
An abductive event calculus planner

Murray Shanahan*

Department of Electrical and Electronic Engineering, Imperial College, Exhibition Road, London SW7 2BT,

UK

Received 1 May 1998; received in revised form 1 April 1999; accepted 23 September 1999

Abstract

In 1969 Green presented his seminal description of planning as theorem proving with the

situation calculus. The most pleasing feature of Green's account was the negligible gap be-

tween high-level logical speci®cation and practical implementation. This paper attempts to re-

instate the ideal of planning via theorem proving in a modern guise. In particular, the paper

shows that if we adopt the event calculus as our logical formalism and employ abductive logic

programming as our theorem proving technique, then the computation performed mirrors

closely that of a hand-coded partial-order planning algorithm. Soundness and completeness

results for this logic programming implementation are given. Finally the paper shows that,

if we extend the event calculus in a natural way to accommodate compound actions, then

using the same abductive theorem proving techniques we can obtain a hierarchical plan-

ner. Ó 2000 Elsevier Science Inc. All rights reserved.

Keywords: Planning; Abduction; Event calculus

Introduction

In 1969, Green o�ered a logical characterisation of planning couched in terms of
the situation calculus, in addition to an implementation based on a resolution theo-
rem prover [9]. What makes Green's treatment so attractive is the close correspon-
dence between implementation and speci®cation. The very same axioms that
feature in the formal description of the planning task form the basis of the represen-
tation deployed by the implemented planner, and each computation step performed
by the planner is a step in the construction of a proof that a suitable plan exists.

However, Green's seminal work, though much admired, has had little impact on
subsequent work in planning, owing to the widespread belief that a theorem prover
cannot form the basis of a practical planning system. The following quote from Ref.

The Journal of Logic Programming 44 (2000) 207±239
www.elsevier.com/locate/jlpr

* Tel.: +44-171-594-6307; fax: 44-171-594-6274.

E-mail address: m.shanahan@ic.ac.uk (M. Shanahan).

0743-1066/00/$ - see front matter Ó 2000 Elsevier Science Inc. All rights reserved.

PII: S 0 7 4 3 - 1 0 6 6 ( 9 9 ) 0 0 0 7 7 - 1



[24] exempli®es the widely held belief that planning via theorem proving is imprac-
tical.

Unfortunately a good theoretical solution does not guarantee a good
practical solution . . . To make planning practical we need to do two
things: (1) Restrict the language with which we de®ne problems . . . (2)
Use a special purpose algorithm . . . rather than a general-purpose theo-
rem prover to search for a solution. The two go hand in hand: every time
we de®ne a new problem-description language, we need a new planning
algorithm to process the language . . . The idea is that the algorithm
can be designed to process the restricted language more e�ciently than
a resolution theorem prover [24, p. 42].

The aim of the present paper is to demonstrate that a good theoretical solution
can indeed co-exist with a good practical solution, through the provision of a logical
account of partial-order and hierarchical planning in the spirit of Green's work.
However, where Green's account was based on the formalism of the situation calcu-
lus, the present paper adopts the event calculus [16,26]. Furthermore, while Green
regarded planning as a deductive process, planning with the event calculus is most
naturally considered as an abductive process. When event calculus formulae are sub-
mitted to a suitably tailored resolution based abductive theorem prover, the result is
a sound and complete purely logical planning system whose computations mirror
closely those of a hand-coded planning algorithm.

The paper is organised as follows. Section 1 presents the event calculus using full
®rst-order predicate calculus with circumscription. Section 2 presents a logical de®-
nition of event calculus planning. Section 3 describes a number of techniques for ren-
dering this speci®cation into a logic programming implementation via an abductive
meta-interpreter, and draws attention to the correspondences to existing partial-or-
der planning algorithms. Section 4 o�ers soundness and completeness results for a
simple version of the planner. Section 5 shows how the preceding material can be ex-
tended to cover hierarchical planning. Section 7 addresses e�ciency issues and pre-
sents some benchmark results. A shorter version of this paper was presented in Ref.
[27].

1. A circumscriptive event calculus

The formalism for reasoning about action used in this paper is derived originally
from Kowalski and Sergot's event calculus [16], but is based on many-sorted ®rst-or-
der predicate calculus augmented with circumscription [26]. This section presents the
bare outlines of the formalism.1 An example of the use of the formalism, which
should make things clearer to those unfamiliar with it, appears in the next section.
For a more thorough treatment, consult Ref. [26].

1 Shanahan [26] shows how the calculus can be used to handle domain constraints, continuous change,

and non-deterministic e�ects. Indeed, the planner described in this paper can handle many types of domain

constraint without further modi®cation.

208 M. Shanahan / J. Logic Programming 44 (2000) 207±239



Table 1 presents the essentials of the language of the calculus, which includes sorts
for ¯uents, actions (events), and time points.

We have the following axioms, whose conjunction is denoted EC.2

HoldsAt�f ; t�  InitiallyP �f � ^ :Clipped�0; f ; t� �EC1�
HoldsAt�f ; t3�  �EC2�
Happens�a; t1; t2� ^ Initiates�a; f ; t1�^

t2 < t3 ^ :Clipped�t1; f ; t3�
Clipped�t1; f ; t4� $ �EC3�
9a; t2; t3�Happens�a; t2; t3� ^ t1 < t3 ^ t2 < t4^
�Terminates�a; f ; t2� _Releases�a; f ; t2���

:HoldsAt�f ; t�  InitiallyN �f � ^ :Declipped�0; f ; t� �EC4�
:HoldsAt�f ; t; 3�  �EC5�
Happens�a; t1; t2� ^ Terminates�a; f ; t1�^

t2 < t3 ^ :Declipped�t1; f ; t3�
Declipped�t1; f ; t4� $ �EC6�
9a; t2; t3�Happens�a; t2; t3� ^ t1 < t3 ^ t2 < t4^
�Initiates�a; f ; t2� _Releases�a; f ; t2���

Happens�a; t1; t2� ! t16 t2 �EC7�
A two-argument version of Happens is de®ned as follows.

Happens�a; t� �def Happens�a; t; t�
The frame problem is overcome through circumscription. Given a conjunction R of
Initiates, Terminates, and Releases formulae describing the e�ects of actions (a do-
main description), a conjunction D of InitiallyP , InitiallyN , Happens and temporal or-
dering formulae describing a narrative of actions and events, and a conjunction X of
uniqueness-of-names axioms for actions and ¯uents, we are interested in

CIRC�R; Initiates; Terminates; Releases� ^ CIRC�D;Happens� ^ EC ^ X:

By minimising Initiates, Terminates and Releases we assume that actions have no
unexpected e�ects, and by minimising Happens we assume that there are no unex-

Table 1

The language of the event calculus

Formula Meaning

Initiates �a;b; s� Fluent b holds after action a at time s
Terminates �a;b; s� Fluent b does not hold after action a at time s
Releases �a;b; s� Fluent b is not subject to the common sense law of inertia after action

a at time s
Initially P �b� Fluent b holds from time 0

Initially N �b� Fluent b does not hold from time 0

Happens �a; s1; s2� Action a starts at time s1 and ends at time s2
HoldsAt �b; s� Fluent b holds at time s
Clipped (s1;b; s2� Fluent b is terminated between times s1 and s2
Declipped �s1;b; s2� Fluent b is initiated between times s1 and s2

2 Variables begin with lower-case letters, while function and predicate symbols begin with upper-case

letters. All variables are universally quanti®ed with maximum possible scope unless otherwise indicated.

M. Shanahan / J. Logic Programming 44 (2000) 207±239 209



pected event occurrences. In most of the cases we are interested in, R and D will be
conjunctions of Horn clauses, and the circumscriptions will reduce to predicate com-
pletions [19]. This result will come in handy when we come to implement the event
calculus as a logic program.

2. Planning as abduction

Planning can be thought of as the inverse operation to temporal projection, and
temporal projection in the event calculus is naturally cast as a deductive task. Given
R, X and D as above, we are interested in HoldsAt formulae C such that

CIRC�R; Initiates;Terminates;Releases� ^ CIRC�D;Happens� ^ EC ^ X � C:

Conversely, as ®rst pointed out by Eshghi [7], planning in the event calculus can be
considered as an abductive task. In terms of the circumscriptive event calculus, this
task can be precisely characterised as follows.

De®nition 2.1. A domain description is a ®nite conjunction of formulae of the form

Initiates�a; b; t�  P

or

Terminates�a; b; t�  P

or

Releases�a; b; t�  P

where P is of the form,

�:�HoldsAt�b1; t� ^ � � � ^ �:�HoldsAt�bn; t�;
a is a ground action term, and b and b1 to bn are ground ¯uent terms.

De®nition 2.2. An initial situation is a ®nite conjunction of formulae of the form

InitiallyN �b�
or

InitiallyP �b�
where b is a ground ¯uent term, in which each ¯uent name occurs at most once.

De®nition 2.3. A goal is a ®nite conjunction of formulae of the form

�:�HoldsAt�b; s�
where b is a ground ¯uent term, and s is a ground time point term.

De®nition 2.4. A narrative is a ®nite conjunction of formulae of the form

Happens�a; s�
or

210 M. Shanahan / J. Logic Programming 44 (2000) 207±239



s1 < s2

where a is a ground action term, and s1 and s2 are time points.

De®nition 2.5. Let C be a goal, let R be a domain description, let D0 be an initial sit-
uation, and let X be the conjunction of a pair of uniqueness-of-names axioms for the
actions and ¯uents mentioned in R. A plan for C is a narrative D such that

CIRC�R; Initiates; Terminates; Releases�^
CIRC�D0 ^ D;Happens� ^ EC ^ X � C

where

CIRC�R; Initiates; Terminates; Releases� ^ CIRC�D0 ^ D;Happens� ^ EC ^ X

is consistent.
The consistency condition is guaranteed if the domain description does not permit

a ¯uent to be both initiated and terminated at the same time.

De®nition 2.6. A domain description R is conflict free if, for every pair of formulae in
R of the form

Initiates�a; b; t�  P1

and

Terminates�a; b; t�  P2;

we have

� : P2 ^P1� �:

Lemma 2.7. Let R be a conflict free domain description, let D0 be an initial situation,
let D be a totally ordered narrative, and let X be the conjunction of a pair of uniqueness-
of-names axioms for the actions and fluents mentioned in R. The formula

CIRC�R; Initiates; Terminates; Releases� ^ CIRC�D0 ^ D;Happens� ^ EC ^ X

is consistent.

