∣∣∣∣e+ ∈ E+

}
∪
{
cover(e−id, 1)
cover(e−id, 2)

∣∣∣∣e− ∈ E−} ∪{ as(1)
as(2)

}
∪ dominates(1, 2)

S′M =

 active(id1).
. . .

active(id|SM|).


36

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

E+′ =
{
〈{cov(e+id, 1)}, ∅〉

∣∣e+ ∈ E+
}
∪
{
〈{cov(e+id1, 1), cov(e+id2, 2), dom(e+id1, e

+
id2)}, ∅〉

∣∣〈e+id1, e+id2〉 ∈ Ob}
E−

′
=
{
〈{cov(e−id, 1)}, ∅〉

∣∣e− ∈ E−} ∪ {〈{cov(e+id1, 1), cov(e+id2, 2)}, {dom(e+id1, e
+
id2)}〉

∣∣〈e+id1, e+id2〉 ∈ Oc}
For any hypothesis H ′ ∈ S′M , Let H be the corresponding hypothesis in SM . The answer sets of B′ ∪H ′ correspond
to the pairs of answer sets of B ∪H.

Each positive example e+ ∈ E+ is mapped to an example in E+′ ensuring that at least one of the pairs of answer
sets’ first answer set covers e+. Note that as each answer set of B ∪H must be the first element of one of these pairs
at least once, this is true if and only if B ∪H covers each positive example.

Similarly each negative example e− ∈ E− is mapped to an example in E−
′

ensuring that none of the pairs of answer
sets’ first answer set covers e−. This is true if and only if B ∪H does not cover any negative examples.

As dominates(t1, t2) behaves similarly to dominates(t1, t2) from section 5.1, the answer sets of B′∪H ′ corresponding
to each pair 〈A1, A2〉 contains dom(1, 2) if and only if A1 dominates A2 (with respect to the weak constraints in
B ∪H.

Each brave ordering example 〈e1, e2〉 ∈ Ob is mapped to a positive example ensuring that there is a pair of answer
sets 〈A1, A2〉 of B∪H such that A1 covers e1, A2 covers e2 and A1 dominates A2 with respect to the weak constraints
in B ∪H. This is true if and only if B ∪H bravely respects the ordering example.

Each cautious ordering example 〈e1, e2〉 ∈ Oc is mapped to a negative example ensuring that there is no pair of
answer sets 〈A1, A2〉 of B ∪H such that A1 covers e1, A2 covers e2 and A1 dominates A2 with respect to the weak
constraints in B ∪H. This is true if and only if B ∪H cautiously respects the ordering example.

Hence, H ′ is an inductive solution of ILP sLAS(〈B′, S′M , E+′ , E−
′〉) if and only if H is an inductive solution of

ILPLOAS(〈B,SM , E+, E−, Ob, Oc〉).

This means that we can check the existence of solutions of any ILPLOAS task by mapping if to an ILP sLAS task as
above. Note that this is a well defined ILP sLAS task as B contains only stratified aggregates.

As this mapping is polynomial in size of the original task, this means that checking the existence of ILPLOAS reduces
polynomially to checking the existence of ILPSLAS .

Lemma 10.7. Deciding the existence of solutions for an ILPLAS task reduces polynomially to deciding the existence
of solutions for an ILPLOAS task.

Proof. Take any ILPLAS task T = 〈B,SM , E+, E−〉. Clearly ILPLAS(T) = ∅ if and only if ILPLOAS(〈B,SM , E+, E−, ∅, ∅〉) =
∅. Hence checking the existence of a solution for T is equivalent to checking the existance of a solution to
〈B,SM , E+, E−, ∅, ∅〉.

Lemma 10.8. Let B be any ground program containing normal rules choice rules, constraints and summing aggre-
gates in the body, SM be a set of ground normal rules, choice rules and constraints and E+ and E− be any sets of
partial interpretations. B∪SM must also be aggregate stratified (ensuring that for each H ⊆ SM , B∪H is aggregate
stratified).

Deciding whether a given hypothesis H ⊂ SM is in ILP sLAS(B,SM , E
+, E−) is a member of PNP .

Proof. Checking whether H is an inductive solution of T = 〈B,SM , E+, E−〉 can be done by checking for each
positive example e+ ∈ E+, that there is an answer set A of B ∪ H such that A extends e+ and for each negative
example e−, there is not any answer set of B ∪H which extends e−.

This is equivalent to checking that for each positive example e+ = 〈{inc1, . . . , incn}, {exc1, . . . , excm}〉, B ∪ H ∪
{a← inc1, . . . , incn, not exc1, . . . , not excm} |=b a (where a is a new atom) and for each negative example e− =
〈{inc1, . . . , incn}, {exc1, . . . , excm}〉, B ∪H ∪{a← inc1, . . . , incn, not exc1, . . . , not excm} 6|=b a (where a is a new
atom).

As deciding whether an atom is bravely entailed by an aggregate stratified propositional program (containing normal
rules, choice rules, constraints and summing aggregates in the bodys) is in NP 10.4, the property can be verified in
polynomial time by a deterministic Turing machine with an oracle capable of solving problems in NP .

