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Abstract

Prior approaches to flow- and context-sensitive points-to analysis (FCPA) have not scaled;

for top-down approaches, the problem centers on repeated analysis of the same procedure;

for bottom-up approaches, the abstractions used to represent procedure summaries have

not scaled while preserving precision. Bottom-up approaches for points-to analysis require

modelling unknown pointees accessed indirectly through pointers that may be defined in

the callers.

We propose a novel abstraction called the Generalized Points-to Graph (GPG) which

views points-to relations as memory updates and generalizes them using the counts of indi-

rection levels leaving the unknown pointees implicit. This allows us to construct GPGs as

compact representations of bottom-up procedure summaries in terms of memory updates

and control flow between them. Their compactness is ensured by the following optimiza-

tions: strength reduction reduces the indirection levels, redundancy elimination removes

redundant memory updates and minimizes control flow (without over-approximating data

dependence between memory updates), and call inlining enhances the opportunities of

these optimizations.

Our quest for scalability of points-to analysis leads to the following insight: The

real killer of scalability in program analysis is not the amount of data but the amount

of control flow that it may be subjected to in search of precision. The effectiveness of

GPGs lies in the fact that they discard as much control flow as possible without losing

precision (i.e., by preserving data dependence without over-approximation). This is the

reason why the GPGs are very small even for the main procedures that contain the effect

of entire programs. This allows our implementation to scale to 158kLoC for C programs.

At a more general level, GPGs provide a convenient abstraction of memory and

memory transformers in the presence of pointers. Future investigations can try to combine

it with other abstractions for static analyses that can benefit from points-to information.
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Chapter 1

Introduction

This chapter sets the context of our work in points-to analysis in many ways. We first

describe the role of points-to analysis on other program analyses and optimizations (Sec-

tion 1.1). Section 1.2 describes various design features of points-to analysis and lists our

choices. Section 1.3 reviews some basic concepts and then describes different types of pro-

cedure summaries. It then describes the challenges in constructing procedure summaries

for flow- and context-sensitive points-to analysis and limitations of past approaches. Sec-

tion 1.4 describes the key ideas of our approach that overcome the limitations and the

contributions of our work. Section 1.5 provides the organization of the rest of the thesis.

1.1 The Influence of Pointers on Program Analysis

Given the ubiquity of computer software, its correctness and efficiency are becoming

more and more critical. These concerns can be addressed by using program analysis

which discovers the information representing relevant behaviors of programs. This process

is almost always automated and the required information is computed statically (i.e.,

without executing the program) or dynamically (i.e., during program execution).

Common programming languages used for software development employ pointers

which hold addresses of data allowing indirect accesses. This increases both convenience

and efficiency but at a price: reasoning about programs becomes difficult making it harder

to optimize or verify them. The indirect accesses through pointers can be resolved through

a points-to analysis. The precision of this resolution influences the precision and scala-

bility of other program analyses and their applications. As illustrated in Figure 1.1, in

1



2 CHAPTER 1. INTRODUCTION

t = 5;

y = &t;

x = &m;

∗x = 5;

print ∗y;

t = 5;

y = &t;

x = &m;

m = 5;

print t;

t = 5;

y = &t;

x = &m;

m = 5;

print 5;

print 5;

Program
After Pointer

Analysis

After Constant

Propagation

After Dead

Code Elimination

Figure 1.1: The role of points-to analysis in other analyses and optimizations.

the presence of pointers, points-to analysis is a pre-requisite for other analyses and opti-

mizations. Computationally intensive analyses such as model checking are noted as being

ineffective on programs containing pointers, partly because of imprecision of points-to

analysis [3, 5, 13, 24, 45, 46].

Points-to analysis is, in general, undecidable [44, 55, 56, 79, 81]. Hence, all points-to

analyses compute a suitable approximation of actual runtime points-to information. A

large number of points-to analysis methods have been published that make a trade-off

between the efficiency of the analysis and the precision of the information computed.

Many investigations reported in the literature have described the popular points-to anal-

ysis methods and have presented a comparative study of the methods with respect to

scalability and precision [40, 42, 43, 48, 60, 87, 95, 99, 101]. We have described related

work in Chapter 2.

1.2 The Context of the Proposed Points-to Analysis

Work

For practical usefulness, a points-to analysis should be interprocedural (i.e., it should

handle the effects of procedure calls). It is a challenge to scale points-to analysis to
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Nature
Intraprocedural

Analysis

Path sensitivity ×

Flow sensitivity X

Field sensitivity X

Nature
Interprocedural

Analysis

Context sensitivity X

Top-down traversal ×

Bottom-up traversal X

Figure 1.2: Design characteristics of our GPG-based points-to analysis.

programs containing hundreds of procedures. It is commonly believed that a points-to

analysis cannot be precise and scalable at the same time. This leads to the tyranny

of OR forcing a trade-off between precision and scalability. Hence, most researchers

and practitioners have focussed on engineering approximations thereby trading precision

for scalability or vice-versa. My work seeks the genius of AND to achieve precision and

scalability simultaneously (relative to abstractions for handling undecidability). Figure 1.2

lists all the design features that affect the precision and scalability of a points-to analysis

and specifies the features adopted by our approach. The rest of the section briefly describes

each design feature. We begin with a distinction between exhaustive and demand-driven

analysis which does not fit in the Figure 1.2.

1.2.1 Exhaustive versus Demand-driven Analysis

A demand-driven points-to analysis [17, 38, 97, 100] computes points-to information that

is relevant to a query raised by a client analysis; for a different query, the points-to analysis

needs to be repeated. An exhaustive analysis, on the other hand, computes all points-to

information which can be queried later by a client analysis; multiple queries do not require

points-to analysis to be repeated. Achieving the scalability of an exhaustive approach is

much harder than that of a demand-driven approach.

Example 1. For Figure 1.3, one query could be to identify available expressions at

Endp. This would require analysis of only two procedures p and q and not procedure r.

If another query is raised such as availability of expressions at Endr, then procedures

q and r are analyzed. For an exhaustive analysis, all the procedures are analyzed and

the information is queried after the complete analysis.
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Startp Startp

a ∗ bp1

Call qp2

Endp Endp

Startq Startq

a = ...q1

b = ...q2

b+ cq3

Endq Endq

Startr Startr

c ∗ dr1

Call qr2

Endr Endr

Figure 1.3: An example demonstrating the various design characteristics of an analysis.
All variables are global.

1.2.2 Design Features for Intraprocedural Level

This section describes various design features of an analysis at the intraprocedural level.

Path Sensitivity

A path-sensitive analysis [17, 27, 104] distinguishes between the data flow values reaching

a program point along different control flow paths. It is practically infeasible because of

exponentially large number of paths in a program. In the presence of loops and recursion,

this number is infinite.

Flow Sensitivity

A flow-sensitive analysis [11, 53, 62, 64, 88, 107] respects the control flow and computes

separate data flow information at each program point. This matters because a pointer

could have different pointees at different program points owing to redefinitions. A flow-

insensitive analysis [2, 21, 31, 39, 69, 102], on the other hand, does not respect the

control flow and computes a single data flow information that holds conservatively for

the entire program. Hence, a flow-sensitive analysis provides more precise results than a

flow-insensitive analysis but can become inefficient at the interprocedural level.
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Example 2. Consider procedure q in Figure 1.3 for available expressions analysis. In

a flow-sensitive analysis, an expression is marked as not available at a program point,

if there exists a path reaching the program point, along which an operand of the

expression is defined and the expression is not computed after it. In a flow-insensitive

analysis, since the control flow order is not taken into account, the expression is not

available in the procedure if there is a definition of an operand of the expression

anywhere in the procedure. Thus, the expression b + c is not available at the exit of

procedure q in a flow-insensitive analysis in spite of the fact that the assignment to

b is followed by a computation of expression b+ c. A flow-sensitive analysis precisely

computes the availability of expression b+ c at the exit of procedure q.

Field Sensitivity

A field-sensitive analysis [76, 77, 114] treats each field of a structure variable as a separate

variable. A field-insensitive analysis over-approximates by treating every field of a struc-

ture variable as a single variable. Thus, a field-sensitive analysis is more precise than a

field-insensitive analysis. For more details, see Chapter 8.

1.2.3 Design Features for Interprocedural Level

This section describes various design features of an analysis at the interprocedural level.

Context Sensitivity

A context-sensitive analysis [22, 50, 53, 61, 62] respects the semantics of procedure calls

by analyzing each distinct procedure separately, whereas a context-insensitive [2, 21, 31,

32, 33, 34, 39, 69, 102] analysis merges contexts together. A context-sensitive analysis

distinguishes between different calling contexts of procedures and restricts the analysis

to interprocedurally valid control flow paths (i.e. control flow paths from program entry

to program exit in which every return from a procedure is matched with a call to the

procedure such that all call-return matchings are properly nested). A context-insensitive

analysis propagates data flow information along all the paths (including the invalid paths)

thereby introducing imprecision.
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Example 3. In Figure 1.3, interprocedural paths Startp−p1−p2−Startq−. . .−Endq−

Endr and Startr − r1 − r2 − Startq − . . .− Endq − Endp are invalid paths as they do not

adhere to call-return matching. In case of context-insensitive analysis, information is

also propagated along interprocedurally invalid paths thereby losing precision and

hence expressions c ∗ d and b + c are available after the calls to procedure q in both

procedures p and r.

In this example, the valid interprocedural paths are Startp − p1 − p2 − Startq −

. . . − Endq − Endp and Startr − r1 − r2 − Startq − . . . − Endq − Endr and information

should propagate along only these two paths for a context-sensitive analysis. In case

of context-sensitive analysis, expression b+ c is available after the call to procedure q

in procedure p and expressions c ∗ d and b+ c are available after the call to procedure

q in procedure r.

A fully context-sensitive analysis does not lose precision even in the presence of

recursion. A context-sensitive interprocedural analysis could be classified into two broad

categories: top-down approach and bottom-up approach.

Top-down Approach to Context-Sensitive Analysis

A top-down approach to interprocedural analysis propagates information from callers to

callees [119] effectively traversing the call graph top-down. In the process, it analyzes a

procedure each time a new data flow value reaches it from some call. Several popular

approaches fall in this category: the call-strings method [94], its value-based variants [52,

75] and the tabulation-based functional method [82, 94].

Example 4. In Figure 1.3, procedure q is analyzed multiple times in a top-down

approach: firstly because of the call from procedure p and secondly because of the call

from procedure r.

Bottom-up Approach to Context-Sensitive Analysis

In contrast to top-down approach, bottom-up approaches [9, 23, 30, 47, 65, 94, 103, 109,

110, 112, 115, 116, 119] avoid analyzing a procedure multiple times by constructing its



1.2. THE CONTEXT OF THE PROPOSED POINTS-TO ANALYSIS WORK 7

Interprocedural Analysis

Top-down Approaches Bottom-up Approaches

Pros
Caller’s information

available to callee

Reusable procedure summary

is constructed

Cons
Procedure is analyzed

multiple times

Problems representing indirect accesses

of pointees defined in callers

Figure 1.4: Interprocedural points-to analysis.

procedure summary which is used to incorporate the effect of calls to the procedure.

Effectively, this approach traverses the call graph bottom-up.

Example 5. In Figure 1.3, procedure q is analyzed first. A procedure summary is

created for procedure q as Gen : b+ c and Kill : a∗ b. This procedure summary is used

at the call sites p2 and r2 in procedures p and r respectively.

Figure 1.4 summarizes the two approaches to interprocedural context-sensitive points-

to analysis. A context-sensitive bottom-up interprocedural analysis using procedure sum-

maries is performed in two phases: the first phase constructs the procedure summaries

and the second phase applies them at the call sites to compute the desired information,

which, in our case, is the classical points-to information.

A top-down approach to interprocedural analysis may not scale well but can be more

precise than a bottom-up approach, if the latter’s procedure summaries fail to capture all

relevant details of a procedure valid for all possible calls to it.

Traversals Over Call Graph and Control Flow Graph are Orthogonal

We use the terms top-down and bottom-up for traversals over a call graph; traversals over

a control flow graph are termed forward and backward. The two categories of traversals

are orthogonal. We have already seen a top-down and bottom-up approach for forward

data flow problem (e.g. available expressions analysis) in this section. We now illustrate

top-down approach and bottom-up approach for a backward data flow problem such as

live variables analysis.



8 CHAPTER 1. INTRODUCTION

Example 6. In Figure 1.3, a top-down backward live variables analysis also ana-

lyzes procedure q multiple times. However, the processing starts from the exit of the

procedure rather than the start of the procedure. So the analysis of procedure p begins

from Endp, then a call is encountered to procedure q at p2, as a result, control now goes

to Endq − q3 − q2 − q1 − Startq in the backward flow. For a context-sensitive analysis,

the control flow returns back to p1 and then Startp. Similarly, procedure r is analyzed

with re-analysis of procedure q.

For a bottom-up backward live variables analysis, a procedure summary for pro-

cedure q is constructed by traversing its control flow graph backwards: Gen = {c}

and Kill = {a, b}. This procedure summary is inlined at p2 and r2 when procedures p

and r are analyzed with a backward traversal over their control flow graph. Points-to

analysis is a forward data flow problem.

Hence the terms top-down and bottom-up and forward and backward are orthog-

onal. Thus, both a forward data flow analysis (e.g. available expressions analysis) and

a backward data flow analysis (e.g. live variables analysis) could be a top-down or a

bottom-up analysis at the interprocedural level.

1.2.4 Our Choice

This work focuses on flow-, field-, and context-sensitive points-to analysis. These design

features enhance precision of an analysis and we aim to achieve it without compromising

efficiency/scalability through a bottom-up interprocedural approach. Our GPG-based

points-to analysis is exhaustive as against demand-driven points-to analysis.

1.3 Background

This section begins by reviewing some basic concepts and then describes different types

of procedure summaries. It then describes the challenges in constructing procedure sum-

maries for flow- and context-sensitive points-to analysis. It concludes by describing the

limitations of the past approaches. For further details of related work, see Chapter 2.
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Memory in absence

of pointers
Memory in presence of pointers

Memory

transformer

M M1 M2 ∆

a b

c

x y

z

x y

z

a x φ1 a

Figure 1.5: Pictorial view of memory and memory transformer. Thick edges in a memory
transformer represent the points-to edges generated by it, other edges are carried forward
from the input memory.

1.3.1 Basic Concepts

This section describes the nature of memory, memory updates, and memory transformers.

1.3.1.1 Abstract and Concrete Memory

Memory and operations on it can be viewed in two ways. Firstly we have the concrete

memory view (or semantic view) corresponding to run-time operations where a memory

location always points to exactly one memory location or NULL (which is a distinguished

memory location). Unfortunately this is, in general, statically uncomputable. Secondly,

as is traditional in program analysis, we can consider an abstract view of memory where

an abstract location represents one or more concrete locations; this conflation and the

uncertainty of conditional branches means that abstract memory locations can point to

multiple other locations—as in the classical points-to graph. These views are not inde-

pendent and abstract operations must over-approximate concrete operations to ensure

soundness. The abstract memory associated with a statement s is an over-approximation

of the concrete memory associated with every occurrence of s in the same or different

control flow paths.

Formally, let L and P ⊆ L denote the sets of locations and pointers respectively.

The concrete memory after a pointer assignment is a function M : P → L. The abstract

memory after a pointer assignment is a relation M ⊆ P × L. In either case, we view M

as a graph with L as the set of nodes. An edge x → y in M is a points-to edge indicating

that x ∈ P contains the address of y ∈ L.
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Example 7. In Figure 1.5, memory as a graph has only nodes (variables) and no

edges in the absence of pointers as shown in the first column (M). In the presence of

pointers, the pointer variables are connected to each other as shown by the edges as

shown in the second and the third column (M 1 and M 2).

Unless noted explicitly, all subsequent references to memory locations and trans-

formers refer to the abstract view.

1.3.1.2 Strong and Weak Updates

A memory update changes the contents of a memory location. In concrete memory, every

assignment overwrites the contents of the memory location corresponding to the LHS of

the assignment. However, in abstract memory, we may be uncertain as to which of several

locations a variable (say p) points to. Hence an indirect assignment such as ∗p = &x does

not overwrite any of its pointees, but merely adds x to the possible pointees. This is a

weak update. Sometimes however, there is only one possible abstract location described

by the LHS of an assignment, and in this case we may, in general, replace the contents of

this location. This is a strong update. There is just one subtlety which we return to later:

prior to the above assignment we may only have one assignment to p (say p = &a). If

this latter assignment dominates the former, then a strong update is appropriate. But if

the latter assignment only appears on some control flow paths to the former, then we say

that the read of p in ∗p = &x is upwards exposed (live on entry to the current procedure)

and therefore may have additional pointees unknown to the current procedure. Thus, the

criterion for a strong update in an assignment is that its LHS references a single location

and the location referenced is not upwards exposed (for more details, see Section 4.5). An

important special case is that a direct assignment to a variable (e.g. p = &x) is always a

strong update.

When a value is stored in a location, we say that the location is defined without

specifying whether the update is strong or weak. We make this distinction only where it

is required.
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int a, b, c, d;

01 p()

02 {

03 c = a*b;

04 q(); /* call 1 */

05 a = c*d;

06 q(); /* call 2 */

07 }

08 q()

09 {

10 a = b*c;

11 }

Let fq denote the summary for procedure q

for available expressions analysis

(I) fq as a context-independent and context-

sensitive summary

fq(X) = X · 011 + 010

Here ‘·’ and ‘+’ are bit-vector ‘and’ and ‘or’.

(II) fq as a context-dependent and context-

sensitive summary

fq = {100 7→ 010, 011 7→ 011}

(III) fq as a context-insensitive summary informa-

tion

fq = 010

Figure 1.6: Illustrating different kinds of procedure summaries for available expressions
analysis. The set of expressions {a∗b, b∗c, c∗d} is represented by the bit vector 111.

1.3.1.3 Memory Transformer

A procedure summary for points-to analysis should represent memory updates in terms

of copying locations, loading from locations, or storing to locations. It is called a memory

transformer (a collection of memory updates) because it updates the memory before a call

to the procedure to compute the memory after the call. Given a memory M and a memory

transformer ∆, the updated memory M ′ is computed by M ′ = ∆(M) as illustrated in the

below example.

Example 8. In Figure 1.5, a memory transformer ∆ contains a single update in the

form of store (∗x = &a). The thick edge in the figure is the points-to edge generated

by ∆ and the thin edge represents the carried forward input memory. When the input

to memory transformer ∆ is the memory M 1, we get the output memory M 2, i.e.,
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M 2 = ∆(M 1). In this example, the pointee of x (which is y) was earlier pointing to

z, now starts pointing to a as shown in M 2. The contents of the memory location y

updated from &z to &a.

1.3.2 Procedure Summaries

We distinguish between three kinds of summaries of a procedure that can be constructed

for minimizing the number of times a procedure is re-analyzed:

(a) A bottom-up parameterized procedure summary (e.g. summary (I) in Figure 1.6)

which is context independent. The context is supplied by the values of the parameters

of the summary.

(b) A top-down enumeration of procedure summary (e.g. summary (II) in Figure 1.6) in

the form of input-output pairs for the input values reaching a procedure.

(c) A bottom-up parameterless (and hence context-insensitive) summary information

(e.g. summary (III) in Figure 1.6).

Context independence (in (a) above) achieves context sensitivity through parameteriza-

tion and should not be confused with context insensitivity (in (c) above).

Example 9. Figure 1.6 illustrates the three different kinds of procedure summaries

for available expressions analysis. Procedure q kills the availability of expression a∗b,

generates the availability of b∗c, and is transparent to the availability of c∗d.

• In Figure 1.6, summary (I) is a parameterized flow function, summary (II) is an

enumerated flow function, whereas summary (III) is a data flow value (i.e. it is

a summary information as against a summary) representing the effect of all calls

of procedure q.

• Procedure summaries (I) and (II) are context-sensitive (because they compute

distinct values for different calling contexts of q) whereas summary (III) is

context-insensitive (because it represents the same value regardless of the calling

context).

• Summaries (I) and (III) are context-independent (because they can be con-
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structed without requiring any information from the calling contexts of q) whereas

summary (II) is context-dependent (because it requires information from the

calling contexts - input values reaching a procedure).

Our work focuses on the procedure summary of type (I) of Figure 1.6.

1.3.3 Challenges in Constructing Procedure Summaries for Points-

to Analysis

Construction of procedure summaries for other analyses in the absence of pointers is

trivial. In such a situation, the data dependence between memory updates within a

procedure can be inferred by using variable names without requiring any information

from the callers. Procedure summaries for some analyses, including various bit-vector data

flow analyses (such as live variables analysis), can be precisely represented by constant

gen and kill sets [51] or graph paths discovered using reachability [82]. In the presence

of pointers, these (bit-vector) summaries can be constructed using externally supplied

points-to information.

Procedure summaries for points-to analysis, however, cannot be represented in terms

of constant gen and kill sets because the association between pointer variables and their

pointee locations could change in the procedure and may depend on the aliases between

pointer variables established in the callers of the procedure.

The main challenge in constructing procedure summaries for points-to analysis is:

The memory transformers need to handle indirectly accessed unknown pointees

and preserve data dependence between them without any imprecision.

Since a memory transformer’s goal is to compute points-to information, its construction

cannot assume availability of points-to information as an input unlike other procedure

summaries which can use externally supplied points-to information.

Often, and particularly for points-to analysis, we have a situation where a procedure

summary must either lose information or retain internal details which can only be resolved

when its caller is known.
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Example 10. Consider procedure f on the right. For many calls, f() simply returns

01 int a, b, ∗x, ∗∗p;

02 int ∗ f() {

03 x = &a;

04 ∗p = &b;

05 return x;

06 }

&a but until we are certain that ∗p does not alias with x, we

cannot perform this constant-propagation optimization. We

say that the assignment 04 blocks this optimization. (We also

use the word ‘barrier ’ for a blocking assignment.) There are

four possibilities:

(i) If it is known that ∗p and x always alias then we can optimize f to return &b.

(ii) If it is known that ∗p and x alias on some control flow paths containing a call to

f but not on all, then the procedure returns &a in some cases and &b in other

cases. While procedure f cannot be optimized to do this, a static analysis can

compute such a summary.

(iii) If it is known that they never alias we can optimize this code to return &a.

(iv) If nothing is known about the alias information, then to preserve precision, we

must retain this blocking assignment in the procedure summary for f .

The key idea is that information from the calling context(s) can determine whether

a potentially blocking assignment really blocks an optimization or not. As such we say

that we postpone optimizations that we would like to do until it is safe to do them.

The above example illustrates the following challenges in constructing flow-sensitive

memory transformers: (a) representing indirectly accessed unknown pointees, (b) identi-

fying blocking assignments and postponing some optimizations, and (c) recording control

flow between memory updates so that potential data dependence between them is neither

violated nor over-approximated.

Thus, the main problem in constructing flow-sensitive memory transformers for

points-to analysis is to find a representation that is compact and yet captures memory

updates and the minimal control flow between them succinctly.
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Pointer Statement
Flow Function f ∈ F = {ad, cp, st, ld }, Placeholders

f : PTG 7→ PTG in X

Address x = &y adxy(X) = X − {(x, l1) | l1 ∈ L} ∪

{(x, y)}

∅

Copy x = y cpxy(X) = X − {(x, l1) | l1 ∈ L} ∪

{(x, φ1) | (y, φ1) ∈ X}

φ1

Store ∗x = y stxy(X) = X − {(φ1, l1) | (x, φ1) ∈ X, l1 ∈ L} ∪

{(φ1, φ2) | {(x, φ1), (y, φ2)} ⊆ X}

φ1, φ2

Load x = ∗y ldxy(X) = X − {(x, l1) | (x, l1) ∈ L} ∪

{(x, φ2) | {(y, φ1), (φ1, φ2)} ⊆ X}

φ1, φ2

Figure 1.7: Points-to analysis flow functions for basic pointer assignments.

1.3.4 Limitations of Existing Procedure Summaries for Points-

to Analysis

A common solution for modelling indirect accesses of unknown pointees in a memory

transformer is to use placeholders1 (illustrated in Figure 1.7) which are pattern-matched

against the input memory to compute the output memory.

The use of placeholders may lead to a representation of procedure summaries that is

not closed under composition. Let L and P ⊆ L denote the sets of locations and pointers

in a program. Then, the points-to information is a member of PTG = 2P×L, the set

of all relations (or equivalently graphs) associating pointers to locations. For a given

statement, a flow function for points-to analysis computes points-to information after the

statement by incorporating its effect on the points-to information that holds before the

statement. It has the form f : PTG → PTG. Figure 1.7 enumerates the space of flow

functions for basic pointer assignments.2 These basic flow functions are named in terms

of the variables appearing in the assignment statement and are parameterized on the input

1Placeholders have also been known as external variables [65, 103, 109] and extended parameters [110].

They are parameters of the procedure summary and not necessarily of the procedure for which the

summary is constructed.
2Other pointer assignments involving structures and heap are handled as described in Chapter 8.
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Procedure f Example 1 Example 2

Control flow graph Input Memory M1 Input Memory M2

Startf

p = ∗y

∗x = q

q = ∗y

1

2

3

Endf
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y

x

q

r a

b

Memory Transformer ∆′
Output Memory

M ′
1 = ∆′(M1)

Output Memory

M ′
2 = ∆′(M 2)

The memory transformer ∆′ is

compact but imprecise because it

uses the same placeholder for

every access of a pointee. Thus it

over-approximates the memory.

p

y

q

x

φ1 φ2

φ3 φ4

p

y

q

x

r a

s c

b

p

y

x

q

r a

b

Memory Transformer ∆′′
Output Memory

M ′′
1 = ∆′′(M1)

Output Memory

M ′′
2 = ∆′′(M2)

The memory transformer ∆′′

shows that precision can be

improved by using a separate

placeholder for every access of a

pointee. However, the size of the

memory transformer increases.

p

y

q

x

φ1 φ2

φ3 φ4

φ5 φ6

2

1

3

p

y

q

x

r a

s c

b

///

p

y

x

q

r a

b

///

Figure 1.8: An STF-style memory transformer ∆′ and its associated transformations. ∆′′

is its flow-sensitive version. Unknown pointees are denoted by placeholders φi. Thick
edges in a memory transformer represent the points-to edges generated by it, other edges
are carried forward from the input memory. Labels of the points-to edges in∆′′ correspond
to the statements indicating the sequencing of edges. Edges that are killed in the memory
are struck off.

points-to information X which may depend on the calling context. The information from

the calling context is described in terms of placeholders in X denoted by φ1 and φ2. It is

easy to see that the function space F = {ad, cp, st, ld } is not closed under composition as

shown by the example below.
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Example 11. Let f represent the composition of flow functions for the statement

sequence x = ∗y; z = ∗x. Then

f(X) = ldzx(ldxy(X)) =
(

X − ({(x, l1) | (x, l1) ∈ L} ∪ {(z, l1) | (z, l1) ∈ L} )
)

∪ {(x, φ2) | {(y, φ1), (φ1, φ2)} ⊆ X}

∪ {(z, φ3) | {(y, φ1), (φ1, φ2), (φ2, φ3)} ⊆ X}

The flow function f has three placeholders and cannot be reduced to any of the four

primitive flow functions in the set.

The use of placeholders explicates the unknowns pointees and hence the function

space is not closed under composition. Thus, in the case of accessing recursive data

structures3, the size of procedure summaries would grow unboundedly and an explicit

summarization technique is required to bound it.

We describe two broad approaches that use placeholders. The first approach, which

we call a multiple transfer functions (MTF) approach, proposed a precise representation

of a procedure summary for points-to analysis as a collection of partial transfer functions

(PTFs) [9, 47, 110, 116].4 Each PTF corresponds to a combination of aliases that might

occur in the callers of a procedure.

Our work is inspired by the second approach, which we call a single transfer function

(STF) approach [65, 103, 109]. This approach does not customize procedure summaries

for combinations of aliases.

However, the existing STF approach fails to be precise. We illustrate this approach

and its limitations to motivate our key ideas using Figure 1.8. It shows a procedure

and two memory transformers (∆′ and ∆′′) for it and the associated input and output

memories. The effect of ∆′ is explained in Example 12 and that of ∆′′ in Example 13.

Example 12. Transformer ∆′ is constructed by the STF approach [65, 103, 109]. It

can be viewed as an abstract points-to graph containing placeholders φi for modelling

unknown pointees of the pointers accessed in procedure f . For example, φ1 represents

3Pointers to scalars cannot be used for creating recursive data structures, but pointers to structures

and heap could be a part of recursive data structures that are unbounded.
4In level-by-level analysis [116], multiple PTFs are combined into a single function with a series of

condition checks for different points-to information occurring in the calling contexts.
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the pointees of y and φ2 represents the pointees of pointees of y, both of which are

not known in the procedure. The placeholders are pattern matched against the input

memory (e.g. M 1 or M 2) to compute the corresponding output memory (M ′
1 and

M ′
2 respectively). A crucial difference between a memory and a memory transformer

is: a memory is a snapshot of points-to edges whereas a memory transformer needs

to distinguish the points-to edges that are generated by it (shown by thick edges)

from those that are carried forward from the input memory (shown by thin edges).

However, in the memory, there is no such distinction.

The two accesses of y in statements 1 and 3 may or may not refer to the same

location because of a possible side-effect of the intervening assignment in statement

2. If x and y are aliased in the input memory (e.g. in M 2), statement 2 redefines the

pointee of y and hence p and q will not be aliased in the output memory. However,

∆′ uses the same placeholder for all accesses of a pointee. Further, ∆′ also suppresses

strong updates because the control flow ordering between memory updates is not

recorded. Hence, points-to edge s−→c in M ′
1 is not deleted. Similarly, points-to edge

r−→a in M ′
2 is not deleted and q spuriously points to a. Additionally, p spuriously

points-to b. Hence, p and q appear to be aliased in the output memory M ′
2.

The use of control flow ordering between the points-to edges that are generated by

a memory transformer can improve its precision as shown by the following example.

Example 13. In Figure 1.8, the memory transformer ∆′′ differs from ∆′ in two ways.

Firstly it uses a separate placeholder for every access of a pointee to avoid an over-

approximation of memory (e.g. placeholders φ1 and φ2 to represent ∗y in statement

1, and φ5 and φ6 to represent ∗y in statement 3). This, along with control flow,

allows strong updates thereby killing the points-to edge r−→a and hence q does not

point to a (as shown in M ′′
2). Secondly, the points-to edges generated by the memory

transformer are ordered based on the control flow of a procedure, thereby adding some

form of flow-sensitivity which ∆′ lacks. To see the role of control flow, observe that if

the points-to edge corresponding to statement 2 is considered first, then p and q will

always be aliased because the possible side-effect of statement 2 will be ignored.
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The output memories M ′′
1 and M ′′

2 computed using ∆′′ are more precise than the

corresponding output memories M ′
1 and M ′

2 computed using ∆′.

Observe that, although ∆′′ is more precise than ∆′, it uses a larger number of place-

holders and also requires control flow information. The large size of ∆′′ affects the scala-

bility of points-to analysis.

A fundamental problem with placeholders is that they use a low-level representation

of memory expressed in terms of classical points-to edges. Hence a placeholder-based

approach is forced to explicate unknown pointees by naming them, resulting in either

a large number of placeholders (in the STF approach) or multiple PTFs (in the MTF

approach). The need of control flow ordering further increases the number of placeholders

in the former approach. The latter approach obviates the need of ordering because the

PTFs are customized for combinations of aliases.

1.4 Our Key Ideas and Contributions

At a practical level, our main contribution is a method of flow-sensitive, field-sensitive,

and context-sensitive exhaustive points-to analysis of C programs that scales to large

real-life programs.

The core ideas of GPGs have been presented in [25] and the complete analysis is

given in [26]. We describe our formulations for a C-like language.

1.4.1 Key Ideas

We propose a generalized points-to graph (GPG) as a representation for a memory trans-

former of a procedure; special cases of GPGs also represent memory as a points-to re-

lation.5 GPGs summarizes the effect of a procedure and contain GPUs (generalized

points-to updates) representing individual memory updates along with the control flow

between them. A GPG is characterized by the following key ideas that overcome the two

limitations described in Section 1.3.4.

• A GPG leaves the unknown pointees (pointees that are indirectly accessed and

5This is analogous to a matrix which can be seen both as a transformer (for a linear translation in

space) and also as an absolute value.
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defined in the callers) implicit by using the counts of indirection levels. This obviates

the need for placeholders. Simple arithmetic on the counts of indirection levels allows

us to combine the effects of multiple memory update.

• A GPG uses a flow relation to order memory updates. An interesting property of

the flow relation is that it can be compressed dramatically without losing precision

and can be transformed into a compact acyclic flow relation in most cases, even if

the procedure it represents has loops or recursive calls.

1.4.2 Highlights of GPG-based Points-to Analysis

GPGs are compact—their compactness is achieved by a careful choice of a suitable rep-

resentation and a series of optimizations as described below.

1. Our representation of memory updates, called the generalized points-to update (GPU)

leaves accesses of unknown pointees implicit without losing precision.

2. GPGs undergo aggressive optimizations that are applied repeatedly to improve the

compactness of GPGs incrementally. These optimizations are similar to the opti-

mizations performed by compilers and are governed by the data dependence between

two memory updates. They are as follows:

• Strength reduction optimization.

• Redundancy elimination optimizations.

• Call inlining optimization.

• Type-based non-aliasing.

3. Interleaving call inlining and strength reduction of GPGs facilitates a novel opti-

mization that computes flow- and context-sensitive points-to information in the first

phase of a bottom-up approach. This obviates the need for the usual second phase

where procedure summaries are used to compute points-to information.

In order to perform these optimizations:

• We define operations of GPU composition (to create new GPUs by eliminating

data dependence between two GPUs), and GPU reduction (to eliminate the data

dependence of a GPU with the GPUs in a given set).
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Original Transformed

x = &a;
y = x;

1
2

x = &a;
y = &a;

Original Transformed

x = &a;
y = &a;
x = &b;

1
2
3

y = &a;
x = &b;

Original Transformed

y = &a;
∗x = &b;

1
2

y = &a;
∗x = &b;

1
2

(a) Cases A1 and B (b) Cases A3 and B (c) Case C

Figure 1.9: Data dependence between memory updates. The data dependence is elimi-
nated wherever possible and redundant control flow is eliminated in the absence of data
dependence. Case A2 is explained in Example 19 in Section 3.1.

• We propose novel data flow analyses such as two variants of reaching GPUs analysis

(to identify the effects of memory updates reaching a given statement) and coalescing

analysis (to eliminate the redundant control flow in the GPG).

• We handle recursive calls through a fixed-point computation. These calls are elim-

inated by a bounded inlining of callee GPGs without over-approximation. Calls

through function pointers are proposed to be handled through delayed inlining.

1.4.3 The Role of Data Dependence in GPG Optimizations

GPG optimizations are governed by the following possibilities of data dependence between

two memory updates (a detailed illustration is given in Example 10 in Section 1.3.3) that

are described below:

• Case A. The memory updates have a data dependence between them (Cases (i)

and (ii) in Example 10 in Section 1.3.3). The data dependence could be:

– Case 1. a read-after-write (RaW) dependence,

– Case 2. a write-after-read (WaR) dependence, or

– Case 3. a write-after-write (WaW) dependence.

A read-after-read (RaR) dependence is irrelevant.

• Case B. The memory updates do not have a data dependence between them (Case

(iii) in Example 10 in Section 1.3.3).
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• Case C. More information is needed to find out whether the memory updates have

a data dependence between them (Case (iv) in Example 10 in Section 1.3.3).

These cases are exploited by the optimizations described below (Figure 1.9 gives examples

for the cases described below):

1. Strength reduction optimization exploits case A1. It simplifies memory updates by

using the information from other memory updates to eliminate data dependence

between them.

Example 14. In Figure 1.9(a), the data dependence between memory updates

1 and 2 can be eliminated as shown in the transformed code. After eliminating

the data dependence, the control flow becomes redundant and can be eliminated,

indicated by no ordering in the transformed code.

2. Redundancy elimination optimizations handle cases A2, A3, and B. They remove

redundant memory updates (case A3) and minimize control flow (case B). The latter

is based on exploiting (lack of) data dependence between memory updates. These

opportunities are enhanced by strength reduction optimization.

Example 15. In Figure 1.9(b), there is a WaW data dependence between

memory updates 1 and 3 making the memory update 1 redundant. Hence,

it can be eliminated. Notice that there is no data dependence between the

memory updates 2 and 3 and hence the control flow ordering between them can

be eliminated as shown in the transformed code.

Case A2 is an anti-dependence (WaR) and is modelled by eliminating control flow

and ensuring that it is not viewed as a RaW dependence. The control flow is

redundant in this case because the memory updates with WaR data dependence are

modelled by us as parallel assignments (Example 19 in Section 3.1).

3. Call inlining optimization handles case C by progressively providing more informa-

tion. It inlines the summaries of the callees of a procedure at the call sites in the

summary of the procedure. This enhances the opportunities of strength reduction

and redundancy elimination and enables context-sensitive analysis.
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Example 16. In Figure 1.9(c), the data dependence between memory updates

1 and 2 is unknown and depends on the alias information between x and y in

the calling context. Thus, control flow between the two memory updates is

important for a flow-sensitive analysis and hence should be retained as shown in

the transformed code. Also notice that, pointee of x is accessed in the original

code, however x is defined in the callers and hence we need a good representation

for indirectly accessed unknown pointees.

More details are discussed in Section 1.3 and Chapter 3.

Our measurements suggest that

The real killer of scalability in program analysis is not the amount of data that

an analysis computes but the amount of control flow that the computed data

may be subjected to in search of precision.

Our optimizations are effective because they eliminate data dependence wherever possible

and discard irrelevant control flow without losing precision. The approaches that use flow

and context insensitivity, discard control flow but over-approximate data dependence

causing imprecision.

1.4.4 Additional Techniques for Achieving Efficiency

Additionally, we employ the following techniques to achieve scalability:

• Type-based non-aliasing: We use the types specified in the program to rule out data

dependence between memory updates in order to eliminate redundant control flow

and resolve some additional instances of case C into case B (for more details, see

Section 5.4).

• We reduce the size of the control flow graphs (hence, the size of GPGs) by eliding the

statements that do not access or generate points-to information (hence, irrelevant to

points-to analysis). The control flow between the other basic blocks is maintained.

This is similar to the sparse evaluation graph (SEG) [12, 18, 80].
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• For optimizing the reaching GPUs analysis and the coalescing analysis on GPGs,

the nodes in the worklist awaiting processing are prioritized by the reverse postorder

traversal of the GPG such that the nodes with smaller order are processed before

the nodes with a higher order. This optimization reduces the number of times a

node is reprocessed.

• For optimizing the process of construction of GPGs, we traverse the def-use chains

of SSA for efficiently simplifying memory updates involving SSA variables (top-level

pointers that are not referenced indirectly via other pointers). Thus, our analysis

employs a partial SSA to perform sparse analysis on top-level variables.

• We extend the concept of bypassing [73, 74] to pointers thereby filtering out the

points-to information that is not accessed in a procedure. This enhances the effi-

ciency of the second phase of bottom-up approach (the phase in which points-to

information is computed using procedure summaries).

1.5 The Organization of the Thesis

Chapter 2 provides a survey on the literature of points-to analysis. Chapter 3 introduces

the concept of generalized points-to updates (GPUs) that form the basis of GPGs and

provides a brief overview of GPG construction through a motivating example. Chapter 4

describes the strength-reduction optimization performed on GPGs by formalizing the op-

erations such as GPU composition and GPU reduction and defining data flow equations

for reaching GPUs analyses. Chapter 5 describes redundancy elimination optimizations

performed on GPGs. Chapter 6 explains the interprocedural use of GPGs by defining call

inlining and shows how recursion and calls through function pointers are handled. Chap-

ter 7 shows how GPGs are used for performing points-to analysis. Chapter 8 describes

the handling of structures, unions and the heap. Chapter 9 presents empirical evaluation

on SPEC benchmarks and Chapter 10 concludes the thesis with future work.



Chapter 2

Literature Survey

Many investigations reported in the literature have described the popular points-to anal-

ysis methods and have presented a comparative study of the methods with respect to

scalability and precision [42, 43, 48, 60, 95, 99, 101]. Instead of describing the methods,

we devise a metric of features that influence the precision and efficiency/scalability of

points-to analysis. This metric can be used for identifying important characteristic of any

points-to analysis at an abstract level.

Section 2.1 describes the big picture view of our metric and also lists the popular ap-

proaches based on the characteristics of the analysis. Section 2.2 describes the interaction

between the characteristic features. Section 2.3 contextualizes our work in the big pic-

ture. Section 2.4 describes the state-of-the-art approaches for bottom-up interprocedural

points-to analysis.