Proof (sketch). To construct a model of the formula, we have to assign a truth val-
ue to every ¯uent for every time point. This can be done in a STRIPS like fashion,
starting at time zero and maintaining the set of ¯uents that hold after each action
in D is carried out. We begin by selecting an arbitrary set of ¯uents compatible
with D0. These hold in the interval up to the ®rst action in D. We then consider
this ®rst action. The formulae in R e�ectively permit us to form an addlist (¯uents
that are initiated) and a deletelist (¯uents that are terminated or released) for the
action. The con¯ict free condition ensures that these lists are mutually exclusive.
Using these lists, we can construct the set of the ¯uents that hold in the interval
between the ®rst and second actions. This process continues until the ®nal action
in D. �

As suggested by the title of Levesque's Green-inspired paper, ``What is planning
in the presence of sensing?'' [17], logical characterisations such as this aim to settle

M. Shanahan / J. Logic Programming 44 (2000) 207±239 211



the question of the underlying nature of one or other type of planning. Levesque's
answer, echoing Green's 1969 paper, is based on the situation calculus. In the situ-
ation calculus, a plan is expressed using the Result function, which maps an action
and a situation onto a new situation. The Result function does not facilitate the rep-
resentation of narratives of events whose order is incompletely known. By contrast,
since the narrative of actions described by D above does not have to be totally or-
dered, the event calculus seems a natural candidate for answering the question
``What is partial-order planning?''.

As an example, let's formalise the shopping trip domain from Ref. [24]. The do-
main comprises just two actions and three ¯uents. The term Go(x) denotes the action
of going to x, and the term Buy(x) denotes the action of buying x. The ¯uent At(x)
holds if the agent is at location x, the ¯uent Have(x) holds if the agent possesses item
x, and the ¯uent Sells(x,y) holds if shop x sells item y. Let R be the conjunction of the
following Initiates and Terminates formulae.

Initiates(Go(x), At(x),t)
Terminates(Go(x), At(y),t) x 6� y
Initiates(Buy(x),Have(x),t)  HoldsAt(At(y),t) ^ HoldsAt(Sells(y,x),t)

Note that there is no distinction, in this formalism, between preconditions and con-
textual conditions. Both are expressed using HoldsAt. Let D0 be the conjunction of
the following formulae describing the initial situation.

InitiallyP (Sells(DIYShop,Drill))
InitiallyP (Sells(Supermarket,Banana))
InitiallyP (Sells(Supermarket,Milk))

Let X be the conjunction of the following uniqueness-of-names axioms.

UNA�Go;Buy� UNA�At;Have; Sells�
Our desired goal state is to have a banana, some milk, and a drill. Let C be the fol-
lowing conjunction of HoldsAt formulae.

HoldsAt�Have�Banana�; T � ^HoldsAt�Have�Milk�; T �
^HoldsAt�Have�Drill�; T �

Let D be the conjunction of the following Happens and temporal ordering formulae.

Happens�Go�Supermarket�; T0� Happens�Buy�Banana�; T1�
Happens�Buy�Milk�; T 2� Happens�Go�DIYShop�; T 3�
Happens�Buy�Drill�; T 4�
T0 < T1 T0 < T2
T1 < T3 T2 < T3
T3 < T4 T4 < T

Note that D is not committed to any particular ordering of the Buy(Banana) and
Buy(Milk) actions. As we would expect, according to the de®nition above, D is in-
deed a plan for C. In other words, we have

CIRC�R; Initiates; Terminates; Releases�^
CIRC�D0 ^ D;Happens� ^ EC ^ X � C:

212 M. Shanahan / J. Logic Programming 44 (2000) 207±239



The above de®nition of a plan can easily be extended to encompass domains that in-
clude domain constraints or state constraints, which give rise to actions with indirect
e�ects.

De®nition 2.8. A state constraint is a formula of the form

HoldsAt�b; t�  �:�HoldsAt�b1; t� ^ � � � ^ �:�HoldsAt�bn; t�
where b and b1 to bn are ground ¯uent terms.

The circumscriptive solution to the frame problem adopted here accommodates
the inclusion of state constraints (see [26]), so long as they are conjoined to the the-
ory outside the scope of any circumscription. This gives rise to the following de®ni-
tion.

De®nition 2.9. Let C be a goal, let R be a domain description, let D0 be an initial sit-
uation, let X be the conjunction of a pair of uniqueness-of-names axioms for the ac-
tions and ¯uents mentioned in R, and let W be a ®nite conjunction of state
constraints. A plan for C is a narrative D such that

CIRC�R; Initiates; Terminates; Releases�^
CIRC�D0 ^ D;Happens� ^W ^ EC ^ X � C:

Here is an example involving state constraints. The goal will be to make a chem-
ical plant safe, where plant safety is de®ned through the following state constraint.

HoldsAt(PlantSafe,t) 
HoldsAt(TankEmpty,t)^ HoldsAt(TemperatureLow,t)

The tank can be emptied by draining it, as long as the pressure is normal. The plant's
temperature can be brought down by cooling the tank.

Initiates(DrainTank,TankEmpty,t�  HoldsAt(PressureNormal,t)
Initiates(CoolTank,TemperatureLow,t)

The pressure is normal if the valve is open or if the boiler is o�. So we have two more
state constraints.

HoldAt(PressureNormal,t�  HoldsAt(ValveOpen,t)
HoldsAt(PressureNormal,t�  HoldsAt(BoilerO�,t)

We have actions for opening the valve and turning o� the boiler.

Initiates(OpenValve, ValveOpen,t)
Initiates(TurnO�Boiler, BoilerO�,t)

Finally we have the requisite uniqueness-of-names axioms.

UNA[PlantSafe, TankEmpty, TemperatureLow,
PressureNormal, ValveOpen, BoilerO�]

UNA[DrainTank, CoolTank, OpenValve, TurnBoilerO�]

Now suppose we have the following initial situation.

M. Shanahan / J. Logic Programming 44 (2000) 207±239 213



InitiallyN �PlantSafe� InitiallyN �TankEmpty�
InitiallyN �TemperatureLow� InitiallyN �PressureNormal�
InitiallyN �ValveOpen�InitiallyN �BoilerOff�

Let R be the conjunction of the above Initiates formulae, let D0 be the above initial
situation, let X be the conjunction of the two uniqueness-of-names axioms, and let W
be the conjunction of the three state constraints. Now let C be

HoldsAt�PlantSafe;T�:
Finally let D be the conjunction of the following formulae.

Happens(OpenValve,T0)
Happens(DrainTank,T1)
Happens(CoolTank,T2)
T0 < T1
T1 < T2
T2 < T

Now we have

CIRC�R; Initiates; Terminates; Releases�^
CIRC�D0 ^ D;Happens� ^W ^ EC ^ X � C:

In other words, D is a plan for C.
The provision of a logical characterisation of the planning task is all very well. But

for a complete picture, and to address the issues raised in the Russell and Norvig
quote in the introduction, we need to look at computational matters. These are
the focus of the next section.

3. Partial order planning � event calculus + abduction

The title of this section deliberately echoes Kowalski's slogan ``Algorithm � Log-
ic + Control'' [14]. The aim of the section is to outline the use of logic programming
techniques which can be used to render the previous section's logical speci®cation of
partial-order planning into a practical implementation. The basis of this implemen-
tation will be a resolution based abductive theorem prover, coded as a Prolog meta-
interpreter. This theorem prover is tailored for the event calculus by compiling the
event calculus axioms into the meta-level, resulting in an e�cient implementation.

Eshghi [7] was the ®rst author to show how abduction could be used to solve event
calculus planning problems. (The original event calculus of Kowalski and Sergot
[16], which was the inspiration for the present formalism, was also expressed a logic
program. However, it cannot be executed directly as a Prolog program.) Other early
approaches along these lines include Refs. [21,22,25].

As reported in Ref. [22], these systems sometimes generated erroneous partial
plans, a problem that was solved in the system of Ref. [5] by integrating abduction
with constraint solving techniques. Denecker et al. also showed how such a system
could be used for reasoning in the presence of uncertainty about actions. Later ap-
proaches that incorporated related ideas were presented in Refs. [4,11]. The latter ex-
tends the planning methods of Ref. [5] in the context of an object oriented formalism.

214 M. Shanahan / J. Logic Programming 44 (2000) 207±239



More recently, Kakas et al. [12] have integrated an abductive solver and a ®nite do-
main CLP solver and applied them to planning.

As pointed out by Missiaen et al. [22], the event calculus axioms can be likened to
Chapman's ``modal truth criterion'' (but stripped of the modalities) [2]. The logic
programming approach to planning advocated in this paper can be thought of as di-
rectly executing the modal truth criterion. The event calculus Initiates, Terminates
and Releases formulae that constitute a purely logical description of the e�ects of ac-
tions in a particular domain are used directly as the domain description in the imple-
mented planner.

Many of the computational concepts central to the literature on partial-order
planning, such as threats, protected links, promotions and demotions [2,23], turn
out to have direct counterparts in the theorem proving process. It is interesting to
note that these features of the logic programming implementation were not designed
in. Rather, they are naturally arising features of the theorem prover's search for a
proof. So our attempt to provide a mathematically respectable answer to the ques-
tion ``What is partial-order planning?'' inadvertently o�ers similar answers to ques-
tions like ``What are protected links?''. To see all this we need to delve into the details
of the meta-interpreter. In what follows, I will assume some knowledge of logic pro-
gramming concepts and terminology.

3.1. An abductive meta-interpreter for the event calculus

Meta-interpreters are a standard part of the logic programmer's toolkit. For ex-
ample, the following ``vanilla'' meta-interpreter, when executed by Prolog, will mi-
mic Prolog's own execution strategy.3

demo�� ��:
demo��G j Gs1��:-

axiom�G; Gs2�; append�Gs2; Gs1; Gs3�; demo�Gs3�:
demo��not�G� j Gs��:-not demo��G��; demo�Gs�:

The formula demo(Gs) holds if Gs follows from the object-level program. If P is a
list of Prolog literals �k1; . . . ; kn�, then the formula axiom�k0;P� holds if there is a
clause of the following form in the object-level program.

k0:ÿk1; . . . ; kn
One of the tricks we'll employ here is to compile object-level clauses into the meta-
level. For example, the above clause can be compiled into the de®nition of demo

through the addition of the following clause.

demo��k0 j Gs1��:-
axiom�k1; Gs2�; append�Gs2; �k2; . . . ; kn j Gs1�; Gs3�;
demo�Gs3�:

3 Throughout the paper, I use standard Edinburgh syntax for Prolog. Variables begin with upper-case

letters, while predicate and function symbols with lower-case letters, which is the opposite convention to

that used for predicate calculus.

M. Shanahan / J. Logic Programming 44 (2000) 207±239 215



The resulting behaviour is equivalent to that of the vanilla meta-interpreter with the
object-level clause. Now consider the following object-level clause, which corre-
sponds to Axiom (EC2) of Section 1.

holds_at(F,T3):-
happens (A,T1,T2), T2<T3, initiates (A, F, T1),

not clipped (T1,F,T2).