Hence verifying the property is in PNP .

37

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Due to this result on the verification of a solution, we can now show the related result for deciding the existance of
a solution for a given learning task.

Lemma 10.9. Let B be any ground program containing normal rules choice rules, constraints and summing aggre-
gates in the body, SM be a set of ground normal rules, choice rules and constraints and E+ and E− be any sets of
partial interpretations. B ∪ SM must also be aggregate stratified.

Deciding whether ILP sLAS(B,SM , E
+, E−) has a solution is in NPNP .

Proof. A non-deterministic Turing Machine can have |SM | choices to make (corresponding to selecting each rule
as part of the hypothesis). This hypothesis can then be verified in polynomial time using an NP oracle (as in
lemma 10.8).

Such a Turing Machine would terminate answering yes if and only if the task is satisfiable (as there is a path through
the Turing Machine which answers yes if and only if there is an hypothesis in SM which is an inductive solution of
the task).

Hence, deciding the existence of a solution for a general (ground) ILPLAS task is in NPNP .

Lemma 10.10. Let B be any ground program containing normal rules choice rules and constraints, SM be a set of
ground normal rules, choice rules and constraints and E+ and E− be any sets of partial interpretations.

Deciding whether ILPLAS(B,SM , E
+, E−) has a solution is NPNP − hard.

Proof. We show this by reducing a known NPNP − complete problem (deciding the existence of an answer set for a
ground disjunctive logic program) to an ILPLAS task.

Take any ground disjunctive logic program P . We will define an ILPLAS task T (P) which has a solution if and only
if P has an answer set.

Let Atoms be the set of atoms in P . Let P ′ be the program constructed by replacing each negative literal not a with
the literal not in as(a) (where in as is a new predicate) and replacing each head h1 ∨ . . . ∨ hm with the counting
aggregate 1{h1, . . . , hm}m (empty heads are mapped to 1{}0 - this is equivalent to ⊥).

We define the learning task T (P) as follows:

B = P ′ ∪
{

:- a, not in as(a)
∣∣a ∈ Atoms}

SM = {in as(a) | a ∈ Atoms}
E+ = {〈∅, ∅〉}
E− = {〈{in as(a)}, {a}〉|a ∈ Atoms}

This task has a solution if there exists an H ⊆ SM such that B∪H is satisfiable and no negative example is extended
by any answer set of B ∪H.

⇔ ∃H ⊆ SM st ∃A ∈ AS

1{h1, . . . , hm}m :- b1, . . . , bn

∣∣∣∣∣∣
1{h1, . . . , hm}m :- b1, . . . , bn,
not in as(c1), . . . , not in as(co).

∈ P ′,

{in as(c1), . . . , in as(co)} ∩H = ∅




such that A ⊆ {a | in as(a) ∈ H} and no negative example is extended by any answer set of this program.

⇔ ∃H ⊆ SM st ∃A ∈ AS

1{h1, . . . , hm}m :- b1, . . . , bn

∣∣∣∣∣∣
1{h1, . . . , hm}m :- b1, . . . , bn,
not in as(c1), . . . , not in as(co).

∈ P ′,

{in as(c1), . . . , in as(co)} ∩H = ∅




such that A = {a | in as(a) ∈ H} and there is no strict subset of A which is also an answer set (the nega-
tive examples prevent this).

⇔ ∃H ⊆ SM st {a | in as(a) ∈ H} is a minimal model ofh1 ∨ . . . ∨ hm}m :- b1, . . . , bn

∣∣∣∣∣∣
1{h1, . . . , hm}m :- b1, . . . , bn,
not in as(c1), . . . , not in as(co).

∈ P ′,

{in as(c1), . . . , in as(co)} ∩H = ∅


⇔ ∃H ⊆ SM st {a | in as(a) ∈ H} is a minimal model of

38

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

h1 ∨ . . . ∨ hm}m :- b1, . . . , bn

∣∣∣∣∣∣
1{h1, . . . , hm}m :- b1, . . . , bn,
not c1, . . . , not co.

∈ P,

{in as(c1), . . . , in as(co)} ∩H = ∅


⇔ ∃A ⊆ Atoms st A is a minimal model ofh1 ∨ . . . ∨ hm}m :- b1, . . . , bn

∣∣∣∣∣∣
1{h1, . . . , hm}m :- b1, . . . , bn,
not c1, . . . , not co.

∈ P,

{c1, . . . , co} ∩H = ∅


⇔ ∃A ⊆ Atoms such that A is a minimal model of PA

⇔ ∃A ⊆ Atoms such that A an answer set of P .

⇔ P is satisfiable.

Hence, deciding whether a disjunctive logic program can in general be mapped to the decision problem of checking
the existence of solutions of a learning from answer sets task.

Therefore, deciding the existence of solutions of a ground ILPLAS task is NPNP − hard.

Theorem 10.11. Deciding the existence of ILPLOAS and ILPLAS tasks are both NPNP -complete.