2.1 Factors Influencing the Precision, Efficiency, and

Scalability of Points-to Analysis

Figure 2.1 presents our metric. At the top level, we have language features and analysis

features (the top-row of the picture). The analysis features have been divided further

based on whether their primary influence is on the precision or efficiency/scalability of

points-to analysis (the three-columns in the picture). The categorization of language

features is obvious. Here we describe our categorization of analysis features.

25
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Feature Examples
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Data handling
Addressof (&) operator, type casts, unions, dynamic memory

allocation, pointer arithmetic, container objects

Control flow Function pointers, receiver objects of calls, virtual calls, concurrency

Higher order features Reflection, eval in Javascript

A
n
al
ys
is

Approximations of

data dependence
Path-sensitivity, flow-sensitivity, context-sensitivity, SSA form

Data abstractions

Field-sensitivity, object-sensitivity, allocation-site-based or

type-based abstraction of heap, heap cloning, summarized access

paths, summarization of aggregates

Relevant points-to

information

All pointers (exhaustive analysis), relevant pointers in incremental,

demand-driven, staged, level-by-level, or liveness-based analyses

Order of computing

points-to information

Governed by relevance of pointers, or by algorithmic features

(e.g. top-down, bottom-up, parallel, or randomized algorithms)

Specialized data

structures

BDDs, bloom filters, disjoint sets (for union-find), points-to graphs

with placeholders, GPGs

Figure 2.1: Language and analysis features affecting the precision, efficiency, and scalabil-
ity of points-to analyses. An arrow from feature A to feature B indicates that feature A
influences feature B. The features influencing precision, influence efficiency and scalability
indirectly.



2.1. FACTORS INFLUENCING THE PRECISION AND SCALABILITY 27

2.1.1 Features Influencing Precision

Two important sources of imprecision in an analysis are approximation of data dependence

and abstraction of data (the middle column of the picture in Figure 2.1).

2.1.1.1 Approximations of Data Dependence

Observe that control flow in imperative languages is a proxy for implicit data dependence

created by a temporal ordering between the definitions and uses of variables. The flow-

or context-insensitive approaches over-approximate the data dependence because they

over-approximate the control flow. In other words, control flow over-approximation may

introduce spurious data dependences that may have not existed if the analysis respected

the control flow. This causes imprecision. In this section, we describe various ways in

which data dependences have been approximated for points-to analysis.

Flow Sensitivity versus Flow Insensitivity

Flow-insensitivity effectively creates a complete graph out of a control flow graph causing

over-approximation in the control flow and hence in the data dependence. The classical

inclusion-based [2] and equality-based [102] points-to analyses are the most popular flow-

insensitive approaches. The time complexity of equality-based approach is almost linear,

however it is very imprecise because it does not distinguish between the LHS and the

RHS of an assignment. The inclusion-based approach makes this distinction and hence is

more precise compared to the equality-based approach but has cubic complexity. Shapiro

and Horowitz [93] propose an algorithm which is tuned such that its precision ranges from

equality-based to inclusion-based points-to analysis. Many algorithms were proposed to

accelerate the inclusion-based approach [21, 31, 39, 69]. The inclusion-based points-to

analysis is also extended to object-oriented languages [83]. Spark [59] provides a flexible

framework for experimenting with points-to analyses for Java. Spark supports equality-

and subset-based analyses, variations in field sensitivity, and several solving algorithms.

Spark is composed of building blocks on which new analyses can be based. Rountev et

al. [83] propose points-to analysis for Java using annotated constraints.

Some approaches propose partial flow sensitivity; they treat some variables flow sensi-

tively and the rest flow insensitively. Whaley and Lam [107] have analyzed Java programs



28 CHAPTER 2. LITERATURE SURVEY

flow sensitively only for local variables. Lhoták et al. [58] combined flow-insensitivity

with strong updates. They claim that this algorithm is efficient like flow-insensitive anal-

ysis, with the same worst-case bounds, yet its precision benefits from strong updates

like flow-sensitive analysis. The work on program decomposition [118] helps an analysis

choose different parts of a program to be analyzed with varying levels of precision. It

enables exploration of a trade-off between algorithm efficiency and precision by allowing

flow-insensitive and flow-sensitive alias analyses to be used on independent parts of the

program. Region-based selective flow-sensitive pointer analysis [113] operates on the re-

gions partitioned from a program. Flow-sensitivity is maintained between the regions but

not within them, making traditional flow-insensitive and flow-sensitive as well as recent

sparse flow-sensitive analyses all special instances of the framework.

Several flow-sensitive algorithms have also been proposed in the literature [11, 53, 62,

64, 88, 107]. Hind et al. [41] propose an approximation algorithm for interprocedural alias

analysis. This work presents a flow-sensitive and a flow-insensitive interprocedural pointer

alias analysis algorithm. It also presents a flow-insensitive interprocedural pointer alias

analysis algorithm that incorporates kill information to improve precision. It also provides

empirical measurements of the efficiency and precision of the three interprocedural alias

analysis algorithms. This work claims that a flow-insensitive analysis with kill does not

improve precision over a flow-insensitive analysis without kill.

Hind and Pioli performed several studies on precision/scalability trade-off of flow

sensitivity [40, 42, 43] indicating that the precision gain is not worth the price one has

to pay for flow sensitivity. However, the work by Hardekopf and Lin [32, 33] found very

good results for flow-sensitive points-to analysis. The importance of flow sensitivity has

been further strengthened by Stefan Staiger-Stöhr [101] who criticizes the claim of flow

sensitivity being not worth the price with counter explanations.

SSA-Based Flow Sensitivity

Static single assignment (SSA) form also discards control flow but avoids over-approximation

in data dependences by creating def-use chains in the form of SSA edges. This is possible

because of referential transparency of renamed variables in SSA form. Thus, an analysis

over SSA version of a program becomes a sparse analysis because it can ignore the state-

ments appearing between definitions and uses of data. Besides, for the use and definition
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statements, it computes the information only for the variables being defined and used.

Hasti and Horwitz [34] combined a flow-insensitive pointer analysis with SSA form [14].

They use an iterative process to obtain progressively better results. The algorithm can

be ‘tuned’ to provide a range of results that fall between the results of flow-insensitive

and flow-sensitive analysis.

One of the earliest sparse flow-sensitive points-to analysis which incrementally con-

structs SSA was described by Chase et al. [8]. It is similar to Tok’s work [105, 106].

Hardekopf and Lin [32] proposed a semi-sparse flow-sensitive analysis for efficient han-

dling of strong updates. They convert non-address-taken or top-level local variables to

SSA form to improve analysis efficiency. Another work of Hardekopf and Lin [33] is based

on a sparse representation of program code created by a staged, flow-insensitive pointer

analysis. This approach scales flow-sensitive points-to analysis to programs with millions

of lines of code.

The classical SSA form for arrays cannot provide the element-level data flow infor-

mation required for such analyses. An Array SSA form [54] captures precise element-level

data flow information for array variables in all cases. It is general and simple, and coin-

cides with standard SSA form when applied to scalar variables. It can also be used for

structures and other variable types that can be modeled as arrays.

Context Sensitivity versus Context Insensitivity

Context insensitivity treats calls and returns as goto statements as far as the control trans-

fer between procedures is concerned. This over-approximates the interprocedural control

flow by propagating data flow information along the interprocedurally invalid paths and

hence over-approximates the data dependence between assignments across procedures.

Several approaches [2, 21, 31, 32, 33, 34, 39, 69, 102] are context-insensitive. Fahn-

drich et al.[22] proposed a context-sensitive flow-analysis using instantiation constraints.

They show that flow information can be computed efficiently while considering only the

paths with well-defined call-return sequences, even for higher-order programs. Context-

sensitivity using value flow graphs (VFGs) [62] is achieved by simultaneously applying

function cloning and computing context-free language reachability (CFL-reachability) by

restricting the flow of values to interprocedural paths in which procedure calls and returns

are matched.



30 CHAPTER 2. LITERATURE SURVEY

Milanova et al. [68] proposed object sensitivity, a new form of context sensitivity

for flow-insensitive points-to analysis for Java. The results show that object sensitivity

significantly improves the precision of side-effect analysis and call graph construction,

compared to (a) context-insensitive analysis, and (b) context-sensitive points-to anal-

ysis that models context using the invoking call site. These experiments demonstrate

that object-sensitive analyses can achieve substantial precision improvement, while at the

same time remaining efficient and practical. Smaragdakis et al. [96] defined a full-object-

sensitive analysis that results in significantly higher precision and often performance.

They also introduced type-sensitivity as an explicit approximation of object-sensitivity

that preserves high context quality at substantially reduced cost.

Lhoták et al. [61] proposed PADDLE framework that supports several variations of

context-sensitive analyses, including call site strings and object sensitivity, and context-

sensitively specializes both pointer variables and the heap abstraction. They claim that

object-sensitive analyses are more precise than comparable variations of the other ap-

proaches, and that specializing the heap abstraction improves precision more than ex-

tending the length of context strings. Hybrid context-sensitivity [50] shows that a selec-

tive combination of call-site- and object-sensitivity for Java points-to analysis is highly

profitable. A selective combination of both kinds of contexts not only vastly outperforms

non-selective combinations but is also faster than a mere object-sensitive analysis.

Lattner et al. [57] proposed a heap-cloning based context-sensitive points-to analy-

sis. For achieving a scalable implementation, several algorithmic and engineering design

choices were made in this approach. Some of these choices are: a flow-insensitive and

unification-based analysis, and sacrificing context-sensitivity across recursive procedures.

Cheng and Mei [10] proposed a modular interprocedural pointer analysis based on

access-paths for C programs. They illustrate that access-paths can reduce the over-

head of representing context-sensitive transfer functions. Lian et al. [63] presents a flow-

insensitive, context-sensitive points-to analysis algorithm that computes alias information

that is almost as precise as that computed by Andersen’s algorithm and almost as efficient

as Steensgaard’s algorithm.

Whaley et al. [108] achieves context sensitivity by creating a clone of a method for

every context of interest, and run a context-insensitive algorithm over the expanded call

graph to get context-sensitive results. For precision, a clone for every acyclic path through



2.1. FACTORS INFLUENCING THE PRECISION AND SCALABILITY 31

a program’s call graph is created, treating methods in a strongly connected component

(i.e., methods in a cycle of recursion) as a single node.

2.1.1.2 Data Abstractions

An abstract location usually represents a set of concrete locations. An over-approximation

of this set of locations leads to spurious data dependences because a large number of

locations are treated alike. This causes imprecision in points-to analysis. In this section,

we describe common techniques that use different kinds of data abstractions in points-to

analysis.

Field Sensitivity versus Field Insensitivity

A field-sensitive analysis treats each field of a structure variable as a separate variable.

A field-insensitive analysis over-approximates the fields of a structure variable by a com-

mon single variable thereby over-approximating the concrete locations and introducing

imprecision.

Yong et al. [114] proposed a points-to analysis to handle structures and type-casting.

They observe that supporting field-sensitivity can significantly improve the analysis preci-

sion. Pearce et al. [76, 77] proposes a field-sensitive points-to analysis for modeling aggre-

gates and function pointers. They found that a field-sensitive analysis is more expensive

to compute, but yields significantly better precision over a field-insensitive analysis.

Heap Abstraction

Heap data is potentially unbounded and seemingly arbitrary. Hence, unlike stack and

static data, heap data cannot be abstracted in terms of a fixed set of program variables.

Specialization of heap objects is critical for points-to analysis to effectively analyze com-

plex memory activity. The most common heap abstraction uses an allocation site to treat

all locations allocated by a given allocation statement as same. An alternative less pre-

cise abstraction partitions the heap locations based on types. Kanvar et al. [48] provide

a big-picture view of heap abstractions.

Nystrom st al. [72] discusses heap specialization with respect to call chains. Due to

the sheer number of distinct call chains, exhaustive specialization can be cumbersome.

On the other hand, insufficient specialization can miss valuable opportunities to prevent
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spurious data flow, which results in not only reduced accuracy but also increased over-

head. Lattner et al. [57] propose a heap-cloning based context-sensitive points-to analysis.

Boomerang [97] abstracts heap using access graphs which is a storeless abstraction for

handling heap precisely.

2.1.2 Features Influencing Efficiency and Scalability

Different methods use different techniques to achieve scalability. We characterize them

based on the following three criteria.

2.1.2.1 Specialized Data Structures

A method may use specialized data structures for encoding information efficiently (e.g.

BDDs or GPUs and GPGs) or may use them for modelling relevant points-to information

(e.g. use of placeholders to model accesses of unknown pointees in a bottom-up method).

Several innovative data structures for representing the points-to (or alias) information

have been proposed.

Earlier approaches stored alias pairs explicitly [55]. However, this representation

is storage-intensive and hence a compact representation is proposed which stores only

a few basic alias pairs explicitly and new alias pairs are derived based on transitivity

and symmetry [11]. Later, a more compact representation in the form of points-to pairs

was introduced [20] which significantly reduced the storage requirement because points-

to pairs store only the edges in a memory graph unlike aliases that store pairs of paths

incident on the same node in a memory graph.

Heintze and Tardieu [39] proposed the use of sparse bitmaps for storing points-to

information. However, bitmaps cannot take advantage of the commonality across various

points-to sets. Therefore, for a context-sensitive analysis, the use of bitmaps requires a

large amount of memory.

Zhu [122] observed that a vast amount of points-to information can be encoded in a

space-efficient manner using binary decision diagrams (BDD) [6]. Until then, BDDs were

used in symbolic model checking [7] and to represent large sets and maps [66]. Due to the

storage efficiency, BDDs were quickly adapted for solving points-to analysis algorithms.

Berndl et al. [4], Hardekopf and Lin [31, 32, 33], Lhoták et al. [59], Whaley and Lam [108],

and Zhu and Calman [123] proposed variants of points-to analysis algorithms using BDDs.
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Nasre et al. [70] used a specially designed multi-dimensional bloom filter for storing

points-to information for a flow-insensitive and context-sensitive analysis. This proba-

bilistic data structure allows trading precision for memory usage of the analysis.

Lattner et al. [57] proposed a data structure graph (DS graph) for each function in

a program, summarizing the memory objects accessible within the function along with

their connectivity patterns. Value flow graph (VFG) [62] and pointer assignment graph

(PAG) [92] represent flow of values along edges between memory objects and pointer vari-

ables (represented as nodes). Additionally, they contain edges to represent interprocedural

control flow. Spark [59] uses a pointer assignment graph as its internal representation of

the program being analyzed. Several approaches [12, 18, 80] use a sparse evaluation

graph (SEG) which is computed by eliding the statements that do not access or generate

points-to information (hence, irrelevant to points-to analysis). The analysis becomes more

efficient because it needs to process fewer basic blocks and control flow edges. Hardekopf

and Lin [32] uses a dataflow graph (DFG) as a data structure which is a combination of

a sparse evaluation graph (SEG) and def-use chains.

There are many data structures in the literature that represent procedure summaries

(e.g. VFG, PAG, DS graph). However, they have not been explicitly projected as proce-

dure summaries.

2.1.2.2 Relevant Points-to Information

Many methods choose to prioritize computing a specific kind of points-to information

which is then used to compute further points-to information. For example, staged points-

to analyses [33] begin with conservative points-to information which is then made more

precise. Similarly, some methods [47, 116] begin by computing points-to information for

top-level pointers whose indirections are then eliminated. This uncovers a different set of

pointers as top-level pointers whose points-to information is then computed.

Demand-driven algorithms [28, 29, 38, 93, 97, 98, 100, 121] compute points-to infor-

mation that is relevant to the demand raised by the client analysis. Boomerang [97] is

based on IFDS which is a top-down tabulation-based approach. A distinctive feature of

Boomerang is that it extends the IFDS framework to support non-distributive analyses

such as alias and points-to analysis.

An incremental analysis handles dynamic addition and/or deletion of a set of state-
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ments to the already analyzed program and processes the statements without having

to analyze the complete program (original program plus new statements) from scratch.

Thus, for an incremental points-to analysis, the relevant points-to information is associ-

ated with the changes in the program. Saha and Ramakrishnan [90] describe a framework

based on logic programming for implementing various incremental and demand-driven

program analyses formulated using deductive rules. Yur et al. [117] propose an incremen-

tal flow-sensitive and context-sensitive points-to analysis algorithm to handle addition

and deletion of single statements in a C program.

Liveness-based points-to analysis [53] computes points-to information only for live

variables. Thus, in this case, the relevant points-to information is governed by liveness.

2.1.2.3 Order of Computing Points-to Information

Most methods order computations based on relevant points-to information which may

also be defined in terms of a chosen order of traversal over the call graph (eg. top-down

or bottom-up).

The order of computation of points-to information varies in a points-to analysis

of multi-threaded programs and parallel points-to analysis. Due to numerous thread-

interleavings possible in a multi-threaded program, the analysis of such programs poses

significant challenges from precision and scalability perspectives. Salcianu and Rinard [91]

proposed a combined pointer and escape analysis for multi-threaded programs. There

has been some work on parallelizing the pointer analysis algorithm. Some of the ap-

proaches [47, 84, 118] simply mention that their algorithms could be parallelized, a parallel

pointer analysis is proposed by Mendez-Lojo et al. [67]. Edvinsson et al. [19] proposed par-

allel points-to analysis for object oriented programs. Rugina and Rinard [85, 86] proposed

an interprocedural, context-sensitive and flow-sensitive pointer analysis for multi-threaded

programs. Putta and Nasre [78] proposed a parallel version of context-sensitive inclusion-

based points-to analysis for C programs. They make use of replication of points-to sets

to improve parallelism.

Zhao et al. [120] proposed a parallel sparse flow-sensitive points-to analysis. It uses

Array SSA form [54] (for capturing precise element-level data flow information for arrays)

and Heap SSA form (for modelling each field as a distinct logical “heap array”).
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2.2 Interaction between Analysis Features

In this section we explain the interaction between the features indicated by the arrows

shown in Figure 2.1.

• Data abstraction influences approximations of data dependence. An abstract lo-

cation may be over-approximated to represent a larger set of concrete locations in

many situations such as in field-insensitivity, type-based abstraction, allocation site-

based abstraction, etc. This over-approximation creates spurious data dependence

between the concrete locations represented by an abstract location.

• Approximation of data dependence influences the choice of efficient data structures.

Some flow-insensitive methods use disjoint sets for efficient union-find algorithms.

Several methods use BDDs for scaling context-sensitive analyses.

• Relevant points-to information affects the choice of data structures. Points-to in-

formation is stored in the form of graphs, points-to pairs, or BDDs for top-down

approaches. For bottom-up approaches, points-to information is computed using

procedure summaries that use placeholders or GPUs.

• Relevant points-to information and order of computing influence each other mutu-

ally. In level-by-level analysis [116], points-to information is computed one level at a

time. The relevant information to be computed at a given level requires points-to in-

formation computed by the higher levels. Thus, in this case the relevance of points-to

information influences the order of computation. In liveness-based points-to anal-

ysis (LFCPA) [53] only the live pointers are relevant. Thus, points-to information

is computed only when the liveness of pointers is generated. Thus, the order of

computing dictated by the generation of liveness information influences the relevant

points-to information to be computed.

2.3 Positioning Our Work in the Feature Metric

GPG-based points-to analysis preserves data dependence by being flow- and context-

sensitive. It is path-insensitive and uses SSA form for top-level local variables. Unlike the

approaches that over-approximate control flow indiscriminately, we discard control flow as
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much as possible but only when there is a guarantee that it does not over-approximate data

dependence. Our analysis is field-sensitive. It over-approximates arrays by treating all its

elements alike. We use allocation-site-based abstraction for representing heap locations

and use k-limiting for summarizing the unbounded accesses of heap where allocation sites

are not known. Like every bottom-up approach, points-to information is computed when

all the information is available in the context. Our analysis is exhaustive and computes

points-to information for all pointers.

GPGs are different from other data structures as follows:

• Unlike DFGs [32], GPGs do not have data dependence edges (def-use chains). Before

GPG optimizations, data dependences are implicitly preserved by control flow edges

and GPG optimizations eliminate data dependences thereby minimizing the control

flow edges.

• Unlike PAGs [92] and VFGs [62], GPGs maintain a clean separation between the

paths in a memory graph (represented by GPUs in a GPB) and the paths in a

control flow graph (represented by control flow edges across GPBs).

2.4 Approaches of Constructing Procedure Summaries

This section describes the investigations that use a bottom-up approach for points-to anal-

ysis because our work falls in this category. This category can be further subdivided into

the multiple transfer functions (MTF) and the single transfer function (STF) approach.

2.4.1 The Multiple Transfer Functions (MTF) Approach

In this approach control flow is not required to be recorded between memory updates

[47, 110, 116, 119]. The data dependence between memory updates (even those that

access unknown pointers) is known because either the alias information or the points-to

information from the calling context is used. Figure 2.2 gives an example where multi-

ple procedure summaries are created for a code snippet given in the figure based on the

alias information in the calling context. These approaches construct symbolic procedure

summaries. This involves computing preconditions and corresponding postconditions (in
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MTF Approach STF Approach

1. x = ∗y;
2. ∗z = q;
3. p = ∗y;

y φ1 φ2

xz

q

φ3

φ4 p

y φ1 φ2

xz

q

φ3

p

y φ1 φ2

xz

q

φ3

φ4 p

y φ1 φ2

xz

q

φ5

φ3

φ6 φ7 p

Example
∗z and y
are aliases

z and y
are aliases

z and y are
not related

no assumption
about aliases

Figure 2.2: An example for demonstrating MTF and STF approach. Two dereferences of
y are separated by a possibly side-effect causing statement through z. Edges with double
lines represent the killed information. Thick edges represent the generated information.
Black edges represent carried forward input information. MTF approach creates multiple
summaries for a procedure for each combination of aliases. Only relevant aliases are
considered. STF approach makes no assumption about aliases.

terms of aliases or points-to information). A calling context is matched against a precon-

dition and the corresponding postcondition gives the result.

Level-by-level analysis [116] constructs a procedure summary with multiple inter-

procedural conditions. It matches the calling contexts with these conditions and chooses

the appropriate summary for a given context. This method partitions the pointer vari-

ables in a program into different levels based on the Steensgaard’s points-to graph for

the program. It constructs a procedure summary for each level (starting with the highest

level) and uses the points-to information from the previous level. This method constructs

interprocedural def-use chains by using extended SSA form. When used in conjunction

with conditions based on points-to information from calling contexts, the chains become

context sensitive.

The scalability of these approaches depends on the number of aliases/points-to pairs

in the calling contexts, which could be large. Further, this approach may not be useful

for constructing summaries for library functions which have to be analyzed without the

benefit of calling contexts. Saturn [30] creates sound summaries but they may not be

precise across applications because of their dependence on context information.

Relevant context inference [9] constructs a procedure summary by inferring the rel-

evant potential aliasing between unknown pointees that are accessed in the procedure.
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Although, it does not use the information from the context, it has multiple versions of the

summary depending on the alias and the type context. This analysis could be inefficient

if the inferred possibilities of aliases and types do not actually occur in the program. It

also over-approximates the alias and the type context as an optimization thereby being

only partially context-sensitive.

2.4.2 The Single Transfer (STF) Approach

This approach does not make any assumptions about the calling contexts [62, 65, 92,

103, 109] but constructs large procedure summaries causing inefficiency in fixed-point

computation at the intraprocedural level. It introduces separate placeholders for every

distinct access of a pointee (Section 1.3.4). Figure 2.2 gives an example for STF approach

with a large procedure summary when no information from the calling context is available.

In this approach, the data dependence is not known in the case of indirect accesses

of unknown pointees and hence control flow is required for constructing the summary for

a flow-sensitive points-to analysis. However, these methods do not record control flow

between memory updates in the summaries so constructed. Hence, for soundness, the

use of a procedure summary at a call site does not kill any information. The assumption

of any ordering between memory updates and absence of kill introduces imprecision.

However, it may not have much adverse impact on programs written in Java because all

local variables in Java have SSA versions, thanks to the absence of indirect assignments

to variables (there is no addressof operator). Besides, there are few static variables in

Java programs and absence of kill for them may not matter much; the points-to relations

of heap locations are not killed in any case.

Note that the MTF approach is precise even though no control flow in the procedure

summaries is recorded because the information from calling context obviates the need for

control flow.

2.4.3 The Hybrid Approach

Hybrid approaches use customized summaries and combine the top-down and bottom-up

analyses to construct summaries [119]. This choice is controlled by the number of times

a procedure is called. If this number exceeds a fixed threshold, a summary is constructed
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using the information of the calling contexts that have been recorded for that procedure. A

new calling context may lead to generating a new precondition and hence a new summary.

If the threshold is set to zero, then a summary is constructed for every procedure and

hence we have a pure bottom-up approach. If the threshold is set to a very large number,

then we have a pure top-down approach and no procedure summary is constructed.

Additionally, we can set a threshold on the size of procedure summary or the percent-

age of context-dependent information in the summary or a combination of these choices.

In our implementation, we have used the percentage of context-dependent information as

a threshold—when a procedure has a significant amount of context-dependent informa-

tion, it is better to introduce a small touch of top-down analysis (Section 9.4.2). If this

threshold is set to 0%, our method becomes purely bottom-up approach; if it is set to

100%, our method becomes a top-down approach.

2.5 Chapter Summary

In this chapter we presented a survey of various points-to analysis algorithms. We clas-

sified the analyses based on the metric of features that influence the precision and effi-

ciency/scalability of points-to analysis.





Chapter 3

The Generalized Points-to Graphs

In this chapter, we define a generalized points-to graph (GPG) which serves as our memory

transformer. It is a graph with generalized points-to blocks (GPBs) as nodes which contain

a set of generalized points-to updates (GPUs). The ideas and algorithms for defining and

computing these three representations of memory transformers can be seen as a collection

of abstractions, operations, data flow analyses, and optimizations. Their relationships are

shown in Figure 3.1. A choice of key abstractions enables us to define GPU operations

which are used for performing three data flow analyses. The information computed by

these analyses enables optimizations over GPGs.

Section 3.1 defines GPGs and Section 3.2 provides an overview of GPG operations.

Section 3.3 presents an overview of our approach in a limited setting of our motivating

example of Figure 3.2. Towards the end of this chapter, Figure 3.7 fleshes out Figure 3.1

to list specific abstractions, operations, analyses, and optimizations.

3.1 Defining a Generalized Points-to Graph (GPG)

We model the effect of a pointer assignment on an abstract memory by defining the con-

cept of generalized points-to update (GPU) in Definition 1. We use the statement label s

to capture weak versus strong updates and for computing points-to information.1 Defini-

tion 1 gives the abstract semantics of a GPU. The concrete semantics of a GPU x
i|j
−→s y

1We omit the statement labels in GPUs at some places when they are not required.

41
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GPG Optimizations

Data Flow Analyses over GPGs

GPU Operations

Abstractions

Figure 3.1: Inter-relationships between ideas and algorithms for defining and computing
GPUs, GPBs, and GPGs. Each layer is defined in terms of the layers below it. Figure 3.7
fleshes out this picture by listing specific abstractions, GPU operations, data flow analyses,
and optimizations.

Given variables x and y and i > 0, j ≥ 0, a generalized points-to up-

date (GPU) x
i|j
−→s y represents a memory transformer in which all locations

reached by i − 1 indirections from x in the abstract memory are defined

by the pointer assignment labelled s, to hold the address of all locations

reached by j indirections from y. The pair i|j represents indirection levels

and is called the indlev of the GPU (i is the indlev of x, and j is the indlev

of y). The letter γ is used to denote a GPU unless named otherwise.

Definition 1: Generalized Points-to Update (GPU).

can be viewed as the following C-style pointer assignment with i − 1 dereferences of x2

and j dereferences of &y:

∗ ∗ . . . ∗ x = ∗ ∗ . . . ∗&y

(i− 1) j

A GPU γ : x
i|j
−→s y generalizes a points-to edge3 with the following properties:

• The direction indicates that the source x with indlev i identifies the locations being

defined by the assignment s and the target y with indlev j identifies the locations

2Alternatively, i dereferences of &x. We choose i − 1 dereference from x because the left-hand side

cannot be &x.
3Although a GPU can be drawn as an arrow just like a points-to edge, we avoid the term ‘edge’ for a

GPU because of the risk of confusion with a ‘control flow edge’ in a GPG.
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Startg

r = &a

∗q = &m

01

02

q = &b03

e = ∗p

q = &e

04

05

Endg

Startf

p = &c

q = &d

d = &n

06

07

08

call g()09

∗q = &o10

Endf

Variables Types

m, n, o int

a float∗

b, c, d, e int∗

p, q int∗∗

r float∗∗

Figure 3.2: A motivating example. Procedures are represented by their control flow graphs
(CFGs). All variables are global.

whose addresses are read.

• The GPU γ abstracts away i− 1 + j placeholders.

• The GPU γ represents may information because different locations may be reached

from x and y along different control flow paths reaching statement s in the procedure.

We refer to a GPU with i = 1 and j = 0 as a classical points-to edge as it encodes the

same information as edges in classical points-to graphs.

Example 17. The pointer assignment in statement 01 in Figure 3.2 is represented

by a GPU r
1|0
−→
01

a where the indirection levels “1|0” appear above the arrow and the

statement number “01” appears below the arrow. The indirection level 1 in “1|0”

indicates that r is defined by the assignment and the indirection level 0 in “1|0”

indicates that the address of a is read. Similarly, statement 02 is represented by a

GPU q
2|0
−→
02

m. The indirection level 2 for q indicates that some pointee of q is being

defined and the indirection level 0 indicates that the address of m is read.

Figure 3.3 presents the GPUs for basic pointer assignments in C. (To deal with C

structs and unions, GPUs are augmented to encode lists of field names—for details see

Figure 8.2 in Chapter 8).
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Pointer
GPU

Relevant memory graph

assignment after the assignment

s : x = &y x
1|0
−−→s y x y

s : x = y x
1|1
−−→s y x y

s : x = ∗y x
1|2
−−→s y x y

s : ∗x = y x
2|1
−−→s y x y

Figure 3.3: GPUs for basic pointer assignments in C. In the memory graphs, a double
circle indicates the location whose address is being assigned, a thick arrow shows the
generated edges. Unnamed nodes may represent multiple pointees (implicitly representing
placeholders).

A generalized points-to block (GPB), denoted δ, is a set of GPUs abstract-

ing memory updates. A generalized points-to graph (GPG) of a procedure,

denoted ∆, is a graph (N,E) whose nodes in N are labelled with GPBs

and edges in E abstract the control flow of the procedure. By common

abuse of notation, we often conflate nodes and their GPB labellings.

Definition 2: Generalized Points-to Blocks (GPBs) and Generalized Points-to Graphs (GPGs).

GPUs are useful rubrics of our abstractions because they can be composed to con-

struct new GPUs with smaller indirection levels whenever possible thereby converting

them progressively to classical points-to edges. The composition between GPUs elimi-

nates the data dependence between them and thereby, the need for control flow ordering

between them. Section 3.2 briefly describes the operations of GPU composition and GPU

reduction which are used for the purpose; they are defined formally in Chapter 4.

A GPU can be seen as an atomic transformer which is used as a building block for the

generalized points-to graph (GPG) as a memory transformer for a procedure (Definition 2).

The GPG for a procedure differs from its control flow graph (CFG) in the following way:

• The CFG of a procedure could have procedure calls whereas its GPG does not.4

Besides, a GPG is acyclic in almost all cases, even if the procedure it represents

4In the presence of recursion and calls through function pointers (Sections 6.3 and 6.4), we need an

intermediate form of GPG called an incomplete GPG containing unresolved calls that are resolved when

more information becomes available.
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has loops or recursive calls. Our empirical measurements (Table 9.2 in Chapter 9)

show that very few procedures (the number is in single digits) out of hundreds of

procedures have back edges in their optimized GPGs.

• The GPBs which form the nodes in a GPG are analogous to the basic blocks of

a CFG except that the basic blocks are sequences of statements but GPBs are

(unordered) sets of GPUs representing parallel assignments.

A concrete semantic reading of a GPB δ is defined in terms of the semantics of ex-

ecuting a GPU (Definition 1). Execution of δ implies that the GPUs in δ are executed

non-deterministically in any order. Effectively all GPUs in δ represent parallel assignments

in which all right hand sides are evaluated before any left hand side is written. This gives

a correct abstract reading of a GPB as a may property. But a stronger concrete seman-

tic reading also holds as a must property: Let δ contain GPUs corresponding to some

statement s. Define Xs ⊆ δ by Xs = {x
i|j
−→s y ∈ δ}, Xs 6= ∅. Then, whenever statement s

is reached in any execution, at least one GPU in Xs must be executed. This semantics

corresponds to that of the points-to information generated for a statement in the classical

points-to analysis. This gives GPBs their expressive power—multiple GPUs arising from

a single statement, produced by GPU-reduction (see later), represent may-alternative

updates, but one of these must be executed.5

Example 18. Consider a GPB {γ1 :x
1|0
−→
11

a, γ2 :x
1|0
−→
11

b, γ3 :y
1|0
−→
12

c, γ4 :z
1|0
−→
13

d, γ5 : t
1|0
−→
13

d}.

After executing this GPB we know that the points-to sets of x is overwritten to be-

come {a, b} (i.e. x definitely points to one of a and b) because GPUs γ1 and γ2 both

represent statement 11 and define a single location x. Similarly, the points-to set of

y is overwritten to become {c} because γ3 defines a single location c in statement

12. However, this GPB causes the points-to sets of z and t to include {d} (without

removing the existing pointees) because γ4 and γ5 both represent statement 13 but

5A subtlety is that a GPB δ may contain a spurious GPU that can never be executed because the

flow functions of points-to analysis are non-distributive [51]. This is a consequence of introducing over-

approximation to compute a decidable version of an undecidable analysis (we perform flow-sensitive

analysis as opposed to path-sensitive analysis).
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A generalized points-to update (GPU) γ :x
i|j
−→s y

Se
c.
3.1

GPU composition γ1◦
τγ2

◦τ : γ × γ → γ (partial function)

Se
c.
4.3

GPU reduction γ◦R

◦ : γ ×R → 2γ
Se
c.
4.4

Figure 3.4: A hierarchy of core operations involving GPUs. The set of GPUs reaching a
GPU γ (computed using the reaching GPUs analyses of Sections 4.6 and 4.7) is denoted
by R. By abuse of notation, we use γ, δ, and R also as types to indicate the signatures of
the operations. The operator “◦” can be disambiguated using the types of the operands.

define separate locations. Thus, x and y are strongly updated (their previous pointees

are removed) but z and t are weakly updated (their previous pointees are augmented).

The above example also illustrates how GPU statement labels capture the distinction

between strong and weak updates.

The may property of the absence of control flow between the GPUs in a GPB (i.e.,

the effect of parallel assignments) allows us to model a WaR dependence as illustrated in

the following example:

Example 19. Consider the code snippet on the right. There is a WaR data

01 y = x;

02 x = &a;

dependence between statements 01 and 02. If the control flow is not

maintained, the statements could be executed in the reverse order and

y could erroneously point to a.

We construct a GPB {y
1|1
−→
01

x, x
1|0
−→
02

a} for the code snippet. The may property

of this GPB ensures that there is no data dependence between these GPUs. The

execution of this GPB (containing a set of GPUs representing parallel assignments)

in the context of the memory represented by the GPU x
1|0
−→
12

b, computes the points-to

information {y−→b, x−→a}. It does not compute the erroneous points-to information

y−→a thereby preserving the WaR dependence. Thus, WaR dependence can be handled

without maintaining control flow.
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3.2 An Overview of GPG Operations

Figure 3.4 lists the GPG operations based on the concept of generalized points-to updates

(GPUs). Each layer is defined in terms of the layers below it. For each operation,

Figure 3.4 describes the types of its operands and result, and lists the section in which

the operation is defined.

3.2.1 GPU Composition

In a compiler, the sequence p = &a; ∗p = x is usually simplified to p = &a; a = x to facil-

itate further optimizations. Similarly, the sequence p = &a; q = p is usually simplified to

p = &a; q = &a. While both simplifications are forms of constant propagation, they play

rather different roles, and in the GPG framework, are instances of (respectively) SS and

TS variants of GPU composition (Section 4.3).

Suppose a GPU γ1 precedes γ2 on some control flow path and γ2 reads a pointer

defined by γ1 (i.e., there is a RaW dependence between γ1 and γ2). Then, GPU compo-

sition γ2 ◦
τγ1 eliminates the data dependence and computes a new GPU where τ is type

of composition. The resulting GPU γ3 is a simplified version of the consumer GPU γ2

obtained by using the points-to information in the producer GPU γ1 such that:

• The indlev of γ3 (say i′|j′) does not exceed that of γ2 (say i|j), i.e. i′ ≤ i and j′ ≤ j.

The two GPUs γ2 and γ3 are equivalent in the context of GPU γ1 (i.e., γ3 is a

simplified form of γ2).

• The type of GPU composition (denoted τ ) is governed by the role of the common

node (later called the ‘pivot’) between γ1 and γ2. The forms of GPU composition

important here are TS and SS compositions (Section 4.3). In TS composition, the

pivot is the target of consumer GPU γ2 and the source of producer GPU γ1, whereas

in SS composition, the pivot is the source of both γ1 and γ2.

Both forms of GPU composition are partial functions—either succeeding with a simplified

GPU or signalling failure. A comparison of indlevs allow us to determine whether a GPU

composition is possible; if so, simple arithmetic on indlevs allows us to compute the indlev

of the resulting GPU.
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Example 20. For statement sequence p = &a; ∗p = x, the consumer GPU γ2 :p
2|1
−→
2

x

(statement 2) is simplified to γ3 : a
1|1
−→
2

x by replacing the source p of γ2 using the

producer GPU γ1 : p
1|0
−→
1

a (statement 1). GPU γ3 can be further simplified to one or

more points-to edges (i.e. GPUs with indlev 1|0) when GPUs representing the pointees

of x (the target of γ3) become available.

The above example illustrates the following:

• Multiple GPU compositions may be required to reduce the indlev of a GPU to

convert it to an equivalent GPU with indlev 1|0 (a classical points-to edge).

• SS and TS variants of GPU composition respectively allow a source or target of a

consumer GPU to be resolved into a simpler form.

3.2.2 GPU Reduction

We generalize the operation of GPU composition as follows. If we have a set RGIns

of GPUs (representing generalized-points-to knowledge from previous statements and ob-

tained from the reaching GPUs analyses of Sections 4.6 and 4.7) and a single GPU γs ∈ δs,

representing a GPU for statement s, then GPU reduction γs◦RGIns constructs a set of

one or more GPUs, all of which correspond to statement s. This is considered as the

information generated for statement s and is denoted by RGGens. It is a union of all such

sets created for every GPU γs ∈ δs and is semantically equivalent to δs in the context of

RGIns and may beneficially replace δs.

GPU reduction plays a vital role in constructing GPGs in two ways. First, inlining

the GPG of a callee procedure and performing GPU reduction eliminates procedure calls.

Further, GPU reduction helps in removing redundant control flow wherever possible and

resolving recursive calls. In particular, a GPU reduction γs◦RGIns eliminates the RaW

data dependence of γs on RGIns thereby eliminating the need for a control flow between

γs and the GPUs in RGIns.
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e = ∗p

q = &e
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Endg
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δ11

e p
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1|0 05

δ12
δ16

Endg

δ16 =
{

r
1|0
−−→
01

a, e
1|2
−−→
04

p, q
1|0
−−→
05

e
}

Figure 3.5: Constructing the GPG for procedure g (see Figure 3.2). The edges with double
lines in the last column are not different from control flow edges but have been shown
separately because they are not present in the CFG. They represent definition-free paths
for the sources of all GPUs that do not appear in GPB δ16. Thus, it is a definition-free

path for the sources (b, 1) and (q, 2) of GPUs b
1|0
−→
02

m and q
2|0
−→
02

m.

3.3 An Overview of GPG Construction

Recall that a GPG of procedure f (denoted∆f ) is a graph whose nodes are GPBs (denoted

δ) abstracting sets of memory updates in terms of GPUs. The edges between GPBs are

induced by the control flow of the procedure. ∆f is constructed using the following steps:

1. creation of the initial GPG, and inlining optimized GPGs of called procedures6

within ∆f ,

2. strength reduction optimization to simplify the GPUs in ∆f by performing reaching

GPUs analyses and transforming GPBs using GPU reduction,

3. redundancy elimination optimizations to improve the compactness of ∆f .