This can be compiled into the following meta-level clause, in which the predicate be-
fore is used to represent temporal ordering.

demo��holds at�F; T3� j Gs1�� :-
axiom�initiates�A; F; T1�; Gs2�; axiom�happens�A; T1; T2�; Gs3�;
axiom�before�T2; T3�; � ��;demo��not clipped�T1; F; T3���;
append�Gs3; Gs2; Gs4�; append�Gs4; Gs1; Gs5�; demo�Gs5�:

The Prolog execution of this meta-level clause does not mimic precisely the Prolog
execution of the corresponding object-level clause. This is because we have taken ad-
vantage of the extra degree of control available at the meta-level, and adjusted the
order in which the sub-goals of holds_at are solved. For example, although we re-
solve on initiates immediately, we postpone further work on the sub-goals of in-
itiates until after we have resolved on happens and before. This manoeuvre is
required to prevent looping. Moreover, even if there were no looping problem, tack-
ling initiates before happens results in a smaller search space than would be ob-
tained if these sub-goals were tackled in the opposite order, since event occurrences
irrelevant to the ¯uent F are not considered. (A discussion of this and related e�cien-
cy issues with respect to the event calculus can be found in Ref. [3].)

To represent Axiom (EC5), which is not in Horn clause form, we introduce the
function neg. Throughout our logic program, we replace the classical predicate cal-
culus formula : HoldsAt(f,t) with holds_at (neg (F),T). (Using the neg function,
we retain some of the predicate calculus formalism's ability to handle incomplete in-
formation about which ¯uents hold. This would be lost if we used negation-as-fail-
ure.) So we obtain the following object-level clause.

holds at�neg�F�; T3� :-
happens�A; T1; T2�; T2 < T3; terminates�A; F; T1�;
not declipped�T1; F; T2�:

This compiles into the following meta-level clause.

demo��holds at�neg�F�; T3� j GS1��:-
axiom�terminates�A; F; T1�; Gs2�; axiom�happens�A; T1; T2�; Gs3�;
axiom�before�T2; T3�; � ��; demo��not declipped�T1; F; T3���;
append�Gs3; Gs2; Gs4�; append�Gs4; Gs1; Gs5�; demo�Gs5�:

The job of an abductive meta-interpreter is to construct a residue of abducible literals
that cannot be proved from the object-level program. In the case of the event calcu-
lus, the abducibles will be happens and before literals. Here is a ``vanilla'' abductive
meta-interpreter, without negation-as-failure.

abdemo([ ],R,R).

abdemo��G j Gs�; R1; R2� :-abducible�G�; abdemo�Gs; �G j R1�; R2�:

216 M. Shanahan / J. Logic Programming 44 (2000) 207±239



abdemo��G j Gs1�; R1; R2�:-
axiom(G,Gs2), append(Gs2,Gs1,Gs3), abdemo(Gs3,R1,R2).

The formula abdemo(Gs,R1,R2) holds if Gs follows from the conjunction of R2 with
the object-level program. (R1 is the input residue and R2 is the output residue.) Ab-
ducible literals are declared via the abducible predicate. In top-level calls to abdemo,
the second argument will usually be [ ].

Things start to get tricky when we incorporate negation-as-failure. The di�culty
here is that when we add to the residue, previously proved negated goals may no
longer be provable. So negated goals have to be recorded and re-checked each time
the residue is modi®ed. Here's a version of abdemo which handles negation-as-fail-
ure.

abdemo�� �; R; R; N�: �A1�
abdemo��G j Gs�; R1; R3; N� : ÿ �A2�
abducible�G�; abdemo nafs�N; �G j R1�; R2�; abdemo�Gs; R2; R3; N�:

abdemo��G j Gs1�; R1; R2; N� : ÿ �A3�
axiom�G; Gs2�; append�Gs2; Gs1; Gs3�; abdemo�Gs3; R1; R2; N�:

abdemo��not�G� j Gs�; R1; R3; N� : ÿ �A4�
abdemo naf��G�; R1; R2�; abdemo�Gs; R2; R3; ��G� j N��:

The last argument of the abdemo predicate is a list of negated goal lists, which is re-
corded for subsequent checking (in clause (A2)). If N � �c1;1 � � � c1;n1 � . . . �cm;1 . . . cm;nm �
is such a list, then its meaning, assuming a completion semantics for our object-level
logic program, is

:�c1;1 ^ � � � ^ c1;n1� ^ :�cm;1 ^ � � � ^ cm;nm�:
The formula abdemo_nafs(N,R1,R2) holds if the above formula is provable from
the (completion of the) conjunction of R2 with the object-level program. (In the va-
nilla version, abdemo_nafs does not add to the residue. However, we will eventually
require a version which does, as we will see shortly.)

abdemo nafs�N;R1;R2� applies abdemo naf to each list of goals in N: abdemo naf

is defined in terms of Prolog0s findall; as follows:

abdemo naf��G j Gs1�; R; R� : ÿnot resolve�G; R; Gs2�:
abdemo naf��G1 j Gs1�; R1; R2� : ÿ

findall�Gs2; �resolve�G1; R1; Gs3�;
append�Gs3; Gs1; Gs2��; Gss�;

abdemo nafs�Gss; R1; R2�:
resolve�G; R; Gs� : ÿmember�G; R�:
resolve�G; R; Gs� : ÿaxiom�G; Gs�:

The logical justi®cation for these clauses is as follows. In order to show,
:�c1 ^ � � � ^ cn�, we have to show that, for every object-level clause k :- k1 . . . km which
resolves with c1;:�k1 ^ � � � ^ km, c2 ^ � � � ^ cn�. If no clause resolves with c1 then, un-
der a completion semantics, :c1 follows, and therefore so does :�c1 ^ � � � ^ cn�.

However, in the context of incomplete information about a predicate we do not
wish to assume that predicate's completion, and we cannot therefore legitimately
use negation-as-failure to prove negated goals for that predicate. The way around

M. Shanahan / J. Logic Programming 44 (2000) 207±239 217



this is to trap negated goals for such predicates at the meta-level, and give them
special treatment. In general, if we know :/ w, then in order to prove :/, it is
su�cient to prove w. Similarly, if we know :/$ w, then in order to prove :/, it's
both necessary and su�cient to prove w.

In the present case, we have incomplete information about the before predicate,
allowing partially ordered narratives of events to be represented. Accordingly, when
the meta-interpreter encounters a negated goal of the form before (X,Y), which it
will when it comes to prove a negated clipped goal, it attempts to prove before

(Y,X). One way to achieve this is to add before (Y,X) to the residue, ®rst checking
that the resulting residue is consistent.

This approach to the before predicate correctly handles examples that have trou-
bled earlier abductive event calculus planners. Consider the following example, taken
form [22].

initially(r).

initiates(e1,p,T).

initiates(e2,q,T).

terminates(e1,r,T):- holds_at(q,T).
terminates(e2,r,T):- holds_at(p,T).

Given the goal

�holds at�p; t�; holds at�q; t�; holds at�r; t��
both the planner of Ref. [25] and the planner of Ref. [22] generate the following in-
correct plan.

�happens�e1; t1�; before�t1; t�; happens�e2; t2�; before�t2; t��
The abductive event calculus planner presented in Ref. [5] does not su�er from this
problem, since it uses a dedicated constraint solver for checking the satis®ability of
temporal ordering formulae with respect to a theory of totally ordered time points.
The solution adopted in the present paper is very similar.

The before predicate is not the only source of incomplete information. Similar
considerations a�ect the treatment of the holds_at predicate, which inherits
the incompleteness of before. When the meta-interpreter encounters a not hold-

s_at(F,T) goal, where F is a ground term, it attempts to prove holds_at(neg(F),T),
and conversely, when it encounters not holds_at(neg(F),T), it attempts to prove
holds_at(F,T). In both cases, this can result in further additions to the residue.

Note that these techniques for dealing with negation in the context of incomplete
information are general in scope. They are generic theorem proving techniques, and
their use is not con®ned to the event calculus. For further details of the implemen-
tation of abdemo_naf, the reader should consult Appendix A.

As with the demo predicate, we can compile the event calculus axioms into the def-
inition of abdemo and abdemo_naf via the addition of some extra clauses, giving us a
®ner degree of control over the resolution process. Here is an example.

abdemo��holds at�F; T3� j Gs1�; R1; R4; N� : ÿ �A5�
axiom�initiates�A; F; T1�; Gs2�;
abdemo nafs�N; �happens�A; T1; T2�; before�T2; T3� j R1�; R2�;
abdemo nafs��clipped�T1; F; T3��; R2; R3�;
append�Gs2; Gs1; Gs3�; demo�Gs3; R3; R4; �clipped�T1; F; T3� j N��:

218 M. Shanahan / J. Logic Programming 44 (2000) 207±239



Now, to solve a planning problem, we simply describe the e�ects of actions directly
as Prolog initiates, terminates and releases clauses, we present a list of hold-
s_at goals to abdemo, and the returned residue, comprising happens and before lit-
erals, is a plan. Notice that, since the sub-goals of initiates are solved abductively,
actions with context-dependent e�ects are handled correctly, unlike the implementa-
tion described in Ref. [22]. Moreover, since holds_at goals will resolve with clause
(A3) as well as clause (A5), no further code is required to handle examples with state
constraints, such as that in Section 2.

A full listing of an implementation based on the techniques of this section is pre-
sented in Appendix A. But with this sketch, we are already in a position to compare
the behaviour of an abductive theorem prover applied to the event calculus to that of
a conventional partial-order planning algorithm.

3.2. Protected links, threats, promotions and demotions

The algorithm below, which is very similar to UCPOP [23], illustrates the style
of algorithm commonly found in the literature on partial-order planning. It con-
structs a partially ordered plan given a goal list. A goal list is a list of pairs
hF ; T i where F is a ¯uent and T is a time point. A plan is a list of pairs hA; T i where
A is an action (more properly called an operator in planning terminology) and T is
a time point.

while goal list non-empty

choose a goal hF1; T1i from goal list

choose an action hA; T2i whose effects include F1

for each precondition F2 of A add hF2; T2i to goal list

add hA; T2i to plan

add T2 < T1 to plan

add hT2; F1; T1i to protected links

for each hA; T3i in plan that threatens some hT4;
F3; T5i in protected links

choose either

promotion:add T3<T4 to plan

demotion:add T5<T3
end for

end while

The key idea in the algorithm is the maintenance of a list of protected links. This is
a list of triples hT1,F,T2i, where T1 and T2 are time points and F is a ¯uent. The
purpose of this list is to ensure that, once a goal has been achieved by the addition
of a suitable action to the plan, that goal is not ``clobbered'' by a subsequent addi-
tion to the plan. Accordingly, each addition to the plan is followed by a check to see
whether it constitutes a threat to any protected link. An action hA,T1i threatens a
protected link hT2,F,T3 i if the ordering constraint T2 < T1 < T3 is consistent with
the plan and one of the e�ects of A is to make F false. By promoting or demoting the
new action, in other words by constraining its time of occurrence to fall either before
T2 or after T3, we eliminate the threat.