Proof. By lemma 10.10, deciding the existence of solutions for ILPLAS is NPNP -hard. Deciding the existence
of solutions for ILPLAS reduces to deciding the existence of solutions for ILP sLAS (trivially) and by lemma 10.9,
deciding the existence of solutions for ILP sLAS is in NPNP . Hence deciding the existence of solutions for ILPLAS is
NPNP -complete.

By lemma 10.6, deciding the existence of solutions for an ILPLOAS task polynomially reduces to deciding the existence
of solutions for an ILP sLAS task; hence, deciding the existence of solutions for an ILPLOAS task is in NPNP . As
deciding the existence of solutions of an ILPLAS task is NPNP -hard and ILPLAS reduces trivially to an ILPLOAS
task (by lemma 10.7), ILPLOAS is NPNP -hard. Hence, deciding the existence of solutions for an ILPLOAS task is
also NPNP -complete.

References

[1] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone, F. Ricca, T. Schaub,
Asp-core-2 input language format (2013).

[2] M. Law, A. Russo, K. Broda, Simplified reduct for choice rules in asp., Tech. Rep. DTR2015-2, Imperial College
of Science, Technology and Medicine, Department of Computing (2015).

[3] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Answer Set Solving in Practice, Synthesis Lectures on
Artificial Intelligence and Machine Learning, Morgan and Claypool Publishers, 2012.

[4] M. Law, A. Russo, K. Broda, Inductive learning of answer set programs, in: Logics in Artificial Intelligence
(JELIA 2014), Springer, 2014.

[5] W. Faber, G. Pfeifer, N. Leone, Semantics and complexity of recursive aggregates in answer set programming,
Artificial Intelligence 175 (1) (2011) 278–298.

39

Proof of the soundness and completeness of ILASP2 M. Law, A. Russo, K. Broda

Appendix

A Proofs omitted from the report

Lemma 5.5. Let l be a constant, t1 and t2 be two distinct ground terms and head be an atom.

Let R be the rule head :- b1, . . . , bn,#sum{w(W, l, A, t1) = W, w(W, l, A, t2) = −W} < 0 and F be a set of (ground) facts
of the predicate w/4 and (where head has a different predicate name to w)

For i ∈ {1, 2}, let Si = (
∑
w(weight,l,args,ti)∈F weight)

1. If S1 ≥ S2 then M(F ∪R) = M(F)

2. If S1 < S2 then M(F ∪R) = F ∪ {head :- b1, . . . , bn})

Proof. Follows from corollary 4.7.

Let s1 = w(W, l,A, t1), s2 = w(W, l,A, t2), w1 = W,w2 = −W

1. Assume S1 ≥ S2
⇒
∑
w(weight,l,args,t1)∈F (weight) ≥

∑
w(weight,l,args,t2)∈F (weight)

⇒
∑
w(weight,l,args,t1)∈F (weight)−

∑
w(weight,l,args,t2)∈F (weight) ≥ 0

⇒
∑
w(weight,l,args,t1)∈F (weight) +

∑
w(weight,l,args,t2)∈F (−weight) ≥ 0

⇒
∑
s∈F,∃θst s=w(W,l,A,t1)θ

(Wθ) +
∑
s∈F,∃θst s=w(W,l,A,t2)θ

(−Wθ) ≥ 0

⇒
∑
s∈F,∃θst s=s1θ(w1θ) +

∑
s∈F,∃θst s=s2θ(w2θ) ≥ 0

⇒
∑
s∈F,∃θ∃i∈{1,2}st s=siθ(wiθ) ≥ 0

⇒ (by corollary 4.7) AS(F ∪R) = AS(F)

2. Assume S1 < S2
⇒
∑
w(weight,l,args,t1)∈F (weight) <

∑
w(weight,l,args,t2)∈F (weight)

⇒
∑
w(weight,l,args,t1)∈F (weight)−

∑
w(weight,l,args,t2)∈F (weight) < 0

⇒
∑
w(weight,l,args,t1)∈F (weight) +

∑
w(weight,l,args,t2)∈F (−weight) < 0

⇒
∑
s∈F,∃θst s=w(W,l,A,t1)θ

(Wθ) +
∑
s∈F,∃θst s=w(W,l,A,t2)θ

(−Wθ) < 0

⇒
∑
s∈F,∃θst s=s1θ(w1θ) +

∑
s∈F,∃θst s=s2θ(w2θ) < 0

⇒
∑
s∈F,∃θ∃i∈{1,2}st s=siθ(wiθ) < 0

⇒ (by corollary 4.7) AS(F ∪R) = AS(F ∪ {head :- b1, . . . , bn})

40

	Introduction
	Definitions
	Extra notation
	Lemmas
	I ILASP2
	Repesentation of weak constraints
	Meta Level Representation
	Properties

	Encoding the search for positive solutions: Tmeta
	Meta Level Representation
	Properties

	Ruling out classes of violating hypothesis: VRmeta
	Meta Level representation
	Properties

	Proof of the soundness and completeness of ILASP2

	II Theoretical Properties
	Sufficient and Necessary conditions for existence of solutions
	Complexity Results
	Learning from Answer Sets with Stratified Summing Aggregates
	Proof of Complexity

	Proofs omitted from the report