6 This requires a bottom-up traversal of a spanning tree of the call graph starting with its leaf nodes.
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Endf

δ16 is as in Figure 3.5.

δ17 =

{

r
1|0
−−→
01

a, d
1|0
−−→
02

m,

d
1|0
−−→
08

n, p
1|0
−−→
06

c,

q
1|0
−−→
05

e, e
1|0
−−→
10

o
}

Figure 3.6: Constructing the GPG for procedure f (see Figures 3.2 and 3.5). GPBs δ13,
δ14, and δ16 in the GPG are the (renumbered) GPBs representing the inlined optimized
GPG of procedure g. The statement labels in the GPUs of these GPBs remain unchanged.
Redundancy elimination of ∆f coalesces all of its GPBs creating a new GPB δ15. GPB
δ17 is required for modelling definition-free paths. The edges with double lines are control
flow edges shown separately because they are introduced to represent definition-free paths.

Steps (2) and (3) are required to construct a compact GPG for efficient analysis. This sec-

tion illustrates GPG construction intuitively using the motivating example in Figure 3.2.

The formal details of these steps are provided in later chapters.

3.3.1 Creating a GPG and Call Inlining

In order to construct a GPG from a CFG, we first map the CFG naively into a GPG by

the following transformations:
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• Non-pointer assignments and condition tests are removed (treating the latter as

non-deterministic control flow). GPG flow edges are induced from those of the

control flow graph CFG. This is similar to the construction of sparse evaluation

graph (SEG).

• Since local variables are not in the scope of the callers and a GPG represents a

summary to be used in the callers, a GPG of a procedure does not retain GPUs

containing local variables of the procedure. We use def-use chains of the SSA form

to eliminate all local variables from the GPG of a procedure. This is similar to semi-

sparse analysis [32]. Later in Section 5.4, we explain that our analysis is actually

better than semi-sparse analysis because we minimize the control flow.

• Each pointer assignment labelled s is transliterated to its GPU (denoted γs). Fig-

ure 3.3 presented the GPUs for basic pointer assignments in C.

• A singleton GPB is created for every pointer assignment in the CFG.

• The procedure calls are replaced by the optimized GPGs of the callees. The resulting

GPG may still contain unresolved calls in the case of recursion and function pointers

(Sections 6.3 and 6.4).

Example 21. The initial GPG for procedure g of Figure 3.2 is given in Figure 3.5.

Each assignment is replaced by its corresponding GPU. The initial GPG for procedure

f is shown in Figure 3.6 with the call to procedure g on line 09 replaced by its optimized

GPG.

Examples 22 to 24 in the rest of this section explain the analyses and optimizations

over ∆f and ∆g at an intuitive level.

3.3.2 Strength Reduction Optimization

This step simplifies all GPUs in GPB δs by

• performing reaching GPUs analysis; this performs GPU reduction γ◦RGIns for each

γ ∈ δs which computes a set of GPUs that are equivalent to δs, and
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• replacing δs by the resulting GPUs.

In some cases, the reaching GPUs analysis needs to block certain GPUs from par-

ticipating in GPU reduction (as in Example 10 in Section 1.3.3) to ensure the soundness

of strength reduction. When this happens, redundancy elimination optimizations need

to know if the blocked GPUs in a GPG are useful for potential composition after the

GPG is inlined in the callers. These two conflicting requirements (of ignoring some GPUs

for strength reduction but remembering them for redundancy elimination) are met by

performing two variants of reaching GPUs analysis: first with blocking, and then without

blocking. Our motivating example (Figure 3.2) does not have any instance of blocking,

hence we provide an overview only of reaching GPUs analysis without blocking.

Strength reduction simplifies each GPB as much as possible given the absence of

knowledge of aliasing in the caller (Example 10 in Section 1.3.3). In the process, data

dependences are eliminated to the extent possible thereby paving way for redundancy

elimination (Section 3.3.3).

In order to reduce the indlevs of the GPUs within a GPB, we need to know the GPUs

reaching the GPB along all control flow paths from the Start GPB of the procedure. We

compute such GPUs through a data flow analysis in the spirit of the classical reaching

definitions analysis except that it is not a bit-vector framework because it computes sets

of GPUs by processing pointer assignments. This analysis annotates nodes δs of the

GPG with the sets RGIns,RGOuts,RGGens and RGKills. It computes RGIns as a union of

RGOut of the predecessors of s. Then it computes RGGens by performing GPU reduction

γ ◦RGIns for each GPU γ ∈ δs. By construction, all resulting GPUs are equivalent to

γ and have indirection levels that do not exceed that of γ. Because of the presence of

γ ∈ δs, some GPUs in RGIns are killed and are not included in RGOuts.

This process may require a fixed-point computation in the presence of loops. Since

this step follows inlining of GPGs of callee procedures, procedure calls have already been

eliminated and hence this analysis is effectively intraprocedural.

There is one last bit of detail which we allude to here and explain in Section 4.5 where

the analysis is presented formally: For the start GPB of the GPG, RGIn is initialized to

boundary definitions7 that help track definition-free paths to identify variables that are

upwards exposed (i.e. live on entry to the procedure and therefore may have additional

7The boundary definitions represent boundary conditions [1].
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pointees unknown to the current procedure). This is required for making a distinction

between strong and weak updates (Sections 1.3.1.2 and 4.5). For the purpose of this

overview, we do not show boundary definitions in our example below. They are explained

in Example 30 in Section 4.5.

Example 22. We intuitively explain the reaching GPUs analysis for procedure g

over its initial GPG (Figure 3.5). The final result is shown later in Figure 4.6. Since

we ignore boundary definitions for now, the analysis begins with RGIn01 = ∅. Further,

since we compute the least fixed point, RGOut values are initialized to ∅ for all state-

ments. The GPU corresponding to the assignment in statement 01 γ1 :r
1|0
−→
01

a, forms

RGOut01 and RGIn02. For statement 02, RGIn02 = {r
1|0
−→
01

a} and RGGen02 = {q
2|0
−→
02

m}.

RGKill02 = ∅ and RGOut02 is computed using RGIn02 which also forms RGIn03 which is

{r
1|0
−→
01

a, q
2|0
−→
02

m}. For statement 03, γ3 :q
1|0
−→
03

b forms RGGen03. In the second iteration

of the analysis over the loop, we have RGIn01 = RGOut03 = {r
1|0
−→
01

a, q
2|0
−→
02

m, q
1|0
−→
03

b}.

RGIn02 is also the same set. Composing γ2 : q
2|0
−→
02

m with q
1|0
−→
03

b in RGIn02 results in

the GPU b
1|0
−→
02

m. Also, the pointee information of q is available only along one path

(identified with the help of boundary definitions that are not shown here) and hence

the assignment causes a weak update and the GPU q
2|0
−→
02

m is also retained. Thus,

RGGen02 is now updated and now contains two GPUs: b
1|0
−→
02

m and q
2|0
−→
02

m. This

process continues until the least fixed point is reached.

The strength reduction optimization after reaching GPUs analysis gives the GPG

shown in the third column of Figure 3.5 (the fourth column represents the GPG after

redundancy elimination optimizations and is explained in Section 3.3.3).

3.3.3 Redundancy Elimination Optimizations

This step performs the following optimizations across GPBs to improve the compactness

of a GPG.

First, we perform dead GPU elimination to remove redundant GPUs in δs, i.e. those

that are killed along every control flow path from s to the End GPB of the procedure. If a

GPU γ /∈ RGOutEnd , then γ is removed from all GPBs. In the process, if a GPB becomes

empty, it is eliminated by connecting its predecessors to its successors.
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Example 23. In procedure g of Figure 3.5, pointer q is defined in statement 03 but

is redefined in statement 05 and hence the GPU q
1|0
−→
03

b is eliminated. Hence GPB δ03

becomes empty and is removed from the GPG of procedure g (∆g). Note that GPU

q
2|0
−→
02

m does not define q but its pointee and hence is not killed by statement 05. Thus

it is not eliminated from ∆g.

For procedure f in Figure 3.6, the GPU q
1|0
−→
07

d in δ07 is killed by the GPU q
1|0
−→
05

e

in δ14. Hence the GPU q
1|0
−→
07

d is eliminated from the GPB δ07 which then becomes

empty and is removed from the optimized GPG. Similarly, the GPU e
1|1
−→
04

c in GPB

δ14 is removed because e is redefined by the GPU e
1|0
−→
10

o in the GPB δ10 (after strength

reduction in ∆f ). However, GPU d
1|0
−→
08

n in GPB δ08 is not removed even though δ13

contains a definition of d expressed by GPU d
1|0
−→
02

m. This is because δ13 also contains

GPU b
1|0
−→
02

m which defines b, indicating that statement 02 defines two pointers b and

d. Hence, d is not defined along all paths and the previous definition of d cannot be

killed—giving a weak update.

Finally, we eliminate the redundant control flow in a GPG by performing coalescing

analysis (Section 5.4). It partitions the GPBs of a GPG (into parts) such that all GPBs

in a part are coalesced (i.e., a new GPB is formed by taking a union of the GPUs of all

GPBs in the part) and control flow is retained only across the new GPBs representing

the parts. Given a GPB δs in part πi, we can add its adjacent GPB δt to πi provided the

may property (Section 3.1) of πi is preserved. This is possible if the GPUs in πi and δt

do not have a data dependence between them.

The data dependences that can be identified using the information available within

a procedure (or its callees) are eliminated by strength reduction. However, when a GPU

involves an unresolved dereference which requires information from calling contexts, its

data dependences with other GPUs is unknown. Coalescing decisions involving such

unknown data dependences are resolved using types. The control flow is retained only

when type matching indicates the possibility of RaW or WaW data dependence. In other

cases the two GPBs are considered for coalescing.

The new GPB after coalescing is numbered with a new label because GPBs are

distinguished using labels for maintaining control flow within a GPG. A callee GPG may

be inlined at multiple call sites within a procedure. Hence, we renumber the GPB labels
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after call inlining and coalescing. Note that strength reduction does not create new GPBs;

it only creates new (equivalent) GPUs within the same GPB.

Coalescing two GPBs that do not have control flow between them may eliminate

a definition-free path for the GPUs in it (see the Example 24 below). We handle this

situation as follows: We create an artificial GPB by collecting all GPUs that do not have

a definition-free path in the GPG. We add a path from start to end via this GPB. This

introduces a definition-free path for all GPUs that do not appear in this GPB.

Note that the GPBs are renumbered after coalescing and during call inlining, how-

ever, the statement labels associated with the GPUs in the GPBs are not renumbered.

This is because, we need to maintain the association between the GPUs and the corre-

sponding statements in the program (for computing points-to information, see Chapter 7).

Example 24. For procedure g in Figure 3.5, the GPBs δ01 and δ02 can be coalesced:

there is no data dependence between their GPUs because GPU r
1|0
−→
01

a in δ01 defines

r whose type is float ∗∗ whereas the GPUs in δ02 read the address of m, pointer b,

and pointee of q. The type of latter two is int ∗. Since types do not match, there is

no data dependence.

The GPUs in δ02 and δ04 contain a dereference whose data dependence is un-

known. We therefore use the type information. Since both q and p have the same

types, there is a possibility of RaW data dependence between the GPUs q
2|0
−→
02

m and

e
1|2
−→
04

p (p and q could be aliased in the caller). Thus, we do not coalesce the GPBs

δ02 and δ04. Also, there is no RaW dependence between the GPUs in the GPBs δ04

and δ05 and we coalesce them; recall that potential WaR dependence does not matter

because of the may-property of GPBs (see Example 19 in Section 3.1).

The GPB resulting from coalescing GPBs δ01 and δ02 is labelled δ11. Similarly,

the GPB resulting from coalescing GPBs δ04 and δ05 is labelled δ12. The loop formed

by the back edge δ02 → δ01 in the GPG after dead GPU and empty GPB elimination

and before coalescing now reduces to a self loop over δ11. Since the GPUs in a GPB

do not have a dependence between them, the self loop δ11 → δ11 is redundant and is

removed.

For procedure f in Figure 3.6, after performing dead GPU elimination, the re-

maining GPBs in the GPG of procedure f are all coalesced into a single GPB δ15
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Figure 3.7: The big picture of GPG construction as a fleshed out version of Figure 3.1.
The arrows show the dependence between specific instances of optimizations, analyses,
operations, and abstractions. The results of the two variants of reaching GPUs analysis
are required together. The optimization of empty GPB removal does not depend on any
data flow analysis. The labels in parentheses refer to relevant sections.

because there is no data dependence within the GPUs of its GPBs.

As exemplified in Example 23, the sources of the GPUs b
1|0
−→
02

m and q
2|0
−→
02

m in

procedure g are not defined along all paths from Startg to Endg leading to a weak

update. This is modelled by introducing a definition-free path (shown by edges with

double lines in the fourth column of Figure 3.5). Thus for procedure g, we have GPB

δ16 that contains all GPUs of ∆g that are defined along all paths to create a definition-

free path for those that are not. Similarly, for procedure f , we have a definition-free

path for the source of GPU b
1|0
−→
02

m (as shown in the fourth column of Figure 3.6). The
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GPB δ17 contains all GPUs of ∆f except b
1|0
−→
02

m. GPU q
2|0
−→
02

m which has a definition-

free path in ∆g, reduces to d
1|0
−→
02

m in ∆f . Since d is also defined in δ08, it does not

have a definition-free path in ∆f .

3.4 The Big Picture

In this section, we have defined the concepts of GPUs, GPBs, and GPGs as memory

transformers and described their semantics. We have also provided an overview of GPG

construction in the context of our motivating example.

Figure 3.7 is a fleshed out version of Figure 3.1. It provides the big picture of

GPG construction by listing specific abstractions, operations, data flow analyses, and

optimizations and shows dependences between them. The optimizations use the results

of data flow analyses. The two variants of reaching GPUs analysis are the key analyses;

they have been clubbed together because their results are required together. They use

the GPU operations which are defined in terms of key abstractions. Empty GPB removal

does not require a data flow analysis.

The rest of the thesis defines these abstractions, operations, analyses, and optimiza-

tions formally.





Chapter 4

Strength Reduction Optimization

In this chapter, we formalize the basic operations that compute the information required

for performing strength reduction optimization of GPBs in a GPG.

4.1 Chapter Overview

Figure 4.1 gives an overview of all the optimizations and also gives a hierarchical relation-

ship between the analyses, GPG operations, and optimizations. For soundness, strength

reduction optimization requires some GPU compositions to be postponed by blocking

them (Section 4.7.1). However, these GPUs may be useful when the GPGs are inlined in

the callers and hence should not be subjected to redundancy elimination optimizations.

These conflicting requirements are addressed by performing two variants of reaching GPUs

analysis whose dependency is shown in Figure 4.1. The caller dependent accesses of point-

ers (pointers which are defined in the callers but accessed in callees) are represented by

upwards-exposed versions of variables (Section 4.5). The relationship between variables

and their corresponding upwards exposed versions is established through GPUs represent-

ing boundary definitions. These GPUs are used to model caller dependent GPUs and also

enable strong updates. Boundary definitions are used by both the variants of reaching

GPUs analysis as shown in Figure 4.1.

Section 4.2 gives an overview of strength reduction optimization. Section 4.3 defines

GPU composition as a family of partial operations. Section 4.4 defines GPU reduction.

Section 4.5 describes how strong/weak updates are handled in the presence of definition-

free paths by modelling caller-defined pointer variables. Section 4.6 provides data flow

59
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Strength reduction
optimization
(Chapter 4 )

Redundancy Elimination
optimizations
(Chapter 5 )

Avoid composition
with blocked GPUs

Record blocked GPUs
for later compositions

Reaching GPUs analysis
with blocking
(Chapter 4.7 )

Reaching GPUs analysis
without blocking
(Chapter 4.6 )

Model the caller
dependent GPUs

Boundary definitions
(Support strong updates)

(Section 4.5 )

GPU reduction
(Section 4.4 )

GPU composition
(Section 4.3 )

Figure 4.1: An overview of dependencies between optimizations, variants of reaching
GPUs analysis, and GPU operations. An undirected edge indicates the requirements of
optimizations. Strength reduction optimization needs to identify barrier GPUs to avoid
composition with some GPUs for soundness, and handle caller dependent GPUs. The
blocked GPUs may not be redundant and could be used for later compositions in the
callers. Thus, they should not be subjected to redundancy elimination optimizations and
should be recorded. A directed edge X → Y indicates that X requires Y .

equations for reaching GPUs analysis without blocking while Section 4.7 provides data flow

equations for reaching GPUs analysis with blocking. Section 4.8 proves the termination

of reaching GPUs analyses formally.

4.2 An Overview of Strength Reduction

Recall that the construction of a GPG of a procedure begins by transliterating each

pointer assignment labelled s in the CFG of the procedure into a GPB δs containing
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the singleton1 GPU corresponding to the assignment. Then the GPUs are simplified by

composing them with other GPUs. This simplification progressively converts a GPU to a

classical points-to edge as noted in Sections 1.3.3 and 3.3.2. Some simplifications can be

done immediately while others are blocked awaiting knowledge of aliasing in the callers

and so are postponed. They are reconsidered in the calling context after the GPG is

inlined as a procedure summary in its callers. The strength reduction optimization then

replaces every GPU γ ∈ δs with its simplified version.

Based on the knowledge of a (producer) GPU p, a consumer GPU c is simplified

through an operation called GPU composition denoted c ◦τp (where τ is SS or TS). A

consumer GPU may require multiple GPU compositions to reduce it to an equivalent GPU

with indlev 1|0 (a classical points-to edge). This is achieved by GPU reduction c ◦R which

involves a series of GPU compositions with appropriate producer GPUs in R in order to

simplify the consumer GPU c maximally. The set R of GPUs used for simplification

provides a context for c and represents generalized-points-to knowledge from previous

statements. It is obtained by performing a data flow analysis called the reaching GPUs

analysis which computes the sets RGIns, RGOuts, RGGens, and RGKills. The set RGGens

is semantically equivalent to δs in the context of RGIns and may beneficially replace δs.

We have two variants of reaching GPUs analysis for the reasons described below.

In some cases, the location read by c could be different from the location defined

by p due to the presence of a GPU b (called a barrier) corresponding to an intervening

assignment. The GPU p may be updated by the GPU b depending on the aliases in the

calling context (Section 1.3.3). This may alter the data dependence between c and p. It

could happen because the indlev of the source of p or b is greater than 1 indicating that

the pointer being defined by this GPU is still not known. In such a situation (character-

ized formally in Section 4.7.1), replacing δs by RGGens during strength reduction may be

unsound. To ensure soundness, we need to postpone the composition c◦τp explicitly by

eliminating those GPUs from R that are blocked by a barrier.2 We do this by performing

a variant of reaching GPUs analysis called the reaching GPUs analysis with blocking that

removes GPUs blocked by a barrier to compute reaching GPUs that are not blocked (Sec-

1GPU reduction and GPB coalescing may include multiple GPUs in a GPB. Hence for generality, we

treat a GPB as a set of possibly multiple GPUs.
2Formally the term ‘barrier’ applies to a GPU, but we abuse it and refer to its associated statement

as a barrier too.
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p : x
k|l
−→s y

c : z
i|j
−→
t

x ⇒ r : z
i|(l+j−k)
−−−−−−→

t
y

A generic illustration of TS

composition

An example

s : x = &y

t : z = x

⇓

s : x = &y

t : z = &y

p : x
k|l
−→s y

c : x
i|j
−→
t

z ⇒ r : y
(l+i−k)|j
−−−−−−→

t
z

A generic illustration of SS

composition

An example

s : x = &y

t : ∗x = z

⇓

s : x = &y

t : y = z

• The pivot x is the target of c and the

source of p.

• There is a RaW dependence if j ≥ k.

• r is computed by adding j − k to indlev

of both source and target of p.

• The pivot x is the source of both c

and p.

• There is a RaW dependence if i > k.

• r is computed by adding i−k to indlev

of both source and target of p.

Figure 4.2: Composing a consumer GPU c with a producer GPU p to compute a new
GPU r which is equivalent to c in the context of p. Both SS and TS compositions exploit
a RaW dependence of statement at t on the statement at s because the pointer defined
in p is used to simplify a pointer used in c . The other two possible compositions TT and
ST are less useful.

tion 4.7). We distinguish the two variants by using the phrase reaching GPUs analysis

without blocking for the earlier reaching GPUs analysis. For strength reduction, it is suffi-

cient to perform reaching GPUs analysis with blocking. However, redundancy elimination

optimizations need to know whether the blocked GPUs in a GPG are useful for potential

composition after the GPG is inlined in the callers. These two conflicting requirements

force us to perform both the variants of reaching GPUs analysis: with blocking, and

without blocking.

4.3 GPU Composition

We define GPU composition as a family of partial operations. These operations simplify a

consumer GPU c using a producer GPU p and compute a semantically equivalent GPU.
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4.3.1 The Intuition Behind GPU Composition

The composition of a consumer GPU c and a producer GPU p, denoted c ◦τp, computes a

resulting GPU r by simplifying c using p. This is possible when c has a RaW dependence

on p through a common variable called the pivot of composition. This requires the pivot

to be the source of p but it could be the source or the target of c .

We name the compositions as TS or SS where the first letter indicates the role of

the pivot in c and second letter indicates its role in p. If the pivot is the target of c and

the source of p, the composition is called a TS composition. If the pivot is the source of

both c and p, the composition is called an SS composition. We remark for completeness

that there are two further GPU-composition operations which can be applied when the

pivot is the target of p. These are called ST and TT compositions which correspond to

anti- and output dependence. They are optional and we do not use them here. This is

because TS and SS compositions are sufficient to convert a GPU to a classical points-to

edge (i.e., a GPU with indlev “1|0”).

Figure 4.2 illustrates TS and SS compositions. For TS composition, consider GPUs

c : z
i|j
−→
t
x and p :x

k|l
−→s y with a pivot x which is the target of c and the source of p. The

goal of GPU composition is to join the source z of c and the target y of p by using the

pivot x as a bridge. This requires the indlevs of x to be made the same in the two GPUs.

For example, if j ≥ k (other cases are explained later in the section), this can be achieved

by adding j − k to the indlevs of the source and target of p to view the base GPU p in

its derived form as x
j|(l+j−k)
−−−−−→y. This balances the indlevs of x in the two GPUs allowing

us to create a simplified GPU r :z
i|(l+j−k)
−−−−−→y. (Given a GPU x

i|j
−→s y, we can create a GPU

x
(i+1)|(j+1)
−−−−−−→s y based on the type restrictions on the indlevs of x and y.)

Although this computes the transitive effect of GPUs, in general, it cannot be mod-

elled using multiplication of matrices representing graphs as explained in Section 4.3.3.

4.3.2 Defining GPU Composition

Before we define the GPU composition formally, we need to establish the properties of

validity and desirability that allow us to characterize meaningful GPU compositions.

(a) A composition r = c ◦τp is valid only if c reads a location defined by p and this

read/write happens through the pivot of the composition.
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Possible SS Compositions Possible TS Compositions

Statement

sequence

Memory graph after

the stmt. sequence
GPUs

Statement

sequence

Memory graph after

the stmt. sequence
GPUs

i < k j < k

Ex. ss1

∗x = &y

x = &z

x

y

z

p: x
2|0
−−→y

c : x
1|0
−−→z

(invalid)

Ex. ts1

∗x = &y

z = x

x

y
z

p: x
2|0
−−→y

c : z
1|1
−−→x

(invalid)

i > k j > k

Ex. ss2

x = &y

∗x = &z

x y z

p: x
1|0
−−→y

c: x
2|0
−−→z

r : y
1|0
−−→z

Ex. ts2

x = &y

z = ∗x

x y

z

p: x
1|0
−−→y

c: z
1|2
−−→x

r : z
1|1
−−→y

i = k j = k

Ex. ss3

∗x = &y

∗x = &z

x

y

z

p: x
2|0
−−→y

c : x
2|0
−−→z

(invalid)

Ex. ts3

x = &y

z = x

x

yz

p: x
1|0
−−→y

c: z
1|1
−−→x

r : z
1|0
−−→y

Figure 4.3: Illustrating the validity of SS and TS compositions based on the indlevs of
pivot (x in these examples) in the consumer GPU c and producer GPU p.

(b) A composition r = c ◦τp is desirable only if the indlev of r does not exceed the indlev

of c (i.e., r is closer to classical points-to edge in terms of indlevs than c).

We say that a GPU composition is admissible if and only if it is valid and desirable.

Validity requires the indlev of the pivot in c to be greater than the indlev of pivot in

p. For the generic indlevs used in Figure 4.2, this requirement for validity translates to

the following constraints:

j ≥ k (TS composition) (4.1)

i > k (SS composition) (4.2)

Observe that SS composition condition (4.2) prohibits equality unlike the condition for

TS composition (4.1). This is because of the fact that SS composition involves the source

nodes of both the GPUs and when i = k, c overwrites the location written by p; for a

location written by p to be read by c in its source, i must be strictly greater than k.
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(

z
i|j
−→
t
x
)

◦ts
(

v
k|l
−→s y

)

:=











z
i|(l+j−k)
−−−−−→

t
y (v = x) ∧ (l ≤ k ≤ j)

fail otherwise

(

x
i|j
−→
t
z
)

◦ss
(

v
k|l
−→s y

)

:=











y
(l+i−k)|j
−−−−−→

t
z (v = x) ∧ (l ≤ k < i)

fail otherwise

Definition 3: GPU Composition c◦τp

Example 25. The following (attempted) compositions in Figure 4.3 are invalid be-

cause c does not read a location defined by p.

• In example ss1 (SS composition), k = 2 and i = 1 violating Constraint (4.2).

GPU c redefines x instead of reading a location defined by p.

• In example ss3 (SS composition), k = i = 2 violating Constraint (4.2). GPU c

redefines pointee of x (i.e., ∗x) instead of reading a location defined by p.

• In example ts1 (TS composition), k = 2 and j = 1 violating Constraint (4.1).

GPU c reads x instead of reading pointee of x (i.e, ∗x) defined by p. In other

words, there is no data dependence between c and p which is evident from the

fact that the order of the statements can be changed and yet the meaning of the

program remains same.

Following compositions in Figure 4.3 are valid because c reads a location defined by p.

• In example ss2 (SS composition), k = 1 and i = 2 satisfies Constraint (4.2).

• In example ts2 (TS composition), k = 1 and j = 2 satisfies Constraint (4.1).

• In example ts3 (TS composition), k = 1 and j = 1 satisfies Constraint (4.1).

The desirability of GPU composition characterizes progress in conversion of GPUs into

classical points-to edges by ensuring that the indlev of the new source and the new target

in r does not exceed the corresponding indlev in the consumer GPU c . This requires

the indlev in the simplified GPU r and the consumer GPU c to satisfy the following

constraints. In each constraint, the first term in the conjunct compares the indlevs of the
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sources of c and r while the second term compares those of the targets (see Figure 4.2):

(i ≤ i) ∧ (l + j − k ≤ j) or equivalently l ≤ k (TS composition) (4.3)

(l + i− k ≤ i) ∧ (j ≤ j) or equivalently l ≤ k (SS composition) (4.4)

Example 26. Consider the statement sequence x = ∗y; z = x. A TS composition of

the corresponding GPUs p : x
1|2
−→y and c : z

1|1
−→x is valid because j = k = 1 satisfying

Constraint 4.1. However, if we perform this composition, we get r : z
1|2
−→y. Intuitively,

this GPU is not useful for computing a points-to edge because the indlev of r is “1|2”

which is greater than the indlev of c which is “1|1”. Formally, this composition is

flagged undesirable because l = 2 which is greater than k = 1 violating Constraint 4.3.

We take a conjunction of the constraints of validity (4.1 and 4.2) and desirability (4.3

and 4.4) to characterize admissible GPU compositions.

l ≤ k ≤ j (TS composition) (4.5)

l ≤ k < i (SS composition) (4.6)

Note that an undesirable GPU composition is valid but inadmissible. It will eventually

become desirable after the producer GPU is simplified further through strength reduction

optimization after the GPG is inlined in a caller’s GPG.

Definition 3 defines GPU composition formally. It computes a simplified GPU

r = c ◦τp by balancing the indlev of the pivot in both the GPUs provided the compo-

sition (TS or SS) is admissible. Otherwise it fails—being a partial operation. Note that

TS and SS compositions are mutually exclusive for a given pair of c and p because a

variable cannot occur both in the RHS and the LHS of a pointer assignment in the case

of pointers to scalars. Since our language is modelled on C, GPUs for statements such as

∗x = x or x = ∗x are prohibited by typing rules; GPUs for statements such as ∗x = ∗x

are ignored as inconsequential. Further, we assume as allowed by C-standard undefined

behavior that the programmer has not abused type-casting to simulate such prohibited

statements. Chapter 8 considers a richer situation with structs and unions where we can
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Input: c // The consumer GPU to be simplified.

R // The context (set of GPUs) in which c

// is to be simplified.

Output: Red // The set of simplified GPUs equivalent to c .

01 GPU reduction (c , R)

02 { if (R = ∅ ∧ c = ·
1|0
−→
·

·) // c is a points-to edge

03 { Red = {c}

04 W = ∅

05 }

06 else

07 { Red = ∅

08 W = {c}

09 }

10 while (W 6= ∅)

11 { extract w from W

12 composed = false

13 for each γ ∈ R

14 { if (r = w◦tsγ) succeeds

15 { W = W ∪ {r}

16 composed = true

17 }

18 else if (r = w◦ssγ) succeeds

19 { W = W ∪ {r}

20 composed = true

21 }

22 }

23 if (¬ composed )

24 Red = Red ∪ {w}

25 }

26 return Red

27 }

Definition 4: GPU Reduction c ◦R

have an assignment x → n = x which might have both TS and SS compositions with a

GPU p that defines x and c reads and defines some pointee of x simultaneously.
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4.3.3 Modelling GPU Composition as Matrix Multiplication?

GPU composition c ◦τp computes transitive effects of edges c and p. This is somewhat

similar to the reachability computed in a graph: If there are edges x → y and y → z

representing the facts that y is reachable from x and z is reachable from y, then it follows

that z is reachable from x and an edge x → z can be created. If the graph is represented

by an adjacency matrix A in which the element (x, y) represents reachability of y from x,

matrix multiplication A×A can be used to compute the transitive effect.

It is difficult to model GPU composition as matrix multiplication because of the

following reasons:

• GPUs have labels as pairs of numbers representing indirection levels and also state-

ment labels. Hence we will need to device an appropriate operator and the usual

multiplication would not work.

• GPU composition has some additional constraints over reachability because of validity

and desirability; invalid and undesirable compositions are not performed. These re-

strictions are difficult to model in matrix multiplication.

• Transitive reachability considers only the edges of the kind x → y and y → z; i.e. the

pivot should be the target of the first edge and the source of the second edge. GPU

composition considers pivot as both source as well as target in c and source in p and

hence considers two compositions (TS and SS). For example, we compose p : x
1|0
−→s z

and c : x
2|0
−→
t

y in an SS composition to create a new GPU r : z
1|0
−→
t

y. Transitive

reachability computed using matrix multiplication considers only TS composition.

Thus, matrix multiplication does not model GPU composition naturally.

4.4 GPU Reduction

GPU reduction c ◦R uses the GPUs in R to compute a set of GPUs Red whose indlevs

do not exceed that of c . The result of GPU reduction c ◦R must ensure the semantic

equivalence of Red with c in the context of R. The set R is computed using reaching GPUs

analysis without blocking (Section 4.6). In some cases, we need to restrict R using the

reaching GPUs analysis with blocking (Section 4.7) to ensure this semantic equivalence.
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For c ◦R, the indlev of c is reduced progressively using the GPUs from R through

a series of admissible GPU compositions. For example, a GPU x
1|2
−→y requires two TS

compositions to transform it into a classical points-to edge: first one for identifying the

pointees of y and second one for identifying the pointees of pointees of y. Similarly, for a

GPU x
2|1
−→y, an SS composition is required to identify the pointees of x which are being

defined and a TS composition is required to identify the pointees of y whose addresses

are being assigned. Thus, the result of GPU reduction c ◦R is a fixed-point of cascaded

GPU compositions in the context of R.

4.4.1 Defining GPU Reduction c ◦R

Definition 4 gives the algorithm for GPU reduction. The worklist W is initialized to {c}.

A reduced GPU is added to W for further GPU compositions. When a GPU w cannot

be reduced any further, the flag composed remains false and w is added to Red (lines 23

and 24 of Definition 4). When the input to GPU reduction R is ∅ and the GPU c is

already in the reduced form (GPU with indlev “1|0”), c is added to Red (lines 2, 3, and 4

of Definition 4) which then forms the output of GPU reduction. This algorithm assumes

that the graph induced by the GPUs in R is acyclic. This holds for pointers to scalars.

However, in the presence of structures, the graph induced by GPUs in R may contain

cycles via fields of structures; Section 8.5 extends the algorithm to handle cycles.

Example 27. Consider the statements in this example. For c : x
1|2
−→
23

y, the set of

GPUs reaching statement 23 is R = {y
1|0
−→
21

a, a
1|0
−→
22

b}. The reduction c ◦R involves two

consecutive TS compositions. The first composition involves y
1|0
−→
21

a as p, resulting in

21 y = &a;

22 a = &b;

23 x = ∗y;

r = x
1|1
−→
23

a which is added to the worklist. In the second iteration of

the while loop on line 10 of Definition 4, the reduced GPU x
1|1
−→
23

a in

the previous iteration now becomes the consumer GPU. It is composed

with a
1|0
−→
22

b which results in a reduced GPU x
1|0
−→
23

b. This GPU is added to the worklist.

However, since it cannot be reduced further as it is already in the classical points-to

form, the loop terminates. The flag composed remains false for the final GPU x
1|0
−→
23

b

because no further composition is possible and Red = {x
1|0
−→
23

b}.
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The termination of GPU reduction is guaranteed by the following reasons:

• A GPU w extracted from the worklist will never be added to it again. If there is

no reduction, then w is added to Red directly. This is ensured by setting the flag

composed appropriately.

• Reduction of indlev of source and target of a GPU w is performed independently,

hence there is no oscillation across iterations of fixed-point computation.

• The process terminates only when the GPUs in Red are either in their simplified

form or no more GPUs are available in R for further compositions.

• The order in which a GPU γ is selected from R for composition with w does not

matter because of the following properties of R that are established by the reaching

GPUs analysis with and without blocking (Sections 4.6 and 4.7).

Consider two GPUs γ1 and γ2 in R. Then γ1 and γ2 cannot compose with each

other: If the composition γ2◦γ1 were possible, it would have been performed during

the reaching GPUs analysis (Section 4.6) and γ2 would not exist in R because it

would be replaced by the result of the composition. Similarly if the composition

γ1◦γ2 were possible, γ1 would not exist in R. Hence we examine the possible reasons

of existence of both γ1 and γ2 in R and explain why the order of performing the

compositions w◦γ1 and w◦γ2 does not matter.

(a) There is no data dependence between γ1 and γ2 because there is no pivot be-

tween them or one does not follow the other on any control flow path. Hence a

composition between them is ruled out. In this case, the order between w◦γ1

and w◦γ2 is irrelevant.

(b) There is data dependence between γ1 and γ2 potentially enabling a composition.

Without any loss of generality, consider the composition γ2◦γ1. Then there are

two possibilities that may have prohibited the composition:

(i) γ2◦γ1 is inadmissible because it is undesirable. Then, w◦γ1 also is undesirable

because the desirability constraint is based solely on the indlev of γ1 (Con-

straints 4.3 and 4.4). Thus w may compose only with γ2 and the issue of

an order between w◦γ1 and w◦γ2 does not arise.
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p a
1|0

1δ1 p b
1|0

2δ2

p x
2|0

3δ3

a) Weak Update

p a
1|0

1δ1 p a
1|0

1δ2

p x
2|0

3δ3

b) Strong Update

p a
1|0

1δ1 δ2

p x
2|0

3δ3

c) Possibly Weak Update

Figure 4.4: An example demonstrating the need for identifying a definition-free path to
make a distinction between strong and weak update.

(ii) γ2◦γ1 is admissible but has been postponed because of a barrier (intro-

duced in Section 1.3.3 and explained later in Section 4.7) between γ2 and

γ1. In this case, the barrier also prohibits a composition of w with γ1 and

it can compose only with γ2. Thus the issue of an order between w◦γ1

and w◦γ2 does not arise.

4.4.2 A Comparison with Dynamic Transitive Closure

It is tempting to compare GPU reduction c ◦R with dynamic transitive closure [15, 16]:

a series of GPU compositions are performed until the GPU c cannot be simplified any

further. However, the analogy stops at this abstract level. Apart from the reasons men-

tioned in Section 4.3.3, the following differences make it difficult to model GPU reduction

in terms of dynamic transitive closure:

• GPU reduction does not compute unrestricted transitive effects. Dynamic transitive

closure computes unrestricted transitive effects.

• We do not compute closure. Strength reduction optimization replaces the result

of GPU reduction with the GPUs in the GPB. Dynamic transitive closure implies

retaining all GPUs including the GPUs computed in the intermediate steps.
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Source of the reduced GPUs in X = c ◦ R
∃γ ∈ X

Single
(

|Def(X, γ)=1|
)

Multiple
(

|Def(X, γ) > 1|
)

Some path does not

have a definition

Every path has

a definition

Strong Update (Matching

edges can be removed)

Weak Update (No edge

can be removed)

Figure 4.5: Criteria for strong and weak updates in ∆. Our formulations eliminate the
dashed edge simplifying strong updates. Def(X, γ) is defined in Definition 4.

4.5 Modelling Caller-Defined Pointer Variables

This section describes the need for identifying definition-free paths for strong updates.

This is required to handle statements such as ∗x = p where one of the definition of x

reaching the statement appears in a caller. This section describes how the definitions in

the callers (which are not available during GPG construction) are abstractly captured

and strong updates are performed precisely.

Recall from Section 1.3.1.2 that, in abstract memory, we may be uncertain as to

which of several locations a variable points to.

Example 28. In Figure 4.4(a), multiple pointees of p reach GPB δ3. GPU reduction

for the GPU in δ3 returns a set of GPUs {a
1|0
−→
3

x, b
1|0
−→
3

x} which define multiple pointers

leading to a weak update. In this case, we do not overwrite the pointees of a and b,

but merely add &x to the possible values they can contain.

In Figure 4.4(b), p has a single pointee reaching GPB δ3. The result of GPU

reduction is {a
1|0
−→
3

x} indicating that there is only one possible abstract location defined

by GPU p
2|0
−→
3

x. In this case we may, in general, replace the contents of location a.

This is a strong update. However, this is necessary but not sufficient for a strong

update because the pointer may not be defined along all paths—there may be a path
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along which the pointer may not be defined within the procedure but may be defined

in a caller (Figure 4.4(c)). In the presence of such a definition-free path in a procedure,

even if we find a single pointee of p in the procedure, we cannot guarantee that a single

abstract location is being defined. This makes it difficult to distinguish between strong

and weak updates.

The role of definition-free path in making a distinction between strong and weak

update is summarized in Figure 4.5. Also, the effect of definition-free paths has to be

taken into account during strength reduction optimization: if γ1 is simplified to γ2, γ2 can

replace γ1 provided there is no definition-free path reaching γ1; otherwise γ1 should also

be included with γ2 to allow the composition of γ1 with the producer GPUs in a caller.

Example 29. Figure 3.5 shows the set of GPUs corresponding to statement 02 (δ02

in the GPG after strength reduction) of procedure g of Figures 3.2 and 3.5. There is

a definition-free path for q meaning that δ11 in the optimized ∆g must include GPU

q
2|0
−→
02

m along with its reduced GPU b
1|0
−→
02

m.

We identify definition-free paths by introducing boundary definitions (explained be-

low) which help us to preserve definition-free paths that may be eliminated by coalescing.

The boundary definitions are introduced for global variables and formal parameters

because they could be read in a procedure before being defined. They are symbolic in

that they are not introduced in the GPG of a procedure but are included in RGIn of the

Start GPB during reaching GPUs analysis. They are of the form x
ℓ|ℓ
−→
00

x′ where x′ is a

symbolic representation of the initial value of x at the start of the procedure and ℓ ranges

from 1 to the maximum depth of the indirection level which depends on the type of x, and

00 is the label of the Start GPB. For type (int ∗∗), ℓ ranges from 1 to 2. Variable version

x′ is called the upwards exposed [51] version of x. This is similar to Hoare-logic style

specifications in which postconditions use (immutable) auxiliary variables x′ to be able to

talk about the original value of variable x (which may have since changed). Our upwards-

exposed versions serve a similar purpose, so that logically on entry to each procedure the

statement x = x′ provides a definition of x.