Since the algorithm is non-deterministic, it has to be combined with a suitable
search strategy. With some minor modi®cations, the algorithm can be turned into

M. Shanahan / J. Logic Programming 44 (2000) 207±239 219



UCPOP, which is both sound and complete, assuming a breadth-®rst or iterative
deepening search strategy [23]. Unlike the above algorithm, but like the abductive
meta-interpreter of the last section, UCPOP can also handle actions with context-de-
pendent e�ects.

The close correspondence between the behaviour of this algorithm and that of the
abductive theorem prover of the previous section can be established by inspection. In
particular, consider clause (A5). Line 3 of the algorithm (choosing an action) corre-
sponds to the ®rst sub-goal of (A5) (resolving on initiates). Line 4 (adding new
preconditions to the goal list) corresponds to the fourth sub-goal. The e�ect of Lines
5 and 6 (adding the new action to the plan) is achieved in (A5) by the second sub-
goal. Line 7 (adding the new protected link) and the for loop of Lines 8 to 12 are
matched by the third sub-goal of (A5), which adds a new clipped literal to the list
of negations. Promotion and demotion (Lines 11 and 12) are achieved in the theorem
prover by abdemo_nafs which, as explained in the previous section, will add further
before literals to the residue if necessary.

Like the non-deterministic hand-coded algorithm, the search space de®ned by
clauses (A1) to (A5) can be explored with a variety of strategies. If executed by Pro-
log, a depth-®rst search strategy would result, but a breath-®rst or iterative deepen-
ing strategy is also possible.

To summarise, the concepts of a protected link, of a threat, and of promotion and
demotion, rather than being special to partial-order planning, turn out to be instanc-
es of general concepts in theorem proving when applied to general purpose axioms
for representing the e�ects of actions. In particular,
· A protected link is a negated clipped goal which, like any negated goal in abduc-

tion with negation-as-failure, is preserved for subsequent checking when new lit-
erals are added to the residue,

· A threat is an addition to the residue which, without further additions, would un-
dermine the proof of a previously solved negated clipped goal.

· Promotion and demotion are additions to the residue which preserve the proof of
a previously solved negated clipped goal.

4. Soundness and completeness

This section presents soundness and completeness results for a planner imple-
mented using the techniques described in the previous section. A full listing of the
planner is given in Appendix A. This listing is also available electronically, and
the URL is given in Appendix A. This very basic version of the planner is highly in-
e�cient and produces numerous duplicate solutions. An e�cient, practical imple-
mentation based on this planner is described in Section 7.

Let AEC be the logic program in Appendix A. Note that negation-as-failure is
written using the ``n+'' operator, and that equality and inequality are written in in®x
form. We will assume a standard de®nition of SLDNF-refutation, such as that re-
produced in Ref. [26, Chapter 11]. The task is to prove that AEC is a sound and
complete planner with respect to a certain class of event calculus theories. We begin
by pinning down the class of theories we are interested in.

First, soundness and completeness are not guaranteed if there is incomplete know-
ledge about the initial situation. Hence the following de®nition.

220 M. Shanahan / J. Logic Programming 44 (2000) 207±239



De®nition 4.1. A Complete initial situation D is an initial situation such that for any
¯uent b either D � InitiallyN�b� or D � initiallyP �b�.

Furthermore, unsoundness and incompleteness can result if, at some point in its
computation, the planner calls clause 3 of abdemo_naf with a holds_at goal with
an unbound ¯uent argument. One way to ensure this never happens is to stick to do-
main descriptions that are ¯uent range restricted, de®ned as follows.

De®nition 4.2. A domain description R is fluent range restricted if, for every Initiates,
Terminates and Releases clause / in R, every non-temporal variable that occurs in /
also occurs in the ¯uent argument in the head of /.

Next we de®ne a mapping from event calculus theories to logic programs. The
mapping is very straightforward, although the de®nitions are a little unwieldy.

De®nition 4.3. The function TRANST trivially maps predicate calculus atoms and
terms onto corresponding logic program terms (inverting the case of the ®rst letter
of each variable, constant, function and predicate symbol, and changing the font
to courier).

In what follows, the trivial function TRANST will sometimes be omitted for clar-
ity.

De®nition 4.4. Let P � w1 ^ � � � ^ wn be a conjunction where each wi is of the form

�:�HoldsAt�bi; t�
TRANSC(P) is de®ned as

�holds at�r1; T�; . . . ; holds at�rn; T��
where ri�TRANST �bi) if wi is positive and ri� neg(TRANST �bi)) if wi is negative.

De®nition 4.5. Let R � /1 ^ � � � ^ /n be a domain description. TRANSD�R� is de-
®ned as follows.

TRANSD�R� � fw1; . . . ;wng
where

wi � axiom�TRANST �r�;TRANSC�P�� if/i � r P;
axiom�TRANST �/i�; � �� if / is an atomic formula:

�

De®nition 4.6. Let D � /1 ^ � � � ^ /n be an initial situation. TRANSI�D� is de®ned as
follows.

TRANSI�D� � fw1; . . . ;wng
where wi is

axiom�initially�neg�TRANST �b���; � ��
if /i� initiallyN �b�, and

M. Shanahan / J. Logic Programming 44 (2000) 207±239 221



axiom�initially�TRANST �b��; � ��
if /i� InitiallyP �b�:

A number of further de®nitions are required that remove impure elements from the
logic program AEC, namely findall and gensym. It should be clear that the result-
ing transformations are meaning-preserving in an intuitive sense. First, we have a
function FDALL, which gives a pure version of findall tailored to the calls to
findall in AEC.

De®nition 4.7. Let R be a domain description. FDALL�R� is the set of all clauses of
the form findall(Gs3, W, U) such that W is either

�abresolve�terms or rels�A; F; T2�; R1; Gs2; R1�;
abresolve�happens�A; T2; T3�; R1; � �; R1�;
append��before�T1; T3�; before�T2; T4� j Gs2�; Gs1; Gs3��

or

�abresolve�inits or rels�A; F; T2�; R1; Gs2; R1�;
abresolve(happens(A,T2,T3),R1,[ ],R1),

append��before�T1; T3�; before�T2; T4� j Gs2�; Gs1; Gs3��
or

�abresolve�G1; R1; Gs2; R1�; append�Gs2; Gs1; Gs3��
and U is a list comprising all k such that there is an SLDNF-refutation for the goal
clause :- W given the logic program TRANSD�R� which generates the binding
Gs3� k.

Note that FDALL�R� is always ®nite.
Next we need to purify TRANSD�R� with respect to gensym. AEC uses gensym to

generate new skolem constants for the occurrence times of newly abduced events.
The following technique can be used to transform any logic program using gensym

to an equivalent pure logic program. Every predicate in the program is given two ex-
tra arguments, to carry the gensym number. Each clause is modi®ed accordingly. For
example, the clause

p�X; Y� : ÿq�X; Y�; r�X; Y�:
becomes

p�X; Y; M1; M3� : ÿq�X; Y; M1; M2�; r�X; Y; M2; M3�:
Then the following clause de®ning gensym is added.

gensym�t�M1�; M1; s�M1��:
Goal clauses initialise the gensym number to 0. For example, the goal clause

:ÿp�a; X�; p�x; b�:
becomes

:ÿp�a; X; 0; M1�; p�X; b; M1; M2�:

222 M. Shanahan / J. Logic Programming 44 (2000) 207±239



A sequence of ground terms of the form

t�0�; t�s�0��; t�s�s�0���; t�s�s�s�0����; :::
will then be generated by consecutive calls to gensym.

De®nition 4.8. Let R be a domain description. TRANS�D�R� is obtained from
TRANSD�R� by de®ning gensym as outlined above.

Now we can de®ne the ®nal mapping.

De®nition 4.9. Let R be a domain description and D be an initial situation.
TRANSP �R;D� is de®ned as follows.

TRANSP �R;D� � AEC [ TRANS�D�R� [ TRANSI�D� [ FDALL�R� [ #;

where # is a set of standard de®nitions for member, append, equality and inequality.

Now we can prove the soundness theorem. First we de®ne a mapping from meta-
level logic program goal clauses to object-level predicate calculus formulae.

De®nition 4.10. For any abdemo, abdemo_naf or abdemo_nafs literal /, ML�/� is
de®ned as follows.

ML�abdemo��c1; . . . cn�; �q1; . . . ; qm�; R; �g1; . . . ; gk�; N�
� c1 ^ � � � ^ cn ^ q1 ^ � � � ^ qm ^ :g1 ^ � � � ^ :gk

ML�abdemo naf��c1; . . . cn�; �q1; . . . ; qm�; R; �g1; . . . ; gk�; N�
� :�c1 ^ � � � ^ cn� ^ q1 ^ � � � ^ qm ^ :g1 ^ � � � ^ :gk

ML�abdemo nafs���c1; . . . cn�; : : : ; ; �k1; . . . ; kj��; �q1; . . . ; qm�; R; �g1; . . . ; gk�; N�
� :�c1 ^ � � � ^ cn� ^ � � � ^ :�k1 ^ � � � ^ kj� ^ q1 ^ � � � ^ qm ^ :g1 ^ � � � ^ :gk

De®nition 4.11. Given a goal clause W of the form

: ÿ/1;/2; . . . ;/n

let M�W� be^
/2P

ML�/�

where P is the set comprising every /i that is an abdemo, abdemo_naf or ab-

demo_nafs literal.

Theorem 4.12 (Soundness). For any complete initial situation D0, any conflict free,
fluent range restricted domain description R and any C, if there is an SLDNF-refuta-
tion for the goal clause

:ÿabdemo�TRANSC�C�; �� �; � ��; R; � �; N�:
given the logic program TRANSP �R;D0� which generates a binding R�TRANSC�D�
for some D then D is a plan for C.

M. Shanahan / J. Logic Programming 44 (2000) 207±239 223



Proof. It su�ces to show that there is an object-level proof that the goal follows from
the plan within the meta-level SLDNF-refutation. Let the sequence of goal clauses
W1 . . .Wn be an SLDNF-refutation of the above description. By inspection of
AEC, we can see that, for 16 i6 nÿ 1,

R ^M�Wi�1� � M�Wi�
and therefore,

R ^M�Wn� � M�W0� �
The completeness theorem relies on the following lemma.

