Imperial College London

Multi-Input Cardiac Image Super-Resolution using Convolutional Neural Networks

Ozan Oktay, Wenjia Bai, Matthew Lee, Ricardo Guerrero, Konstantinos Kamnitsas, Jose Caballero, Antonio de Marvao, Stuart Cook, Declan O'Regan, and Daniel Rueckert

> 19th International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI 2016) October 2016, Athens

Clinical Motivation

SAX Cardiac MR Image Acquisition

- Large slice thickness (8-10 mm)
 - Due to constrains on SNR, acquisition and breath-hold time
- It hampers subsequent image analysis and quantitative measurements.

Clinical Motivation

SAX Cardiac MR Image Acquisition

- Large slice thickness (8-10 mm)
 - Due to constrains on SNR, acquisition and breath-hold time
- It hampers subsequent image analysis and quantitative measurements.
- LAX image acquisitions are performed to complement SAX images

Low and High Resolution Images

External Example & Model Based SR

I. Coupled Dictionary Learning and S. Coding [Yang et al TIP'12, Bhatia K. ISBI'14]

Imperial College London

External Example & Model Based SR

- I. Coupled Dictionary Learning and S. Coding [Yang et al TIP'12, Bhatia K. ISBI'14]
- II. Multi-Atlas Based SR Techniques [Shi et al. MICCAI'13]

Imperial College London

External Example & Model Based SR

- I. Coupled Dictionary Learning and S. Coding [Yang et al TIP'12, Bhatia K. ISBI'14]
- II. Multi-Atlas Based SR Techniques [Shi et al. MICCAI'13]
- III. Decision Forest based Regression [Alexander et al MICCAI'14, Schulter S. CVPR'15]

External Example & Model Based SR

- I. Coupled Dictionary Learning and S. Coding [Yang et al TIP'12, Bhatia K. ISBI'14]
- II. Multi-Atlas Based SR Techniques [Shi et al. MICCAI'13]
- III. Decision Forest based Regression [Alexander et al MICCAI'14, Schulter S. CVPR'15]
- IV. Neural Network based Regression
 - i. CNNs

[Dong et al. ECCV'14, Shi et al. CVPR'16]

ii. CNNs + GANs [Ledig et al Arxiv Sept'16]

Imperial College Loi

LR Image

Convolution and Non-Linear Units

HR Image

Components of the model

- 3D Convolution and Deconvolution (inverse convolution) Kernels
- Rectified Linear Units (ReLUs)
- Regression Based Cost Function (Smooth L1-Norm)
- Input (2D Stack-LR) and Output (3D-HR) Images

Proposed 3D-SR Model (Single-Image)

Proposed improvements on SR-CNN model:

- I. Residual Learning
 - An easier regression problem to solve
 - Robust and faster model convergence

Proposed improvements on SR-CNN model:

- II. Learning Upsampling Layers
 - End-to-end training of convolution and upsampling kernels

Proposed improvements on SR-CNN model:

- III. Multi-Input model extension
 - Constrains the regression task with more input data
 - In cardiac imaging usually multiple image stacks are acquired.

- Siamese model is used to combine information from multiple stacks
- The learned kernels can be easily integrated in this multi-model.

Method Evaluation Strategy

- I. Image Quality Analysis
 - Peak-to-Signal-Noise Ratio (PSNR) (Images from 300 Subjects)
 - Structural Similarity Index Measure (SSIM) [Wang et al. IEEE TIP'04]

- II. Subsequent Image Analysis (SR is used for pre-processing)
 - Cardiac Image Segmentation (Images from 18 Subjects)
 - Cardiac Motion Tracking (Images from 10 Subjects)

- III. Our method is compared against:
 - Linear, C-Spline, MAPM [Shi MICCAI'13], CNN [Dong TPAMI'15]

Table 1: Quantitative comparison of different image upsampling methods.