A reduced GPU x
i|j
−→s y along any path kills the boundary definition x

i|i
−→
00

x′ on that

path indicating that (i− 1)th pointees of x are redefined. Including boundary definitions
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GPUs in procedure g (final values after fixed-point computation).

Stmt s RGIns RGGens RGKills RGOuts

01

r a

b mq

q′

1|0

01

1|0

03

1|1

00

2|0 02

1|0

02
r a

1|0

01
r r′

1|1

00

r a

b mq

q′

1|0

01

1|0

03

1|1

00

2|0 02

1|0

02

02

r a

b mq

q′

1|0

01

1|0

03

1|1

00

2|0 02

1|0

02

b
m

q′
2|0

02

1|0

02

r a

b mq

q′

1|0

01

1|0

03

1|1

00

2|0 02

1|0

02

03

r a

b mq

q′

1|0

01

1|0

03

1|1

00

2|0 02

1|0

02
q b

1|0

03
q q′

1|1

00

r a

b mq

q′

1|0
01

1|0

03
2|0 02

1|0

02

04

r a

b mq

q′

1|0

01

1|0

03

1|1

00

2|0 02

1|0

02
e p′

1|2

04
e e′

1|1

00

r a

b

e

mq

q′

p′

1|0

01

1|0

03
2|0 02

1|0

02

1|2

04

1|1

00

05

r a

b

e

mq

q′

p′

1|0

01

1|0

03
2|0 02

1|0

02

1|2

04

1|1

00

q e
1|0

05
q b

q′

1|0

03

1|1
00

r a

b

e

mq

q′

p′

1|0

01

1|0 05

2|0 02

1|0

02

1|2

04

Figure 4.6: The data flow information computed by reaching GPUs analysis for procedure
g of the motivating example given in Figure 3.2. In RGIn and RGOut, we show only one

boundary definition q
1|1
−→
00

q′ because other boundary definitions do not participate in GPU

reduction for this example. However, the boundary definitions that are removed are shown
in RGKill.

at the start ensures that if a boundary definition x
i|i
−→
00

x′ reaches a program point s, there

is a definition-free path from Start to s; its absence at s guarantees that the source of
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x
i|i
−→
00

x′ has been defined along all paths reaching s. This leads to a simple, necessary and

sufficient condition for strong updates: all GPUs corresponding to a statement s must

define the same location thereby eliminating the possibility represented by the dashed

path in Figure 4.5.

The boundary definitions also participate in GPU compositions thereby modelling

the semantics of definition-free paths. They enable strong updates thereby improving the

precision of analysis.

Example 30. Consider reaching GPUs analysis for the GPB corresponding to state-

ment 02 in the initial GPG of procedure g (δ02 in Figure 3.5). We include the boundary

definitions for each global variable and the parameters of a procedure as RGIn of the

Start GPB of the GPG of procedure g. Although Figure 3.5 does not show boundary

definitions for simplicity, they are shown in Figure 4.6 for variable q (boundary defi-

nitions of other variables are not required for strong updates in this example). These

boundary definitions capture the effect of definition-free paths to distinguish between

weak and strong updates.

The GPU γ2 :q
2|0
−→
02

m is composed with GPUs from RGIn02 which contains a GPU

q
1|0
−→
03

b indicating that pointer b is being defined by statement 02. However, this is

not the case of strong update as b is not the only pointer that is being defined by the

assignment. There is a definition-free path along which pointee of q is not available

indicating that q may have a definition in the callers of procedure g which is also

required in statement 02 of g but is currently unavailable. The presence of boundary

definition q
1|1
−→
00

q′ in RGIn02 indicates the presence of a definition-free path and the

composition of this GPU results in a reduced GPU q′
2|0
−→
02

m which is also a part of δ02.

The GPU q′
2|0
−→
02

m has been represented by the GPU q
2|0
−→
02

m in Figure 3.5 because it

ignores boundary definitions.

At the call site in procedure f , after the composition of GPU q
1|0
−→
07

d and q
2|0
−→
02

m

(the upwards-exposed version q′ is replaced by q during call inlining; for more details

see Chapter 6), the set of reduced GPUs corresponding to statement 02 in procedure

f (GPB δ13) contains two GPUs b
1|0
−→
02

m and d
1|0
−→
02

m (Figure 3.6). Since, statement 02

defines two pointers d and b, no GPU is removed and hence the GPU d
1|0
−→
08

n in GPB

δ08 is retained owing to a weak update.
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An important property of boundary definitions is that they appear only in RGIn

and RGOut of the reaching-GPUs analysis—they never appear in the GPBs or in RGGen,

although the upwards-exposed versions of variables could be involved in the GPUs in

RGGen. Also, the algorithm for GPU reduction does not change with the introduction of

boundary definitions because a GPU can be composed with boundary definitions just like

with any other GPUs.

4.6 Reaching GPUs Analysis without Blocking

In this section, we ignore the effect of barriers and present the data flow equations for

computing RGIn and RGOut for every GPB δ in the GPG of a procedure. Section 4.7

incorporates the effects of barriers and performs reaching GPUs analysis with blocking to

compute RGIn and RGOut for every GPB δ. The data flow information RGGen computed

by this analysis is then used to perform strength reduction optimization of a GPG.

The reaching GPUs analysis is an intraprocedural forward data flow analysis in the

spirit of the classical reaching definitions analysis. It computes the set RGIns of GPUs

reaching a given GPB δs by processing the GPBs that precede δs on control flow paths

reaching δs. Then it incorporates the effect of δs on the GPUs in RGIns through GPU

reduction to compute a set of GPUs after s (RGOuts). The result of GPU reduction,

denoted RGGens, is semantically equivalent to that of δs. The GPUs in RGGens have

indlevs that do not exceed the indlevs of the corresponding GPUs in δs. Thus, δs can be

replaced by RGGens as a part of strength reduction optimization after the analysis reaches

its fixed point.

RGOuts is computed using RGGens and RGKills. RGGens contains all GPUs computed

by GPU reduction γ◦RGIns (for all γ ∈ δs). RGKills contains the GPUs to be removed.

They are under-approximated when a strong update cannot be performed. When a strong

update is performed, we kill those GPUs of RGIns whose source and indlev match that

of the shared source of the reduced GPUs (identified by Match(γ,RGIns)). For a weak

update, Kill(RGGens,RGIns) = ∅.

GPU reduction allows us to model Kill (i.e., GPU removal from RGIn) in the case

of strong update as follows: The reduced GPUs should define the same abstract location

along every control flow path reaching the statement represented by γ. This is captured
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RGIns :=















{

x
ℓ|ℓ
−→s x′ | x ∈ P, 0 < ℓ ≤ κ

}

s = Start, κ is the largest indlev

⋃

p ∈ pred(s)

RGOutp otherwise

RGOuts := (RGIns − RGKills) ∪ RGGens

RGGens := Gen (δs, RGIns)

RGKills := Kill (RGGens, RGIns)

Gen(X,R) :=
⋃

γ ∈X

γ◦R

Kill(X,R) :=
{

γ1 | ∃ γ ∈ X such that |Def(X, γ)|=1 ∧ γ1 ∈Match(γ, R)
}

Match(x
i|j
−→s y, R) :=

{

γ ∈ R | γ = u
k|l
−→
t
v, x = u, i = k

}

Def
(

X,w
k|l
−→s z

)

:=
{

(x, i) | x
i|j
−→s y ∈ X

}

Definition 5: Data flow equations for Reaching GPUs Analysis without Blocking

by the requirement |Def(X, γ)| = 1 in the definition of Kill(X,R) in Definition 5 where

Def(X, γ) extracts the source nodes and their indirection levels of the GPUs (i.e. pair

(x, i) for GPU x
i|j
−→s y) in X that are constructed for the same statement s. The GPUs

that are killed are determined by the GPUs in RGGens and not those in δs. For defining

Kill, we need to identify the pointers defined by a statement. Since a GPB may have

GPUs corresponding to multiple pointer assignment statements on account of structural

optimization of coalescing of GPBs, we partition the set of GPUs in a GPB according to

the assignments they correspond to.

Example 31. Figure 4.6 gives the final result of reaching GPUs analysis for proce-

dure g of our motivating example. We have shown the boundary GPU q
1|1
−→
00

q′ for q.

Other boundary GPUs are not required for strong updates in this example and have

been omitted. This result has been used to construct GPG ∆g shown in Figure 3.5.

For procedure f , we do not show the complete result of the analysis but make some

observations. The GPU q
2|0
−→
10

o is composed with the GPU q
1|0
−→
05

e to create a reduced

GPU e
1|0
−→
10

o. Since, only a single pointer (in this case e) is being defined by the as-

signment, this is a case of strong update and hence kills e
1|1
−→
04

c. The GPU to be killed

is identified by Match(e
1|0
−→
10

o,RGIn10) which matches the source and the indlev of the
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int a, b, ∗p, ∗q, ∗∗x;

01 void h()

02 { p = &a; /* GPU p */

03 ∗x = &b; /* GPU b */

04 q = p; /* GPU c */

05 }

int a, b, ∗p, ∗q, ∗∗x;

01 void h()

02 { ∗x = &a; /* GPU p */

03 p = &b; /* GPU b */

04 q = ∗x; /* GPU c */

05 }

If x points-to p then q points-to b else q

points-to a.

If x points-to p then q points-to b else q

points-to a.

(a) Composition across an indirect GPU b (b) Composition with an indirect GPU across the GPU b

Figure 4.7: Risk of unsoundness in GPU reduction caused by a barrier GPU.

GPU to be killed to that of the reduced GPU. Thus, kill is determined by the reduced

GPU (in this case e
1|0
−→
10

o) and not the consumer GPU (in this case q
2|0
−→
10

o).

4.7 Reaching GPUs Analysis with Blocking

In a GPU reduction, it is possible that c has an admissible composition with some producer

GPU p, but the location read by c could be different from the location defined by p due

to the presence of a barrier GPU b (Sections 1.3.3 and 4.2).3

To ensure soundness, we perform a variant of reaching GPUs analysis that identifies

barriers and excludes blocked GPUs from the set of reaching GPUs. The unblocked GPUs

are contained in the sets RGIns and RGOuts computed through a data flow analysis. The

data flow information RGGens computed by this analysis is then used to replace δs thereby

ensuring the soundness of strength reduction optimization.

4.7.1 The Need of Blocking

The combined effect of an intervening assignment between a producer GPU p and a

consumer GPU c , and the GPUs in a calling context may change the pointer chain

3In the MTF approach, all the data dependences are known because of the alias information, hence

there is no blocking. In the STF approach, since the data dependence is unknown in the case of derefer-

ences, blocking is required. Such situations are handled by introducing different placeholders for different

accesses of the same variable. These accesses may be separated by a barrier in a procedure.
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established by p. This alters the data dependence between p and c . We call such an

assignment (or the corresponding GPU), a barrier.

In this case, c should not be composed with p and should be left unsimplified. If

c ◦τp is performed, then RGGens will not contain c . Hence, when strength reduction

optimization replaces δs by RGGens, c will be replaced by the result of composition,

possibly leading to unsoundness.

We characterize these situations by building on Section 1.3.3 and defining the notion

of a barrier GPU. A barrier GPU b blocks the GPU p and prevents it from reaching

c effectively postponing the composition c ◦τp. The composition is postponed to avoid

the possibility of unsound strength reduction optimization. After inlining the GPG in a

caller, more information may become available. Thus, it may resolve any uncertain data

dependence between c and p—so a composition which was earlier postponed may now

safely be performed. This is explained in the rest of the section.

We define a barrier as follows. Let an indirect GPU refer to a GPU whose indlev of

the source is greater than 1 (i.e., the pointer being defined by the GPU is not known), for

example, x
i|j
−→s y i > 1. Then, a GPU b corresponding to an assignment between c and p

on some control flow path is a barrier if:

• b is an indirect GPU. This is a composition across an indirect GPU b (Fig-

ure 4.7(a)).

• p is an indirect GPU (b need not be an indirect GPU). This is a composition with

an indirect GPU across the GPU b (Figure 4.7(b)).

We illustrate these situations in the following example.

Example 32. Consider the procedure in Figure 4.7(a). The composition between

the GPUs for statements 02 and 04 is admissible. However, statement 03 may cause

a side-effect by indirectly defining p (if x points to p in the calling context). Thus, q

in statement 04 would point to b if x points to p; otherwise it would point to a. If we

replace the GPU q
1|1
−→
04

p by q
1|0
−→
04

a (which is the result of composing q
1|1
−→
04

p with p
1|0
−→
02

a),

then we would miss the GPU q
1|0
−→
04

b if x points to p in the calling context—leading to

unsoundness. Since the calling context is not available during GPG construction, we

postpone this composition to eliminate the possibility of unsoundness. This is done
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by blocking the GPU p
1|0
−→
02

a by an indirect GPU x
2|0
−→
03

b which acts as a barrier. This

corresponds to the first case described above.

For the second case, consider statement 02 of the procedure in Figure 4.7(b)

which may indirectly define p (if x points to p). Statement 03 directly defines p. Thus,

q in statement 04 would point to b if x points to p; otherwise it would point to a. We

postpone the composition c :q
1|2
−→
04

x with p :x
2|0
−→
02

a by blocking the GPU p where the

GPU p
1|0
−→
03

b acts as a barrier.

A barrier GPU is likely to have a WaW or WaR dependence with some preceding

GPUs which cannot be ascertained without the alias information in the calling context.4

In the absence of alias information from the calling context, we use the type information

to identify some such GPUs as non-blocking. The barrier blocks such GPUs, so that the

compositions of c with them are postponed (Section 1.3.3). Consider a GPU p originally

blocked by a barrier b where p or b could be an indirect GPU. After inlining the GPG

in its callers and performing strength reduction optimization in the calling contexts, the

following situations could arise:

1. The indlev of the source of the indirect GPU (p or b) is reduced to 1 thereby

identifying the pointer being defined by the GPU. In this case, b ceases being a

barrier and so no longer blocks p leading to the following two situations:

(a) b redefines some location in the pointer chain established by p thereby obviating

the composition c ◦τp. Blocking in this case is essential for soundness.

(b) b does not redefine a location in the pointer chain established by p thereby

allowing the composition c ◦τp. Blocking in this case is redundant.

2. The indlev of the source of the indirect GPU (p or b) remains greater than 1. In

this case, b continues to block p awaiting further inlining.

In case 1(a), an eager reduction of c without blocking p would cause c to be replaced

by the result of composition c ◦τp, thereby causing unsoundness. Reaching GPUs analysis

with blocking helps to postpone the composition until all information becomes available.

Our measurements (Chapter 9) show that situation 1(a) rarely arises in practice because

4Since we are interested in the writes of a barrier, a RaW data dependence is immaterial.
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it amounts to defining the same pointer multiple times through different aliases in the

same context. The below example explains all the above cases with an example given in

Figure 4.7(a).

Example 33. Case 1(a) above could arise if x points to p in the calling context

of the procedure in Figure 4.7(a). As a result, GPU p
1|0
−→
02

a is killed by the barrier

GPU p
1|0
−→
03

b (which is the simplified version of the barrier GPU x
2|0
−→
03

b) and hence the

composition is prohibited and q points to b for statement 04. Case 1(b) could arise if x

points to any location other than p in the calling context. In this case, the composition

between q
1|1
−→
04

p and p
1|0
−→
02

a is sound and q points to a for statement 04. Case 2 could

arise if pointee of x is not available even in the calling context. In this case, the barrier

GPU x
2|0
−→
03

b continues to block p
1|0
−→
02

a.

Example 34 describes blocking to ensure soundness of strength reduction.

Example 34. To see how reaching GPUs analysis with blocking helps, consider the

example in Figure 4.7(b). The set of GPUs reaching the statement 04 is RGIn04 =

{x
2|0
−→
02

a, p
1|0
−→
03

b}. The GPU x
2|0
−→
02

a is blocked by the barrier GPU p
1|0
−→
03

b and hence

RGIn04 = {p
1|0
−→
03

b}. Thus, GPU reduction for w :q
1|2
−→
04

x (in the context of RGIn04)

computes Red as {w} with the flag composed set to false because w cannot be reduced

further within the GPG of the procedure. However, w is still not a points-to edge and

can be simplified further after the GPG is inlined in its callers. Hence we postpone

the composition of w with p :x
2|0
−→
02

a until p is simplified.

4.7.2 Data Flow Equations for Reaching GPUs Analysis With

Blocking

A barrier may not necessarily block all preceding GPUs. We use the type information to

identify absence of data dependence between a barrier and the GPUs reaching it. This

allows us to minimize blocking by identifying GPUs that need not be blocked. A barrier

b ∈ RGGens may block a producer GPU p ∈ RGIns if it writes into a location read by

or written by p. Thus, they could share a WaW or a WaR data dependence. Recall
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RGIns :=















{

x
ℓ|ℓ
−→s x′ | x ∈ P , 0 < ℓ ≤ κ

}

s = Start, κ is the largest indlev

⋃

p ∈ pred(s)

RGOutp otherwise

RGOuts :=
(

RGIns −
(

RGKills ∪ Blocked(RGIns,RGGens)
))

∪ RGGens

Blocked (I, G) :=



























∅ G = ∅

{γ | γ ∈ I,DDep(IndGPUs(G), {γ})} |IndGPUs(G)| > 1

{γ | γ ∈ IndGPUs(I),DDep(G, {γ})} otherwise

IndGPUs (X) := {x
i|j
−→s y | x

i|j
−→s y ∈ X, i > 1}

RGGens := Gen
(

δs, RGIns
)

RGKills := Kill
(

RGGens, RGIns
)

DDep(B, I) ⇔ TDef(B) ∩ (TDef(I) ∪ TRef(I)) 6= ∅

TDef(X) :=
{

typeof(x, i) | x
i|j
−→s y ∈ X

}

TRef(X) :=
{

typeof(x, k) | 1 ≤ k < i, x
i|j
−→s y ∈ X

}

∪
{

typeof(y, k) | 1 ≤ k < j, x
i|j
−→s y ∈ X

}

Note: The definitions of Gen and Kill are same as in Definition 5

Definition 6: Data flow equations for Reaching GPUs Analysis with Blocking.

that a barrier GPU b is either an indirect GPU or a GPU that follows an indirect GPU

(Section 4.7.1). Thus the following GPUs should be blocked:

• If RGGens contains an indirect GPU b, then all GPUs reaching δs that share a data

dependence with b should be blocked regardless of the nature of other GPUs (if

any) in RGGens.

• If RGGens does not contain an indirect GPU and is not ∅, then all indirect GPUs

reaching δs that share a data dependence with a GPU in RGGens should be blocked.

We define a predicate DDep(B, I) to check the presence of data dependence between

the set of GPUs B and I (Definition 6). When the types of b ∈ B and p ∈ I match5, we

5Although C11 standard allows type casting for pointers, there is no guarantee of the expected behavior

if there is alignment mismatch. For example, the runtime behavior of assigning ‘int ∗’ to ‘float ∗’
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assume the possibility of data dependence and b blocks p. TDef(B) is the set of types

of locations being written by a barrier whereas (TDef(I) ∪ TRef(I)) represents the set of

types of locations defined or read by the GPUs in I thereby checking a WaW and WaR

dependence. The type of the ith pointee of x is given by typeof(x, i) illustrated as below.

Example 35. If the declaration of a pointer x is ‘int ∗ ∗ x’, then typeof(x, 1)

is ‘int ∗ ∗’ and typeof(x, 2) is ‘int ∗’. Note that typeof(x, 0) is not a pointer and

typeof(x, 3) is undefined because x cannot be dereferenced thrice.

The data flow equations in Definition 6 identify the GPUs in RGGens that can act as

a barrier. The main difference between RGOuts (Definition 6) and RGOuts (Definition 5)

is that the former uses function Blocked which computes blocked GPUs as follows:

• Case 1 in Blocked equation corresponds to not blocking any GPU because RGGens

is empty.

• Case 2 in Blocked equation corresponds to blocking appropriate GPUs reaching s

(i.e. RGIns) because RGGens contains an indirect GPU.

• Case 3 in Blocked equation corresponds to blocking appropriate indirect GPUs reach-

ing s because RGGens does not contains an indirect GPU and is not ∅.

Example 36. For the procedure in Figure 4.7(b), RGIn02 = ∅ and RGGen02 is {x
2|0
−→
02

a}.

Although RGGen02 contains an indirect GPU, since no GPUs reach 02 (because it is

the first statement), RGOut02 is {x
2|0
−→
02

a} indicating that no GPUs are blocked.

For statement 03, RGIn03 = {x
2|0
−→
02

a} and RGGen03 = {p
1|0
−→
03

b}. RGGen03 is non-

empty and does not contain an indirect GPU and thus RGOut03 = {p
1|0
−→
03

b} according

to the third case in the Blocked equation in Definition 6 indicating that the GPU

x
2|0
−→
02

a is blocked and should not be used for composition by the later GPUs. The

indirect GPU in RGIn03 is excluded from RGOut03. Note that the indirect GPU x
2|0
−→
02

a

is blocked by the GPU p
1|0
−→
03

b because typeof(x, 2) matches with typeof(p, 1) indicating

depends on the compiler and the architecture. However, assigning ‘void ∗’ to ‘int ∗’ does not result in

misalignment. In our implementation, we trust the types recorded in the GIMPLE IR used by gcc and

assume that there is no undefined behavior of the program.
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a possibility of WaW dependence.

For statement 04, RGIn04 = {p
1|0
−→
03

b} and RGGen04 is {q
1|2
−→
04

x}. For this statement,

the composition (q
1|2
−→
04

x◦ tsx
2|0
−→
02

a) is postponed because the GPU x
2|0
−→
02

a is blocked. In

this case, RGGen04 does not contain an indirect GPU and RGOut04 = {p
1|0
−→
03

b, q
1|2
−→
04

x}.

Similarly in Figure 4.7(a), the GPU p
1|0
−→
02

a is blocked by the barrier GPU x
2|0
−→
03

b

because typeof(p, 1) matches with typeof(x, 2). Hence, the composition (q
1|1
−→
04

p◦tsp
1|0
−→
02

a)

is postponed.

In the GPG of procedure g of our motivating example in Figure 3.5, the GPUs

r
1|0
−→
01

a and q
1|0
−→
03

b are not blocked by the GPU q
2|0
−→
02

m because they have different

types. However, the GPU e
1|2
−→
04

p blocks the indirect GPU q
2|0
−→
02

m because there is a

possible WaW data dependence (e and q could be aliased in the callers of g).

4.8 Convergence of Reaching GPUs Analyses

In this section, we show the convergence of reaching GPUs analyses by defining a lattice

and proving that the flow functions of the analyses are monotonic.

We use the usual guarantee of the convergence of a data flow analysis on the maxi-

mum fixed point solution if the following conditions are satisfied [51]:

• The lattice L of data flow values is a complete lattice.6

• Flow functions f : L → L are monotonic.

• All strictly descending chains in L are finite.

4.8.1 Lattice for Reaching GPUs Analyses

Let Γ be a set of all possible GPUs representing every pointer pointing to every location

based on the type constraints. It is easy to see that Γ is finite: For two variables x

and y, the number of GPUs x
i|j
−→s y depends on the number of possible indlevs (i|j) and

the number of statements. Since the number of statements is finite, we need to examine

the number of indlevs. For pointers to scalars, the number of indlevs between any two

6Actually, we only need the lattice to be a meet-semilattice but our lattices are complete and every

complete lattice is a meet-semilattice.
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variables is bounded because of type restrictions. For pointers to structures (Chapter 8),

indlevs are replaced by indirection lists (indlists). Sections 8.3 and 8.4 summarize indlists

restricting them to a finite number between any two pointer variables.

In order to define a partial order between the sets of GPUs computed by reaching

GPUs analyses, we define two useful properties of the sets. Recall that the presence of

boundary definitions eliminate definition-free paths reaching a GPB δ (Section 4.5). In

other words, every pointer is defined along every path reaching δ. Thus, for every pointer

variable x, sets RGIns and RGOuts (equivalently, RGIns and RGOuts) contain at least one

GPU with source x and indlev ℓ where ℓ ranges from 1 to the maximum indirection level.

This has the following consequences:

• Let S(X) denote the set of sources (with indlevs) of all GPUs in X .

S(X) = {(x, i) | γ ∈ X, γ = x
i|j
−→s y}

For non-empty sets R1 and R2 such that R1 ⊆ R2, the set of sources is identical,

i.e., S(R1) = S(R2).

• Let T(X) denote the set of targets (with indlevs) of all GPUs in X .

T(X) = {(y, j) | γ ∈ X, γ = x
i|j
−→s y}

Given R1 and R2 such that R1 ⊆ R2, since S(R1) = S(R2), the likely existence of

additional GPUs in R2 is possible only when T(R1) ⊆ T(R2).

We use the above properties to define a partial order between the sets of GPUs

computed by reaching GPUs analyses as follows:

∀R1, R2 ⊆ Γ R1 ⊑ R2 ⇐⇒ (R1 ⊇ R2) ∧
(

(R2 = ∅) ∨ (S(R1) = S(R2))
)

Observe that R1 ⊇ R2 and S(R1) = S(R2) ensure that T(R1) ⊇ T(R2) and hence the

definition of partial order does not require a relationship between the targets of GPUs to

be included explicitly.

Example 37. Consider two sets of GPUs R1 and R2 such that R1 = {a
2|1
−→
1

b}

and R2 = {a
2|1
−→
1

b, c
1|0
−→
2

d}. Though R1 ⊆ R2, R2 6⊑ R1 because pointer c is not de-
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fined in R1. However, if R1 = {a
2|1
−→
1

b, c
1|1
−→
0

c′} and R2 = {a
2|1
−→
1

b, c
1|1
−→
0

c′, c
1|0
−→
2

d}, then

R2 ⊑ R1 because R2 ⊇ R1 and S(R1) = S(R2) = {(a, 2), (c, 1)}.

The lattice
(

2Γ ,⊑
)

is a complete lattice (because Γ is finite). The top element of

this lattice is ∅ and the bottom element is Γ .

4.8.2 Monotonicity of GPBs

We prove the monotonicity of GPBs for reaching GPUs analysis with blocking and argue

later why the result also holds for reaching GPUs analysis without blocking. For readabil-

ity, we use notations Is and Os for RGIns and RGOuts, Gs and Ks for RGGens and RGKills,

and Bs for blocked GPUs.

Lemma 4.1. A GPB δs is monotonic if I′s ⊑ Is ⇒ O′
s ⊑ Os

Proof. From Definition 6, we know that,

Os = ( Is − (Ks ∪ Bs)) ∪ Gs

From the definition of our partial order, we know that,

I′s ⊑ Is ⇒ I′s ⊇ Is

⇒
⋃

γ ∈ δs

γ◦ I′s ⊇
⋃

γ ∈ δs

γ◦ Is

⇒ G′
s ⊇ Gs (GPU reduction, Definition 4)

Ks is computed by matching the source and indlev of GPUs in Γ with the source and

indlev of the GPUs in Gs (Ks = Kill (Gs)).
7

Kill(X) =
{

γ1 | ∃ γ ∈ X such that |Def(X,Γ )|=1 ∧ γ1 ∈Match(γ, Γ )
}

where Def(X,Γ ) computes a set of pairs (source and its indlev) for the GPUs in X with

the same statement label. Kill is performed only when a single pointer is being defined

by a statement resulting in a strong update.

7The earlier definition of Kill (Definition 5) restricted it to the GPUs in the argument RGIns. The

definition used here omits the second argument of Kill by extending it to the entire Γ for convenience.

This does not affect (RGIns − Kill(. . .)).
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For I′s ⊑ Is, we know that S(I′s) = S(Is) and T(I′s) ⊇ T(Is). Thus, a strong update with

I′s as input implies a strong update with Is as input. However a strong update in Is as

input does not imply a strong update in I′s. Hence, I′s ⊑ Is ⇒ Ks ⊇ K′
s. Similarly, we can

reason about the blocked GPUs and get, I′s ⊑ Is ⇒ Bs ⊇ B′
s. Thus,

I′s ⊑ Is ⇒ I′s ⊇ Is

⇒
((

I′s −
(

K′
s ∪ B′

s

))

∪ G′
s

)

⊇ (( Is − (Ks ∪ Bs )) ∪ Gs )

⇒ O′
s ⊇ Os

In order to prove O′
s ⊑ Os, we show below that S(O′

s) = S(Os). Since, Kill is determined

by matching the sources of the GPUs in Gs, the set of sources in Is and Os (equivalently,

those in I′s and O′
s) are identical. In other words, for every GPU x

i|j
−→y that is killed, some

GPU x
i|k
−→z is generated. Hence, (S(I′s) = S(Is)) ⇒ (S(O′

s) = S(Os)).

Thus, I′s ⊑ Is ⇒ O′
s ⊑ Os and hence a GPB is monotonic.

The set of blocked GPUs B, is ∅ for reaching GPUs analysis without blocking and

hence the monotonicity of GPBs for reaching GPUs analysis without blocking follows as

a corollary to the above lemma.

4.8.3 Convergence on the Maximum Fixed Point

The data flow equations for reaching GPUs analyses are modelled as follows. Let a GPG

∆ contain n GPBs numbered 1 through n. The initialization for the analysis is as follows:

We initialize I1 to the set D of boundary definitions. All other Ii and Oi for GPB δi are

initialized to ⊤ (i.e, ∅). A fixed point for the Equation (4.7) is computed by repetitive

application of flow functions.

〈 I1,O1, I2,O2, . . . , In,On〉 = 〈 I1,

fO1
( I1,O1, I2,O2, . . . , In,On),

fI2( I1,O1, I2,O2, . . . , In,On),

. . . (4.7)

fIn( I1,O1, I2,O2, . . . , In,On),

fOn
( I1,O1, I2,O2, . . . , In,On)〉



88 CHAPTER 4. STRENGTH REDUCTION OPTIMIZATION

where each fIi is a meet operation and fOi
is application of GPB δ. The flow functions

fIi and fOi
compute the values of Ii and Oi respectively.

Theorem 4.2. Reaching GPUs analysis with blocking converges on the maximum fixed

point.

Proof. Convergence on a fixed-point follows from the following two facts:

• All strictly descending chains in the lattice (2Γ ,⊑) are finite because the lattice is

finite.

• The meet operation (i.e., a set union) is monotonic and is defined for all subsets of 2Γ

because
(

2Γ ,⊑
)

is a complete lattice. Hence the flow functions fIi in Equation (4.7)

are monotonic. Further, the flow functions fOi
are also monotonic because GPBs

are monotonic.

Since we use the initialization ⊤ (i.e., ∅) and the lattice is complete, the analysis converges

on the maximum fixed point.

4.9 Chapter Summary

In this chapter, we defined GPU operations (such as GPU composition and GPU reduc-

tion) and data flow analyses (such as reaching GPUs analysis with and without blocking)

to perform strength reduction optimization. This optimization is local to a GPB in the

GPG and is one of the most important optimizations to compute points-to information

using GPGs.

Our measurements (Chapter 9) show that the indirect effects that cause unsound-

ness without blocking are extremely rare in practical programs, thereby indicating that

reaching GPUs analysis with blocking may not be required.



Chapter 5

Redundancy Elimination

Optimizations

In this chapter, we formalize the various redundancy elimination optimizations.

Section 5.1 gives an overview of redundancy elimination optimizations. Section 5.2

formalizes dead GPUs elimination and describes empty GPB elimination. Section 5.4

provides data flow equations for coalescing of GPBs. Section 5.5.4 provides data flow

equations for back edge removal in a GPG.

5.1 An Overview of Redundancy Elimination Opti-

mizations

Strength reduction simplifies GPUs and eliminates data dependences between them. This

paves way for redundancy elimination optimizations which remove redundant GPUs and

minimize control flow. As a consequence, they improve the compactness of a GPG and

reduce the repeated re-analysis of GPBs caused by inlining at call sites. We propose the

following three categories of redundancy elimination optimizations:

• Dead GPU and empty GPB elimination.

• GPB Coalescing.

• Back edge removal.

89
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Dead GPU
elimination
(Section 5.2 )

Empty GPB
elimination
(Section 5.2 )

Coalescing
of GPBs

(Section 5.4 )

Back edge
removal

(Section 5.5 )

Augmented
GPU reduction
(Section 5.3 )

Figure 5.1: The order of redundancy elimination optimizations. The edges with double
lines indicate a sequence. An edge X ⇒ Y indicates that X precedes Y in the sequence.
Other edges indicate dependencies. An edge X → Y indicate that X depends on Y .

Figure 5.1 depicts the order of redundancy elimination optimizations as a sequence.

Dead GPU elimination and back edge removal optimizations require the set Queued which

is computed by an augmented version of GPU reduction (Definition 7 in Section 5.3).

Recall that the strength reduction optimization may postpone the reduction of cer-

tain GPUs. This requires us to postpone optimizations such as dead GPU elimination,

coalescing, and back edge removal in order to ensure soundness. In this chapter, we

describe each of the optimizations in detail and characterize when to postpone them.

5.2 Dead GPU and Empty GPB Elimination

We perform dead GPU elimination to remove a redundant GPU γ ∈ δs that is killed

along every control flow path from s to the End GPB of the procedure. However, the

following two kinds of GPUs should not be removed even if they are killed in reaching

GPUs analyses: (a) GPUs that are blocked, or (b) GPUs that are producer GPUs for

compositions that have been postponed (Sections 4.3.2 and 4.7). For the former, we check

that a GPU considered for dead GPU elimination does not belong to RGOutEnd (the result

of reaching GPUs analysis without blocking) and RGOutEnd (the result of reaching GPUs

analysis with blocking); for the latter we check that the GPU is not a producer GPU for a

postponed composition. We record such GPUs in the set Queued computed for every GPG.

It is computed during GPU reduction. The revised definition of GPU reduction that

computes the Queued set is provided in Definition 7 (Section 5.3). Thus, we perform dead
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GPU elimination and remove a GPU γ ∈ δs only if γ /∈ (RGOutEnd ∪ RGOutEnd ∪ Queued).

Example 38 provides an instance of dead GPU elimination.

Example 38. In procedure g of Figure 3.5, pointer q is defined in statement 03 but

is redefined in statement 05 and hence the GPU q
1|0
−→
03

b is killed and does not reach

the End GPB. Since no composition with the GPU q
1|0
−→
03

b is postponed, it does not

belong to set Queued either. Hence the GPU q
1|0
−→
03

b is eliminated from the GPB δ03

as an instance of dead GPU elimination.

Similarly, the GPUs q
1|0
−→
07

d (in δ07) and e
1|1
−→
04

c (in δ14) in the GPG of procedure

f (Figure 3.6) are eliminated from their corresponding GPBs. Observe that the GPU

d
1|0
−→
08

n in GPB δ08 is not removed even though δ13 contains a definition of d expressed

by the GPU d
1|0
−→
02

m. This is because δ13 also contains GPU b
1|0
−→
02

m which defines b,

indicating that d is not defined along all paths. Hence the previous definition of d

cannot be killed resulting in a weak update.

Example 39 provides an instance where the optimization of dead GPU elimination

has to be suppressed because of blocking.

Example 39. For the procedure in Figure 4.7(a), the GPU p
1|0
−→
02

a is not killed but

is blocked by the barrier x
2|0
−→
03

b; hence it is present in RGOut05 but not in RGOut05

(05 is the End GPB). This GPU may be required when the barrier x
2|0
−→
03

b is reduced

after call inlining (and ceases to block p
1|0
−→
02

a). Thus, it is not removed by dead GPU

elimination.

In the process of dead GPU elimination, if a GPB becomes empty, it is eliminated

by connecting its predecessors to its successors as illustrated by the following example.

Example 40. In the GPG of procedure g of Figure 3.5, the GPB δ03 becomes empty

after dead GPU elimination. Hence, δ03 can be removed by connecting its predecessors

to successors. This transforms the back edge δ03 → δ01 to δ02 → δ01. Similarly, the

GPB δ07 is deleted from the GPG of procedure f in Figure 3.6.



92 CHAPTER 5. REDUNDANCY ELIMINATION OPTIMIZATIONS

Input: c // The consumer GPU to be simplified.

R // The set of GPUs using which c is to be simplified.

R // The set of GPUs that have been blocked by a barrier.

Output: Red // The set of simplified GPUs equivalent to c .

Queued // The set of GPUs which may be used later.

01 Augmented GPU reduction (c , R, R)

02 { if (R = ∅ ∧ c = ·
1|0
−→
·

·) // c is a points-to edge

03 { Red = {c}

04 W = Queued = ∅

05 }

06 else

07 { Red = Queued = ∅

08 W = {c}

09 }

10 while (W 6= ∅)

11 { extract w from W

12 for each γ ∈ R

13 { 〈W, tscomp, tspost〉 = Compose GPUs(ts, w, γ,W, R)

14 〈W, sscomp, sspost〉 = Compose GPUs(ss, w, γ,W, R)

15 if (tspost or sspost)

16 Queued = Queued ∪ {γ}

17 }

18 if (¬ (tscomp or sscomp))

19 Red = Red ∪ {w}

20 }

21 return (Red , Queued)

22 }

23 Compose GPUs(τ , w, γ,W, R)

24 { composed = postpone = false

25 if (r = w ◦τγ) succeeds

26 { if (γ ∈ R)

27 { W = W ∪ {r}

28 composed = true

29 }

30 else postpone = true

31 }

32 else if (Undes comp(τ , w, γ))

33 postpone = true

34 return 〈W, composed, postpone〉

35 }

Definition 7: Augmented edge reduction algorithm for computing Queued GPUs
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5.3 Augmented GPU Reduction Algorithm for Com-

puting Queued GPUs

Calculating the set of GPUs Queued for dead GPU elimination can be performed parallely

with GPU reduction. We thus define a new algorithm given in Definition 7 for GPU

reduction which augments the method of computing set Queued. The set Queued is also

required for back-edge removal as explained in Section 5.5. The new algorithm needs two

arguments (unblocked GPUs RGOut as well as blocked+unblocked GPUs RGOut) unlike

the earlier definition of GPU reduction.

A GPU p ∈ Queued could belong to any of the following categories:

• Composition c ◦τp may be postponed because p may be a GPU blocked by the

presence of a barrier. It is possible that the barrier which may be simplified after ∆

is inlined in a caller and may not block p any more enabling its composition with

the consumer GPU c .

• Composition c ◦τp may be undesirable. It is possible that p may be simplified after

∆ is inlined in a caller making the composition desirable.

In the first case, a GPU composition is admissible when RGIn is used for GPU reduc-

tion but with the GPU p being blocked (p /∈ RGIn), the composition is postponed. These

conditions are checked at line numbers 25 and 26 in Definition 7 and accordingly the flag

postpone is set.

In the second case, we identify a valid but undesirable GPU composition using the

predicate Undes comp (Equation 5.1) which checks that a pivot exists (v = x for TS and

u = x for SS) and the composition is undesirable (l > k). This check is performed at line

number 32 in Definition 7 and accordingly the flag postpone is set.

Undes comp
(

τ , u
i|j
−→
t
v, x

k|l
−→s y

)

=



























true (τ = ts) ∧ (v = x) ∧ (l > k)

true (τ = ss) ∧ (u = x) ∧ (l > k)

false otherwise

(5.1)

Example 41 illustrates the computation of set Queued in the case of blocking.
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Example 41. The set of GPUs reaching statement 04 is {p
1|0
−→
02

a, x
2|0
−→
03

b}. The

01 void h()

02 { p = &a;

03 ∗x = &b;

04 q = p;

05 }

barrier GPU (in this case x
2|0
−→
03

b) blocks the GPU p
1|0
−→
02

a and

hence RGIn04 = {x
2|0
−→
03

b}. Thus, the composition between GPUs

c : q
1|1
−→
04

p and p : p
1|0
−→
02

a is admissible if RGIn04 is used for GPU re-

duction and the condition on line 25 of Definition 7 is true. How-

ever, since p /∈ RGIn04, the condition on line 26 (Definition 7) is false and the flag

postpone is set to true indicating that p is blocked and a composition is postponed

and p should be added to Queued as seen on line numbers 15 and 16 of the algorithm.

Example 42 illustrates the computation of set Queued for undesirable compositions.

Example 42. The composition between GPUs c : p
1|2
−→
3

y and p : y
1|2
−→
4

x is undesirable

because the result of composition is a GPU p
1|3
−→
3

x whose indlev exceeds that of c . This

composition will be performed once the p is simplified. The predicate Undes comp

returns true because (l > k) (in this case l = 2 and k = 1) indicating that the

composition is undesirable and adds p to the set Queued.

5.4 Minimizing the Control Flow by Coalescing GPBs

Strength reduction eliminates data dependence between GPUs rendering the control flow

redundant. Eliminating redundant control flow is important to make a GPG as compact as

possible—in the absence of control flow minimization, the size of the GPG of a procedure

tends to increase exponentially because of transitive inlinings of calls in the procedure.