Lemma 4.13. Let R be a domain description, let D0 be an initial situation, let D be a
narrative, and let X be the conjunction of a pair of uniqueness-of-names axioms for the
actions and fluents mentioned in R. Let U be

CIRC�R; Initiates Terminates; Releases� ^ CIRC�D0 ^ D;Happens� ^ EC ^ X:

For any fluent b and time point s, if

U � HoldsAt�b; s�
then either

U � Initially�b� ^ :Clipped�0; b; s�
or

U � 9e; t�Happens�e; t� ^ t < s ^ Initiates�e; b; t� _ :Clipped�t; b; s��:

Proof. The proof of this lemma appeals to the fact that event calculus theories con-
form to the principle of directionality (see Ref. [26]), which guarantees that whether
or not a ¯uent holds at any given time point depends only on what is true before that
time point. The details of the proof are omitted. �

This lemma is reminiscent of Chapman's modal truth criterion [2] or Pednault's
causality theorem cited in Ref. [23].

The function Prog, de®ned next, progresses an initial situation D by one action a.
In other words, it yields a theory whose initial situation is the result of performing
action a in initial situation D This function is the basis of the inductive proof of com-
pleteness to follow.

De®nition 4.14. Let R be a domain description, and let X be the conjunction of a pair
of uniqueness-of-names axioms for the actions and ¯uents mentioned in R. Let
D � /1 ^ � � � ^ /n be a complete initial situation, where each /i is either InitiallyP �bi)
or InitiallyN �bi�. Let U be,

CIRC�R; Initiates; Terminates; Releases� ^ D ^ EC ^ X:

Let a be any action. Prog�D;R; a� is w1 ^ � � � ^ wn, where

wi �
InitiallyP �bi� if

U � Initiates�a; bi; 0� _ �InitiallyP �bi� ^ :Terminates�a; bi; 0��;
InitiallyN �bi� otherwise:

8><
>:

224 M. Shanahan / J. Logic Programming 44 (2000) 207±239



Theorem 4.15 (Completeness). For any complete initial situation D0, any conflict free,
fluent range restricted domain description R and any goal C, if there exists a totally
ordered plan P for C, then there is an SLDNF-refutation for the goal clause

:ÿabdemo�TRANSC�C�; �� �; � ��; R; � �; N�:
given the logic program TRANSP �R;D0� which generates a binding R�TRANSC�D�
for some D such that P is a linearisation of a subset of D.

Proof. The proof uses induction over the length of plans.
Base case: In the case of a zero-length plan, there is a refutation that proceeds

through clause 3 of abdemo, then, after various trivial calls, to clause 2 of ab-

demo_naf, which succeeds quickly since the residue is empty and there are no hap-

pens clauses to resolve against.
Inductive case: Assume the theorem holds for plans of length 6 n. We need to

show the theorem holds for plans of length 6 n� 1. If the length of P 6 n, then
the theorem holds for P. Otherwise P has n� 1 steps. Let a be the ®rst action in plan
P, and let P) be a plan comprising the last n actions of P. Consider any SLDNF
refutation for the goal clause,

:ÿabdemo�TRANSC�C�; �� �; � ��; R; � �; N�
given the logic program TRANSP �R;Prog�D0;R; a�� that yields a binding
R � TRANSC�Dÿ� for some Dÿ such that Pÿ is a linearisation of a subset of Dÿ.
It su�ces to show how such a refutation can be modi®ed to give a refutation for
the same goal clause given the program TRANSP �R;D0� which yields a binding
R � TRANSC�D� for some D such that P is a linearisation of a subset of D. To obtain
a suitably modi®ed refutation, certain sub-refutations need to be updated, namely
those of the form

:ÿabdemo��holds at�b; s�; c1; . . . ; cm�;R1;R2;N1;N2�;C1; . . . ;Ck

..

.

:ÿabdemo��c1; . . . ; cm�;R3;R4;N3;N4�;C1; . . . ;Ck

whose the second clause is obtained by resolving with clause 3 or 5 of the program.
The rest of the refutation stays the same. Suppose b is positive. (The case for negative
¯uents is symmetrical.) Suppose R1�TRANSC�Dy�. There are three cases.

Case 1: R ^ Dy � InitiallyP �b� ^ :Clipped�0; b; s�: (Modi®ed initial situation and
residue makes no di�erence.)

Case 2: R ^ Dy � InitiallyP �b�; butR ^ D y 2:Clipped�0; b; s�: (We need a to get
the :Clipped.)

Case 3: R ^ D y 2InitiallyP�b�. (We need a to initiate b.)
For each case, we need to show how the old sub-refutation for holds_at�b; s�

from TRANSP �R;Prog�D0;R; a�� can be turned into a refutation for holds_at
�b; s) from TRANSP �R;D0�.

Case 1: No modi®cation is required.
Case 2: Since there exists a plan P comprising action a followed by plan P±, Lem-

ma 4.13 tells us that the addition to Dy of some combination of temporal ordering

M. Shanahan / J. Logic Programming 44 (2000) 207±239 225



constraints plus possibly a formula of the form Happens(a; s0) will yield a residue D
such that R ^ D � : Clipped(0; b; s). The task now is to show that there is a refuta-
tion for the goal clause,

:ÿabdemo��holds at�b; s��;R1;R2;N1;N2�
given the logic program TRANSP �R;D0� that yields a binding R2�TRANSC�D� for
such a D. By inspecting AEC, we can see that such a refutation exists. This will pro-
ceed through clause 3 of abdemo. After the calls to add_neg and abdemo_nafs, the
refutation proceeds through clause 1 of abdemo_naf. The findall generates a
terms_or_rels goal and two before goals for every potential clipping event for
the ¯uent b. When abdemo_nafs is called again with these goals, the attempt to fail
the terms_or_rels goal will lead, via clauses 3 and 4 of abdemo_naf, to the addition
of happens(a; s0) to the residue if necessary, to block the precondition of an event
threatening to clip b. The attempt to fail the before goals will lead, via clauses 5
to 8 of abdemo_naf, to the addition of before facts to the residue if necessary to pro-
mote or demote an event threatening to clip b.

Case 3. The case is analogous to Case 2. The refutation proceeds via clause 4 of
abdemo. The second call to abresolve adds happens(a; s0� to the residue, and the
third call adds before�s0; s�. Then there are calls to add_neg and abdemo_nafs,
and the rest is the same as Case 2. �

Note that the program is guaranteed not to ¯ounder, since the only uses of nega-
tion-as-failure are in calls to demo_before or demo_beq which follow a call to abre-

solve(happens(...)...) for the same temporal arguments. The call to
abresolve(happens( ...)...) will always ground those arguments.

Note also that the completeness theorem excludes plans with concurrent actions,
even though they can be expressed in the event calculus. Moreover, the planner itself
does not attempt to ®nd such plans, unlike the event calculus planner reported in
Ref. [5].

The soundness and completeness results in this section are not always useful as
they stand. The ¯uent range restricted condition excludes many typical planning
problems, including the shopping trip example as formulated in Section 2. However,
the o�ending variables in such domain descriptions can easily be removed by some
simple preprocessing which generates a separate clause for each of their ground in-
stances.

Furthermore, the entire class of examples for which the planner is sound and com-
plete includes many which fall outside the scope of these results. Indeed, the imple-
mented planner works perfectly well on numerous domain descriptions that are not
¯uent range restricted, including the unpreprocessed shopping trip example. It also
works for many examples that include state constraints, such as the plant safety ex-
ample of Section 2. In particular, if the set of state constraints is strati®ed, we should
expect the above soundness and completeness results to carry over without too much
di�culty.

5. Hierarchical planning

It is a surprisingly straightforward matter to extend the foregoing logical
treatment of partial-order planning to planning via hierarchical decomposi-

226 M. Shanahan / J. Logic Programming 44 (2000) 207±239



tion.4 This is achieved through the introduction of compound actions, which
are quite naturally represented in the event calculus. Here is the formal def-
inition.

De®nition 5.1. A compound action description is a formula of the form,

Happens�a1; s1; s2�  w1 ^ � � � ^ wn

where a1 is a ground action term, s1 and s2 are time point variables, and each wi is of
the form

�:�HoldsAt�b; s�
where b is a ground ¯uent term and s is a time point variable, or

Happens�a2; s3; s4�
where a2 is a ground action term and s3 and s4 are time point variables, or

:Clipped�s3; b; s4�
where b is a ground ¯uent term and s3 and s4 are time point variables, or

s3 < s4

where s3 and s4 are time point variables, such that, for every time point variable s
occurring in wi,

w1 ^ � � � ^ wn � s16 s6 s2:

Compound action descriptions are best illustrated by example. The following for-
mulae axiomatise a robot mail delivery domain.

First we formalise the e�ects of the primitive actions. The term Pickup(p) denotes
the action of picking up package p, the term PutDown(p) denotes the action of put-
ting down package p, and the term GoThrough(d) denotes the action of going
through door d. The ¯uent Got(p) holds if the robot is carrying the package p, the
¯uent In(r) holds if the robot is in room r, and the ¯uent In(p,r) holds if package
p is in room r. The formula Connects(d,r1,r2) represents that door d connects rooms
r1 and r2.

Initiates�Pickup�p�;Got�p�; t�  HoldsAt�In�r�; t� ^HoldsAt�In�p; r�; t�
Releases�Pickup�p�; In�p; r�; t�  HoldsAt�In�r�; t� ^HoldsAt�In�p; r�; t�
Initiates�PutDown�p�; In�p; r�; t�  HoldsAt�Got�p�; t� ^HoldsAt�In�r�; t�
Initiates�GoThrough�d�; In�r1�; t�  HoldsAt�In�r2�; t� ^ Connects�d; r2; r1�
Terminates�GoThrough�d�; In�r�; t�  HoldsAt�In�r�; t�

Now we have the ®rst example of a compound action de®nition. Compound actions
have duration, while primitive actions will usually be represented as instantaneous.
The term ShiftPack(p,r1,r2,r3) denotes the action of retrieving package p from room
r2 and delivering it to room r3, where the robot is initially in room r1. It comprises a
number of sub-actions: two GoToRoom actions, a Pickup action and a PutDown
action. The GoToRoom action is itself a compound action, to be de®ned shortly.