Method	PSNR (dB)	SSIM	
Linear	$20.83{\pm}1.10$	$.70 {\pm} .03$	
CSpline	$22.38{\pm}1.13$	$.73 {\pm} .03$	
MAPM	$22.75 {\pm} 1.22$	$.73 {\pm} .03$	
$\operatorname{sh-CNN}$	$23.67{\pm}1.18$	$.74 {\pm} .02$	
CNN	$24.12{\pm}1.18$	$.76 {\pm} .02$	
de-CNN	$24.45{\pm}1.20$	$.77{\pm}.02$	

- MAPM: Multi-Atlas Patch Match [Shi et al MICCAI'13]
- sh-CNN: 4 Layer Network without Deconvolution Layer [Dong TPAMI'15]
- CNN: 7 Layer Network without Deconvolution Layer
- de-CNN: 7 Layer Network with Deconvolution Layer

Image Quality Assessment

Upsampling x5

Inference Time: 6-8 Seconds for image size (140x140x10)

Image Quality Assessment

- nr-CNN: 7 Layer Network without Residual Learning.
- de-CNN: 7 Layer Network with Residual Learning

Table 2: Image quality results obtained with three different models: single-image de-CNN, Siamese, and multi-channel (MC) CNN.

Method	PSNR (dB)	SSIM
de-CNN(SAX)	$24.76 {\pm} 0.48$	$.807 {\pm} .009$
$\mathrm{Siamese}(\mathrm{SAX}/4\mathrm{CH})$	$25.13 {\pm} 0.48$	$.814 {\pm} .013$
MC(SAX/4CH)	$25.15 {\pm} 0.47$	$.814 \pm .012$
MC(SAX/2/4CH)	$25.26{\pm}0.37$	$\textbf{.818}{\pm}\textbf{.012}$

- MC (SAX/4CH): Multi-Channel input SAX and 4 Chamber LAX Images
- MC (SAX/2/4CH): Multi-Channel input SAX and 2/4 Chamber LAX Images

Motion Tracking Experiments (SR is used as a preprocessing method)

Linear Interp Img Linear Interp

CNN-SR Img CNN-SR

High Resolution Img Linear Interp CNN-SR

Surface to Surface Distance (Linear vs HR) 5.50 mm Surface to Surface Distance (Proposed vs HR) 4.73 mm

Motion Tracking Experiments (SR is used as a preprocessing method)

Linear Interp Img Linear Interp

CNN-SR Img CNN-SR

High Resolution Img Linear Interp CNN-SR

Table 3: Segmentation results for different upsampling methods, CSpline (p = .007) and MAPM (p = .009). They are compared in terms of mean and Hausdorff distances (MYO) and LV cavity volume differences (w.r.t. manual annotations).

Ex	Haus Dist (mm)	$7.74{\pm}1.73$	$7.29{\pm}1.63$	$6.83{\pm}1.61$	$\boldsymbol{6.67 {\pm} 1.77}$	$6.70 {\pm} 1.85$
) di	Mean Dist (mm)	$1.49 {\pm} 0.30$	$1.45 {\pm} 0.29$	$1.40{\pm}0.29$	$\boldsymbol{1.38{\pm}0.29}$	$1.38 {\pm} 0.28$
(\mathbf{c})	LV Vol Diff (ml)	$11.72{\pm}6.96$	$10.80{\pm}6.46$	$9.55{\pm}5.42$	$9.09{\pm}5.36$	$8.24{\pm}5.47$
		Linear	CSpline	MAPM	de-CNN	High Res

 Multi-Atlas patch based label fusion [Coupe NeuroImage'11] is used to segment images (20 Atlases)

Difference Between Trained and Fixed Deconvolution Kernels

With Learned Kernels

- I. SR as a preprocessing step / Could it replace standard interpolation techniques ?
- II. Importance of learning upsampling filters and residual connections in SR models.
- III. Models could be trained with combined images and stacks acquired from different directions.
- IV. Future work
 - a. Other imaging modalities or applications (DTI or MR Image Reconstruction)
 - b. Perceptual loss function: Could it be applicable to medical images ?