This effect is aggravated by the fact that many procedures are called multiple times in

the same procedure as shown by our empirical measurements. Besides, recursion causes

multiple inlinings of the GPGs of procedures in the cycle of recursion in order to compute

a fixed point (Section 6.3).

In this section, we first present our first attempt for coalescing adjacent GPBs in

a GPG. This approach did not give us the desired efficiency benefit, hence we devised

the second approach for coalescing. The first approach imposed stronger conditions for

coalescing than the second approach. It is important to note that there is no loss of
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precision in either of them.

5.4.1 Our First Approach: Coalescing of Adjacent GPBs

This approach coalesces two GPBs δs and δt in a GPG where δt ∈ succ(δs) into a single

GPB under the following conditions:

(i) No GPU in δt is data-dependent on a GPU in δs, i.e., DDep(δs, δt) returns false (DDep

is defined in Definition 8). For RaW and WaW data dependence, we maintain the

control flow.

(ii) GPBs δs and δt are adjacent in the control flow, δs dominates δt, and δt post-

dominates δs. This ensures that the control flow relation with other GPBs is not

over-approximated.

When we coalesce two GPBs, the resulting GPB is numbered with a new label. This

does not change the statement number of the GPUs in the GPB. Observe that initially,

each GPB contains a single GPU and the label of the GPB corresponds to the statement

number of the GPU in the GPB. After GPU reduction of the lone GPU in a GPB,

the GPB may contain multiple GPUs but all of them would have the same statement

number and the label of the GPB continues to correspond to the statement number of

its GPUs. However, after coalescing a GPB typically contains multiple GPUs whose

statement numbers differ from each other.

Example 43. In the GPG ∆g in Figure 3.5, GPB δ01 dominates GPB δ02 and δ02

post-dominates δ01. However, since δ02 contains a since the pointee of q is not known,

the data dependence between the GPU q
2|0
−→
02

m in GPB δ02 and the GPUs in other δ01

cannot be determined. Hence, the GPB δ02 cannot be coalesced with δ01 in the GPG

of procedure g. Similarly, the GPB δ04 cannot be coalesced with the GPB δ05 because

the pointee of p is not known in the GPU e
1|2
−→
04

p of GPB δ04 indicating the possibility

of a data dependence between the two GPBs.

The elimination of control flow because of coalescing is rare in this approach because

of the strong condition of dominance and post-dominance between the adjacent GPBs.

Also, a dereference in the GPUs restricts the coalescing further because data dependence

of a dereference is unknown.
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δmδm

δn

δmδm

δn δo

δmδm δo

δn

a) Single predecessor,

single successor

b) Single predecessor,

multiple successors

c) Multiple predecessors,

single successor

Figure 5.2: Our strategy for partitioning the GPG for coalescing of GPBs. The case of
multiple predecessors and multiple successors can be viewed as a combination of cases (b)
and (c).

5.4.2 Our Second Approach: Coalescing GPBs by Partitioning

a GPG

In this approach, we relax the requirement of dominance and post-dominance and elimi-

nate redundant control flow by coalescing adjacent GPBs. This amounts to partitioning

the set of GPBs in a GPG such that each part contains the GPBs whose GPUs do not

have a data dependence between them and hence can be seen as parallel assignments in

accordance with abstract semantics of a GPB (Section 3.1).

5.4.2.1 The Intuition behind Coalescing

Since partitioning is driven by preserving and exploiting the absence of data dependence,

it is characterized by the following properties:

• A GPG can be partitioned in multiple ways to minimize the control flow. The

absence of data dependence is not a transitive relation: Consider GPBs δl, δm, and

δn such that m ∈ succ(l) and n ∈ succ(m). Assume that γm ∈ δm does not have a

data dependence with γl ∈ δl and γn ∈ δn does not have a data dependence with

γm ∈ δm. However, there may be a data dependence between γl ∈ δl and γn ∈ δn. If

the data dependence exists, then the following two partitions have minimal control

flow: Π1 = {{δl, δm} , {δn}} and Π2 = {{δl} , {δm, δn}}. Our heuristics (described

below) construct partition Π1.

• The possibility of data dependence between GPBs δm and δn matters only if there

is control flow between them. Otherwise, they are executed in different execution
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instances of the program and there is no data dependence between them even if the

variables or abstract locations accessed by them are same. Hence the successors of a

GPB can be coalesced with each other in the same part provided there is no control

flow between them.

• As a design choice, a successor (predecessor) of a GPB is included in the part

containing the GPB iff all successors (predecessors) of the GPB are included in

the part (Figure 5.2): Consider GPBs δl, δm and δn such that succ(l) = {m,n}

and neither m is a successor of n nor vice-versa. Let δl ∈ πi. Since there is no

control flow between δm and δn, including only one of them in πi will create a

spurious control flow between them. This ordering could introduce a spurious data

dependence between their GPUs. A spurious RaW dependence may create spurious

GPUs thereby causing imprecision, or a spurious WaR or WaW dependence may

kill some GPUs leading to unsoundness.

• Coalescing may eliminate a definition-free path for the source of a GPU. This may

convert the GPU from may-def (i.e., source is defined along some path) to must-

def (i.e., source is defined along all paths) in the GPG. Consider GPBs δl, δm,

δn, and δo such that succ(l) = {m,n} and pred(o) = {m,n}. Let πi = {δl, δm, δn}

and πj = {δo}. The source of some GPU γm ∈ δm may have a definition-free path

δl → δn → δo. After coalescing, this definition-free path ceases to exist because of

the control flow edge πi → πj. This may lead to strong updates instead of weak

updates thereby leading to unsoundness. Hence, we add a separate definition-free

path for such GPUs.

Due to the possibility of multiple partitions satisfying the above criteria, identifying

the “best” partition would require defining a cost model. Instead, we compute a unique

partition by imposing additional restrictions described below. Our empirical measure-

ments show significant compression by our heuristic partitioning below and any attempt

of finding the best partitioning may provide only marginal overall benefits because the

process would become inefficient. Hence we use the following greedy heuristics:

• Start GPB and End GPB form singleton parts and no other GPB is included in

these parts. This is required for modelling definition-free paths from Start to End

to distinguish between strong and weak updates by a callee GPG in a caller GPG.
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• The process of identifying the partition begins with Start GPB. Thus Start forms

π1 ∈ Π. As a consequence, a part πi ∈ Π grows only in the “forward” direction

including only successor GPBs. It never grows in the “backward” direction by

considering predecessors.

• Consider δn and δs, s ∈ succ(n) such that δn → δs is a back edge. Then δn and δs

belong to the same partition πi iff all GPBs in the loop formed by the back edge

(i.e. all GPBs that appear on all paths from δs to δn) belong to πi.

In principle, partitioning could be performed using a greedy process interleaved with

coalescing such that each part grows incrementally. However, this incremental expan-

sion cannot be done by coalescing one successor at a time because all successors and all

predecessors of all these successors must be included in the same partition, and this prop-

erty needs to be applied transitively. Hence, we use the usual dichotomy of analysis and

transformations and separate the process of discovering the partition (analysis) from the

process of coalescing (transformation). We perform a data flow analysis that computes

the partitions by examining the data dependencies and enforcing all requirements of par-

titioning. Actual coalescing is performed only after all partitions have been identified.

Hence, we define a data flow analysis that constructs a part πi inductively by considering

the possibility of including the successors of the GPBs that are already in πi.

5.4.2.2 The Role of Data Dependence in Blocking and Coalescing

The main differences between the use of data dependence for blocking (Definition 6 in

Section 4.7) and for coalescing are:

• The motivation behind using data dependence. When analyzing for blocking, we

identify the possibility of a barrier updating a location accessed by a previous GPU.

In coalescing we wish to establish that no control flow needs to be maintained

between two GPUs.

• The way data dependence is used. For blocking, we use the possible presence of data

dependence between a barrier and reaching GPUs to block some of the reaching

GPUs. For coalescing, we use the guaranteed absence of data dependence between

the GPUs of a GPB and those reaching it from within a part to coalesce the GPB

with the part.
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CInn :=















false n is Start
∧

p∈ pred(n)

coalesce(p, n) otherwise

COutn :=















false n is End
∧

s∈succ(n)

CIns otherwise

coalesce(p, n) ⇔ COutp ∧
(

GOutp = ∅ ∨ gpuFlow(p, n) 6= ∅
)

GInn :=















∅ n is Start

⋃

p∈ pred(n)

gpuFlow(p, n) otherwise

GOutn :=











GInn ∪ δn CInn = true

δn otherwise

gpuFlow(p, n) :=











∅ ¬CInn ∧ DDep(GOutp, δn)

GOutp otherwise

DDep(X, Y ) ⇔
(

deref(X) ∨ deref(Y )
)

∧
(

TDef(Y ) ∪ TRef(Y )
)

∩ TDef(X − Y ) 6= ∅

deref(X) ⇔ ∃ x
i|j
−→s y ∈ X s.t. (i > 1) ∨ (j > 1)

Definition 8: Data flow equations for Coalescing Analysis.

• Relevant data dependences. Coalescing removes control flow between two GPUs en-

abling their non-deterministic execution with respect to each other which is oblivious

to any data dependence between the GPUs. Hence, a RaW and WaW dependences

need to be preserved by prohibiting coalescing. However, a WaR dependence is not

affected by coalescing (see Example 19). On the other hand, blocking by a barrier

does not involve RaW dependence because only writes by a barrier are of interest

and hence blocking needs to handle only WaW and WaR dependences.

• The role of dereference in data dependence. As noted above, for blocking, only the

write by a barrier is important and not a read. Hence, we check for a dereference

only in the source of a barrier GPU. For coalescing analysis, we need to consider



100 CHAPTER 5. REDUNDANCY ELIMINATION OPTIMIZATIONS

dereferences both in the source and the target.

These differences change the modelling of data dependence for coalescing in the

following ways:

• The check for a dereference is now included within the predicate for data dependence.

• Consider a GPB δn for coalescing in a part πi. We now check for both reads and

writes in the GPUs of δn and only writes in the GPUs of πi.

Compare the predicates DDep (Definition 6) for blocking and DDep (Definition 8) for

coalescing to see the above differences. For establishing the absence of dependence, we

match the types of γ1 ∈ X with the types of γ2 ∈ Y . This is meaningful only when

γ1 6= γ2. The term X − Y in the definition of predicate DDep ensures this.

5.4.2.3 Partitioning Analysis

We define two interdependent data flow analyses that inductively

• construct part πi using data flow variables CInn/COutn, and

• compute the GPUs accumulated in the part reaching the GPB δn in data flow

variables GInn/GOutn.

The latter is required to identify the RaW or WaW data dependence between the GPUs

in part πi.

Unlike the usual data flow variables that typically compute a set of facts, CInn/COutn

are predicates. If CInn is true, it indicates that δn belongs to the same part as that of

all of its predecessors. If COutn is true, it indicates that δn belongs to the same part as

that of all of its successors. Thus our analysis does not enumerate the parts as sets of

GPBs explicitly; instead, parts are computed implicitly by setting predicates CIn/COut

of adjacent GPBs.

A GPB δn belongs to the same part as that of its predecessor δp only if COutp and

CInn are set to true. However, the values of COutp and CInn are computed by using the

set of GPUs GOutp (which contains all the GPUs that reach δp from all the GPBs that

are in the part same as δp) and δn. The function gpuFlow (Definition 8) checks for the

presence of data dependence between the GPUs in GOutp and δn and accordingly sets the

values of COutp and CInn.
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int ∗∗∗ u;

int ∗∗ x;

int ∗ y;

float ∗ z, ∗w;

int a, b, c;

float ∗ z, ∗w;

∆f before coalescing ∆f after coalescing
∆f after modelling

definition-free paths

Start

δ1
y a

1|0

1 δ1

δ2 z b
1|0

2 δ2δ3 x a
2|0

3 δ3

δ4 w c
1|0

4 δ4

δ5 u x
1|0

5 δ5

End

Start

δ1
y a

1|0

1 δ1

δ6

z b

x a

w c

u x

1|0

2

2|0

3

1|0

4

1|0

5 δ6

End

Start

δ1
y a

1|0

1 δ1

δ6

z b

x a

w c

u x

1|0

2

2|0

3

1|0

4

1|0

5 δ6

δ7

End

δ7 =
{

y
1|0
−−→
1

a,w
1|0
−−→
4

c,

u
1|0
−−→
5

x
}

Figure 5.3: An example demonstrating the effect of coalescing. Control flow edges with
double lines represent a definition-free path for z and pointee of x.

The data flow equations to compute CInn/COutn are given in Definition 8. The

initialization is true for all GPBs. Predicate coalesce(p, n) uses gpuFlow(p, n) to check if

GPUs in GOutp are allowed to flow from p to n—if yes, then p and n belong to the same

part. If GOutp is ∅ (when δp is ∅), they belong to the same part regardless of gpuFlow(p, n).

The presence of COutp in the equation of coalesce (Definition 8) ensures that GPB δp is

considered for coalescing with δn only if δp has not been found to be a “boundary” in

coalescing because it cannot coalesce with some successor.
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Name for GPUs. Statement ids do not matter

γ1 y
1|0
−→
1

a γ2 z
1|0
−→
2

b γ3 x
2|0
−→
3

a γ4 w
1|0
−→
4

c γ5 u
1|0
−→
5

x

GPB n TDef (n) TRef (n) GInn GOutn CInn COutn

δ1 {int ∗} ∅ ∅ {γ1} F F

δ2 {float ∗} ∅ {γ1} {γ2} F T

δ3 {int ∗, int ∗∗} ∅ {γ1} {γ3} F T

δ4 {float ∗} ∅ {γ2, γ3} {γ2, γ3, γ4} T T

δ5 {int ∗∗∗} ∅ {γ2, γ3, γ4} {γ2, γ3, γ4, γ5} T F

Figure 5.4: The data flow information computed by coalescing analysis for example in
Figure 5.3. The CIn and COut values indicate that GPBs δ2, δ3, δ4, δ5 can be coalesced.

Another striking difference between the equations for CIn/COut in Definition 8 and

the usual data flow equations is that the data flow variables CInn and COutn for GPB n are

independent of each other—CInn depends only on the COut of its predecessors and COutn

depends only on the CIn of its successors. Intuitively, this form of data flow equations

attempts to melt the boundaries of GPB n to explore fusing it with its successors and

predecessors as follows:

• When CInn is true, it melts the boundary at the top of the GPB and glues it with

all its predecessors that are already in the part. This deletes the in-edges of n and

the part grows in a forward direction.

• When COutn is true, it melts the boundary at the bottom of the GPB and includes

all its successors in the part. This deletes the out-edges of n and the part grows in

the forward direction.

The incremental expansion of a part in a forward direction influences the flow of

GPUs accumulated in a part leading to a forward data flow analysis using data flow

variables GInn/GOutn. The data flow equations to compute them are given in Definition 8.

Function gpuFlow(p, n) in the equation for GIn computes the set of GPUs that flow from

p to n. It establishes the absence of data dependences using predicate DDep defined
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int ∗∗ x;

float ∗∗ y;

short ∗∗ z;

int ∗∗∗ u;

int ∗p, ∗q, ∗v;

int m, n, o, s, t;

∆f before coalescing ∆f after coalescing
∆f after modelling

definition-free paths

Start

δ1

x m

y n

2|0

12
2|0

14

δ2
z o

x m
2|0

12

2|0

32
δ3

x m

y n

2|0

12
2|0

14

δ4

u v
2|0

17
δ5

p s
1|0

36
δ6

q t
1|0

37
δ7

End

Start

x m

y n

z o

u v

2|0

12
2|0

14
2|0

32
2|0

17

δ8

p s

q t

1|0

36

1|0

37

δ9

End

Start

x m

y n

z o

u v

2|0

12
2|0

14
2|0

32
2|0

17

δ8

p s

q t

1|0

36

1|0

37

δ9

δ10

End

δ10 =
{

x
2|0
−−→
12

m, y
2|0
−−→
14

n,

u
2|0
−−→
17

v, p
1|0
−−→
36

s,

q
1|0
−−→
37

t
}

Figure 5.5: An example demonstrating the effect of coalescing. The loop formed by the
back edge δ5 → δ1 reduces to a self loop over GPB δ8 after coalescing. Since self loops
are redundant, they are eliminated. Double lines represent definition-free paths.

in Section (5.4.2.2). If no data dependence exists, the GPUs accumulated in GOutp are

propagated to n (i.e., GInn). The presence of ¬CInp in equation for gpuFlow ensures that

GPUs in GOutp are propagated to δn only if δn has not been found to be a “boundary”

in coalescing because it cannot coalesce with some predecessor.

Example 44. Figure 5.4 gives the data flow information for the example of Fig-

ure 5.3. Even though there is no data dependence between the GPUs in GPBs δ1 and

δ2 (indicated by DDep(GOut1, δ2) returning false), they cannot be coalesced. This is
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Name for GPUs. Statement ids do not matter

γ1 x
2|0
−→
12

m γ2 y
2|0
−→
14

n γ3 z
2|0
−→
32

o γ4 u
2|0
−→
17

v γ5 p
1|0
−→
36

s γ6 q
1|0
−→
37

t

GPB n TDef (n) TRef (n) GInn GOutn CInn COutn

δ1 ∅ ∅ {γ1, γ2, γ3, γ4} {γ1, γ2, γ3, γ4} F T

δ2 {int∗, float∗} ∅ {γ1, γ2, γ3, γ4} {γ1, γ2, γ3, γ4} T T

δ3 {short∗, int∗} ∅ {γ1, γ2, γ3, γ4} {γ1, γ2, γ3, γ4} T T

δ4 {int∗, float∗} ∅ {γ1, γ2, γ3, γ4} {γ1, γ2, γ3, γ4} T T

δ5 {int∗∗} ∅ {γ1, γ2, γ3, γ4} {γ1, γ2, γ3, γ4} T F

δ6 {int∗} ∅ ∅ {γ5} F T

δ7 {int∗} ∅ {γ5} {γ5, γ6} T F

Figure 5.6: The data flow information computed by coalescing analysis for example in
Figure 5.5. The CIn and COut values indicate that GPBs δ1, δ2, δ3, δ4, δ5 can be coalesced.
Similarly, GPBs δ6 and δ7 can be coalesced. GPBs δ5 and δ6 must remain in different
coalesced groups.

because there is data dependence between the GPUs in the GPBs δ1 and its other suc-

cessor δ3 (indicated by DDep(GOut1, δ3) returning true because typeof (x, 2) matches

with typeof(y, 1)). Since, a successor of a GPB cannot be coalesced with the GPB

unless all the successors of the GPB can be coalesced with it, δ2 cannot be coalesced

with δ1. Thus, GOut2 = {z
1|0
−→
2

b} and GOut3 = {x
2|0
−→
3

a} and the GPU y
1|0
−→
1

a is not

included in the sets.

Since the GPUs in GOut2 and δ4 does not contain a dereference, it is easy to

identify that there is no data dependence between the GPUs. On the other hand,

the GPUs in GOut3 contain a dereference and we check the data dependence between

the GPUs in GOut3 and δ4 using the type information. The check DDep(GOut3, δ4)

returns false indicating that there is no type matching and hence no possibility of data

dependence, thereby allowing the coalescing of the two GPBs. Since there is no data

dependence between the GPUs in the GPB δ4 and both its predecessors δ2 and δ3,

the GPBs can be coalesced. Similarly, GPBs δ4 and δ5 can be coalesced. Thus COut2,

COut3, CIn4, COut4, and CIn5 are true and GPBs δ2, δ3, δ4, and δ5 belong to the same
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part and are coalesced into a new GPB δ6.

Examples 45 and 46 illustrate coalescing of GPBs in a loop.

Example 45. Figure 5.6 gives the data flow information for the example of Fig-

ure 5.5. GPBs δ1 and δ2 can be coalesced because COut1 is true and GOut1 is ∅. Thus,

DDep(GOut1, δ2) returns false indicating that types do not match and hence there is no

possibility of a data dependence between the GPUs of δ1 and δ2. Similarly, GPBs δ1

and δ3 can be coalesced. Thus COut1, CIn2, and CIn3 are true. We check the data de-

pendence between the GPUs of GPBs δ2 and δ4 using the type information. However,

DDep(GOut2, δ4) returns false because the term (GOut2 − δ4) is ∅. Thus, GPBs δ2 and

δ4 belong to the same part and can be coalesced. For GPBs δ3 and δ4, the possibility

of data dependence is resolved based on the type information. The term (GOut3 − δ4)

returns z
2|0
−→
32

o whose typeof(z, 1) does not match that of the pointers being read in the

GPUs in δ4. Thus, GPBs δ3 and δ4 can be coalesced. GPBs δ4 and δ5 both contain a

GPU with a dereference, however DDep(GOut4, δ5) returns false indicating that there

is no type matching and hence no possibility of data dependence, thereby allowing

the coalescing of the two GPBs. The DDep(GOut5, δ6) returns true (type of source of

the GPU x
2|0
−→
12

m ∈ GOut5 matches the source of the GPU p
1|0
−→
36

s ∈ δ6) indicating a

possibility of data dependence in the caller through aliasing and hence the two GPBs

cannot be coalesced. Thus, the first part in the partition contains only GPBs δ1, δ2,

δ3, δ4, and δ5. GPB δ6 now marks the first GPB of the new part. GPBs δ6 and δ7 can

be coalesced as there is no data dependence between their GPUs. The loop δ5 → δ1

before coalescing now reduces to self loop over GPB δ8 after coalescing. The self loop

is redundant and hence eliminated. GPBs δ5 and δ1 can be coalesced because all the

GPBs of the loop belong to the same part.

Observe that some GPUs appear in multiple GPBs of a GPG (before coalescing).

This is because we could have multiple calls to the same procedure. Thus, even though the

GPBs are renumbered, the statement labels in the GPUs remain unchanged resulting in

repetitive occurrence of a GPU. This is a design choice because it helps us to accumulate

the points-to information of a particular statement in all contexts.
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Example 46. In the example of Figure 3.5, GPBs δ1 and δ2 can be coalesced because

DDep(GOut1, δ2) returns false indicating that there is no type matching and hence no

possible data dependence between their GPUs. Thus, COut1 and CIn2 are set to true.

The loop formed by the back edge δ2 → δ1 reduces to a self loop over GPB δ11 after

coalescing. The self loop is redundant and hence it is eliminated. For GPBs δ2 and δ4,

DDep(GOut2, δ4) returns true because typeof(q, 2) (for the GPU q
2|0
−→
02

m in δ02) matches

typeof(p, 2) (for the GPU e
1|2
−→
04

p in δ04) which is int ∗. This indicates the possibility

of a data dependence between the GPUs of GPBs δ2 and δ4 (q and p could be aliased

in the caller) and hence these GPBs cannot be coalesced. Thus, COut2 and CIn4 are

set to false. For GPBs δ4 and δ5, DDep(GOut4, δ5) returns false because there is no

possible data dependence. Hence COut4 and CIn5 are set to true and the two GPBs

can be coalesced.

Recall that our coalescing heuristics requires us to prohibit

• coalescing with Start and End GPBs so that the definition-free paths that were

subsumed because of coalescing other GPBs can be modelled, and

• coalescing of the source and target GPBs of a back edge unless all GPBs in the loop

formed by the back edge are included in the same part.

The data flow equations for Coalescing (CIn/COut in Definition 8) do not have any provi-

sion of these requirements; they are enforced separately during the actual transformation.

5.4.2.4 Preserving Definition-Free Paths

Coalescing can have the side effect of eliminating definition-free paths. Consider a GPU

γ that reaches the exit of a GPG along some path but not all. It means that there is

some path in the GPG along which the source of γ is not defined (i.e., the source of γ is

may-defined in the GPG). According to our heuristics of coalescing, a GPB is coalesced

either with all its successors or with none. Hence, after coalescing with all successors,

a definition-free path may get subsumed and γ may reach the exit of a GPG along all

paths indicating that the source of γ is now must-defined. This would lead to a strong

update instead of a weak update thereby introducing unsoundness. Hence, we need to

add an explicit definition-free path for such GPUs. The GPUs with definition-free paths
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are identified by the corresponding boundary definitions. A definition-free path for the

source of GPU : x
i|j
−→s y exists in a GPG only if the boundary definition x

i|i
−→
00

x′ reaches the

exit of the GPG.

Example 47 illustrates the modelling of definition-free path after coalescing for the

example in Figure 5.3.

Example 47. In the example of Figure 5.3, the definition-free path is shown by edges

with double lines in the GPG obtained after coalescing. The GPU z
1|0
−→
2

b does not

reach the exit along the path δ1 → δ3 → δ4 → δ5 which forms the definition-free path.

Similarly, the GPU x
2|0
−→
3

a does not reach the exit along the path δ1 → δ2 → δ4 → δ5

indicating a definition-free path. We add a definition-free path between Start and End

GPBs of a GPG with a GPB that contains all GPUs that do not have any definition-

free path. Thus, we have a GPB δ7 which contains all GPUs except z
1|0
−→
2

b and x
2|0
−→
3

a.

Example 48 illustrates the modelling of definition-free path after coalescing for the

example in Figure 5.5.

Example 48. In the example of Figure 5.5, the definition-free path is shown by edges

with double lines in the GPG obtained after coalescing. The GPU z
2|0
−→
32

o does not reach

the exit along the path δ1 → δ2 → δ4 → δ5 → δ6 → δ7 which forms the definition-free

path. We add a definition-free path between Start and End GPBs of a GPG with a

GPB that contains all GPUs that do not have any definition-free path. Thus, we have

a GPB δ10 which contains all GPUs except z
2|0
−→
32

o.

The example below illustrates the modelling of definition-free path after coalescing

for the the motivating example in Figure 3.2.

Example 49. In Figures 3.5 and 3.6, definition-free paths are shown by edges

with double lines in the GPGs of procedures f and g obtained after coalescing. For

procedure g, the GPUs b
1|0
−→
02

m and q
2|0
−→
02

m undergo a weak update and hence do not

kill their corresponding boundary definitions. This indicates that the source of these

GPUs are may-defined and hence a definition-free path is required for these GPUs.
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Thus, we add a definition-free path between Start and End GPBs of ∆g with GPB δ16

which contains the set of GPUs {r
1|0
−→
01

a, e
1|2
−→
04

p, q
1|0
−→
05

e}.

For procedure f , the boundary definition b
1|1
−→
00

b′ reaches the exit of ∆f indicating

that b is may-defined. Hence a definition-free path is added with GPB δ17 containing

all GPUs of ∆f except b
1|0
−→
02

m. GPU q
2|0
−→
02

m, which has a definition-free path in ∆g,

reduces to d
1|0
−→
02

m in ∆f . However, d is defined in δ08 also, hence it does not have a

definition-free path in ∆f .

Coalescing is most effective for recursive procedures. This is because the size of

the GPG of a procedure tends to increase exponentially because of multiple inlinings of

recursive calls until a fixed point is achieved. In such a case, the number of unique GPUs

in a GPG is small but the number of GPBs is large. Coalescing helps to construct a

compact GPG for such procedures.

Note that we do not need to preserve definition-free paths in the first approach

because the dominance and post-dominance relation between adjacent GPBs ensures that

no existing definition-free path is ever subsumed.

5.4.3 Coalescing Facilitates Sparse Analysis

Recall that we use the partial SSA created by GCC to construct the initial GPG. The

assignments defining SSA variables are ignored and the assignments involving the use/read

of SSA variables are handled using use-def chains of SSA. Thus, a GPG of a procedure does

not retain GPUs containing local variables (because local variables are not in the scope

of the callers). We traverse the SSA chains transitively until we reach a statement whose

right hand side has an address-taken variable, a global variable, or a formal parameter.

SSA resolution is a very efficient implementation of GPU composition in the setting of

SSA variables; we just need to follow the SSA edges to eliminate the pivot. This is similar

to semi-sparse analysis [32] where the information is propagated along def-use chains for

top-level pointer variables and along the control flow edges for the rest of the pointer

variables. Semi-sparse analysis does not eliminate control flow between assignments that

use non-SSA variables, which we do. Hence, our method is much efficient than the semi-

sparse method. Our approach connects all definitions of (local) pointer variables to their

respective uses similar to a sparse analysis [33].
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δ1 δ1

δ2 δ2

δ3 γ3 :q
1|1
−→
3

p δ3c

δ4 γ4 :x
2|0
−→
4

b δ4p

δ5 δ5

δ1 δ1

δ2 γ2 :x
2|0
−→
2

b δ2b

δ3 γ3 :q
1|1
−→
3

p δ3c

δ4 γ4 :p
1|0
−→
4

a δ4p

δ5 δ5

δ1 δ1

δ2 δ2

δ3 γ3 :p
1|2
−→
3

y δ3c

δ4 γ3 :y
1|2
−→
4

x δ4p

δ5 δ5

(a) Indirect GPU (b) Blocked by barrier (c) Undesirable GPU composition

Figure 5.7: Examples characterizing the producer GPUs that suppress dead GPU elimi-
nation and back-edge removal optimizations. The consumer, producer, and barrier GPUs
are denoted by c , p, and b, respectively.

5.5 Back-Edge Removal

A GPG ∆ is constructed by incorporating the effect of loops in the GPG through a fixed-

point computation during the reaching GPUs analyses. When ∆ is inlined in its callers,

a GPB δ contained in a loop in ∆ would be considered repeatedly for constructing the

GPGs of its callers because the loop would also be included in the GPG of the callers.

This repeated fixed-point processing is redundant in many cases and can be beneficially

avoided by removing back edges from ∆ before it is inlined in its callers. This section

characterizes the situations when it is possible to do so.

We begin by examining the situations in which a producer GPU p satisfies all of

the following conditions: (a) p is contained in loop in ∆, (b) p is likely to be required

to simplify a consumer GPU c , (c) c also belongs to ∆, (d) c ◦τp is performed after ∆

is inlined in a caller. We then identify the situations when p requires the presence of

back edges to reach c . When no such consumer-producer pair of GPUs in ∆ requires a

particular back edge, the back edge is redundant and can be removed.
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5.5.1 Characterizing Prospective Producer GPUs

In the context of back-edge removal, the following two cases may arise when a consumer

GPU c in a GPG ∆ is blocked from being composed with a producer GPU p in ∆, but

may compose after ∆ is inlined in the body of the caller:

(a) GPU p may be a producer GPU whose composition has been postponed either because

it is blocked or the composition is undesirable. These GPUs are recorded in set Queued

for every GPG. It is computed during GPU reduction (Definition 7 in section 5.3).

(b) Composition c ◦τp is not possible because there is no pivot of composition; in this

case, if p is an indirect GPU, it is possible that it may be simplified after ∆ is inlined

in a caller enabling the composition of the resulting GPU with c in the caller’s body.

In each of these cases, if p can reach c only when a back edge is traversed, the back

edge cannot be removed. In such a case, we say that the back edge is essential.

Example 50 illustrates how to identify essential back edges.

Example 50. Consider the example in Figure 5.7(a) where an indirect GPU x
2|0
−→
4

b

reaches the GPB δ3 along the back edge δ4 → δ2. The GPU q
1|1
−→
3

p cannot be composed

with x
2|0
−→
4

b because there is no pivot between them. However, if x points to p in the

caller then the GPU x
2|0
−→
4

b is simplified to p
1|0
−→
4

b after inlining at the call site. The

simplified GPU can then compose with q
1|1
−→
3

p which is simplified to give q
1|0
−→
3

b. Thus,

GPU in δ4 may be required at δ3 and hence the back edge δ4 → δ2 cannot be eliminated.

In GPB δ3 in Figure 5.7(b), the composition between c : q
1|1
−→
3

p and p : p
1|0
−→
4

a is

postponed because the barrier GPU x
2|0
−→
2

b blocks p which reaches c along the back

edge δ4 → δ2. However, the blocked GPU may be required for composition once the

barrier GPU is simplified. Hence the back edge δ4 → δ2 is essential for the GPU to

reach a consumer for a possible composition in the callers.

In GPB δ3 Figure 5.7(c), the composition between GPUs c : p
1|2
−→
3

y and p : y
1|2
−→
4

x

is undesirable because the result of composition is a GPU p
1|3
−→
3

x whose indlev exceeds

that of c . This composition may be performed if the GPU p is simplified. Hence the

back edge δ4 → δ2 is essential because the simplified form of GPU y
1|2
−→
4

x reaching

along the back edge is required for composition later.
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δ1
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δ3

δ4

δ5

δ6

δ7

δ8

δ1

δ2

δ3

δ4

δ5

δ6

δ7

δ8

δ1

δ2

δ3

δ4

δ5

δ6

δ7

δ8

(a) Original GPG (b) After making the inner loop regular (c) After making outer loop regular

Figure 5.8: Converting single-entry irregular loops into regular loops. GPBs δ4 and δ5
get included in the outer loop after the inner loop is made regular.

We define a set of prospective producer GPUs for which essential-back-edges analysis

is performed. This set is computed for every GPG by taking the union of Queued (case

(a)) and all indirect GPUs generated across all GPBs δs (case (b)):

Prospective Producer GPUs = Queued ∪ {γ | γ ∈ RGGens, γ is an indirect GPU} (5.2)

5.5.2 Different Possibilities for Handling Postponed GPU Com-

positions

A GPU composition is postponed because it is undesirable or the producer GPU is blocked

by a barrier. In either case, we may need to retain back edges in a GPG requiring a fixed-

point computation when the GPG is inlined in a caller. A composition postponed by a

barrier may lead to unsoundness but an undesirable composition does not. For the latter,

we hence have two possibilities. Either,

• we perform undesirable GPU compositions and eliminate the back edges, or

• we do not perform undesirable GPU compositions and retain the back edges.
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Since pointers to scalars cannot be used for creating recursive data structures, the

fixed-point computation for them is not expensive. Hence, we choose the latter option

for them. However, pointers to structures and heap could be a part of recursive data

structures that are unbounded. Hence, fixed-point computation may be expensive and

we choose the former option (see Section 8.4).

For GPU compositions that are postponed because of the presence of a barrier, we

must retain the back edges until the barrier GPUs are sufficiently simplified.

5.5.3 Loop and Loop Characteristics

We define the loop of a back edge δs → δt in a GPG as a strongly connected component

(SCC) consisting of the set of GPBs appearing on all control flow paths starting at δt

(the first GPB of the loop) and ending on δs (the last GPB of the loop) such that no

control flow path involves a back edge. The exit of a loop is a GPB in the loop with a

successor that is not in the loop. The successors of a loop are the successor GPBs of its

exits. A loop is single-entry if its first GPB dominates its last GPB. A loop is regular if

it is single-entry and its last GPB is also an exit of the loop. A regular loop is strongly

regular if its last GPB is the only exit of the loop. A regular loop could have a premature

exit but a strongly regular loop cannot.

Example 51. A C-style while loop is not regular because its last GPB (i.e. the

source of the back edge) is not an exit of the loop. A do-while loop is regular; it is

strongly regular if it does not contain a break statement or a goto statement to a

label outside the loop. For the GPG in Figure 5.8(a), the loops of back edges δ5 → δ3

and δ6 → δ2 are not regular because their last GPBs (δ5 and δ6) are not their exits.

Both the loops have a single entry. Further, in the case of nested while loops, an outer

while loop may not contain some GPBs of the inner while loop. In our example, if

the inner loop is not made regular, δ5 does not appear on any control flow path from

δ2 to δ6 that does not pass through any back edge.

We are interested in regular loops because, unlike an irregular loop, the GPUs in a

regular loop may reach its successor GPBs without traversing the back edge corresponding

to the loop. Hence, a regular loop may not require its back edge for propagating its GPUs
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to the loop successors. This leads to the following two design choices:

• We restrict ourselves to single-entry SCCs for the purpose of back-edge removal.

A multi-entry SCC is irreducible [35, 36, 37]. Since such an SCC does not have a

unique first node, back edges cannot be identified uniquely and a cycle starting at

some first node in the SCC could be completed by adding an edge identified as a

forward edge rather than an edge marked as a back edge. Thus, the removal of such

a back edge could under-approximate the acyclic paths from first nodes to last nodes

leading to unsoundness. Hence, we choose not to consider a back edge for removal

if it is contained in an irreducible SCC.

• We convert a single-entry irregular loop into a regular loop by adding edges from the

last GPB of the loop to its successors. These edges are necessarily forward edges.

Note that, by default, the GPBs of an inner while loop are not part of the outer

while loop. They get included in the outer while loop after the inner while loop is

converted to a regular loop. Since this conversion updates outer loops by including more

GPBs, correctness requires the conversion to be done innermost-first to ensure that all

GPBs in an inner loop get included in the outer loop. Since we restrict back-edge-removal

optimizations to reducible SCCs, the process of conversion begins with a loop whose first

GPB has the greatest post-order number—it is guaranteed to be dominated by the first

GPBs of all enclosing loops. This ensures that inner loops are processed for conversion

before outer loops.

Example 52. For the GPG in Figure 5.8(a), the inner loop with back edge δ5 → δ3

is made regular by adding edges δ5 → δ6 and δ5 → δ8 (Figure 5.8(b)) so that the last

GPB has successors δ6 and δ8 which are not in the loop and hence the GPB δ5 now

becomes the exit of the inner loop.

Observe that the set of GPBs contained in the loop represented by the back

edge δ6 → δ2 is {δ2, δ3, δ6} before the inner loop is made regular (Figure 5.8(a)). It

does not contain the GPBs δ4 and δ5 as there is no path which starts at δ2 and ends

on δ6 passing through δ4 and δ5 without traversing a back edge. With the addition

of edge δ5 → δ6, the set of GPBs in the loop of δ6 → δ2 becomes {δ2, δ3, δ4, δ5, δ6}

(Figure 5.8(b)).
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EBIns := Compress

(

⋃

t∈pred(s)

Edgeflow (t → s,EBOutt)

)

EBOuts := Gens ∪ Filter (s, EBIns − Kills)

Gens := {〈γ, ∅〉 | γ ∈ RGGens ∩ Prospective Producer GPUs}

Kills := {〈γ, β〉 | γ ∈ RGKills}

Definition 9: Useful back edges analysis for computing EBOuts

We make the outer loop (i.e. the loop of the back edge δ6 → δ2) regular by adding

edges δ6 → δ7 and δ6 → δ8 so that the last GPB δ6 also becomes the exit of the loop

as shown in Figure 5.8(c). Note that we could add the edge δ6 → δ8 because the GPB

δ4 has been made a part of the loop by making the inner loop regular. Further, its

successor δ8 which is not a part of the loop is the successor of the outer loop.

5.5.4 Essential Back Edges Analysis

A GPU γ ∈ Prospective Producer GPUs (Equation 5.2) may be required for a later com-

position. Hence, if γ is contained in a loop, the corresponding back edge may have to be

retained. This situation arises if the back edge is required for γ to reach its consumer

GPU. We call such a back edge an essential back edge. In order to identify essential back

edges, we perform a data flow analysis that computes a set EBIns for each statement s.

EBIns is a set of pairs 〈γ, β〉 such that γ is a prospective producer GPU and β is a set

of back edges such that γ reaches s only after traversing some back edge in β. In other

words, if γ could reach the program point along a back-edge-free control flow path, then

β is ∅. We use this information in the following manner: if 〈γ, β〉 reaches a consumer

GPU γ, then the edges in β are essential and should not be removed from the GPG.

The data flow equations for computing EBIni and EBOuti are given in Definition 9.

Observe that this analysis does not associate a set of back edges with all GPUs. It needs

to be done only for the prospective producer GPUs characterized in Section 5.5.1. We

use the following auxiliary functions:

• Function Edgeflow (m → n,X) adds edge m → n to the set of back edges of the
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GPUs in X if the edge m → n is a back edge.

Edgeflow (m → n,X) =











X m → n is a forward edge

{〈γ, β ∪ {m → n}〉 | 〈γ, β〉 ∈ X} otherwise

• Function Filter(m,X) removes a back edge m → n from β when 〈γ, β〉 reaches

node m because it has already gone over m → n once. In other words, 〈γ, β〉 has

completed a cycle and has reached the end of the loop. If it goes over a forward

edge coming out of m, it can go out of m without traversing the back edge m → n.

Filter (m,X) = {〈γ, β − {m → n}〉 | 〈γ, β〉 ∈ X,m → n is a back edge}

• Function Compress(X) compresses set X of pairs 〈γ, β〉 by partitioning it on the

basis of GPUs using function Select (γ,X) and then merging each equivalence class

into a single pair using function Merge (Y ).