4 A hierarchical planner based on the event calculus is also presented in Ref. [10].

M. Shanahan / J. Logic Programming 44 (2000) 207±239 227



Happens�ShiftPack�p; r1; r2; r3�; t1; t6�  
Happens�GoToRoom�r1; r2�; t1; t2� ^ t2 < t3^
:Clipped�t2; In�r2�; t3� ^ :Clipped�t1; In�p; r2�; t3�^
Happens�Pickup�p�; t3� ^ t3 < t4^
Happens�GoToRoom�r2; r3�; t4; t5�^
t5 < t6 ^ :Clipped�t3;Got�p�; t6� ^ :Clipped�t5; In�r3�; t6�^
Happens�PutDown�p�; t6�

Initiates�ShiftPack�p; r1; r2; r3�; In�p; r3�; t�  
HoldsAt�In�r1�; t� ^HoldsAt�In�p; r2�; t�

The e�ects of compound actions should follow from the e�ects of their sub-actions,
as can be veri®ed in this case by inspection. Note that it is up to the author of the
formulae to ensure that this is the case. Next we have the de®nition of a GoToRoom
action, where GoToRoom(r1,r2) denotes the action from room r1 to room r2.

Happens�GoToRoom�r; r�; t; t�
Happens�GoToRoom�r1; r3�; t1; t3�  

Connects�d; r1; r2� ^ Happens�GoThrough�d�; t1�^
Happens�GoToRoom�r2; r3�; t2; t3� ^ t1 < t2^
:Clipped�t1; In�r2�; t2�

Initiates�GoToRoom�r1; r2�; In�r2�; t�  HoldsAt�In�r1�; t�
This illustrates both conditional decomposition and recursive decomposition: a com-
pound action can decompose into di�erent sequences of sub-actions depending on
what conditions hold, and a compound action can be decomposed into a sequence
of sub-actions that includes a compound action of the same type as itself. A conse-
quence of this is that the event calculus with compound actions is formally as pow-
erful as any programming language. In this respect, it can be used in the same way as
GOLOG [18], a programming language built on a di�erent logic-based action for-
malism, namely the situation calculus. Note, however, that we can freely mix direct
programming with planning from ®rst principles.5

Once again, the e�ects of the compound action should follow from the e�ects of
its components. This property is made more precise below.

Let X denote the conjunction of the following uniqueness-of-names axioms.

UNA�Pickup;PutDown;GoThrough; ShiftPack;GoToRoom�
UNA�Got; In�

The de®nition of the planning task from Section 2 is una�ected by the inclusion of
compound events. However, it is convenient to distinguish fully decomposed plans,
comprising only primitive actions, from those that include compound actions.

Now let us take a look at a particular mail delivery task. Let Rp be the conjunction
of the above Initiates, Terminates and Releases formulae for primitive actions, and
let Rc be the conjunction of the above Initiates formulae for compound actions. Let
Dc be the conjunction of the above compound event de®nitions.

The conjunctions U of the following Connects formulae represents the layout of
rooms illustrated in Fig. 1.

5 In practice, the de®nition of GoToRoom would bene®t from the use of a heuristic to guide the search.

228 M. Shanahan / J. Logic Programming 44 (2000) 207±239



Connects�D1;R1;R2� Connects�D1;R2;R1�
Connects�D2;R2;R3� Connects�D2;R3;R2�

Let D0 denote the conjunction of the following formulae representing the initial sit-
uation depicted in Fig. 1.

InitiallyP �In�R3�� InitiallyP �In�P1;R1��
Let C denote the following HoldsAt formula, which is our goal state.

HoldsAt�In�P1;R2�; T �
Consider the following narrative of actions Dp.

Happens�GoThrough�D2�; T0� Happens�GoThrough�D1�; T 1�
Happens�Pickup�P1�; T 2� Happens�GoThrough�D1�; T 3�
Happens�PutDown�P1�; T4�
T0 < T1 T1 < T 2
T2 < T3 T3 < T 4
T4 < T

Now we have, for example,

CIRC�Rp ^ Rc; Initiates; Terminates; Releases�^
CIRC�D0 ^ Dp ^ Dc;Happens� ^ EC ^ X ^ U �

Happens�ShiftPack�P1;R3;R1;R2�; T0; T4�:
We also have

CIRC�Rp ^ Rc; Initiates; Terminates;Releases�^
CIRC�D0 ^ Dp ^ Dc;Happens� ^ EC ^ X ^ U � C:

So Dp constitutes a plan.6 Furthermore, we have

CIRC�Rp; Initiates; Terminates; Releases�^
CIRC�D0 ^ Dp;Happens� ^ EC ^ X ^ U � C:

So Dp constitutes a plan in the context of only the primitive actions. In general, if we
let Dp by any narrative description comprising only primitive actions and U be any

Fig. 1. A mail delivery domain.

6 The inclusion of compound actions violates the conditions under which the circumscription of a

narrative can be straightforwardly reduced to predicate completion, making proofs of such propositions

more complicated. Recursion makes matters particularly tricky.

M. Shanahan / J. Logic Programming 44 (2000) 207±239 229



conjunction of Connects formulae, we would like the following to hold. For any ¯u-
ent b and time point s, HoldsAt�b; s� follows from

CIRC�Rp ^ Rc; Initiates; Terminates; Releases�^
CIRC�Dp ^ Dc;Happens� ^ EC ^ X ^ U

if and only if it follows from

CIRC�Rp; Initiates; Terminates; Releases�^
CIRC�Dp;Happens� ^ EC ^ X ^ U:

We should expect such a property to follow from any correctly formulated domain
description involving compound actions, since the (chief) purpose of compound ac-
tions is to adjust the computation by cutting down on search, and not to increase the
set of consequences of the theory. However, the inclusion of compound actions in
the logical account gives meaning to partially decomposed plans, which are the in-
termediate steps in this computation. This is an example of a logical innovation
which is highly suggestive of the form the computation should take.

In general we will require our planner to ®nd fully decomposed plans, although it
is extremely useful to be able to suspend the planning process before a fully decom-
posed plan has been found, and still to have a useful result in the form of a partially
decomposed plan. The suspension of planning can be achieved in a logic program-
ming implementation with a resource-bounded meta-interpreter such as that de-
scribed by Kowalski [15]. Furthermore, the use of hierarchical decomposition
facilitates the generation of plans in progression order (®rst action ®rst), as opposed
to the regression order (last action ®rst) usually found in logic-based planners. The
generation of plans in regression order would rule out the possibility of suspending
planning in mid-execution and still receiving useful results. This issue is discussed in
more depth in Ref. [28].

This brings us to the issue of implementation. What modi®cations are required to
the abductive meta-interpreter of Section 3 to enable it to perform hierarchical de-
composition? In principle, the answer is almost none at all. When presented with
compound event de®nitions of the above form, it automatically performs hierarchi-
cal decomposition. Whenever a happens goal is reached for a compound action, its
resolution yields further happens sub-goals, and this process continues until primi-
tive actions are reached, which are added to the residue.7 However, in a practical
planning system, it may be desirable to include special code for handling decompo-
sition.

Section 3 was entitled ``Partial Order Planning�Event Calculus+Abduction''.
Now we've arrived at another instantiation of Kowalski's equation. Hierarchical
planning� event calculus with compount events+abduction. Using the methodology
of this paper, all we have to do to obtain a hierarchical planner from a partial-order
planner is represent compound actions in the obvious way.

7 Furthermore, if we make Connects abducible in the mail delivery example instead of Happens, we can

use exactly the same meta-interpreter to determine room connectivity given a narrative of actions and a

conjunction of formulae of the form HoldsAt(In(Robot,q),s). This further underlines the generic nature of
the techniques being applied here.

230 M. Shanahan / J. Logic Programming 44 (2000) 207±239



Let me conclude this section with a few words about soundness and completeness.
As far as soundness is concerned, Section 4's simple proof requires negligible mod-
i®cation to cover a suitably widened class of event calculus theories that permits the
de®nition of compound actions. The completeness proof is more subtle, but it seems
safe to conjecture that this too extends naturally to the same wider class of theories.
However, no formal proof is o�ered in the present paper.

6. Shortcomings

This section discusses three of the planner's shortcomings.8

1. Unsoundness can result when a domain is not ¯uent range restricted.
2. Incompleteness can arise with incomplete information about the initial situation.
3. Unsoundness can result with some examples involving state constraints.

An example illustrating each shortcoming is given in turn. (It should be noted that
each of these examples is excluded by the conditions attached to the soundness and
completeness theorems of Section 4.)

The following example shows how a domain description that is not ¯uent range
restricted can lead to unsoundness in the planner. When a person executes a sell

action, they become rich, but they lose possession of everything that the shop they're
in will buy.

terminates�sell; have�X�; T�:-
holds at�have�X�; T�; holds at�at�Y�; T�; buys�Y; X�:

initiates�sell; rich; T�:
buys�hws; drill�:

The person is initially at the hardware shop, not at home, and has a drill.

initially�have�drill��:
initially�at�hws��:
initially�neg�at�home���:

Now consider the following query.

:abdemo��holds at�rich; t�; holds at�have�drill�; t��; R�:
Since the person cannot become rich without losing their drill, no plan exists for this
goal, so the query should fail. Unfortunately, the query succeeds, returning the fol-
lowing trivial ``plan''.

R � ��happens�sell; t2; t2��; �before�t2; t���
To see how the planner can arrive at this faulty answer, we have to examine the way
it processes the second goal. By the time it comes to solve the second goal, it has al-
ready built the incorrect plan. Given the terminates clause at the top of the domain
description, the goal holds_at(have(drill),t) should fail. But the planner in fact
proceeds as follows. In its misguided attempt to make terminates(sell,

have(drill),t2) fail, the planner applies clause 3 of abdemo_naf, which tries to

8 Generally speaking, conventional planners su�er from exactly the same limitations.

M. Shanahan / J. Logic Programming 44 (2000) 207±239 231



make holds_at(at(Y),t2) fail. To do this, it's happy to ®nd any Y such that hold-
s_at(neg(at(Y)),t2), such as Y� home.

The problem is that the quanti®ers have been treated incorrectly in a way that is
directly analogous to ¯oundering in negation-as-failure. Speci®cally, :9xP �x� has
been treated as 9x: P(x). Enforcing the ¯uent range restricted condition ensures that
this problem cannot arise. An alternative approach would be to explicitly enumerate
the objects in the domain, and to prove : P(x) for each such object x. Although this
solution would only work for domains with a ®nite number of objects, this would be
a useful future extension to the planner. It should also be noted that some of the oth-
er abductive planners, such as Refs. [5,22], solve this problem correctly.

Next we have an example, due to Rob Miller, that illustrates the need for more
sophisticated processing in the presence of incomplete information about the initial
situation. The domain comprises two actions vaccinate1, which immunises a pa-
tient if they have blood type 1, and vaccinate2, which immunises a patient if they
have any other blood type.

initiates�vaccinate1; immune; T� : ÿholds at�type1; T�:
initiates�vaccinate2; immune; T� : ÿholds at�neg�type1�; T�:

We know nothing about the initial situation, so we do not know the patient's blood
type. This uncertainty about the initial situation is represented simply by the absence
of an initially formula for the type1 ¯uent. However, it is clear that the patient
will be immune after a vaccinate1 action followed by a vaccinate2 action, what-
ever their blood type. But the query

: ÿabdemo��holds at�immune; t��; R�
produces no answer.