Imperial College London

Multi-Input Cardiac Image Super-Resolution using Convolutional Neural Networks

Acknowledgments:

Poster Session 1 – Cardiac Image Analysis (CARD) – PS1.40

Additional Details about the SR-CNN Model

Model Training Strategy

- I. Batch Normalization [loffe and Szegedy ICML'15]
 - Faster Model Convergence.
 - Reduces the dependency of model on filter coefficient initialization.
- II. Data Augmentation
 - Training data, LR-HR pairs, are generated from 3D-HR Images based on the following model [Shi et al. MICCAI'13]:
 - Trained with cine cardiac HR MR images acquired from 930 healthy adult subjects.

$$x = DBSMy + \eta$$

- III. Smooth L1-Norm Function
 - Improves the convergence when outliers are observed in training data.

Table 1: Quantitative comparison of different image upsampling methods.

Exp(a)	PSNR (dB)	SSIM	# Filters/Atlases	
Linear	$20.83{\pm}1.10$	$.70 {\pm} .03$	_	
CSpline	$22.38{\pm}1.13$	$.73 {\pm} .03$	—	
MAPM	$22.75 {\pm} 1.22$	$.73 {\pm} .03$	350	
sh-CNN	$23.67{\pm}1.18$	$.74 {\pm} .02$	$64,\!64,\!32,\!1$	
CNN	24.12 ± 1.18	$.76 {\pm} .02$	$64,\!64,\!32,\!16,\!8,\!4,\!1$	
de-CNN	$24.45{\pm}1.20$	$.77{\pm}.02$	$64,\!64,\!32,\!16,\!8,\!4,\!1$	
	Exp (a) Linear CSpline MAPM sh-CNN Sh-CNN CNN de-CNN	Exp (a)PSNR (dB)Linear 20.83 ± 1.10 CSpline 22.38 ± 1.13 MAPM 22.75 ± 1.22 sh-CNN 23.67 ± 1.18 CNN 24.12 ± 1.18 de-CNN 24.45 ± 1.20	Exp (a)PSNR (dB)SSIMLinear 20.83 ± 1.10 $.70 \pm .03$ CSpline 22.38 ± 1.13 $.73 \pm .03$ MAPM 22.75 ± 1.22 $.73 \pm .03$ sh-CNN 23.67 ± 1.18 $.74 \pm .02$ CNN 24.12 ± 1.18 $.76 \pm .02$ de-CNN 24.45 ± 1.20 $.77 \pm .02$	Exp (a)PSNR (dB)SSIM# Filters/AtlasesLinear 20.83 ± 1.10 $.70 \pm .03$ $-$ CSpline 22.38 ± 1.13 $.73 \pm .03$ $-$ MAPM 22.75 ± 1.22 $.73 \pm .03$ 350 sh-CNN 23.67 ± 1.18 $.74 \pm .02$ $64,64,32,1$ CNN 24.12 ± 1.18 $.76 \pm .02$ $64,64,32,16,8,4,1$ de-CNN 24.45 ± 1.20 $.77 \pm .02$ $64,64,32,16,8,4,1$

- MAPM: Multi-Atlas Patch Match [Shi et al MICCAI'13]
- sh-CNN: 4 Layer Network without Deconvolution Layer [Dong TPAMI'15]
- CNN: 7 Layer Network without Deconvolution Layer
- de-CNN: 7 Layer Network with Deconvolution Layer

SR-CNN (9-5-5) - ImageNet

Low Resolution Input Image

Cubic Spline Interpolation SR-CNN (9-5-5) Output Image

Upsampling x4

A 3-Layer model is trained with ImageNet Dataset

Image Quality Assessment

Upsampling x5

Inference Time: 6-8 Seconds for image size (140x140x10)