Compress (X) =
{

Merge (Select (γ,X)) | 〈γ, β〉 ∈ X
}

Select (γ,X) = {〈γ, β〉 | 〈γ, β〉 ∈ X}

• Function Merge (Y ) takes as an argument a set Y ⊆ X of all pairs involving GPU

γ and computes a single pair for γ defined as follows:

– If a pair 〈γ, ∅〉 exists in Y , there is a back-edge-free path along which γ can reach

the program point. In such a case, Merge discards all back edges associated

with γ and returns a single pair 〈γ, ∅〉.

– If β is not empty in any pair in Y , it means that every path along which γ has

reached the program point contains a back edge. In such a situation, Merge

takes a union of all back edge sets and returns a single pair 〈γ, β ′〉 such that

β ′ is non-empty.

Merge (Y ) =















〈γ, ∅〉 ∃ 〈γ, ∅〉 ∈ Y

〈γ, {m → n | 〈γ, β〉 ∈ Y,m → n ∈ β}〉 otherwise

The following two examples illustrate essential back edges analysis using the GPGs

in Figure 5.8. Although, the picture does not show any GPU, we assume the presence of

suitable GPUs for the purpose of illustration.
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Example 53. Consider the case where GPB δ5 = {γ5 :p
1|0
−→
5

a} and GPB δ6 = {γ6 :

p
1|0
−→
6

b} in all the three GPGs. For simplicity, assume that all other GPBs can be ig-

nored. In the original GPG given in Figure 5.8(a) where the loops are not made regular,

the pairs 〈γ5, {δ5 → δ3, δ6 → δ2}〉 and 〈γ6, {δ6 → δ2}〉 reach the GPB δ8. When the

inner loop is made regular by adding the edges δ5 → δ6 and δ5 → δ8 (Figure 5.8(b)),

there exists a path (δ5 → δ8) along which the GPU γ5 reaches δ8 without traversing

any back edges and hence 〈γ5, ∅〉 reaches δ8. However, the GPU γ6 still needs a back

edge to reach δ8 and hence the pair 〈γ6, {δ6 → δ2}〉 continues to reach δ8. The set β

associated with γ6 becomes ∅ after the outer loop is made regular with the addition

of edge δ6 → δ8.

After computing the minimum fixed point of EBIns, we define the set of essential

back edges in ∆ using the result of essential back edges analysis as follows:

EssentialBackEdges = {b | 〈γ, β〉 ∈ EBIni, b ∈ β, γ ∈ Prospective Producer GPUs}

A back edge that is not essential can be deleted from ∆.

Example 54. Continuing with Figure 5.8(c), consider the case where GPB δ2 = {γ2 :

x
2|0
−→
2

b}, GPB δ4 = {γ4 :q
1|1
−→
4

p}, GPB δ5 = {γ5 :p
1|0
−→
5

a}, and GPB δ6 = {γ6 :p
1|0
−→
6

b}.

For simplicity, assume that all other GPBs can be ignored. Then, the set of prospective

GPUs contain γ2 and γ6 because GPU γ2 is an indirect GPU and GPU γ6 is in Queued.

The composition γ4◦
tsγ6 is postponed because γ6 is blocked by a barrier GPU γ2;

there is no path from δ6 to δ4 that does not go through δ2 hence γ6 /∈ RGIn4 because

γ6 /∈ RGOut2.

The other two GPUs (γ4 and γ5) are not in Prospective Producer GPUs because

the GPU γ4 is neither an indirect GPU nor a producer GPU for any composition

(variable q does not appear in any other GPU). On the other hand, the GPU γ5 is

a producer GPU for the composition γ4◦
tsγ5 which is admissible. It is not blocked

by the barrier γ2 because it can reach γ4 without going through δ2 (i.e. γ5 ∈ RGIn4

although γ5 /∈ RGOut2).

Since the GPU γ6 may compose with γ4 once the barrier GPUs is simplified and

the pair 〈γ6, {δ6 → δ2}〉 reaches δ4, our analysis indicates that the back edge δ6 → δ2
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is essential and so cannot be removed. Further, there is no GPU for which the back

edge δ5 → δ3 is required. Hence it is inessential and so can be deleted from ∆.

Coalescing eliminates almost all back edges in the GPGs with very little work left for

back-edge removal. Moreover, essential back edges analysis is very expensive and hence

we have not implemented this optimization.

5.6 Chapter Summary

Dead GPU elimination identifies the GPUs in a GPG that do not impact the GPGs of

the callers and eliminates them thereby paving way for empty GPB elimination optimiza-

tion. Coalescing identifies the redundant control flow between the GPBs and eliminates

it thereby making the GPGs more compact. Back-edge removal identifies the inessential

back edges in the GPGs and eliminates them thereby reducing the number of iterations in

a fixed-point computation when the GPGs are inlined at the call sites. Practically, coa-

lescing eliminates most of the back edges. Also, essential back edges analysis is expensive

and hence our implementation does not perform it.





Chapter 6

Call Inlining

In order to construct the GPG of a procedure, the optimized GPGs of its callees are

inlined at the call sites and the resulting GPG of the procedure is then optimized. After

a GPG is inlined at a call site, its GPBs undergo another round of optimization in the

calling context. This repeated optimization in the context of each transitive caller of a

GPG enhances the compactness of the GPGs significantly.

The GPG of a procedure can be constructed completely only when (a) all callees

are known, and (b) their GPGs have been constructed completely. The first condition

is violated by a call through function pointer and the second condition is violated by a

recursive call. We classify procedure calls into the following three categories and explain

their handling in this chapter.

• Callee is known and the call is non-recursive.

• Callee is known and the call is recursive.

• Callee is not known.

The third category requires the concept of modelling a use statement to represent the

use of a pointer to represent a call through function pointer. This modelling of a use

statement is introduced in Chapter 7.

6.1 Callee is Known and the Call is Non-Recursive

In this case, the GPG of the callee can be constructed completely before the GPG of its

callers if we traverse the call graph bottom up.

119
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Startp

y = &a01 q();02

Endp

Startq

y = &b11

p();12

Endq

main

p

q

∆1
p ∆2

p ∆3
p≡ ∆p

∆1
q ∆2

q ∆3
q≡ ∆q

∆⊤

(a) Mutually recursive procedures
(b) Call graph and the order of constr-

ucting GPGs for second approach

Figure 6.1: An example demonstrating the construction of GPGs for recursive procedures
through a fixed-point computation.

We inline the optimized GPGs of the callees at the call sites in the caller procedures.

GPB labels are used for maintaining control flow within a GPG. Hence, we renumber

the GPB labels after call inlining and coalescing. Note that if a GPG is inlined multiple

times then each inlining uses a fresh numbering for the GPBs that get inlined. Since the

statement labels are unique across procedures, their occurrences in GPUs do not change

by inlining even if a GPG is inlined at two different call sites within the same procedure.

As noted earlier, this is a design choice because it helps us to accumulate the points-to

information of a particular statement in all contexts.

When inlining a callee’s (optimized) GPG, we add two new GPBs, a predecessor to

its Start GPB and a successor to its End GPB. These new GPBs contain respectively:

• GPUs that correspond to the actual-to-formal-parameter mapping (or zero GPUs

for a function with no parameters).

• A GPU that maps the return variable of the callee to the receiver variable of the

call in the caller (or zero GPUs for a void function).

Some GPUs in the GPG of the callee may have upwards-exposed versions of variables

(see Section 4.5). These are the variables whose values may be defined in a caller and

are read by the callee. For example, global variables or formal parameters (which are

defined through actual parameters). Hence when a GPG is inlined in a caller procedure,
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∆1
p ∆2

p Optimized ∆p

δ1

y
1|0
−→
01

aδ2

y
1|0
−→
11

bδ3

p();δ4

δ5

δ1

∆1
p

y
1|0
−→
01

aδ2

y
1|0
−→
11

bδ3

δ6

y
1|0
−→
01

aδ7

y
1|0
−→
11

bδ8

p();δ9

δ10

δ5

δ1

y
1|0
−→
01

aδ13

δ5

Figure 6.2: Series of GPGs of procedure p of Figure 6.1. ∆1
p is the initial GPG of the

self recursive version of procedure p which is then used to compute ∆2
p (highlighted in the

second column above). The optimized ∆p is then used for computing ∆2
q.

we substitute the callee’s upwards-exposed variable x′ occurring in a callee’s GPU by the

original variable x when the GPU is included in the caller’s GPG.

Inlining of procedure calls with the callee’s optimized GPG allows reaching GPUs

analyses to remain intraprocedural analyses. However, recursive and indirect calls need

to be handled specially. These cases are discussed in Sections 6.3 and 6.4.

6.2 Callee is Known and the Call is Recursive: Our

First Approach

This section describes our first approach for handling recursive calls which failed to scale to

large programs because it required creating large GPGs in intermediate stages. Section 6.3

describes an alternative approach which scales by keeping GPGs small in each step and

at the same time preserves precision.

Consider procedure p which calls procedure q and q calls p (Figure 6.1). The GPG
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Input: p,∆1
p // A self-recursive procedure and its first incomplete

// GPG containing only self-recursive calls.

Output: ∆p // Optimized complete GPG for procedure p.

01 Refine GPG (p,∆1
p)

02 { i = 1

03 Perform both variants of reaching GPUs analysis over ∆i
p

04 Rcurr = RGOutEnd(∆
i
p)

05 Rcurr = RGOutEnd(∆
i
p)

06 repeat

07 { Rprev = Rcurr

08 Rprev = Rcurr

09 i = i+ 1

10 Compute ∆i
p by inlining calls of p in ∆i−1

p with ∆1
p

11 Perform both variants of reaching GPUs analysis over ∆i
p

12 Rcurr = RGOutEnd(∆
i
p)

13 Rcurr = RGOutEnd(∆
i
p)

14 } until
(

(Rcurr 6= Rprev) ∨ (Rcurr 6= Rprev)
)

15 Delete all call GPBs from ∆i
p without connecting their

predecessors to their successors. Remove the GPBs that do not

appear on any path from the Start GPB of ∆i
p to its End GPB.

16 Perform strength reduction and redundancy elimination

optimizations over ∆i
p

17 return ∆i
p

18 }

Definition 10: Computing GPGs for self-recursive procedures through fixed-point computation.

of q depends on that of p and vice-versa. Thus, we have incomplete GPGs in which

some calls are not inlined because the GPG of the callees are incomplete. We handle this

mutual dependency of incomplete GPGs of p and q with the following two steps.

• Eliminating indirect recursion. We use a known algorithm [49] to convert indirect

recursion into self recursion. The resulting self-recursive version of procedure p is

shown in the second column in Figure 6.2.

• Repeated inlining of self-recursive calls.

We explain the second step using ∆⊤ which is the ⊤ element of the lattice of all pos-
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∆1
q ∆2

q Optimized ∆q

y
1|0
−→
11

bδ11

p();δ12

y
1|0
−→
11

bδ11

∆p

δ14

y
1|0
−→
01

aδ15

δ16

δ11

y
1|0
−→
01

aδ15

δ16

Figure 6.3: Series of GPGs of procedure q of Figure 6.1. ∆1
q is the initial GPG of procedure

q. The optimized ∆p (highlighted in the second column above) computed after reaching
the fixed point, is used for constructing ∆2

q. The GPBs are numbered from 11 because
the numbers upto 10 are used to represent the GPBs of procedure p.

sible procedure summaries. ∆⊤ is used to represent the effect of a call when the callee’s

complete GPG is not available. It kills all GPUs and generates none (thereby, when

applied, computes the ⊤ value— ∅—of the lattice for may points-to analysis) [51]. Se-

mantically, ∆⊤ corresponds to a procedure call which never returns (e.g. loops forever). It

consists of a special GPB called the call GPB whose flow functions are constant functions

computing the empty set of GPUs for both variants of reaching GPUs analysis. Note that

∆⊤ differs from the empty GPG which is an identity function as a memory transformer.

A GPG representing identity flow function does not generate or kill any GPUs.

We perform the reaching GPUs analyses over incomplete GPGs containing self-

recursive calls by repeated inlining until no further inlining is required.

Since data flow analysis over incomplete GPGs under-approximates the effect of

some calls through ∆⊤, the data flow values need to be recomputed. This is achieved by

inlining the calls by including incomplete GPGs of the callees to compute a new GPG

over which the data flow analysis is repeated. Let ∆1
p denote the GPG of procedure p

in which indirect recursion has been converted to self-recursion. Then, we get a series of

GPGs whose termination is defined as follows: We compute ∆i
p, i > 1 by inlining ∆1

p in

each iteration of fixed-point computation. The overall effect of a procedure is reflected by

the values reaching its End block. Hence at each stage, we compare the data flow values
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of the reaching GPUs analyses for the End GPB of a GPG. If these values for a GPG are

same as those in the previous GPG in the series, the process stops.

The convergence of above fixed-point computation differs subtly from the usual fixed-

point computation in the following manner: in each step of computation, the GPGs

continue to change. We stop the fixed-point computation when the data flow values

converge, not when the resultant GPGs converge (i.e., the GPGs in the last two iterations

of fixed-point computation have the same effect when they are applied at the call site

in the caller). This requires us to consider the unblocked GPUs (RGOut) as well as

the blocked+non-blocked GPUs (RGOut). Thus, the two GPGs across the iterations

are considered to be identical only when they have identical RGOutEnd and RGOutEnd .

Section 6.5 formally proves the convergence of GPG construction.

Definition 10 provides an algorithm for computing the fixed point by repeated in-

lining of self-recursive calls. Once the fixed point is achieved, the remaining call blocks

are redundant. Since they represent ∆⊤, i.e., procedure summary representing a call that

never returns, they are eliminated without connecting their predecessors to their succes-

sors. All GPBs which no longer appear on a control flow path from the Start GPB to

the End GPB, are also removed from the GPG, thereby garbage-collecting unreachable

GPBs.

Example 55. Consider procedure p in Figure 6.1. Reaching GPUs analyses with

and without blocking are performed on the self-recursive GPG of procedure p (∆1
p in

the first column of Figure 6.2) and the values are stored in Rprev and Rprev. In this

example, Rprev = {y
1|0
−→
01

a} and Rprev = {y
1|0
−→
01

a}. The call to p in ∆1
p is inlined by

∆1
p to compute ∆2

p (second column of Figure 6.2). Reaching GPUs analyses with and

without blocking are performed on ∆2
p and the values are stored in Rcur and Rcurr. In

this example, Rcur = {y
1|0
−→
01

a} and Rcurr = {y
1|0
−→
01

a}. These values are same as those

of Rprev and Rprev indicating that a fixed point is reached and no further inlining is

required.

The GPG so constructed (∆2
p) still contains a call to p (in δ9). It is now deleted

because inlining this call and computing a new GPG will have the same effect as the

previous one. This deletion makes δ5 (the End GPB) unreachable from δ8. Hence δ8

is deleted. Subsequent redundancy elimination optimizations give the final GPG ∆p



6.2. THE CALL IS RECURSIVE: OUR FIRST APPROACH 125

as shown in the third column of Figure 6.2.

The repeat -until loop in Definition 10 is guaranteed to terminate because of the

finiteness of the set of GPUs Rprev, Rprev, Rcurr, Rcurr. This is explained as follows.

For two variables x and y, the number of GPUs x
i|j
−→s y depends on the number of possible

indlevs (i|j) and the number of statements. Since the number of statements is finite, we

need to examine the number of indlevs. For pointers to scalars, the number of indlevs

between any two variables is bounded because of type restrictions. For pointers to struc-

tures (Chapter 8), indlevs are replaced by indirection lists (indlists). Sections 8.3 and 8.4

summarize indlists restricting them to a finite number between any two pointer variables.

Hence the number of GPUs is also finite.

An important point is that it suffices to eliminate indirect recursion from one pro-

cedure in every strongly connected component (SCC) in a call graph; the choice of this

procedure is immaterial. After performing fixed-point computation over the selected pro-

cedure, its optimized GPG can be inlined in other procedures.

Example 56. For the example in Figure 6.1, we create a self-recursive GPG ∆1
p for

procedure p and compute its fixed point using repeated inlining. The optimized GPG

∆p is then inlined in the initial GPG (∆1
q shown in the first column of Figure 6.3)

of recursive procedure q to compute ∆2
q (second column of Figure 6.3) which needs

no fixed point computation as its effect is already incorporated in ∆p. It is further

optimized to compute ∆q. Note that we have eliminated indirect recursion from p;

choosing q for the purpose (or eliminating indirect recursion from both) would give

the same GPGs for both p and q.

This approach of converting indirect recursion to self recursion, and repeatedly in-

lining of the recursive calls failed because it required inlining of unoptimized GPGs. Thus

in many cases, the size of GPG became too big and our analyses and optimizations did

not scale. Hence, instead of first creating a naively large GPG and then optimizing it to

bring down the size, we decided to keep the GPGs small at every stage by inlining only

optimized GPGs. We describe this approach in the next section.
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6.3 Callee is Known and the Call is Recursive: Our

Second Approach

The mutual dependency between the GPGs of procedures p and q (Figure 6.1) is handled

by successive construction of incomplete GPGs of p and q through fixed-point computation

without converting indirect recursion to self recursion. This avoids the eager inlining of

unoptimized GPGs required by the previous approach (Section 6.2).

A set of recursive procedures is represented by a strongly connected component in

a call graph which is formed by a collection of back edges that represent recursive calls.

Since we traverse a call graph bottom up, the construction of GPGs for a set of recursive

procedures begins with the procedures that are the sources of back edges. The GPGs of

some callees of these procedures (i.e. the callees that are targets of back edges in the call

graph) have not been constructed yet. We handle such situations by using a special GPG

∆⊤ that represents the effect of a call when the callee’s GPG is not available. (∆⊤ is the ⊤

element of the lattice of all possible procedure summaries). Recall that ∆⊤ corresponds to

the call to a procedure that never returns (e.g. loops forever). It consists of a special GPB

called the call GPB whose flow functions are constant functions computing the empty set

of GPUs for both variants of reaching GPUs analysis.

We perform the reaching GPUs analyses over incomplete GPGs containing recursive

calls by repeated inlining of callees starting with ∆⊤ as their initial GPGs, until no further

inlining is required. This is achieved as follows: Since data flow analysis over incomplete

GPGs under-approximates the effect of some calls through ∆⊤, the data flow values need

to be recomputed. This is achieved by inlining the calls by including incomplete GPGs

of the callees to compute a new GPG over which the data flow analysis is repeated. Let

∆1
p denote the GPG of procedure p in which all the calls to the procedures that are not

part of the strongly connected component are inlined by their respective optimized GPGs.

Note that the GPGs of these procedures have already been constructed because of the

bottom up traversal over the call graph. The calls to procedures that are part of the

strongly connected component are retained in ∆1
p. In each step, the recursive calls in ∆1

p

are inlined either

• by ∆⊤ when no GPG of the callee has been constructed, or
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Input: p,∆1
p, ∆

i
p // A recursive procedure, its first incomplete GPG

// containing only recursive calls, and its ith GPG

// in the fixed-point computation.

Output: ∆i+1
p // Optimized (i+ 1)th GPG for procedure p.

01 Refine GPG (p,∆1
p, ∆

i
p)

02 {

03 Rprev = RGOutEnd(∆
i
p)

04 Rprev = RGOutEnd(∆
i
p)

05 Compute ∆i+1
p by inlining recursive calls in ∆1

p with their latest GPGs

06 Perform both variants of reaching GPUs analysis over ∆i+1
p

07 Rcurr = RGOutEnd(∆
i+1
p )

08 Rcurr = RGOutEnd(∆
i+1
p )

09 if
(

(Rcurr 6= Rprev) ∨ (Rcurr 6= Rprev)
)

10 Push callers of p on the worklist

11 Perform strength reduction and redundancy elimination optimizations

over ∆i+1
p

12 return ∆i+1
p

13 }

Definition 11: Computing GPGs for recursive procedures through fixed-point computation.

• by an incomplete GPG of a callee in which some calls are under-approximated using

the initial value ∆⊤.

Thus we compute a series of GPGs ∆i
p, i > 1 for every procedure p in a strongly

connected component until the termination of fixed-point computation. For this purpose,

we initialize a worklist with all procedures in a strongly connected component. This

worklist is ordered by the postorder relation between the procedures in the call graph. A

procedure is added to the worklist based on the following criterion; the process terminates

when the worklist becomes empty. Once ∆i
p is constructed, we decide to construct ∆j

q

for a caller q of p if the data flow values of the End GPB of ∆i
p differ from those of

the End GPB of ∆i−1
p . This is because the overall effect of a procedure on its callers

is reflected by the values reaching its End GPB (because of forward flow of information

in points-to analysis). If the data values of the End GPBs of ∆i−1
p and ∆i

p are same,

then they would have identical effect on their callers. Thus, the GPGs are semantically

identical as procedure summaries even if they differ structurally. This step is described

in Definition 11.
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Figure 6.4: Series of GPGs of procedures p and q of Figure 6.1. They are computed in
the order shown in Figure 6.1(b). See Example 57 for explanation. The data flow values
reaching Endp are identical for ∆

2
p and ∆3

p hence the optimized version of ∆3
p is considered

the final ∆p. Although the data flow values reaching End GPB of ∆3
q are different from

those in ∆2
q, ∆

3
q uses ∆

2
p whose effect is same as that of ∆3

p. Hence, ∆
4
q will have the same

effect as ∆3
q and hence is not constructed.

The convergence of this fixed-point computation is similar to that in the first ap-

proach: in each step of computation, the GPGs continue to change. And yet, we stop the

fixed-point computation when the data flow values of the End GPB converge across the

changing GPGs, not when the resultant GPGs converge. Section 6.5 formally proves the

convergence of GPG construction.

Note that in this approach, there are no call GPBs in a GPG after the fixed-point

computation which need to be eliminated explicitly as in the case of first approach. In the

first approach, the call GPBs are present in the GPG even after fixed-point computation

because indirect recursion is converted to self-recursion.
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Example 57. In the example of Figure 6.1, the sole strongly connected component

contains procedures p and q. Since procedure q is the source of the back edge in the

call graph, the GPG of procedure q is constructed first. There are no calls in procedure

q to procedures outside the strongly connected component. Thus, ∆1
q contains a single

call to procedure p whose GPG is not constructed yet and hence the construction of

∆2
q requires inlining of ∆⊤. Since ∆⊤ represents a procedure call which never returns,

the GPB Endq becomes unreachable from the rest of the GPBs in ∆2
q . The optimized

∆2
q is ∆⊤ because all GPBs that no longer appear on a control flow path from the

Start GPB to the End GPB are removed from the GPG, thereby garbage-collecting

unreachable GPBs. ∆1
p contains a single call to procedure q whose incomplete GPG

∆2
q, which is ∆⊤, is inlined during construction of ∆2

p. The optimized version of ∆2
p is

shown in Figure 6.4. Then, ∆2
p is used to construct ∆3

q. Reaching GPUs analyses with

and without blocking are performed on ∆2
q and ∆3

q . The data flow values for ∆2
q are

Rprev = Rprev = ∅ whereas the data flow values for∆3
q are Rcurr = Rcurr = {y

1|0
−→
01

a}.

Since the data flow values have changed, caller of q i.e., p is pushed on the worklist

and ∆3
p is constructed by inlining ∆3

q . The data flow values computed for ∆2
p and ∆3

p

are identical Rprev = Rprev = Rcurr = Rcurr = {y
1|0
−→
01

a} and hence caller of p i.e.,

procedure q is not added to the worklist. The worklist becomes empty and hence the

process terminates. Note that the data flow values of ∆2
q and ∆3

q differ and yet we do

not construct the GPG ∆4
q. This is because ∆4

q constructed by inlining ∆3
p will have

the same effect as that of ∆3
q constructed by inlining ∆2

p since the impact of ∆2
p and ∆3

p

is identical. Thus, the GPUs reaching the Endq in ∆4
q are same as the GPUs reaching

the Endq in ∆3
q.

The process of fixed-point computation is guaranteed to terminate because of the

finiteness of the set of GPUs Rprev, Rprev, Rcurr, Rcurr as described in Section 6.2.

Observe that for the example in Figure 6.1, the GPGs of procedures p and q in both

the approaches are identical. This may not always be true. However, the set of GPUs

reaching the End GPBs of the GPGs constructed in both the approaches for a procedure

will always be identical.
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Startf

fp = p;01

x = &a;02

g(fp);03

fp = q;04

z = &b;05

g(fp);06

Endf

Startg

fp();07

Endg

Startp

y = x;08

Endp

Startq

y = z;09

Endq

Figure 6.5: An example demonstrating the handling of function pointers.

6.4 Callee is Not Known

Recall that in the case of recursion, we may have incomplete GPGs because the GPGs of

the callees are incomplete. Similarly, in the presence of a call through a function pointer,

we have incomplete GPGs for a different reason—the callee procedure of such a call is not

known. We model a call through function pointer (say fp) at call site s as a use statement

with a GPU u
1|1
−→s fp (Chapter 7).

Our goal is to convert a call through a function pointer into a direct call for every

pointee of the function pointer. Interleaving of strength reduction and call inlining reduces

the GPU u
1|1
−→s fp and provides the pointees of fp. This is identical to computing points-to

information (Chapter 7). Until the pointees become available, the GPU u
1|1
−→s fp acts as a

barrier. Once the pointees become available, the indirect call converts to a set of direct

calls and are handled as explained in Sections 6.1 and 6.3.

Example 58. Figure 6.5 provides an example of procedures containing calls through

function pointers. Figure 6.6 provides the GPGs of the procedures before and after

resolving all calls through function pointers. Procedure g has an indirect call through

function pointer fp in statement 07 and is modelled by a GPB containing a single
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δ01

x a
1|0
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δ02
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1|0

08
δ12
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04
δ04

z b
1|0

05
δ05

y b
1|0

09
δ13

∆g After Inlining Indirect Calls

δ14

y x
1|1

08
δ15

∆p
y z

1|1

09
δ16

∆q

δ17

Figure 6.6: Handling function pointers for the example in Figure 6.5. First, the direct
calls are inlined leading to the discovery of pointees of the function pointer fp causing
further inlining and strength reduction. See Example 58 for explanation.

GPU u
1|1
−→
07

fp where u models a use (Chapter 7). This GPG is inlined in procedure f

in statement 03 as δ10 and in statement 06 as δ11.

Since we have fp
1|1
−→
01

p ∈ RGIn10, the GPU in δ10 reduces to u
1|1
−→
07

p indicating that

the callee of this indirect call is p. Similarly, the callee for the indirect call in δ11 is

q. Hence we inline ∆p in δ10 which then becomes δ12. Similarly, ∆q is inlined in δ11

which then becomes δ13. This information is reflected in g by recording p and q as the
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pointees of fp in statement 07. The indirect call in g is converted to two direct calls

leading to the inlining of ∆p and ∆q in ∆g.

In δ03 in procedure f , only procedure p is called because fp points to p in statement

03 whereas in δ06, only q is called because fp points to q in statement 06. However, in

procedure g, either p is called in the context of call at 03 (represented by the GPB δ15

in the final GPG) or q is called in the context of call at 06 (represented by the GPB

δ16 in the final GPG).

6.5 Convergence of GPG Construction in the Pres-

ence of Recursion

Similar to Section 4.8, we use the usual guarantee of the convergence of a data flow

analysis on the maximum fixed point solution if the following conditions are satisfied [51]:

• The lattice L of data flow values is a complete lattice.

• Flow functions f : L → L are monotonic.

• All strictly descending chains in L are finite.

6.5.1 Modelling GPG Construction as a Data Flow Analysis

We model the construction of GPGs as a data flow analysis with the following data flow

equations. Let a program contain m procedures numbered 1 through m with their GPGs

numbered ∆1 through ∆m. Let Fi denote the function that computes the GPG ∆i for

procedure numbered i. Then,

〈∆1, ∆2, . . . , ∆m〉 = 〈 F1(∆1, ∆2, . . . , ∆m),

F2(∆1, ∆2, . . . , ∆m),

. . . (6.1)

Fm(∆1, ∆2, . . . , ∆m)

The arguments to the function Fi contain all GPGs but only the callee GPGs are inlined,

the rest of the GPGs can be ignored. The flow function Fi is a vector of pair of flow
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functions for reaching GPUs analyses (see Equation 4.7 in Section 4.8).

Fi = 〈(fI1, fI1), (fO1
, f

O1
), . . . , (fIn, fIn), (fOn

, f
On
)〉 (6.2)

where f
Ij
and fIj are the flow functions representing the meet operator for reaching GPUs

analysis with and without blocking. Similarly, f
Oj

and fOj
are the flow functions rep-

resenting the application of a GPB (in case of a non-call block) or the application of

a callee’s GPG (in case of a call block) for reaching GPUs analysis with and without

blocking.

A fixed point for the Equation (6.1) is computed by repetitive application of flow

functions with initialization ∆⊤ for each ∆i.

6.5.2 Lattice of GPGs

The overall effect of a GPG of a procedure in its callers is represented by the GPUs

reaching its End GPB. The two components that capture the effect of a GPG are:

• A set of all GPUs reaching the End GPB (RGOutEnd).

• A set of all unblocked GPUs reaching the End GPB (RGOutEnd).

Let Γ denote the set of all GPUs (Section 4.8.1). Let Π be a set of pairs defined as

follows:

Π =
{

〈R,R 〉 | R ⊆ Γ ,R ⊆ Γ
}

where R is the set of all (blocked+unblocked) GPUs reaching δs (or is RGIns) and R is

the set of unblocked GPUs reaching δs (or is RGIns).

We define a partial order over Π as follows. Let π1 ∈ Π be 〈R1, R1〉 and π2 ∈ Π be

〈R2, R2〉. Then,

π1 ⊑ π2 ⇐⇒ (R1 ⊑ R2) ∧ (R1 ⊑ R2)

where the partial order R1 ⊑ R2 is as defined in Section 4.8.1. A pair π1 is weaker than

π2 if it represents a larger set of GPUs that reaches a GPB (both RGOut and RGOut).

Replacing π2 with π1 is a sound approximation. The lattice (Π,⊑) is a complete lattice

(because Γ is finite). The top element of this lattice is 〈∅, ∅〉 and the bottom element is

〈Γ, Γ 〉.
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A GPG ∆ of a procedure is a map ∆ : Π → Π . The input to a GPG ∆ is a pair

π ∈ Π where π could represent:

• Boundary definitions 〈D,D〉 where D is a set of boundary definitions.

• Memory 〈M,M〉 for computing points-to information within the procedure where

M is the memory represented by a set of points-to edges (GPUs with indlev “1|0”).

• GPUs 〈RGInc,RGInc〉 reaching a call to the procedure at call site c.

We denote the output of a GPG ∆ for an input π by ∆(π). This represents the

GPUs reaching the End GPB of ∆.

We define a partial order over the set of all GPGs as follows:

∆1 ⊑ ∆2 ⇐⇒ ∀ π ∈ Π ∆1(π) ⊑ ∆2(π)

This partial order allows us to treat all structurally different GPGs that represent the

same mapping as identical.

The top element ∆⊤ of the lattice is a constant function that computes 〈∅, ∅〉 (i.e.,

∀ π ∈ Π ∆⊤(π) = 〈∅, ∅〉). Irrespective of the input to ∆⊤, it does not generate any GPUs

and kills all the GPUs reaching its Start GPB. Similarly, the bottom element of the lattice,

denoted ∆⊥ is a constant function defined as ∀ π ∈ Π ∆⊥(π) = 〈Γ, Γ 〉.

The finiteness of the lattice of GPGs is guaranteed by the finiteness of Γ and hence

the lattice is complete.

6.5.3 Convergence on the Maximum Fixed Point

In this section, we show that GPG construction computes a unique GPG for every pro-

cedure even in presence of recursion.

Theorem 6.1. GPGs computed by Equation (6.1) converge on the maximum fixed point.

Proof. Let ∆k
i denote the GPG of procedure numbered i in kth step of fixed-point compu-

tation of Equation (6.1). Then, Equation (6.1) computes the following sequence of vectors

of GPGs of all procedures.

〈∆0
1, ∆

0
2, . . . , ∆

0
m〉, 〈∆

1
1, ∆

1
2, . . . , ∆

1
m〉, . . . , 〈∆

i
1, ∆

i
2, . . . , ∆

i
m〉, . . .
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Lemma 6.2 shows that this sequence follows a descending chain.

〈∆0
1, ∆

0
2, . . . , ∆

0
m〉 ⊑ 〈∆1

1, ∆
1
2, . . . , ∆

1
m〉 ⊑ . . . ⊑ 〈∆i

1, ∆
i
2, . . . , ∆

i
m〉 ⊑ . . .

Since the lattice of ∆i’s is finite, so is the lattice of m length vectors of ∆i. Hence,

every strictly descending chain is finite. Thus, there exists a k such that,

〈∆k+1
1 , ∆k+1

2 , . . . , ∆k+1
m 〉 = 〈∆k

1, ∆
k
2, . . . , ∆

k
m〉

We begin the fixed-point computation with the initial value:

〈∆⊤, ∆⊤, . . . , ∆⊤〉

Since the lattice if finite, it is also complete. Hence, the sequence converges on the

maximum fixed point.

Lemma 6.2. The sequence of vectors of GPGs computed by Equation (6.1) follows a

descending chain.

Proof. We prove the lemma by using induction on the number of steps for computing

GPGs using Equation (6.1).

Basis: Since the initialization for all GPGs is ∆⊤ (⊤ value),

〈∆1
1, ∆

1
2, . . . , ∆

1
m〉 ⊑ 〈∆0

1, ∆
0
2, . . . , ∆

0
m〉

⊑ 〈∆⊤, ∆⊤, . . . , ∆⊤〉

Inductive hypothesis: Assume that after k steps, the following relation holds

〈∆k
1, ∆

k
2, . . . , ∆

k
m〉 ⊑ 〈∆k−1

1 , ∆k−1
2 , . . . , ∆k−1

m 〉

Thus, for GPG ∆i in k and (k − 1) steps, we have,

∀ δj : (I kj ⊑ I k−1
j ) ∧ (I

k

j ⊑ I
k−1

j ) ∧ (O k
j ⊑ O k−1

j ) ∧ (O
k

j ⊑ O
k−1

j )

where I kj and O k
j are the sets of GPUs reaching the entry and exit of δj respectively

in GPG ∆k
i after fixed point computation of reaching GPUs analysis without blocking.

Similarly, I
k

j and O
k

j are the sets of GPUs reaching the entry and exit of δj respectively

in GPG ∆k
i after fixed point computation of reaching GPUs analysis with blocking.



136 CHAPTER 6. CALL INLINING

Inductive step: In (k + 1)th step, we compute ∆k+1
i by inlining callee GPGs computed

in kth step. We need to prove that,

〈∆k+1
1 , ∆k+1

2 , . . . , ∆k+1
m 〉 ⊑ 〈∆k

1, ∆
k
2, . . . , ∆

k
m〉

This can be proved by showing that,

∀ δj : (I k+1
j ⊑ I kj ) ∧ (I

k+1

j ⊑ I
k

j ) ∧ (O k+1
j ⊑ O k

j ) ∧ (O
k+1

j ⊑ O
k

j )

Here for brevity, we consider only the sets of GPUs computed by reaching GPUs

analysis without blocking (Ij and Oj). However, all arguments hold for the sets of GPUs

computed by reaching GPUs analysis with blocking (Ij and Oj) also.

By inductive hypothesis, for all GPBs δj in ∆i, we know that,

O k
j ⊑ O k−1

j ⇒
l

p∈pred(j)

O k
p ⊑

l

p∈pred(j)

O k−1
p (meet is monotonic)

⇒ I k+1
j ⊑ I kj (From Definition 5)

For the value O k+1
j , we need to consider two cases. The flow functions fOj

in Equa-

tion (6.2) for computing the sets Oj represent

• GPB application for non-call blocks and

• GPG application for call blocks.

For the first case, we have already proved that GPBs are monotonic (Section 4.8.2). Here

we prove the second case.

Let GPB δj contain a call to procedure q. Then, O k
j is computed by inlining the

GPG ∆k−1
q computed in the (k− 1)th step. Similarly for (k+1)th step, O k+1

j is computed

by inlining the GPG ∆k
q computed in the kth step. By inductive hypothesis,

∆k
q ⊑ ∆k−1

q ⇒ O k+1
j ⊑ O k

j

Since the relation O k+1
j ⊑ O k

j holds for every GPB δj, it also holds for the End GPB.

Similarly, O
k+1

j ⊑ O
k

j also holds for the End GPB. Hence, ∆k+1
i ⊑ ∆k

i . This holds for

every ∆i proving the inductive step. Hence the lemma.
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6.6 Chapter Summary

Call inlining incorporates the effect of callee by inlining the optimized GPGs of the callees

at its call site. It also maps the arguments in the caller to their corresponding parameters

in the callee as well as the return variable of the callee to the receiver variable of the call

in the caller.

Recursive calls are handled through a fixed-point computation. These calls are elim-

inated by a bounded inlining of callee GPGs without over-approximation.

A call through function pointer can be converted to multiple direct calls based on the

number of pointees of the function pointer. Calls through function pointers are handled

through delayed inlining when the pointees of the function pointer are not locally available.

Such calls are modelled by use statements and are resolved when the pointees of function

pointers become available.





Chapter 7

Computing Points-to Information

using GPGs

Recall that a flow- and context-sensitive interprocedural analysis using procedure sum-

maries is performed in two phases: the first phase constructs the procedure summaries

and the second phase uses the procedure summaries to compute the desired information,

which, in our case, is the classical points-to information. In this chapter, we discuss the

second phase of computing points-to information using GPGs. Section 7.1 models a use

statement corresponding to a non-pointer assignment or an expression accessing pointer

variables. Section 7.2 describes the second phase that computes points-to information at

every program point using GPGs.

Although it is good to know the points-to information at every program point, it is

sufficient to know only the pointees of the pointers occurring in assignments and other

statements. Section 7.3 describes how the desired points-to information for every assign-

ment can be computed as a side-effect of the first phase thereby, making the second phase

redundant.

7.1 Modelling a Use Statement

The use of pointers in assignments is modelled by our definition of GPUs. We model

the use of pointers in other statements in the form of a use statement. This is required

because even though a pointer is not being defined in such statements, there is a use of

pointer variables and hence one needs to know the pointees of these pointer variables.

139
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Consider a use of a pointer variable in a non-pointer assignment or an expression.

We represent such a use with a GPU whose source is a fictitious node u with indlev 1

and the target is the pointee that is being read. Thus a condition ‘if (x == ∗y)’ where

both x and y are pointers, is modelled as a GPB
{

u
1|1
−→s x, u

1|2
−→s y

}

whereas an integer

assignment ‘∗x = 5;’ is modelled as a GPB
{

u
1|2
−→s x

}

.

Example 59. Consider the code snippet on the right. There is a non-pointer

01 x = &a;

02 ∗x = 5;

assignment statement 02 in which the pointee of x (which is the lo-

cation a) is being defined. A client analysis would like to know the

pointees of x for statement 02. We model this use of pointee of x as a GPU u
1|2
−→
02

x.

This GPU can be composed with x
1|0
−→
01

a to get a reduced GPU u
1|1
−→
02

a indicating that

pointee of x in statement 2 is a.

When a use involves multiple pointers such as ‘if (x == ∗y)’, the corresponding

GPB contains multiple GPUs. After their reduction, pointers x and y are eliminated and

we may get a GPB containing GPUs u
1|1
−→s a and u

1|1
−→s b and we may not know which of

‘a’ and ‘b’ is a pointee of x or y. If the exact pointer-pointee relationship is required,

rather than just the reduced form of the use (devoid of pointers), we need additional

minor bookkeeping to record GPUs and the corresponding pointers.

7.2 Computing Points-to Information At Every Pro-

gram Point

In this section, we describe how to compute points-to information for each statement

within a procedure. This requires computing the points-to information reaching the call

points of the procedure in its callers. This boundary information is denoted by BI .

7.2.1 Operations for Computing Points-to Information

Recall that the points-to information in abstract memory is seen as a relation (Sec-

tion 1.3.1). We define the operations of memory application and memory composition

for computing points-to information PIn and POut for every pointer assignment within a
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PIns :=















BI s = Start

⋃

p ∈ pred(s)

POutp otherwise

POuts := (PIns − PKills) ∪ JδsKPIns

PKills := Memkill (JδsKPIns, PIns)

Memkill(M,P ) :=
{

γ1 | γ1 ∈Match(γ, P ), γ ∈ M, Singledef (M, γ)
}

Singledef (M, x
i|j
−→s y) := |M i−1{x}| = 1

Definition 12: Computing Points-to information using GPG, ∆ (M)

procedure. The pointees of a set of pointers X ⊆ P in M are computed by the memory

application M X = {y | (x, y) ∈ M,x ∈ X}. Let M i denote a relation composition of de-

gree i, i.e. M i = M ◦M i−1 where M 0 is an identity relation. Then, M i{x} discovers the

ith pointees of x which involves i transitive reads from x : first i − 1 addresses are read

followed by the content of the last address. For composability of M , we extend its domain

to L by the inclusion map. Since M 0 is an identity relation, M 0{x} = {x}.