One method for tackling incompletely speci®ed initial situations, which could be
adapted for the present planner, is outlined in [20]. This involves generating each
possible permutation of ¯uents consistent with what is known about the initial situ-
ation, and ®nding a plan that works for all of them.

Finally, the following example shows how the careless inclusion of state con-
straints can lead to unsoundness. First, we have the following state constraint.

holds at�happy; T� : ÿholds at�rich; T�
The domain's only action is rob_bank, which initiates rich.

initiates�rob bank; rich; T�
In the initial situation, we have neg(rich) and neg(happy).

initially(neg(rich))

initially(neg(happy))

Now, if we present the planner with the query,

: ÿabdemo��holds at�happy; t��; R�
we get the answer,

R � ��happens�rob bank; t2; t2��; �before�t2; t���:
At ®rst glance, this seems right. But in fact, the conjunction of this narrative R with
the domain description and event calculus axioms yields both holds_at(happy,t)

232 M. Shanahan / J. Logic Programming 44 (2000) 207±239



and holds_at(neg(happy),t), and the planner is therefore not generally sound in
the presence of state constraints. The source of the problem is the formula initial-

ly(neg(happy)). Inspection of the event calculus axioms reveals that, if a ¯uent is
explicitly declared as initially false, then it can only be initiated directly by an event,
not indirectly by a state constraint. Omission of this initially formula yields the de-
sired behaviour.

A possible way to extend the soundness and completeness theorems of Section 4
to encompass state constraints might be to enforce a partition of ¯uents into prim-
itive and derived. Only derived ¯uents would be permitted on the left-hand side of a
state constraint, and only primitive ¯uents would be allowed as arguments to Initi-
ates and Terminates formulae.

7. Implementation and e�ciency issues

The planner in Appendix A is very ine�cient, and is only intended as a theoret-
ically elegant starting point for building a more practical system. A more e�cient
and usable planner can be obtained from the elegant planner via the following steps.
· Numerous cuts can be inserted to eliminate redundant backtracking and duplicate

solutions.
· The transitive closure of temporal ordering constraints in the residue can be main-

tained and passed as a parameter along with the residue itself, instead of being
computing by calls to demo_before. A number of experiments were carried out
which demonstrated that this enhancement considerably improves the perfor-
mance of the planner.

· When negated clipped and declipped lemmas are re-proved in response to ad-
ditions of actions to the residue, redundant computation can be reduced by focus-
ing on only the most recently added action, and by looking only at the clipped

and declipped lemmas that refer to intervals within which that event falls.
A fully commented listing of the planner is available electronically, and the URL

is given in Appendix A.
The performance of the e�cient version of the planner was evaluated using two

benchmark problems. The aim here is not to compete with other planners in terms
of e�ciency, but rather to demonstrate that the adoption of a theorem proving ap-
proach has not incurred any hidden exponential complexity. In Test A, the planner
was run on the shopping trip example from Section 2, with an increasing number of
objects to be bought. The results are given in Table 2. All the test were carried out
using an Apple Macintosh PowerBook 1400 cs, running LPA MacProlog 32, with
unoptimised code. Timings are in seconds. The average of three runs is given to com-
pensate for small variations from run to run.

Actions in plans in Test A can be carried out in any order: the agent can choose
any order in which to buy the objects. In Test B, on the other hand, the planner was

Table 2

Test A results

Objects 6 8 10 12 14 16

Time 0.44 0.84 1.52 2.22 3.69 5.52

M. Shanahan / J. Logic Programming 44 (2000) 207±239 233



run on an example involving a chain of preconditions, and generates totally ordered
plans. The performance of the planner was investigated as the number of precondi-
tions increases. The results are given in Table 3.

In both tests, the planner's performance is polynomial, and in Test B it is nearly
linear. This suggests that there is indeed no hidden exponential cost to adopting a
theorem proving approach to planning. However, the planner fares less well on ex-
amples, such as the ¯at tyre problem, on which recent planners such as Satplan [13]
and Graphplan [1] perform more impressively. This is unsurprising, though, as par-
tial-order planners like UCPOP also compare unfavourably to these planners on
such examples.

A further planner has been implemented, having the following features.
· If run directly in Prolog, the planner in Appendix A inherits Prolog's depth-®rst

search strategy. Completeness is then sacri®ced, and many straightforward plan-
ning problems give rise to looping. Accordingly, the practical implementation uses
an iterative deepening search strategy, where length of plan is used as the depth
bound.

· With respect to hierarchical planning, rather than relying on the automatic de-
composition carried out by SLDNF-resolution as described in the last section,
the practical planner has special code for decomposing compound actions. This
enables decomposition and partial-order planning to be carefully interleaved in
such a way that useful partial results are obtained in the middle of the planning
process. (See Ref. [28].)
This planner can also be downloaded, via the URL given in Appendix A.
Although it would be hard to construct a formal proof, the intention is that all of

the above described modi®cations to the basic planner in Appendix A are meaning-
preserving in a sense that preserves soundness and completeness.

8. Concluding remarks

This paper continues a line of work on event calculus planning begun in Ref. [7].
Eshghi's techniques were simpli®ed (and applied to temporal explanation) in Ref.
[25]. But neither of these papers described a practical planner. The ®rst usable event
calculus planner was developed by Missiaen et al. [22], although that planner deals
incorrectly with certain problems, a drawback addressed by the planner of Ref. [5].
Other abductive event calculus planners have been developed by Chleq [4] and Jung
et al. [11]. All of these planners are based on similar ideas to those presented in this
paper: all use abductive logic programming techniques to generate plans using a sim-
ilar style of representation via initiates, terminates and happens predicates.

The present paper goes beyond the work of its predecessors in several ways. First,
it tackles the issue of hierarchical planning. Second, the event calculus formalism
used is not just a logic program, but is speci®ed in ®rst-order predicate calculus aug-

Table 3

Test B results

Preconds 6 8 10 12 14 16

Time 0.06 0.11 0.13 0.20 0.26 0.35

234 M. Shanahan / J. Logic Programming 44 (2000) 207±239



mented with circumscription. Third, the paper exposes close correspondences with
existing planning algorithms. Since the planner is simply the result of applying gen-
eral purpose theorem proving techniques to a general purpose action formalism, it
can be argued that this illuminates the nature of several commonly deployed con-
cepts in the planning literature. Fourth, unlike the planners in Refs. [11,22], the plan-
ner of the present paper can handle actions with context-dependent e�ects. Finally,
since it uses abduction to solve initiates and terminates goals, the planner is
both sound and complete, and, like the planner of Ref. [5], performs correctly on
the anomalous examples described in Ref. [22].

A number of general-purpose procedures for abductive logic programming exist,
such as SLDNFA [6], ACLP [12], and the IFF procedure [8], that can also be applied
to planning or reasoning about action. These procedures are more complex than the
present abductive planner, but soundness and completeness theorems have been de-
veloped for them which cover a wider class of examples than the ¯uent range restrict-
edness condition used here will allow. A detailed comparison of these procedures
with the present planner is highly desirable, but is beyond the scope of the present
paper.

Recently, a resource-bounded version of the planner, alongside a similar imple-
mentation of abductive sensor data assimilation, has been deployed on a miniature
mobile robot in a simple mail delivery domain [28]. Work continues along these lines.

Acknowledgements

Thanks to Rob Miller, Marc Denecker, and two anonymous referees. This work
was carried out as part of the EPSRC funded project GR/L20023 ``Cognitive Robot-
ics''.

Appendix A

A companion website to this paper can be accessed via http://www.ee.ic.ac.
uk/�mpsha/planners.html. This website contains the following.
· Version 4.2 of the planner. This is the bare, uncommented, pure but ine�cient ver-

sion given below.
· Version 1.9a of the planner. This is the faster version that was used for the bench-

marks described in Section 6. It's reasonably e�cient at partial-order planning,
but does not handle hierarchical planning well.

· Version 1.13 of the planner. This version of the planner uses an iterative deepening
search strategy, and has special code for hierarchical decomposition. It's less e�-
cient for straight partial-order planning than version 1.9a.

· Code for each of the examples given in the paper.
· Code for the two benchmark examples described in Section 6.

All the code is written in LPA MacProlog 32, but should be easy to port to other
Prolog systems.

There follows a complete listing, without comments, of the pure but ine�cient
version of the planner used for the proofs in Section 6.

M. Shanahan / J. Logic Programming 44 (2000) 207±239 235



/*
ABDUCTIVE EVENT CALCULUS

MURRAY SHANAHAN

Version 4.2

Stripped down, cut-free version, without comments

*/
abdemo(Gs,R) :- init_gensym(t), abdemo(Gs,[[ ],[ ]],R,[ ],N).

abdemo([ ],R,R,N,N).

abdemo([holds_at(F1,T)jGs1],R1,R3,N1,N4) :-

F1 n� neg(F2), abresolve(initially(F1),R1,Gs2,R1),

append(Gs2,Gs1,Gs3), add_neg([clipped(0,F1,T)],N1,N2),
abdemo_naf([clipped(0,F1,T)],R1,R2,N2,N3),
abdemo(GS3,R2,R3,N3,N4).

abdemo([holds_at(F1,T3)jGs1],R1,R5,N1,N4) :-

F1 n� neg(F2), abresolve(initiates(A,F1,T1),R1,Gs2,R1),

abresolve(happens(A,T1,T2),R1,[ ],R2),

abresolve(before(T2,T3),R2,[ ],R3),

append(Gs2,Gs1,Gs3),

add_neg([clipped(T1,F1,T3)],N1,N2),
tt abdemo_nafs(N2,R3,R4,N2,N3),
abdemo(Gs3,R4,R5,N3,N4).

abdemo([holds_at(neg(F),T)jGs1],R1,R3,N1,N4) :-

abresolve(initially(neg(F)),R1,Gs2,R1),

append(Gs2,Gs1,Gs3), add_neg([declipped(0,F,T)],N1,N2),
abdemo_naf([declipped(0,F,T)],R1,R2,N2,N3),
abdemo(Gs3,R2,R3,N3,N4).

abdemo([holds_at(neg(F),T3)jGs1],R1,R5,N1,N4) :-

abresolve(terminates(A,F,T1),R1,Gs2,R1),

abresolve(happens(A,T1,T2),R1,[ ],R2),

abresolve(before(T2,T3),R2,[ ],R3),

append(Gs2,Gs1,Gs3),

add_neg([declipped(T1,F,T3)],N1,N2),
abdemo_nafs(N2,R3,R4,N2,N3),
abdemo(Gs3,R4,R5,N3,N4).

abdemo([GjGs1],R1,R3,N1,N2) :-

abresolve(G,R1,Gs2,R2), append(Gs2,Gs1,Gs3),

abdemo(Gs3,R2,R3,N1,N2).

abresolve(terms_or_rels(A,F,T),R,Gs,R) :-axiom(releases(A,F,T),Gs).

abresolve(terms_or_rels(A,F,T),R,Gs,R) :-

axiom(terminates(A,F,T),Gs).

abresolve(inits_or_rels(A,F,T),R,Gs,R) :-axiom(releases(A,F,T),Gs).

abresolve(inits_or_rels(A,F,T),R,Gs,R):-axiom(initiates(A,F,T),
Gs).

