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MOTIVATION STRUCTURED DECISION FOREST (SDF)

Interventional procedures in cardiovascular dis- Standard Decision Tree Structured Decision Tree
eases often require ultrasound (US) image guid- II

= In SDFs [1], the output space
YV is defined by structured seg-
mentation labels rather than a
single label y; € {0,1} poste-
rior distribution.
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ance. These US images must be combined with
pre-operatively acquired tomographic images to
provide a roadmap for the intervention. Exist-
ing multi-modal US registration techniques often
do not achieve reliable registration due to low
US image quality. To address this problem, a
novel medical image representation based on a
trained decision forest named probabilistic edge Leaf nodes: [
map (PEM) is proposed. PEMs generate similar Node splits: ¢
anatomical representations from different modal- | | Tnput space: X € R(Me)”
ities and can thus guide a multi-modal image reg- Output space: Y € R(Ma)
istration more robustly and accurately.

— The standard entropy based
training objectives can be used
to train weak classifiers as long
as the label patches can be
clustered into two or more sub-
groups at each tree node split.

PROBABILISTIC EDGE MAPS (PEMS)

. The detected anatomical landmark
Edge Map Propertles points are used to initialize the

multi-modal image registration.
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Computed PEMs

= Modality independent and compu-
tationally efficient (20 sec/image)

= Compared to the self-similarity
(SSC) |2] and gradient magnitude - Regression Node
(GM) representations, PEMs pro- »: Mean offset vector
duce more accurate and smoother * : Confidence measure
anatomical representations.
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MULTI-MODAL IMAGE REGISTRATION FRAMEWORK
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CT and 3D-US  Generated PEMs  ipapes and PEMs  block matching rigid registration the PEM Space, and then they are J ' |

registered using only the generated
PEM representations.

REGISTRATION RESULTS

The images are overlaid on top of each other.
The US images are shown in green color map and
the MR/CT images are in gray in color map.

= Local correlation coeflicient is used
as the similarity metric.

The images are first globally and
then locally aligned using robust
block matching and B-spline FFD

based registration methods.

US/CT AND US/MR IMAGE REGISTRATION EVALUATION

Experimental Details
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tration methods.