Computing points-to information within a procedure requires the following two op-

erations which compute a new memory M ′ from a given memory M .

• GPU evaluation JγKM computes the set of points-to edges that would be created

by executing the GPU γ :x
i|j
−→y in memory M . It is given by:

Jx i|j
−→yKM =

{

w
1|0
−→z | w ∈ M i−1{x}, z ∈ M j{y}

}

.

Recall that we identify classical points-to edges as GPUs with indlev 1|0.

• GPB evaluation JδKM simply iterates GPU evaluation for the GPUs in GPB δ.

JδKM =
⋃

γ ∈ δ

JγKM

Definition 12 gives the data flow equations for computing points-to information for

individual statements within a procedure. It is achieved by traversing the GPG of the

procedure and using the GPBs corresponding to the statements.
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main

s f

h g

Call Graph

Startf Startf

x a
1|0

1
δ1

g()δ2

z c
1|0

2
δ3

w z
1|1

3
δ4

Endf Endf

Startg Startg

y x
1|1

4
δ5

Endg Endg

Starth Starth

x b
1|0

5
δ6

Endh Endh

Starts Starts

h()δ7

p x
1|1

6
δ8

g()δ9

Ends Ends

Figure 7.1: Interaction between GPGs for computing points-to information. The GPG
of procedure main has been omitted.

7.2.2 Computation of Boundary Information BI

The boundary information BI for a procedure is computed as the union of the points-to

information reaching the procedure from all of its call points in all its callers.1 For the

main function, BI is computed from static initializations. In the presence of recursion, a

fixed-point computation is required to compute BI .

The predicate Singledef (M, x
i|j
−→
t
y) in Definition 12 asserts that a GPU x

i|j
−→
t
y in

δs defines a single pointer. Observe that Singledef (M, x
i|j
−→s y) trivially holds for i = 1

(i.e. for direct assignments). The GPUs to be removed (Memkill) are characterized much

along the lines of Kill (Definition 5 in Section 4.6). Besides, function Match is same as in

Definition 5 in Section 4.6.

Example 60. For the program in Figure 7.1, the BI of procedure g (denoted BI g)

is the points-to information reaching g from its callers f and s and hence a union

of POutδ1 and POutδ8 where POutδ1 = {x
1|0
−→
1

a} and POutδ8 = {x
1|0
−→
5

b, p
1|0
−→
6

b}. Thus,

PInStartg = BI g = POutδ1 ∪ POutδ8 . The points-to information generated for statement

4 is Jδ5KPInStartg = {y
1|0
−→
4

a, y
1|0
−→
4

b}.

1BI as defined above is the boundary information for computing points-to information. The boundary

information for reaching GPUs analyses consists of boundary definitions (Section 4.5).
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7.2.3 Bypassing of BI

The BI of a procedure computed from all call sites of the procedure contains many points-

to pairs that are not accessed by the procedure. This causes inefficiency in computing

PIn and POut (Definition 12) because many irrelevant points-to pairs are processed for

each statement. Thus the efficiency of computing points-to information can be enhanced

significantly by filtering out the points-to information that is irrelevant to a procedure.

Our earlier implementation [25] shows efficiency gain that was achieved by bypassing. This

concept of bypassing has been successfully used for data flow values of scalars [73, 74] but

not for pointers.

GPGs support bypassing naturally for pointers with the help of upwards-exposed

versions of variables. The occurrence of an upwards-exposed version of a variable in a

GPU indicates that there is a use of the variable in the GPU requiring pointee information

from the callers. In other words, the variable is live on entry to the procedure. Thus,

the points-to information of such a variable is relevant and should be a part of BI . For

variables that do not have their corresponding upwards-exposed versions occurring in a

GPU, their points-to information is irrelevant and can be discarded from the BI of the

procedure, effectively bypassing the calls to the procedure.

Example 61. In our example of Figure 7.1, the set of GPUs containing upwards

exposed variables in procedure g after call inlining and strength reduction optimization

is {y
1|1
−→
4

x′}. This implies that some pointees of x from the calling context are accessed

in the procedure g. Hence BI g should contain the GPUs involving x only. The points-to

information of p is not required in procedure g and hence can be bypassed. Thus, BI g

is no longer the union POutδ1 and POutδ8 as it excludes GPU p
1|0
−→
6

b as it is irrelevant

to procedure g and hence is bypassed.

The computation of boundary information (BI ) is expensive. As a result, in our

earlier implementation [25], the second phase took more time than the first phase of the

analysis. The optimization of bypassing enhanced the efficiency of the second phase. We

further optimize the computation of points-to information by rendering the second phase

redundant with the help of statement labels that are part of the GPU abstraction.
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7.3 Obviating the Second Phase of Bottom-Up Ap-

proach

Recall that the statement labels used in GPUs were used to distinguish between strong

and weak updates (Section 4.5). However, the statement labels are also useful to compute

points-to information by making the second phase of a bottom-up approach which uses

procedure summaries (created in the first phase) redundant. This is because our first

phase computes the points-to information as a side-effect of the construction of GPGs.

The process of computing points-to information can be seen as a two step process:

• creating def-use or use-def chains for pointers to view producer GPUs as definitions

of pointers and consumer GPUs as uses of pointers, and

• performing strength reduction of the consumer GPUs using the information from

the producer GPUs to reduce the indlevs of the consumer GPUs.

Since our first phase does this for constructing procedure summaries, it is sufficient to

compute points-to information. The statement labels help to uniquely identify the defi-

nition of pointer variables and their corresponding uses.

This process is easy to visualize if the definitions and uses are in the same procedure.

Consider a producer GPU p and a consumer GPU c that are not in the same procedure.

We can facilitate strength reduction involving them by propagating either

(a) p to the caller containing c ,

(b) c to the caller containing p,

(c) both p and c to a common procedure, or

(d) neither (if they are same in the procedure).

The propagation of information in cases (a) and (b) is similar to that in a top-down

analysis; case (a) corresponds to a forward analysis and case (b) corresponds to a backward

analysis. However, case (c) is only possible in bottom-up analysis.

A typical second phase of a bottom-up approach described in Section 7.2 involves

propagation of information similar to cases (a) and (b). This is illustrated in Example 62.

We use propagation similar to case (c) which is subsumed in the first phase of a bottom-up

approach rendering the second phase redundant. It is illustrated in Example 63.
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Example 62. Consider procedures f , g, h and s defined in Figure 7.1. We can

facilitate strength reduction in the following ways for cases (a) and (b):

• Propagating p to the procedure containing c . A top-down forward analysis would

propagate the GPU x
1|0
−→
1

a from procedure f to procedure g.

• Propagating c to the procedure containing p. A top-down backward analysis

in the spirit of liveness could propagate the GPU y
1|1
−→
4

x from procedure g to

procedure f .

We handle case (c) by interleaved call inlining and strength reduction. Call inlining

enhances the opportunities for strength reduction by providing more information from the

callers. The interleaving of strength reduction and call inlining gradually converts a GPU

x
i|j
−→s y to a set of points-to edges {a

1|0
−→s b | a is ith pointee of x, b is jth pointee of y}.

Since statement numbers are unique across all procedures and are not renamed on

inlining, the points-to edges computed across different contexts for a given statement

represent the flow- and context-sensitive points-to information for the statement.

Example 63. The four variants of hoisting p and c to a common procedure in the

first phase of a bottom-up method are illustrated below. Effectively, they make the

second phase redundant.

(c.1) When∆g is inlined in f , c : y
1|1
−→
4

x from procedure g is hoisted to procedure f that

contains GPU p :x
1|0
−→
1

a thereby propagating the use of pointer x in procedure

g to caller f . Strength reduction reduces c to y
1|0
−→
4

a.

(c.2) When ∆h is inlined in s, p :x
1|0
−→
5

b from procedure h is hoisted to procedure s

that contains c : p
1|1
−→
6

x thereby propagating the definition of x in procedure h

to the caller s. Strength reduction reduces c to p
1|0
−→
6

b.

(c.3) When ∆g and ∆h are inlined in s, c : y
1|1
−→
4

x in procedure g and p :x
1|0
−→
5

b in

procedure h are both hoisted to procedure s thereby propagating both the use

and definition of x in procedure s. Strength reduction reduces c to y
1|0
−→
4

b.

(c.4) Both the definition and use of pointer z are available in procedure f with c
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:w
1|1
−→
3

z and p : z
1|0
−→
2

c. Strength reduction reduces c to w
1|0
−→
3

c.

Thus, y points-to a along the call from procedure f and it points-to b along the call

from procedure s. Thus, the points-to information {y
1|0
−→a, y

1|0
−→b} represents flow-

and context-sensitive information for statement 4.

7.4 Chapter Summary

In a traditional bottom-up approach, a top-down traversal over the call graph for comput-

ing points-to information follows a bottom-up traversal over the call graph for constructing

procedure summaries. We have defined two methods for computing points-to information

using procedure summaries. We implemented the first approach for computing points-to

information [25] and discovered that the second phase took more time than the first phase

of the analysis because computation of BI is expensive. The optimization of bypassing

enhanced the efficiency of the second phase and yet the second phase needed more time

than that of the first phase. Hence in our recent implementation, we further optimized

the computation of points-to information by rendering the second phase redundant with

the help of statement labels that are part of the GPU abstraction.



Chapter 8

Handling Heap for Points-to

Analysis using GPGs

So far we have created the concept of GPGs for pointers to scalars allocated on the stack

or in the static area. This chapter extends the concepts to data structures containing

named fields created using C style struct or union and possibly allocated on heap (as

well as on the stack or in static memory). For simplicity, we show only the set of GPUs

reaching a given statement and do not show the complete GPG of a procedure.

8.1 Extending GPUs to Handle Structures and Heap

We extend GPGs to handle structures as follows:

• We generalize the concept of indlevs to indirection lists (indlists) to handle structures

and heap accesses field sensitively (Section 8.2).

• We abstract heap locations using allocation sites (Section 8.3). In this abstraction,

all locations allocated at a particular allocation site are treated alike. This approxi-

mation allows us to handle the unbounded nature of heap as if it were bounded [48].

Hence only weak updates can be performed on heap locations.1

1We also perform weak updates for address-escaped variables (Section 9.1) because they share many

similarities with heap locations. Like heap locations, address-escaped variables could outlive the lifetime

of the procedures that create them. They potentially represent multiple concrete locations because of

multiple calls to procedures. Further, this number could be unbounded in the case of recursive calls.

147
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x and y are

pointers to scalars
x and y are pointers to structures

y φ1 φ2

x

∗ ∗

∗

y aaxavbaaxavb

φ2 φ2x

∗

n

∗

m

y aaxavbaaxavb

φ2 φ2x

∗

n

∗

m

∗

a) Memory graph for

GPUs x
[∗]|[∗,∗]
−−−−−→y

and x
1|2
−−→y

b) Memory graph for

GPU x
[∗]|[∗,n]
−−−−−→y

c) Memory graph for

GPU x
1|2
−−→y

Figure 8.1: An example demonstrating the need for indlists in the case of structures.
No distinction between dereferences is required for pointers to scalars (case a). Distinc-
tion between dereferences is required for pointers to structures for field sensitivity (case
b). When no distinction between dereferences for pointers to structures, imprecision is
introduced owing to field insensitivity (case c).

• We use an additional summarization based on k-limiting to bound the accesses in

a loop (Section 8.4). This is because the locations being accessed in a loop may be

allocated in a caller and hence their allocation sites may not be available when the

GPG of the procedure is being constructed.

• We introduce indlists and k-limiting summarization to extend the concept of GPU

composition to handle them (Section 8.4.2).

• We extend GPU reduction to handle cycles that may be created by allocation-site-

based abstraction and k-limiting summarization (Section 8.5).

The allocation-site-based-abstraction and k-limiting summarization techniques are re-

quired to create a decidable version of our method of constructing procedure summaries

in the form of GPGs. The resulting points-to analysis is a precise flow-sensitive, field-

sensitive, and context-sensitive analysis (relative to these two summarization techniques).2

2 In a top-down analysis, k-limiting is not required because allocation sites are propagated from callers

to callees. While the use of k-limiting in a bottom-up approach seems like an additional restriction, unless

the locations involved in a pointer chain are allocated by m > k distinct allocation sites, there is no loss

of precision compared to a top-down approach.
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Pointer assignment GPU Remark

x = malloc(. . .) x
[∗]|[ ]
−−→hi The allocation site name is i

x = NULL x
[∗]|[ ]
−−→NULL NULL is a distinguished location

x = y.n x
[∗]|[n]
−−−→y

x.n = y x
[n]|[∗]
−−−→y

x = y → n x
[∗]|[∗,n]
−−−−→y

x → n = y x
[∗,n]|[∗]
−−−−→y

Figure 8.2: GPUs with indirection lists (indlists) for basic pointer assignments in C for
structures and dynamically allocated heap locations.

The optimizations performed on GPGs and the required data flow analyses (reaching

GPUs analyses and coalescing analysis) remain the same. Hence, the discussion in these

sections is driven mainly by examples that illustrate how the theory developed earlier is

adapted to handle structures (typically, but not necessarily, heap-allocated).

8.2 Extending GPU Composition to Indirection Lists

The indlev “i|j” of a GPU x
i|j
−→s y represents i dereferences of x and j dereferences of y

using the dereference operator ∗. We can also view the indlev “i|j” as lists (also referred

to as indirection list or indlist) containing i and j occurrences of ∗. This representation

naturally allows field-sensitive handling of structures by using indirection lists containing

field dereferences. Consider the statements x = ∗y and x = y→n involving pointer deref-

erences. Since x = y→n is equivalent to x = (∗y).n, we can represent the two statements

by GPUs as shown below:

Statement
Field-sensitive

representation

Field-insensitive

representation
Our choice

x = ∗y x
[∗]|[∗,∗]
−−−−→y x

1|2
−→y x

1|2
−→y

x = y→n x
[∗]|[∗,n]
−−−−→y x

1|2
−→y x

[∗]|[∗,n]
−−−−→y

We achieve field sensitivity by enumerating field names. For statement x = ∗y, having a

field-insensitive representation which does not distinguish between different fields, makes



150 CHAPTER 8. HANDLING HEAP FOR POINTS-TO ANALYSIS USING GPGS

w y x
1|2

22

1|0

34

1|1

34

w y x
[∗]|[∗, n]

22

[∗]|[ ]

34

[∗]|[n]

34

• Difference of indlev of pivot

y (2− 1) is computed.

• Difference (2− 1) is positive.

• Add the difference to

indlev of x.

• Remainder of indlist of pivot y

(Rem ([∗], [∗, n])) is computed.

• [∗] is prefix of [∗, n].

• Append the remainder to

indlist of x.

Figure 8.3: GPU composition using the abstraction of indlevs and indlists.

no difference, but the GPU for statement x = y→n loses precision (Figure 8.1). Figure 8.2

illustrates the GPUs corresponding to the basic pointer assignments involving structures.

The dereference in the pointer expression y→n is represented by an indlist written

as [∗, n] associated with pointer variable y. It means that, first the address in y is read

and then the address in field n is read. On the other hand, the access y.n as shown in the

third row of Figure 8.2 can be mapped to location by adding the offset of field n to the

virtual address of y at compile time. Hence, it can be treated as a separate variable which

is represented by a node y.n with an indlist [∗]. We can also represent y.n with a node y

and an indlist [n]. For our implementation, we chose the former representation. However,

the latter representation is more convenient for explaining the GPU compositions and

hence we use it in the rest of this chapter. For structures, we ensure field sensitivity by

maintaining indlist in terms of field names. We choose to handle unions field-insensitively

to capture aliasing between its fields.

Recall that a GPU composition c ◦τp involves balancing the indlev of the pivot in c

and p (Section 4.3). With indlist replacing indlev, the operations remain similar in spirit,

although now they become operations on lists rather than operations on numbers. To

motivate the operations on indlists, let us recall the operations on indlevs: GPU composi-

tion c ◦τp requires balancing indlevs of the pivot which involves computing the difference

between the indlev of the pivot in c and p. This difference is then added to the indlev
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(

z
il1|il2−−−→

t
x
)

◦ts
(

v
il3|il4−−−→u y

)

:=











z
il1|il5−−−→

t
y (v = x) ∧ (il2 = il3@il6) ∧ (il5 = il4@il6)

fail otherwise

(

x
il1|il2−−−→

t
z
)

◦ss
(

v
il3|il4−−−→u y

)

:=



























y
il5|il2−−−→

t
z (v = x) ∧ (il1 = il3@il6) ∧ (il5 = il4@il6)

∧ il6 6= [ ]

fail otherwise

Definition 13: GPU Composition c◦τp using indlists.

of the non-pivot node in p. Recall that a GPU composition is valid (Section 4.3.2) only

when the indlev of the pivot in c is greater than or equal to the indlev of the pivot in p.

For convenience, we illustrate it again in the following example.

Example 64. Consider p : y
1|0
−→x and c :w

1|2
−→y where y is the pivot (Figure 8.3).

Then a TS composition c ◦tsp is valid because indlev of y in c (which is 2) is greater

than indlev of y in p (which is 1). The difference (2 − 1) is added to the indlev of x

(which then becomes 1) resulting in a reduced GPU r :w
1|(2−1+0)
−−−−−−→x, i.e. r :w

1|1
−→x.

We define similar operations for indlists. A GPU composition is valid if the indlist

of the pivot in GPU p is a prefix of the indlist of the pivot in GPU c . For example, the

indlist “[∗]” is a prefix of the indlist “[∗, n]”. The addition (+) of the difference (−)

in the indlevs of the pivot to the indlev of one of the other two nodes is replaced by the

list-append operation denoted @.

Similarly computing the difference (−) in the indlev of the pivot is replaced by a

‘list-difference’ or ‘list-remainder’ operation, Rem : indlist × indlist → indlist ; this takes

two indlists as its arguments where the first is a prefix of the second and returns the

suffix of the second indlist that remains after removing the first indlist from it. Given

il2 = il1 @ il3, Rem(il1, il2) = il3. When il1 = il2, the remainder il3 is an empty indlist

(denoted [ ]). A GPU composition is valid only when il1 is a prefix of il2; Rem(il1, il2) is

computed only for valid GPU compositions. This is again a natural generalization of the

integer based indlev formulation earlier.
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Example 65. Consider c : w
[∗]|[∗,n]
−−−−→y and p : y

[∗]|[ ]
−−→x where y is the pivot (Fig-

ure 8.3). We find the list remainder of the indlists of y in the two GPUs. This

operation (Rem([∗], [∗, n]) returns [n] which is appended to the indlist of node x (which

is [ ]) resulting in a new indlist [ ] @ [n] = [n] and thus, we get a reduced GPU w
[∗]|[n]
−−−→x.

Figure 8.3 gives an analogy between the operations performed for GPU composition

using indlevs and indlists.

The formal definition of GPU composition using indlists is similar to that using

indlevs (Definition 3) and is given in Definition 13. Note that for TS and SS compositions

in the equations, the pivot is x. Besides, for SS composition, the condition il6 6= [ ]

(generalizing the strict inequality ‘<’ in Definition 3) ensures that the consumer GPU

does not redefine the location defined by the producer GPU. Unlike the case of pointers

to scalars, TS and SS compositions are not mutually exclusive for pointers to structures.

For example, an assignment x → n = x could have both TS and SS compositions with

a GPU p defining x. The two compositions are independent because SS composition

resolves the source of a consumer GPU whereas TS composition resolves the target of the

GPU. Hence, they can be performed in any order.

A GPU composition is desirable if the indlev of r does not exceed that of c . Similarly,

in the case of indlists, a GPU composition is desirable if indlists of r (say il′1|il
′
2) does not

exceed that of c (say il1|il2), i.e. |il
′
1| ≤ |il1| ∧ |il′2| ≤ |il2| where |il| denotes the length

of indlist il. Note that, for desirability, we only need a smaller length and not a prefix

relation between indlists. In fact, the indlist in r is always a suffix of the indlist in c as

illustrated by the following example.

Example 66. Consider the code snippet on right. The effect of statement 22 in the

21 : x = &y;

22 : z = x → n;

context of statement 21 can be seen as an assignment z = y.n. The

composition of GPUs c :z
[∗]|[∗,n]
−−−−→

22
x and p :x

[∗]|[ ]
−−→
21

y results in the

GPU r :z
[∗]|[n]
−−−→

22
y. The indlist of the target (y) of r is not a prefix of

that of target (x) of c but is a suffix.
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struct node ∗ x;

01 struct node {

02 struct node ∗ n;

03 int d;

04 };

05 void g() {

06 struct node ∗ y;

07 while (...) {

08 print x → d;

09 x = x → n;

10 }

11 }

12 void f() {

13 struct node ∗ y;

14 y = malloc(. . .);

15 x = y;

16 while (...) {

17 y → n = malloc(. . .);

18 y = y → n;

19 }

20 g();

21 }

(a) A program for creating a linked list and traversing it. We have omitted the null

assignment for the last node of the list and the associated GPUs

x x′

(b) RGOut11 (GPUs reaching

the End of g for k = 3)

[∗]|[∗,n,n]

09g3

[∗]|[∗]

00
g1

[∗]|[∗,n]

09g2

h14

d
n

h17

d
n

h17

d
n

. . .
x

y

(c) Linked list created by

procedure f

y

x

h14 h17

(d) RGIn20 (GPUs reaching

the call to g on line 20)

[∗], [ ]

14f1
[∗]|[ ]

15
f2

[n]|[ ]

17f3

[∗]|[ ]

18

f4 [n]|[ ]

17

f5

Figure 8.4: An example demonstrating the need of k-limiting summarization technique in
addition to allocation-site-based abstraction for the heap. h14 and h17 are the heap nodes
allocated on lines 14 and 17 respectively.

8.3 Summarization Using Allocation Sites

Under the allocation-site-based abstraction for the heap, the objects created by an allo-

cation statement are collectively named by the allocation site and undergo weak update.

Thus, a statement x = malloc(. . .) is represented by a GPU x
[∗]|[ ]
−−→

i
hi where hi is the heap

location created at the allocation site i. The example below illustrates how this bounds an

unbounded heap in a GPG. For convenience, we identify GPUs using procedure names.
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Example 67. For procedure f shown in Figure 8.4 we create heap objects h14

and h17 allocated at line numbers 14 and 17. The GPU set RGIn20 in procedure

f represents a linked list with x as its head pointer (Figure 8.4(d)) and h14 as its

first node. The remaining nodes in the list are represented by the heap location h17

and are summarized by a self-loop over the node. This set of GPUs is computed as

follows: The GPU f1 :y
[∗]|[ ]
−−→
14

h14 is created for allocation-site 14. The GPU x
[∗]|[∗]
−−−→

15
y

composes with f1 (under TS composition) to create a new GPU f2 :x
[∗]|[ ]
−−→
15

h14. When

statement 17 is processed for the first time, GPU y
[∗,n]|[ ]
−−−−→

17
h17 composes with f1 (under

SS composition) to create a GPU f3 :h14
[n]|[ ]
−−−→
17

h17. When statement 18 is processed

for the first time, the GPU y
[∗]|[∗,n]
−−−−→

18
y composes with f1 (under TS composition) to

create a GPU y
[∗]|[n]
−−−→

18
h14 which is further composed with f3 (under TS composition) to

create a GPU f4 :y
[∗]|[ ]
−−→
18

h17. GPU f4 kills GPU f1 because y is redefined by statement

18. This completes the first iteration of the loop and the set of GPUs RGOut19 is

{f2, f3, f4} representing the following information:

• f2 indicates that x points to the head of the linked list, i.e., heap location h14.

• f3 indicates that the field n of heap location h14 points to heap location h17.

• f4 indicates that y points to heap location h17.

In the second iteration of the reaching GPUs analysis over the loop, RGOut15

and RGOut19 are merged to compute RGIn16 as {f1, f2, f3, f4}. When statement 17 is

processed for the second time, the GPU y
[∗,n]|[ ]
−−−−→

17
h17 composes with

• f1 (under SS composition) to create f3, and with

• f4 (under SS composition) to create f5 :h17
[n]|[ ]
−−−→

17
h17.

When statement 18 is processed for the second time, f4 is recreated killing f1. This

completes the second iteration of the loop and the set of GPUs RGIn20 is {f1, f2, f3, f4, f5}.

The new GPU f5 implies that the field n of heap location h17 holds the address of heap

location h17. The self loop represents an unbounded list
(

h17
n
−→h17

n
−→h17

n
−→h17 . . .

)

under the allocation-site-based abstraction. The third iteration of reaching GPUs
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analysis over the loop does not add any new information and reaching GPUs analysis

reaches a fixed point.

The following example discusses the absence of blocking in the procedures in Figure 8.4.

Example 68. The GPUs in RGIn14 reach statement 17 unblocked because there

is no barrier. Since the pointee of y is available, the set RGGen14 does not contain

any indirect GPUs and hence do not contribute to the blocking of any GPUs. If

the allocation site at statement 14 was not available, then the GPU for statement 17

would not have been reduced and hence the set RGGen17 would contain an indirect

GPU y
[∗,n]|[ ]
−−−→

17
h17. This GPU would block all GPUs in RGIn18 and in turn would

be blocked by the GPUs in RGGen18 so that it cannot be used for reduction of any

successive GPUs.

8.4 Summarization Using k-Limiting

This section shows why allocation-site-based abstraction is not sufficient for a bottom-up

points-to analysis although it serves the purpose well in a top-down analysis.

8.4.1 The Need for k-Limiting

In some cases, the allocation site may not be available during the construction of the

GPG of a procedure. In Figure 8.4, when the GPG is constructed for procedure g, we

do not know the allocation site because the accesses to heap in procedure g refer to the

data-structure created in procedure f . Thus allocation-site-based abstraction is not useful

for constructing the GPG for procedure g and the indirection lists grow without bound.

In a top-down analysis, k-limiting is not required because allocation sites are prop-

agated from callers to callees.

Example 69. When the GPG for procedure g in Figure 8.4 is constructed, we

have a boundary definition g1 :x
[∗]|[∗]
−−−→

00
x′ at the start of the procedure. In the first

iteration of the analysis over the loop, the GPU x
[∗]|[∗,n]
−−−−→

09
x composes with g1 (under

TS composition) creating a reduced GPU g2 :x
[∗]|[∗,n]
−−−−→

09
x′. The GPU g2 kills GPU g1
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because x is redefined by statement at 09. However, the merge at the top of the

loop reintroduces it. In the second iteration, the GPU x
[∗]|[∗,n]
−−−−→

09
x composes with g1

to recreate g2, and with g2 to create g3 :x
[∗]|[∗,n,n]
−−−−−→

09
x′. In the third iteration, we get

an additional GPU g4 :x
[∗]|[∗,n,n,n]
−−−−−−→

09
x′ apart from g2 and g3. This continues and the

indirection lists of the GPUs between x and x′ grow without bound leading to non-

termination.

There are two ways of handling traversals of data structures created in some other

(caller) procedure.

• As the above example illustrates, we perform compositions involving upwards ex-

posed variables inspite of these compositions being valid but undesirable.

• Alternatively, we can postpone these compositions (as suggested before) until call

inlining enables their reduction.

We use the first approach and bound the length of indirection lists using k-limiting. This

limits the participation of the GPUs in the fixed-point computation for the procedures

containing them. The second approach requires the GPUs to participate in the fixed-point

computations for the callers as well. This could cause inefficiency.

While the use of k-limiting in a bottom-up approach seems like an additional re-

striction, unless the locations involved in a pointer chain are allocated by m > k distinct

allocation sites, there is no loss of precision compared to a top-down approach that uses

allocation-site-based abstraction.

8.4.2 Incorporating k-Limiting

We limit the length of indlists to k such that an indlist is exact up to k − 1 dereferences

and approximate for k or more dereferences in terms of an unbounded number of deref-

erences. Besides, the dereferences are field-insensitive beyond k. This summarization is

implemented by redefining the list concatenation operator @ such that for il1@ il2, the

result is a k-limited prefix of the concatenation of il1 and il2.



8.4. SUMMARIZATION USING K-LIMITING 157

. . .
c p1 p2 p3 pn−1

r1
r2

rn−1

pnrn

• The shaded part shows the GPUs in

RGIn.

• Let r0 = c . Then r i = r i−1◦
τpi, i > 0.

• For simplicity, the directions chosen in

the GPUs illustrate only TS

compositions.

Figure 8.5: Series of compositions and its consequence when the graph induced by the
GPUs in RGIn (shown by the shaded part) has a cycle. The compositions may happen
more than the required number of times, resulting in a points-to edge.

Example 70. The set of GPUs RGOut11 reaching the End of procedure g of Fig-

ure 8.4, for k = 3 is given in the Figure 8.4(b). A GPU between x and x′ has an indlist

[∗, n] of length 2 and all indlists of length ≥ 3 are approximated by [∗, n, n].

GPU g1 :x
[∗][∗]
−−→
00

x′ in the GPG for procedure g represents the effect of while loop

not executed even once. GPU g2 :x
[∗]|[∗,n]
−−−−→

09
x′ represents the effect of the first iteration

of the while loop. The GPU g3 :x
[∗]|[∗,n,n]
−−−−−→

09
x′ represents the combined effect of the

second and all subsequent iterations of the while loop. The GPG of procedure g (∆g)

contains a single GPB which in turn contains a set of GPUs {g2, g3}.

Note that an explicit summarization is required only for heap locations and address-

escaped stack locations in recursive procedures because the indlists can grow without

bound only in these cases3.

The GPU composition defined in Section 8.2 (Definition 13) is extended to handle

k-limited indlists in the following way: The removal of a prefix from a k-limited indlist in

the Rem operation is over-approximated by suffixing special field-insensitive dereferences

denoted by “†” where † represents any field. For an operation Rem(il1, il2), il1 must be

a prefix of il2 as explained in Section 8.2. Let il2 = il1 @ il3 for Rem(il1, il2). We define

a summarized list-remainder operation sRem : indlist× indlist → 2indlist which takes two

3We also perform weak updates for address-escaped variables (Section 9.1) because they share many

similarities with heap locations. Like heap locations, address-escaped variables could outlive the lifetime

of the procedures that create them. They potentially represent multiple concrete locations because of

multiple calls to procedures. Further, this number could be unbounded in the case of recursive calls.
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indlists as its arguments and computes a set of indlists as shown below:

sRem(il1, il2) =











{il3 | il2 = il1 @ il3} |il2| < k

{il3@ σ | il2 = il1 @ il3, σ is a seq. of †, 0 ≤ |σ| ≤ |il1|} otherwise

Observe that sRem is a generalization of Rem defined in Section 8.2 because it com-

putes a set of indlists when its second argument is a k-limited indlist ; for non k-limited

indlist, sRem returns a singleton set. The longest indlist in the set computed by sRem

represents a summary whereas the other indlists are exact in length but approximate in

terms of fields because of field insensitivity introduced by †.4 This is illustrated in the

example below.

Example 71. For k = 3, some examples of the sets of indlists computed by the sRem

operation are shown below:

sRem([∗], [∗, n, n]) = {[n, n], [n, n, †]}

sRem([∗, n], [∗, n, n]) = {[n], [n, †], [n, †, †]}

sRem([∗, n, n], [∗, n, n]) = {[ ], [†], [†, †], [†, †, †]}

For the last case, the sRem operation can be viewed as an operation that creates

an intermediate set S = {[∗, n, n], [∗, n, n, †], [∗, n, n, †, †], [∗, n, n, †, †, †]} obtained by

adding upto 3 occurrences of † (because k = 3). The sRem operation can then be

viewed as a collection of Rem([∗, n, n], σ) for each σ in this set:

sRem([∗, n, n], [∗, n, n]) = {Rem([∗, n, n], σ) | σ ∈ S}

The first two cases in this example can also be explained in a similar manner.

GPU composition using indlevs (Section 4.3.2) or using indlists (Section 8.2) is a

partial operation defined to compute a single GPU as its result when it succeeds. Since

we do not have a representation for an “invalid” GPU, we model failure by defining GPU

composition as a partial function for GPUs containing indlevs or non-k-limited indlists.

4This is somewhat similar to materialization [89] which extracts copies out of summary representation

of an object to create some exact objects.
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Input: c // The consumer GPU to be simplified.

R // The context (set of GPUs) in which c is

// to be simplified.

Used // The set of GPUs used for GPU reduction

// for a GPU.

Output: Red // The set of simplified GPUs equivalent to c .

01 GPU reduction (c , R, Used)

02 { if (R = ∅ ∧ c = ·
1|0
−→
·
·) // c is a points-to edge

03 { Red = {c}

04 composed = true

05 }

06 else

07 { Red = ∅

08 composed = false

09 }

10 for each γ ∈ (R − Used)

11 { for each r ∈ (c ◦tsγ)

12 { Red = Red ∪ GPU reduction (r, R,Used ∪ {γ})

13 composed = true

14 }

15 for each r ∈ (c ◦ssγ)

16 { Red = Red ∪ GPU reduction (r, R,Used ∪ {γ})

17 composed = true

18 }

19 }

20 if (¬ composed )

21 Red = Red ∪ {c}

22 return Red

23 }

Definition 14: GPU Reduction c ◦R for handling heap.

However, when indlists are summarized using k-limiting, sRem naturally computes a set

of indlists (unlike Rem which computes a single indlist). This allows us to define GPU

composition as a total function, since we can express the previous partiality simply by

returning an empty set.
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x h14 h17

[∗]|[ ]
15 f2

[n]|[ ]
17f3

[n]|[ ]

17
f5

[∗]|[ ]
11f6

[∗]|[†]
11

f7

[∗]|[†, †]
11f8

[∗]|[†, †, †]

11f9

Figure 8.6: The set of GPUs RGOut20 after the call to procedure g in procedure f of
Figure 8.4. Local variable y has been eliminated.

8.5 Extending GPU Reduction to Handle Cycles in

GPUs

In the presence of heap, the graph induced by the set of GPUs reaching a GPB can contain

cycles of the following two kinds:

• Cycles arising out of creation of a recursive data structure in a procedure under

allocation-site-based abstraction. This manifests itself in the form of a cycle in-

volving heap nodes hi as illustrated in Example 67 in Section 8.3. These cycles are

closed form representations of acyclic unbounded paths in the memory.

• Cycles arising out of cyclic data structures. These cycles represent cycles in the

memory graph.

Both these cases of cycles are handled by GPU composition using sRem operation

over indirection lists. Definition 14 extends the algorithm for GPU reduction to use the

new definition of GPU composition (which is a total function) which computes a set of

GPUs instead of a single GPU.

We explain this in the context of reaching GPUs analysis with blocking (RGIn and

RGOut). The same explanation holds for reaching GPUs analysis without blocking (RGIn

and RGOut). For GPU reduction c ◦R, an admissible composition r 1 = c ◦
τp1 (where

p1 ∈ RGIn) may lead to another composition r 2 = r 1 ◦
τp2 (where p2 ∈ RGIn). This in
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turn may lead to another composition thereby creating a chain of compositions. If the

graph induced by the reaching GPUs (i.e. GPUs in RGIn) has a cycle (as illustrated in

Example 67 in Section 8.3), some pm must be adjacent to p1 with the length of the cycle

being m+1 as illustrated in Figure 8.5. The lengths of indlists in r i would be smaller than

(or equal to) those in r i−1 because of admissibility. If the length of an indlist in c exceeds

m, the series of compositions would resume with p1 after the composition with pm. In

other words, after computing rm−1 using the composition rm−2◦pm, the next GPU rm

would be computed using the composition rm−1◦p1 and the process will continue until

some r j, j ≥ m is a points-to edge.5 Thus, we will have more compositions than required

and the result of GPU reduction may not represent the updates of locations that are

updated by the original GPU c . In order to prohibit this, we allow a GPU p to be used

only once in a chain of compositions.

Hence, the new definition of GPU reduction (Definition 14) uses an additional ar-

gument, Used, which maintains a set of GPUs that have been used in a chain of GPU

compositions. For the top level non-recursive call to GPU reduction, Used = ∅. In the case

of pointers to scalars, a graph induced by a set of GPUs cannot have a cycle, hence a GPU

p cannot be used multiple times in a series of GPU compositions. Therefore, we did not

need set Used for defining GPU reduction in the case of pointers to scalars (Definition 4).

Example 72 illustrates GPU reduction with 3-limited indlists.

Example 72. The GPU reduction with 3-limited indlists using GPU g3 of ∆g shown

in Figure 8.4(b) is as follows: At the call site 20 in procedure f of Figure 8.4(a),

the upwards-exposed variable x′ in ∆g is substituted by x in ∆f (see Chapter 6).

All GPU compositions for this examples are TS compositions. The GPUs in RGIn20

(Figure 8.4(d)) are used for composition.

The GPU composition g2◦f2 for f2 :x
[∗]|[ ]
−−→
15

h14 and g2 :x
[∗]|[∗,n]
−−−−→

11
x (with x sub-

stituting for x′) creates a reduced GPU x
[∗]|[n]
−−−→

11
h14 which is further composed with

f3 :h14
[n]|[ ]
−−−→

17
h17 to create a reduced GPU f6 :x

[∗]|[ ]
−−→
11

h17 (Figure 8.6).

Now GPU g3 must be composed with f2, f3 and f5. The composition g3◦f2

for g3 :x
[∗]|[∗,n,n]
−−−−−→

11
x creates two GPUs x

[∗]|[n,n]
−−−−→

11
h14 and x

[∗]|[n,n,†]
−−−−−→

11
h14. The newly cre-

5Note that this happens for reducing a single GPU c in the context of RGIn and does not require a

cycle in the GPG.
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ated GPU x
[∗]|[n,n]
−−−−→

11
h14 is further composed with f3 to create GPU x

[∗]|[n]
−−−→

11
h17 which

is further composed with f5 to recreate GPU f6 :x
[∗]|[ ]
−−→
11

h17. The GPU composition

between the other newly created GPU x
[∗]|[n,n,†]
−−−−−→

11
h14 and f3 creates GPUs x

[∗]|[n,†]
−−−−→

11
h17

and x
[∗]|[n,†,†]
−−−−−→

11
h17. The GPU x

[∗]|[n,†]
−−−−→

11
h17 further composes with f5 creating a GPU

f7 :x
[∗]|[†]
−−−→

11
h17 while the composition between GPUs x

[∗]|[n,†,†]
−−−−−→h17 and f5 creates two

reduced GPUs f8 :x
[∗]|[†,†]
−−−−→

11
h17 and f9 :x

[∗]|[†,†,†]
−−−−−→

11
h17. Note that GPU f5 is used only

once in a series of compositions (Example 73 explains this).

The final reduced GPUs f6, f7, f8, and, f9 are members of the set RGOut21

containing the GPUs reaching the End of procedure f (as shown in Figure 8.6). These

reduced GPUs represent the following information:

• f6 implies that x now points-to heap location h17.

• f7 implies that x points-to heap locations that are one dereference away from

the heap location h17.

• f8 implies that x points-to heap locations that are two dereferences away from

the heap location h17.

• f9 implies that x points-to heap locations that are beyond two dereferences from

the heap location h17.

Thus, x points to every node in the linked list.

Example 73 illustrates the need for restricting the use of a GPU only once in a chain

of compositions (GPU reduction in Definition 14).

Example 73. Observe that GPUs f7, f8 and f9 can be further composed with GPU

f5. The composition of f7 with f5 creates GPU f6. Similarly, repetitive compositions

of f8 with f5 also creates GPU f6. This indicates that x points to only h17 and misses

out the fact that x points to every location in the linked list which is represented by

h17 and is represented by GPUs f7, f8 and f9.

A cycle in a graph induced by a set of GPUs could also occur because of a cyclic

data structure.
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Example 74. Let an assignment y → n = x be inserted in procedure f after line

19 in Figure 8.4. This creates a circular linked list instead of a simple linked list. This

will cause inclusion of the GPU h17
[n]|[ ]
−−−→h14 in Figure 8.4(d), thereby creating a cycle

between the nodes h14 and h17.

8.6 Chapter Summary

In this chapter, we have generalized the concept of indlevs to indirection lists (indlists) to

handle structures and heap accesses field sensitively. Heap locations are abstracted using

allocation sites. This approximation allows us to handle the unbounded nature of heap as

if it were bounded. An additional summarization technique based on k-limiting is used to

bound the accesses in a loop when the locations being accessed are not allocated within

the procedure. Both these summarization techniques are required to create a decidable

version of our method of constructing GPGs in the presence of heap which is unbounded.