236 M. Shanahan / J. Logic Programming 44 (2000) 207±239



abresolve(happens(A,T),R1,Gs,R2) :-

abresolve(happens(A,T,T),R1,Gs,R2).

abresolve(happens(A,T1,T2),[HA,BA],[ ],[HA,BA]) :-

member(happens(A,T1,T2),HA).

abresolve(happens(A,T,T)),[HA,BA],[ ],[[happens(A,T,T) jHA],BA]) :-

executable(A), skolemise(T).

abresolve(before(X,Y),R,[ ],R) :- demo_before(X,Y,R).

abresolve(before(X,Y),R1,[ ],R2) :-

n+ demo_before(X,Y,R1), n+demo_beq(Y,X,R1),
add_before(X,Y,R1,R2).

abresolve(diff(X,Y),R,[ ],R) :- X n� Y.

abresolve(G,R,Gs,R) :- axiom(G,Gs).

abdemo_nafs([ ],R,R,N,N).

abdemo_nafs([NjNs],R1,R3,N1,N3) :-

abdemo_naf(N,R1,R2,N1,N2),abdemo_nafs(Ns,R2,R3,N2,N3).

abdemo_naf([clipped(T1,F,T4)jGs1],R1,R2,N1,N2) :-

findall(Gs3,

(abresolve(terms_or_rels(A,F,T2),R1,Gs2,R1),
abresolve(happens(A,T2,T3),R1,[ ],R1),

append([before(T1,T3),before(T2,T4)jGs2],Gs1,Gs3)),Gss),
abdemo_nafs(Gss,R1,R2,N1,N2).

abdemo_naf([declipped(T1,F,T4)jGs1],R1,R2,N1,N2) :-

findall(Gs3,

(abresolve(inits_or_rels(A,F,T2),R1,Gs2,R1),
abresolve(happens(A,T2,T3),R1,[ ],R1),

append([before(T1,T3),before(T2,T4)jGs2],Gs1,Gs3)),Gss),
abdemo_nafs(Gss,R1,R2,N1,N2).

abdemo_naf([holds_at(F1,T)jGs],R1,R2,N1,N2) :-

opposite(F1,F2), abdemo([holds_at(F2,T)],R1,R2,N1,N2).

abdemo_naf([holds_at(F,T)jGs],R1,R2,N1,N2) :-

abdemo_naf(Gs,R1,R2,N1,N2).

abdemo_naf([before(X,Y)jGs],R,R,N,N) :- X� Y.

abdemo_naf([before(X,Y)jGs],R,R,N,N) :- X n� Y, demo_before(Y,X,R).

abdemo_naf([before(X,Y)jGs],R1,R2,N1,N2) :-

X n� Y, n+ demo_before(Y,X,R1),
abdemo_naf(Gs,R1,R2,N1,N2).

abdemo_naf([before(X,Y)jGs],R1,R2,N,N) :-

X n� Y, n� demo_before(Y,X,R1),
n+ demo_beq(X,Y,R1), add_before(Y,X,R1,R2).

M. Shanahan / J. Logic Programming 44 (2000) 207±239 237



abdemo_naf([GjGs1],R,R,N,N) :-

G n� clipped(T1,F,T2), G n� declipped(T1,F,T2),

G n� holds_at(F,T), G n� before(X,Y),

n+ abresolve(G,R,Gs2,R).

abdemo_naf([G1jGs1],R1,R2,N1,N2) :-

G1 n� clipped(T1,F,T2), G1 n� declipped(T1,F,T2),

G1 n� holds_at(F,T), G1 n� before(X,Y),

findall(Gs3,(abresolve(G1,R1,Gs2,R1), append(Gs2,Gs1,Gs3)),Gss),

Gss n� [ ], abdemo_nafs(Gss,R1,R2,N1,N2).

demo_before(X,Y,[HA,BA]) :- demo_before(X,Y,BA,[ ]).

demo_before(0,Y,R,L) :- Y n� 0.

demo_before(X,Y,R,L) :- X n� 0, member(before(X,Y),R).

demo_before(X,Y,R,L) :-

X n� 0, n+ member(before(X,Y),R), member(X,L).

demo_before(X,Y,R,L) :-

X n� 0, n+ member(before(X,Y),R),n+ member(X,L),

member(before(X,Z),R), demo_before(Z,Y,R,[XjL]).
demo_beq(X,X,R).

demo_beq(X,Y,R) :- X n� Y, demo_before(X,Y,R).

add_before(X,Y,[HA,BA]) :- member(before(X,Y),BA).

add_before(X,Y,[HA,BA],[HA,[before(X,Y)jBA] ]) :-

n+ member(before(X,Y),BA), n+demo_beq(Y,X,[HA,BA]).
add_neg(N,Ns,Ns) :- member(N,Ns).

add_neg(N,Ns,[NjNs]) :- n+ member(N,Ns).

skolemise(T) :- gensym(t,T).

opposite(neg(F),F).

opposite(F1,neg(F1)) :- F1 n� neg(F2).

References

[1] A.L. Blum, M.L. Furst, Fast planning through planning graph analysis, Arti®cial Intelligence 90

(1997) 281±300.

[2] D. Chapman, Planning for conjunctive goals, Arti®cial Intelligence 32 (1987) 333±377.

[3] L. Chittaro, A. Montanari, E�cient temporal reasoning in the cached event calculus, Computational

Intelligence 12 (3) (1996) 359±382.

[4] N. Chleq, Constrained resolution and abductive temporal reasoning, Computational Intelligence 12

(3) (1996) 383±406.

[5] M. Denecker, L. Missiaen, M. Bruynooghe, Temporal reasoning with abductive event calculus,

Proceedings ECAI 92, 384±388.

[6] M. Denecker, De Schreye, SLDNFA: An abductive procedure for abductive logic programs, Journal

of Logic Programming 34 (2) (1998) 111±167.

238 M. Shanahan / J. Logic Programming 44 (2000) 207±239



[7] K. Eshghi, Abductive planning with event calculus, in: Proceedings of the Fifth International

Conference on Logic Programming, 1988, pp. 562±579.

[8] T.H. Fung, R.A. Kowalski, The IFF proof procedure for abductive logic programming, Journal of

Logic Programming 33 (2) (1997) 151±165.

[9] C. Green, Applications of theorem proving to problem solving, Proceedings IJCAI 69, 219±240.

[10] C.G. Jung, Situated abstraction planning by abductive temporal reasoning, Proceedings ECAI 98,

383±387.

[11] C.G. Jung, K. Fischer, A. Burt, Multi-agent planning using an abductive event calculus, DFKI

Report RR-96-04 DFKI, Germany, 1996.

[12] A.C. Kakas, A. Michael, C. Mourlas, ACLP: a case for non-monotonic reasoning, in: Proceedings of

the Seventh International Workshop on Non-Monotonic Reasoning (NM 98).

[13] H. Kautz, B. Selman, Pushing the envelope: planning, propositional logic and stochastic search,

Proceedings AAAI 96, 1194±1201.

[14] R.A. Kowalski, Algorithm�Logic+Control, Communications of the ACM 22 (1979) 424±436.

[15] R.A. Kowalski, Using meta-logic to reconcile reactive with rational agents, in: K.R. Apt, F. Turini

(Eds.), Meta-Logics and Logic Programming, MIT Press, Cambridge, 1995, pp. 227±242.

[16] R.A. Kowalski, M.J. Sergot, A logic-based calculus of events, New Generation Computing 4 (1986)

67±95.

[17] H. Levesque, What is planning in the presence of sensing? Proceedings AAAI 96, 1139±1146.

[18] H. Levesque, R. Reiter, Y. Lesp�erance, F. Lin, R.B. Scherl, GOLOG: a logic programming language

for dynamic domains, The Journal of Logic Programming 31 (1997) 59±83.

[19] V. Lifschitz, Circumscription, in: D.M. Gabbay, C.J. Hogger, J.A. Robinson (Eds.), The Handbook

of Logic in Arti®cial Intelligence and Logic Programming, Volume 3: Nonmonotonic Reasoning and

Uncertain Reasoning, Oxford University Press, Oxford, 1994, pp. 297±352.

[20] R.S. Miller, Situation calculus speci®cations for event calculus logic programs, in: Proceedings of the

Third International Conference on Logic Programming and Non-Monotonic Reasoning, Lexington,

KY, USA, Springer, Berlin, 1995, pp. 217±230.

[21] L. Missiaen, Localized abductive planning for robot assembly, Proceedings of the 1991 IEEE

Conference on Robotics and Automation, pp. 605±610.

[22] L. Missiaen, M. Bruynooghe, M. Denecker, CHICA: A planning system based on event calculus, The

Journal of Logic and Computation 5 (5) (1995) 579±602.

[23] J.S. Penberthy, D.S. Weld, UCPOP: A Sound, Complete, Partial Order Planner for ADL,

Proceedings KR 92, 103±114.

[24] S. Russell, P. Norvig, Arti®cial Intelligence: A modern Approach, Prentice-Hall International,

Englewood Cli�s, 1995.

[25] M.P. Shanahan, Prediction is deduction but expansion is abduction, in: Proceedings IJCAI 89, pp.

1055±1060.

[26] M.P. Shanahan, Solving the Frame Problem: A Mathematical Investigation of the Common Sense

Law of Inertia, MIT Press, Cambridge, 1997.

[27] M.P. Shanahan, Event calculus planning revisited, in: Proceedings of the Fourth European

Conference on Planning (ECP 97), Springer Lecture Notes in Arti®cial Intelligence no. 1348, 1997,

pp. 390±402.

[28] M.P. Shanahan, Reinventing Shakey, Working Notes of the 1998 AAAI Fall Symposium on

Cognitive Robotics, pp. 12±135.

M. Shanahan / J. Logic Programming 44 (2000) 207±239 239