We have extended the current definitions of GPU composition and GPU reduction

to handle indlists, k-limiting summarization, and cycles that may be present in the graph

induced by a set of GPUs. The optimizations performed on GPGs and the required data

flow analyses (reaching GPUs analyses and coalescing analysis) remain the same.





Chapter 9

Empirical Evaluation

The main motivation of our implementation was to evaluate the effectiveness of our op-

timizations in handling the following challenge for practical programs:

A procedure summary for flow- and context-sensitive points-to analysis needs

to model the accesses of pointees defined in the callers and needs to maintain

control flow between memory updates when the data dependence between

them is not known. Thus, the size of a summary can be potentially large. This

effect is exacerbated by the transitive inlining of the summaries of the callee

procedures which can increase the size of a summary exponentially thereby

hampering the scalability of analysis.

Section 9.1 describes our implementation, Section 9.2 describes the metrics that we

have used for our measurements, Section 9.3 describes our empirical observations, and

Section 9.4 analyzes our observations and describes the lessons learnt.

9.1 Implementation and Experiments

We have implemented GPG-based points-to analysis in GCC 4.7.2 using the LTO frame-

work and have carried out measurements on SPEC CPU2006 benchmarks on a machine

with 16 GB RAM with eight 64-bit Intel i7-4770 CPUs running at 3.40GHz.

Our method eliminates non-address-taken local variables using the def-use chains

explicated by the SSA-form. Although we construct GPUs involving such variables, they

are used for computing the points-to information within the procedure and do not ap-

pear in the GPG of the procedure. If a GPU defining a global variable or a parameter

165
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reads a non-address-taken local variable, we identify the corresponding producer GPUs

by traversing the def-use chains transitively. This eliminates the need for filtering out the

local variables from the GPGs for inlining them in the callers. As a consequence, a GPG of

a procedure consists of GPUs that involve global variables1, parameters of the procedure,

and the return variable which is visible in the scope of its callers. Since non-address-taken

local variables have SSA versions, storing the GPUs that define them flow-insensitively

results in no loss of precision.

All address-taken local variables in a procedure are treated as global variables because

they can escape the scope of the procedure. However, these variables are not strongly

updated because they could represent multiple locations.

We approximate the heap memory by maintaining k-limited indirection lists of field

dereferences for k = 3 (see Chapter 8). An array is treated as a single variable in the

following sense: accessing a particular element is seen as accessing every possible element

and updates are treated as weak updates. This applies to both when arrays of pointers

are manipulated, as well as when arrays are accessed through pointers. Since there is no

kill owing to weak update, arrays are maintained flow-insensitively by our analysis.

For pointer arithmetic involving a pointer to an array, we approximate the pointer

being defined to point to every element of the array. For pointer arithmetic involving other

pointers, we approximate the pointer being defined to point to every possible location.

Our current implementation handles only locally defined function pointers (Section 6.4)

but can be easily extended to handle function pointers defined in the calling contexts too.

We have also implemented flow-insensitive points-to analysis by collecting the GPUs

in a GPG store which differs from a GPB in that GPUs within a store can compose with

each other whereas those in GPB cannot. This allowed us to implement the following:

• Flow- and context-insensitive (FICI) points-to analysis. For each benchmark pro-

gram, we collected all GPUs across all procedures in a common store and performed

all possible reductions. The resulting GPUs were classical points-to edges represent-

ing the flow- and context-insensitive points-to information.

• Flow-insensitive and context-sensitive (FICS) points-to analysis. For each procedure

of a benchmark program, all GPUs within the procedure were collected in a store

1 From now on we regard static, heap-summary nodes, and address-taken local variables as ‘special

global variables’ that do not undergo strong updates.
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Program kLoC

# of

pointer

stmts

# of

call

sites
# of

procs.

Proc. count for

different buckets of

# of calls

# of procs. requiring different

no. of PTFs based on the

no. of aliasing patterns

2-5 5-10 10-20 20+ 2-5 6-10 11-15 15+ 2-5 15+

A B C D E F G

lbm 0.9 370 30 19 5 0 0 0 8 0 0 0 13 0

mcf 1.6 480 29 23 11 0 0 0 0 0 0 0 4 0

libquantum 2.6 340 277 80 24 11 4 3 7 3 1 0 14 4

bzip2 5.7 1650 288 89 35 7 2 1 22 0 0 0 28 2

milc 9.5 2540 782 190 60 15 9 1 37 8 0 1 35 25

sjeng 10.5 700 726 133 46 20 5 6 14 3 1 3 10 14

hmmer 20.6 6790 1328 275 93 33 22 11 62 5 3 4 88 32

h264ref 36.1 17770 2393 566 171 60 22 16 85 17 5 3 102 46

gobmk 158.0 212830 9379 2699 317 110 99 134 206 30 9 10 210 121

Table 9.1: Benchmark characteristics relevant to our analysis.

for the procedure and all possible reductions were performed. The resulting store

was used as a summary in the callers of the procedure giving context-sensitivity. In

the process, the GPUs are reduced to classical points-to edges using the information

from the calling context. This represents the flow-insensitive and context-sensitive

points-to information for the procedure.

The third variant i.e., flow-sensitive and context-insensitive (FSCI) points-to analysis

can be modelled by constructing a supergraph by joining the control flow graphs of all

procedures such that calls and returns are replaced by gotos. This amounts to a top-down

approach (or a bottom-up approach with a single summary for the entire program instead

of separate summaries for each procedure). For practical programs, this initial GPG is too

large for our analysis to scale. Our analysis achieves scalability by keeping the GPGs as

small as possible at each stage. Therefore, we did not implement this variant of points-to

analysis. Note that the FICI variant is also not a bottom-up approach because a separate

summary is not constructed for every procedure. However, it was easy to implement

because of a single store.



168 CHAPTER 9. EMPIRICAL EVALUATION

9.2 Measurements

We have measured the following for each benchmark program. Since the number of

procedures varies significantly across the benchmark programs causing the number of

GPUs and GPBs to vary across GPGs, we have plotted such data in terms of percentages.

The actual procedure counts are given in Appendix A.

1) Characteristics of benchmark programs (Table 9.1).

2) Effectiveness of redundancy elimination optimizations (Figure 9.1):

a) The number of dead GPUs for each procedure.

The first plot in Figure 9.1 shows the points (u, v) that are computed as follows:

Let x and y denote the number of GPUs before and after dead GPU elimination

respectively. Then the number of dead GPUs is d = x− y and percentage of dead

GPUs is computed as u = (d/x) × 100 (rounded to the nearest integer). Let t be

the total number of procedures in a program and let p procedures have u% dead

GPUs. Then the percentage of procedures is v = (p/t)× 100.

b) The number of empty GPBs for each procedure created by strength reduction, call

inlining and dead GPU elimination. The impact of empty GPB elimination is shown

by plotting the percentage of empty GPBs (similar to percentage of dead GPUs) on

X-axis and the corresponding percentage of procedures that contain those empty

GPBs on Y-axis.

c) Reduction in the number of GPBs due to coalescing. The third plot gives the reduc-

tion in the number of GPBs because of coalescing. This information is computed

in a similar manner as that of dead GPUs and empty GPBs.

d) Reduction in the number of back edges due to coalescing. The third plot gives the

reduction in the number of back edges because of coalescing. This information is

computed in a similar manner as that of dead GPUs and empty GPBs.

3) The goodness metric of the optimized procedure summaries (Figure 9.2):

a) Number of GPBs in the optimized GPGs. The first plot in Figure 9.2 shows the

count of GPBs in an optimized GPG of a procedure on X-axis. Y-axis shows the

percentage of procedures for a given GPB count.
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b) Number of GPUs in the optimized GPGs. The second plot in Figure 9.2 shows the

count of GPUs in an optimized GPG of a procedure on X-axis. Y-axis shows the

percentage of procedures for a given GPU count.

c) Number of GPUs that are dependent on locally defined pointers alone. The third

plot in Figure 9.2 shows the percentage of context-independent information in terms

of points (u, v) that are computed as follows: Let x and y denote the number of

GPUs with indlev “1|0” and total number of GPUs respectively in an optimized

GPG. Then u = (x/y)× 100 (rounded to the nearest integer). For a given value of

u, v is a percentage of procedures.

4) The number of GPBs in a GPG (Figure 9.3):

The first plot in Figure 9.3 shows the points (u, v). The value u = (x/y)× 100 (rounded

to the nearest integer) and v is the percentage of procedures where x and y represent

the following:

a) x is the number of GPBs in a GPG obtained after call inlining and y is the number

of basic blocks in the CFG2.

b) x is the number of GPBs in a GPG obtained after all optimizations and y is the

number of basic blocks in the CFG.

c) x is the number of GPBs in a GPG obtained after all optimizations and y is the

number of GPBs in a GPG obtained after call inlining.

5) The number of GPUs in a GPG (Figure 9.4): The second plot shows the number of

GPUs relative to the number of pointer assignments. This is computed in a manner

similar to the number of GPBs relative to the number of basic blocks as explained in

the item above.

6) The number of control flow edges in a GPG (Figure 9.5): The third plot shows the

number of control flow edges in a GPG relative to those in a CFG. This is also

2Since GPGs have callee GPGs inlined within them, for a fair comparison, the CFG size must be

counted by accumulating the sizes of the CFGs of the callee procedures. This is easy for non-recursive

procedures. For recursive procedures, we accumulate the size of a CFG as many times as the number of

inlinings of the corresponding GPG (Section 6.3).
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Program

# of Proc.

which

have

0 GPUs

# of Proc.

which

have

∆⊤ as

GPG

# of Proc.

in which

back edges

are present

in a CFG

# of Proc.

in which

back edges

are present

in a GPG

Exported

Definitions

Imported

Uses

# Queued

GPUs

# Soundness

Alerts

lbm 15 0 10 0 1.68 16.63 0 0

mcf 12 0 20 1 12.30 29.26 117 0

libquantum 38 0 36 0 1.54 1.89 0 0

bzip2 78 8 43 1 1.21 17.37 0 0

milc 184 3 94 0 0.70 6.14 0 0

sjeng 101 2 65 0 0.81 1.77 0 0

hmmer 242 5 153 0 2.26 13.02 19 0

h264ref 434 3 308 5 1.60 26.75 13 0

gobmk 1436 2 464 8 0.39 1.36 6 0

Table 9.2: Miscellaneous data about the GPGs.

computed in a manner similar to the number of GPBs and the number of GPUs as

explained above.

7) Miscellaneous data about GPGs (Table 9.2).

8) Time measurements (Figure 9.6):

a) FSCS (with and without blocking), FICI, and FICS variants of points-to analyses

(second plot).

b) Time for different optimizations without blocking (third plot).

c) Time for different optimizations with blocking (fourth plot).

9) Average points-to pairs per procedure in FSCS, FICI, and FICS variants of points-to

analyses. This data is plotted in the first plot of Figure 9.6.

9.3 Observations

We describe our observations about the sizes of GPGs, GPG optimizations, and perfor-

mance of the analysis. Observations related to the time measurements are presented in

the end. Section 9.4 discusses these observations by analyzing them.
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Figure 9.1: Effectiveness of redundancy elimination optimizations. Benchmarks libquan-
tum, milc, sjeng, and hmmer have all procedures whose all back edges are eliminated
because of coalescing shown by the same point (100, 100) in the fourth plot. Since the
points are overlaid on each other, they are not visible separately.

9.3.1 Effectiveness of Redundancy Elimination Optimizations

We observe that:

(a) The percentage of dead GPUs is very small and the dead GPU elimination optimiza-

tion is the least effective of all optimizations. Also, this optimization requires very

little time compared to other optimizations (see Figure 9.6). Hence, disabling the

optimization will neither improve the efficiency or scalability of the analysis nor will

it affect the compactness of the GPGs.

(b) The transformations performed by call inlining, strength reduction, and dead GPU
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Figure 9.2: Goodness measure of procedure summaries. A break in X-axis shown by two
parallel lines is a discontinuity necessitated by wide variation in the number of GPUs and
GPBs across benchmarks.

elimination create empty GPBs which are removed by empty GPB elimination. For

most procedures, 0%-5% or close to 50% of GPBs are empty.

(c) The last optimization among the redundancy elimination optimizations, coalesces the

adjacent GPBs that do not require control flow between them. In our experience,

many benchmarks had some very large GPGs in the presence of recursion. GPGs

for recursive procedures are constructed by repeated inlinings of recursive calls. Co-

alescing was most effective for such procedures. Once these GPGs were optimized,

the GPGs of the caller procedures did not have much scope for coalescing. In other

words, coalescing did not cause uniform reduction across all GPGs but helped the

most critical GPGs. Hence we observe a reduction of 20% to 50% of GPBs for some
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Figure 9.3: Size of GPGs relative to the size of corresponding procedures in terms of
GPBs and basic blocks.

but not majority of procedures.

Even if coalescing did not reduce the number of GPBs uniformly, it eliminated almost

all back edges as shown in fourth plot in Figure 9.1. This is significant because most

of the inlined GPGs are acyclic and hence analyzing the GPGs of the callers does not

require additional iterations in a fixed-point computation.

9.3.2 Goodness of Procedure Summaries

This data is presented in Tables 9.1, 9.2, and Figure 9.2. We use the following goodness

metrics on procedure summaries:

(a) Reusability. The number of calls to a procedure is a measure for the reusability of
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Figure 9.4: Size of GPGs relative to the size of procedures in terms of GPUs and pointer
assignments.

its summary. The construction of a procedure summary is meaningful only if it is

use multiple times. From column E in Table 9.1, it is clear that most procedures are

called from many call sites. This indicates a high reusability of procedure summaries.

(b) Compactness of a procedure summary. For scalability of a bottom-up approach, a

procedure summary should be as compact as possible. In the worst case, a procedure

summary may be same as the procedure. In such a case, the application of a procedure

summary at the call sites in its callers is meaningless because it is as good as visiting

the procedure multiple times which is similar to a top-down approach.

Figure 9.2 and Table 9.2 show that the procedure summaries are indeed small in terms

of number of GPBs and GPUs. GPGs for a large number of procedures have 0 GPUs
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Figure 9.5: Size of GPGs relative to the size of corresponding procedures in terms of
control flow edges.

because they do not manipulate global pointers (and thereby represent the identity

flow function). Further, the majority of GPGs have 1 to 3 GPBs.

Note that this is an absolute size of GPGs. Observations about the relative size of

GPGs with respect to their CFGs are presented in Section 9.3.3 below.

(c) Percentage of context-independent information (GPUs with indlev “1|0”). A proce-

dure summary is very useful if it contains high percentage of context-independent

information. We observe that the number of procedures with a high amount of

context-independent information is larger in the larger benchmarks. Thus, a bottom-

up approach is particularly useful for large programs.
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Program # of Proc. # of Stmts.

FSCS FICI FICS

FS FI FS+FI

Avg

(per stmt)

Avg

(per proc)

Avg

(per proc)

Avg

(per proc)

Avg

(per proc)

lbm 19 367 1.99 0.79 0.63 19.26 17.11

mcf 23 484 4.12 9.30 2.30 82.13 77.39

libquantum 80 342 0.58 0.57 0.95 3.46 2.01

bzip2 89 1645 2.18 0.65 0.48 14.72 12.96

milc 196 2504 1.18 3.10 0.09 13.21 8.71

sjeng 133 684 1.44 1.83 0.32 10.04 8.17

hmmer 275 6719 1.28 1.14 0.44 25.12 19.01

h264ref 566 17253 2.35 12.02 0.82 35.04 30.75

gobmk 2699 10557 0.74 6.36 0.08 2.95 1.59

Table 9.3: Final points-to information. FSCS (flow- and context-sensitive), FICI (flow-
and context-insensitive), FICS (flow-insensitive and context-sensitive).

9.3.3 Relative Size of GPGs with respect to the Size of Corre-

sponding Procedures

For an exhaustive study, we compare three representations of a procedure with each

other: (I) the CFG of a procedure, (II) the initial GPG obtained after call inlining,

and (III) the final optimized GPG. Since GPGs have callee GPGs inlined within them,

for a fair comparison, the CFG size must be counted by accumulating the sizes of the

CFGs of the callee procedures. This is easy for non-recursive procedures. For recursive

procedures, we accumulate the size of a CFG as many times as the number of inlinings

of the corresponding GPG (Section 6.3). Further, the number of statements in a CFG is

measured only in terms of the pointer assignments. This data is presented in Figures 9.3,

9.4, and 9.5.

(a) The first plot in these figures gives the size of the initial GPG (i.e. II) relative to that

of the corresponding CFG (i.e. I). It is easy to see that the reduction is immense:

a large number of procedures are in the range 0%-20% indicating more reduction in

terms of GPBs, GPUs, and control flow edges in GPGs.

(b) The second plot in these figures gives the size of the optimized GPG (i.e. III) relative

to that of the corresponding CFG (i.e. I). The number of procedures in the range

of 0%-20% is larger here than in the first plot indicating more reduction because of
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Figure 9.6: Final points-to information measurements (first plot) and time measurements
(the remaining three plots). FSCS (flow- and context-sensitive), FICI (flow- and context-
insensitive), FICS (flow-insensitive and context-sensitive), WOB (our analysis without
blocking), WB (our analysis with blocking), SR (strength reduction optimization), DG
(dead GPU elimination), EG (empty GPB elimination), CO (coalescing). The time taken
by dead GPU elimination, empty GPB elimination, and coalescing is negligible for small
benchmarks and hence the corresponding bars are not visible.

GPG optimizations.

(c) The third plot in these figures gives the size of the optimized GPG (i.e. III) relative

to that of the initial GPG (i.e. I). Here the distribution of procedures is different

for GPBs, GPUs, and control flow edges. In the case of GPBs, the reduction factor

is 50%. For GPUs, the reduction varies widely. The largest reduction is found for

control flow: a large number of procedures fall in the range 0%-20%. The number of

procedures in this range is larger than in the case of GPBs or GPUs indicating that
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the control flow is optimized the most.

(d) As a special case of control flow reduction, we have measured the effect of our op-

timizations on back edges. This is because the presence of back edges increases the

number of iterations required for fixed-point computation in an analysis. If a proce-

dure summary needs to encode control flow, it is desirable to eliminate back edges to

the extent possible. The data in Table 9.2 shows that most of the GPGs are acyclic

in spite of the fact that the number of procedures with back edges in CFG is large.

9.3.4 Final Points-to Information

We compared the amount of points-to information computed by our approach with flow-

and context-insensitive (FICI) and flow-insensitive and context-sensitive (FICS) methods

(first plot of Figure 9.6 and Table 9.3). For this purpose, we computed number of points-

to pairs per procedure in all the three approaches by dividing the total number of unique

points-to pairs across all procedures by the total number of procedures. Predictably, this

number is smallest for our analysis (FSCS) and largest for FICI method.

9.3.5 Time Measurements

We have measured the overall time as well as the time taken by each of the optimizations

(Figure 9.6). We have also measured the time taken by the FICI and FICS variants of

points-to analysis. Our observations are:

(a) Our analysis takes less than 8 minutes on gobmk.445 which is a large benchmark with

158 kLoC. Our current implementation does not scale beyond that. We imposed a

time limit of 2 hours and the larger benchmarks timed out.

(b) Strength reduction is the most expensive optimization followed by coalescing which

is the most expensive among the redundancy elimination optimizations.

(c) We introduced reaching GPUs analysis with blocking to ensure soundness of strength

reduction so that a barrier GPU does not cause a side-effect invalidating strength

reduction. However, our intuition was that very few of us write programs where a

pointer is manipulated in such a manner. Hence we identified possible soundness

alerts. The soundness alerts arise when a GPU whose composition was postponed,
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is updated by a GPU within the same GPG after inlining in a caller GPG. This is

identified by checking if a GPU in the set Queued of a GPG is killed by the GPU of

the same GPG when it is inlined in a caller.

We also measured the number of GPUs that were queued (i.e. not used as producer

GPUs). Our measurements show that the number of GPUs in the Queued set is

relatively small (see Table 9.2). We did not find a single instance of a soundness alert

that was valid; we did find a very small number of false positives that were manually

examined and rejected.

(d) FICI variant is consistently faster than the FICS variant, and faster than FSCS in

most programs. Further, FSCS is faster than FICS in most cases. A flow-sensitive

version being faster than a flow-insensitive version might look counter intuitive. How-

ever, it is not the case because of context sensitivity—the number of calling contexts

in FICS is much larger than that in FSCS owing to flow insensitivity.

9.4 Discussion: Lessons From Our Empirical Mea-

surements

Our experiments and empirical data leads us to the following important learnings:

1. The real killer of scalability in program analysis is not the amount of data but the

amount of control flow that the data propagation may be subjected to, in search of

precision.

2. For scalability, the bottom-up summaries must be kept as small as possible at each

stage of summary construction.

3. Some amount of top-down flow is very useful for achieving scalability.

4. Type-based non-aliasing aids scalability significantly.

5. The indirect effects for which we devised blocking to postpone GPU compositions

are extremely rare in practical programs. We did not find a single instance in our

benchmarks.

6. Not all information is flow-sensitive.
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We learnt these lessons the hard way as described in the rest of this section.

9.4.1 Handling Recursion

In our first attempt of handling recursion, we converted indirect recursion to self recur-

sion, and repeatedly inlined the recursive calls to optimize them. This failed because in

some cases, the size of GPG after inlining calls became too big and our analyses and

optimizations did not scale. Hence, instead of first creating a naively large GPG and then

optimizing it to bring down the size, we decided to keep the GPGs small at every step in

a fixed-point computation, starting from ∆⊤.

9.4.2 Handling Large Size of Context-Dependent Information

Some GPGs had a large amount of context-dependent information (i.e. GPUs with

upwards-exposed versions of variables) and the GPGs could not be optimized much. This

caused the size of the caller GPGs to grow significantly, threatening the scalability of

our analysis. Hence, we devised a heuristic threshold t representing the number of GPUs

containing upwards-exposed versions of variables. This threshold is used as follows: Let

a GPG contain x GPUs containing upwards-exposed versions.

• If x < t for a GPG, then the GPG is inlined in its callers.

• if x ≥ t for a GPG, then the GPG is not inlined in its callers. Instead its calls are

represented symbolically with the GPUs containing upwards-exposed versions. As

the analysis proceeds, these GPUs are reduced decreasing the count of x after which

the GPG is inlined.

This keeps the size of the caller GPG small and at the same time, allows reduction

of the context-dependent GPUs in the calling context. Once all GPUs are reduced to

classical points-to edge, we effectively get the procedure summary of the original callee

procedure for that call chain. Since the reduction of context-dependent GPUs is different

for different calling contexts, the process needs to be repeated for each call chain. This is

similar to the top-down approach where we analyze a procedure multiple times. We used

a threshold of 80% context-dependent GPUs in a GPG containing more than 10 GPUs.

Thus, 8 context-dependent GPUs from a total of 11 GPUs was below our threshold as

was 9 context-dependent GPUs from a total of 9 GPUs.
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Note that in our implementation, we discovered very few cases (in the order of single

digits and only in large benchmarks) where the threshold actually exceeded. The number

of call chains that required multiple traversals are in single digits and they are not very

long. The important point to note is that we got the desired scalability only when we

introduced this small twist of using symbolic GPG.

9.4.3 Handling Function Pointers

Function pointers used in a procedure but defined in its callers is another case where

we had to inline unoptimized GPGs in the callers because the GPGs of the procedure’s

callees were not known and hence their flow function was ∆⊤. This hampered scalabil-

ity. Since our primary goal was to evaluate the effectiveness of our optimizations, our

current implementation handles only locally defined function pointers (Section 6.4) Our

implementation can be easily extended to handle function pointers defined in the calling

contexts. We can handle such function pointers by using a symbolic ∆⊤ GPG and in-

troducing a small touch of top-down analysis as was done above when handling a large

number of context-dependent GPUs. We leave this as future work.

9.4.4 Handling Arrays and SSA Form

Pointers to arrays were weakly updated, hence we realized early on that maintaining this

information flow sensitively prohibited scalability. This was particularly true for large

arrays with static initializations. Similarly, GPUs involving SSA versions of variables were

not required to be maintained flow sensitively. This allowed us to reduce the propagation

of data across control flow without any loss in precision.

9.4.5 Making Coalescing More Effective

Unlike dead GPU elimination, coalescing proved to be a very significant optimization

for boosting the scalability of the analysis. The points-to analysis failed to scale in the

absence of this optimization. However, this optimization was effective (i.e. coalesced

many GPBs) only when we brought in the concept of types: in cases where the data

dependence between the GPUs was unknown because of the dependency on the context

information, we used type-based non-aliasing to enable coalescing.
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9.4.6 Estimating the Number of Context-Dependent Summaries

Constructing context-dependent procedure summaries (i.e., partial transfer functions in

an MTF approach, see Sections 1.3.3 and 2.4.1) using the aliases or points-to information

from calling contexts obviates the need of control flow. Since control flow is the real

bottleneck as per our findings, we computed the number of aliases after computing the

final points-to information to estimate the number of context-dependent summaries that

may be required for real program. This number (column F in Table 9.1) is large suggesting

that it is undesirable to construct multiple PTFs for a procedure using the aliases from

the calling contexts.

9.5 Chapter Summary

A procedure summary is useful if it is (a) reusable, and (b) compact. Our measurements

show that the procedure summaries are highly reusable and indeed small in terms of

number of GPBs and GPUs.

Coalescing proved to be a very significant optimization for boosting the scalability of

the analysis. Coalescing did not cause uniform reduction across all GPGs but helped in

the most critical GPGs (GPGs may correspond to recursive procedures). The points-to

analysis failed to scale in the absence of this optimization. However, this optimization

was effective (i.e. coalesced many GPBs) only when we brought in the concept of types.

The need for scalability and precision of points-to analysis demands an hybrid ap-

proach which explores the pros and cons of each of the approaches. A good study of the

nature of procedures and their interaction with other procedures is needed to determine

whether a procedure should be visited in a top-down approach fashion or its procedure

summary should be constructed which could be used at the call sites in all its callers.



Chapter 10

Conclusions and Future Work

We conclude the thesis by reflecting on our ideas and envisioning future possibilities.

10.1 Reflections

Constructing compact procedure summaries for flow- and context-sensitive points-to anal-

ysis seems hard because it

(a) needs to model the indirect accesses of pointees that are defined in callers without

examining their code,

(b) needs to preserve data dependence between memory updates, and

(c) needs to incorporate the effect of summaries of the callee procedures transitively.

In past, the first issue has been handled by modelling accesses of unknown pointees

using placeholders. However, it may require a large number of placeholders. The second

issue has been handled by constructing multiple versions of a procedure summary for

different aliases in the calling contexts. The third issue can only be handled by inlining

the summaries of the callees. However, it can increase the size of a summary exponentially

thereby hampering the scalability of analysis.

We have handled the first issue by proposing the concept of generalized points-to

updates (GPUs) which track indirection levels. Simple arithmetic on indirection levels

allows composition of GPUs to create new GPUs with smaller indirection levels; this

reduces them progressively to classical points-to edges.
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In order to handle the second issue, we maintain control flow within a GPG and

perform optimizations of strength reduction and redundancy elimination. Together, these

optimizations reduce the indirection levels of GPUs, eliminate data dependences between

GPUs, and minimize control flow significantly. These optimizations also mitigate the

impact of the third issue.

In order to achieve the above, we have devised novel data flow analyses such as

reaching GPUs analysis (with and without blocking) and coalescing analysis which is a

bidirectional analysis. Interleaved call inlining and strength reduction of GPGs facilitated

a novel optimization that computes flow- and context-sensitive points-to information in

the first phase of a bottom-up approach. This obviates the need for the second phase.

An interesting aspect of our design is that our method is a hybrid approach that

can be tuned to combine top-down and bottom-up approaches in a flexible manner for

an individual GPG as desired: After constructing an initial GPG, we use a threshold of

context-dependent information (i.e. GPUs with upwards-exposed versions of variables) in

the GPG to decide whether to optimize it and then process the caller GPGs in a bottom-

up manner or to process the caller GPGs (without inlining the callee GPGs) to propagate

GPUs top-down. If the threshold is kept very small, we have a largely top-down approach,

if it is kept very large, we have a largely bottom-up approach.

Our measurements on SPEC benchmarks show that GPGs are small enough to scale

fully flow- and context-sensitive exhaustive points-to analysis to C programs as large as

158 kLoC. Further, most the GPGs are acyclic even if they represent procedures that

have loops or are recursive.

Some important takeaways from our empirical evaluation are:

(a) Flow- and context-sensitive points-to information is small and sparse.

(b) The real killer of scalability in program analysis is not the amount of data that

an analysis computes but the amount of control flow that the propagation of data

may be subjected to in search of precision. This observation supports the concept

of sparse analysis. However, the construction of a full interprocedural SSA even for

scalar global variables is hard because of the side-effects that a procedure call may

cause; for pointers it seems harder. Our analysis achieves scalability by minimizing

the control flow significantly.
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(c) Although a bottom-up approach is much more efficient than a top-down approach,

in practice, a hybrid approach is more scalable than the individual approaches. Our

measurements found very few cases (in the order of single digits and only in large

benchmarks) where our threshold was actually exceeded.

10.2 Possible Directions of Future Work

We feel that this work can be taken further in many ways. We have grouped the ideas of

possible directions under the following categories:

• Ideas influencing the scalability of points-to analysis using GPGs.

• Ideas influencing the precision of points-to analysis using GPGs.

• Ideas related to the formal aspects of GPGs.

• Use of GPGs for other analyses.

• Use of GPGs for other paradigms.

Some of these ideas extend or consolidate the GPG-based points-to analysis whereas

some others explore whether these concepts could be used in other situations.

Ideas influencing the scalability of points-to analysis using GPGs:

• It would be useful to explore the possibility of scaling the implementation to larger

programs; we suspect that this would be centered around examining the control flow

in the GPGs and optimizing it still further.

• In liveness based points-to analysis [53], points-to information is computed only for

live pointer variables. It would be interesting to explore the possibility of restricting

the GPG construction to live pointer variables for scalability. For points-to analysis,

the GPG construction is a forward flow problem whereas liveness analysis is a back-

ward flow problem. Thus for liveness analysis of pointers, we may need to construct

“backward” GPGs. It would be interesting to study how the interaction between

forward and backward GPGs can be used for computing liveness based points-to

information.
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• An interesting idea of scaling points-to analysis is to perform analysis only for the

“top-level” pointers (i.e., whose addresses are not taken) and use the points-to

information to eliminate some pointer indirections thereby exposing the next-level

pointers as top-level pointers [116]. This analysis constructs a procedure summary

for each level (starting with the highest level) and uses the points-to information

from the previous levels. It would be interesting to explore the possibility of using

this technique for GPG construction and analyze the impact of this divide and

conquer technique on scalability.

Ideas influencing the precision of points-to analysis using GPGs:

• Currently GPGs use allocation-site-based abstraction for dynamically allocated mem-

ory locations. Currently, we use a simple abstraction that does not distinguish be-

tween the calling contexts of procedures allocating memory. GPGs can also take

the advantage of the idea of heap cloning [57, 72, 111] to distinguish the memory

allocated in distinct calling contexts. The reason why this seems eminently feasible

is that callee GPGs are inlined in the callers and the consumer GPUs are propagated

bottom-up to the calling contexts. Thus all we need for heap cloning is a consistent

way of naming the allocations sites occurring in producer GPUs when they are used

in compositions with a consumer GPG. We believe that this need-based cloning is

an inherent advantage of a bottom-up method over a top-down method.

• Currently GPGs treat an entire array as a single variable that undergoes weak

updates. One possible future work would be to extend GPGs to arrays using array

SSA form [54] thereby distinguishing between different array elements and perform

strong updates. We can also explore the benefits of using heap SSA form [120] (which

models each field as a distinct logical “heap array”) in the current implementation

of GPG-based points-to analysis.

Ideas related to the formal aspects of GPGs:

• It would be interesting to work out formal proofs of correctness and analyze theo-

retical complexity of GPG-based points-to analysis.
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Use of GPGs for other analyses:

• The concept of GPG provides a useful abstraction of memory and memory trans-

formers involving pointers by directly modelling load, store, and copy of memory

addresses. It would be interesting to combine GPGs with the abstractions of a client

analysis, say property proving application for verification. This direction can also

be explored in future.

Use of GPGs for other paradigms:

• It would be useful to extend the scope of the implementation of GPG-based points-

to analysis to C++ and Java programs. It would also be interesting to extend our

work to concurrent programs such as Java programs containing threads.

10.3 Final Thoughts

We believe that the ideas presented in this thesis can go far beyond what has been

achieved in this work and GPGs hold a promise for future research in analysis of programs

containing pointers.
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Appendix A

Additional Data

We have evaluated our GPG-based points-to analysis implementation on SPEC CPU

2006 benchmarks. The data is presented in the form of graphs. However, the number

of procedures varies significantly across the benchmark programs. Besides, the number

of GPUs and GPBs varies across GPGs. Hence we have plotted such data in terms of

percentages. The actual procedure counts are given in the tables below.
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A
P
P
E
N
D
IX

A
.
A
D
D
IT

IO
N
A
L
D
A
T
A

Program 0 GPUs 0 GPBs

% of Dead GPUs
% of empty GPBs

eliminated

% of GPBs

reduced because

of coalescing

% of back edges

reduced because

of coalescing

0-20 20-40 40-60 60-80 80-100 0-20 20-40 40-60 60-80 80-100 0-20 20-40 40-60 60-80 80-100 0-20 20-40 40-80 80-100

lbm 15 0 4 0 0 0 0 4 0 15 0 0 19 0 0 0 0 0 0 0 0

mcf 12 0 10 1 0 0 0 14 0 8 0 1 17 2 3 1 0 1 0 0 3

libquantum 45 0 32 2 1 0 0 31 0 47 2 0 61 7 4 5 3 0 0 0 6

bzip2 78 8 9 0 2 0 0 22 0 59 0 0 78 2 1 0 0 1 0 0 0

milc 184 3 12 0 0 0 0 61 0 131 1 0 190 2 1 0 0 0 0 0 1

sjeng 101 2 29 1 2 0 0 8 0 101 18 4 124 1 3 3 0 0 0 0 9

hmmer 241 5 31 0 1 0 2 68 0 202 0 0 265 2 1 1 1 1 0 0 1

h264ref 439 3 123 2 1 1 0 195 2 343 18 5 534 13 10 4 2 5 0 0 3

gobmk 1437 2 1260 2 0 0 0 1268 0 1380 45 4 2144 241 164 89 59 7 1 0 97

Table A.1: Effectiveness of redundancy elimination optimizations.
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Program

Proc. count for

different buckets of

# of GPBs

Proc. count for

different buckets of

# of GPUs

Proc. count for

different buckets of

% of CI

0 1-3 4-10 11-25 26-35 >35 0 1-3 4-6 7-10 11-30 31-50 51-70 >70 0-20 20-40 40-60 60-80 80-100

lbm 0 18 1 0 0 0 15 4 0 0 0 0 0 0 4 0 0 0 0

mcf 0 22 1 0 0 0 12 6 2 2 1 0 0 0 8 0 0 1 2

libquantum 0 80 0 0 0 0 38 42 0 0 0 0 0 0 38 2 0 0 2

bzip2 8 79 2 0 0 0 78 10 1 0 0 0 0 0 11 0 0 0 0

milc 3 191 2 0 0 0 184 6 5 1 0 0 0 0 4 0 0 0 8

sjeng 2 128 3 0 0 0 101 26 1 3 2 0 0 0 1 0 2 3 26

hmmer 5 254 15 1 0 0 242 27 5 1 0 0 0 0 26 2 1 0 4

h264ref 3 531 23 7 2 0 434 81 20 8 18 3 1 1 78 3 4 0 47

gobmk 2 2568 120 3 0 6 1436 83 87 972 120 1 0 0 1077 33 60 31 62

Table A.2: Measurment of the goodness of procedure summaries.
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A
P
P
E
N
D
IX

A
.
A
D
D
IT

IO
N
A
L
D
A
T
A

Program

Time (in seconds)

FSCS with blocking FSCS without blocking FICI FICS

Total
Streng.

Reduc.
Redundancy Elim Total

Stren.

Reduc.
Redundancy Elim

Total

Dead

GPU

Elim

Empty

GPB

Elim

Coalesce Total

Dead

GPU

Elim

Empty

GPB

Elim

Coalesce

lbm 0.085 0.043 0.001 0.000 0.000 0.000 0.084 0.041 0.001 0.000 0.000 0.000 0.072 0.108

mcf 5.815 5.052 0.032 0.002 0.003 0.017 3.053 2.529 0.021 0.001 0.003 0.008 13.224 47.088

libquantum 0.830 0.518 0.066 0.001 0.012 0.030 0.601 0.348 0.033 0.001 0.006 0.014 0.067 0.393

bzip2 1.267 0.582 0.010 0.000 0.002 0.003 1.183 0.530 0.009 0.000 0.001 0.003 0.867 2.787

milc 1.329 0.664 0.017 0.001 0.003 0.006 1.301 0.640 0.016 0.000 0.003 0.006 3.301 4.538

sjeng 4.304 2.184 0.081 0.001 0.004 0.068 4.001 1.861 0.077 0.001 0.003 0.066 1.057 4.073

hmmer 6.225 4.344 0.087 0.002 0.015 0.037 6.006 4.117 0.081 0.001 0.015 0.035 27.453 26.521

h264ref 80.319 64.542 0.388 0.005 0.046 0.188 88.464 76.217 0.397 0.002 0.057 0.182 234.175 841.067

gobmk 462.875 353.583 49.372 0.232 3.463 40.522 248.393 169.199 24.784 0.127 1.319 20.773 36.193 707.428

Table A.3: Time measurements.
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Program

Proc. count for

different buckets of

ratio of

GPBs/BBs in

CFG and GPG

after inlining

Proc. count for

different buckets of

ratio of

GPBs/BBs in

CFG and optimized GPG

Proc. count for

different buckets of

ratio of

GPBs in GPG

after inlining

and optimized GPG

0-20 20-40 40-60 60-80 80-100 0-20 20-40 40-60 60-80 80-100 0-20 20-40 40-60 60-80 80-100

lbm 9 3 3 1 3 11 5 3 0 0 2 1 15 0 1

mcf 14 5 2 1 1 22 1 0 0 0 3 5 13 2 0

libquantum 40 16 12 1 11 56 13 11 0 0 15 21 41 2 1

bzip2 55 15 8 4 7 70 12 7 0 0 12 2 68 4 3

milc 118 21 14 9 34 138 24 34 0 0 10 6 174 2 4

sjeng 85 19 7 3 19 105 9 19 0 0 16 14 102 0 1

hmmer 194 41 22 1 17 235 23 16 0 1 29 37 194 4 11

h264ref 401 69 49 10 37 474 50 40 2 0 26 65 437 13 25

gobmk 2315 279 29 9 67 2594 37 66 1 1 141 464 1494 579 21

Table A.4:
Relative size of GPGs with respect to the size of corresponding procedures

in terms of GPBs and basic blocks.
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A
P
P
E
N
D
IX

A
.
A
D
D
IT

IO
N
A
L
D
A
T
A

Program

Proc. count for

different buckets of

ratio of

GPUs/stmts in

CFG and GPG

after inlining

Proc. count for

different buckets of

ratio of

GPUs/stmts in

CFG and optimized GPG

Proc. count for

different buckets of

ratio of

GPUs in GPG

after inlining

and optimized GPG

0-20 20-40 40-60 60-80 80-100 0-20 20-40 40-60 60-80 80-100 0-20 20-40 40-60 60-80 80-100

lbm 16 3 0 0 0 19 0 0 0 0 18 0 0 1 0

mcf 21 0 1 1 0 23 0 0 0 0 17 0 3 0 3

libquantum 75 4 0 0 1 80 0 0 0 0 45 10 7 6 12

bzip2 89 0 0 0 0 89 0 0 0 0 85 0 0 0 4

milc 195 1 0 0 0 196 0 0 0 0 191 0 0 0 5

sjeng 131 0 2 0 0 133 0 0 0 0 105 0 1 2 25

hmmer 273 0 1 0 1 275 0 0 0 0 266 7 1 0 1

h264ref 540 12 10 1 3 563 2 1 0 0 505 3 1 1 56

gobmk 2690 4 1 0 4 2698 1 0 0 0 1460 1 5 21 1212

Table A.5:
Relative size of GPGs with respect to the size of corresponding procedures

in terms of GPUs and pointer assignments.
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Program

Proc. count for

different buckets of

ratio of

CF edges in

CFG and GPG

after inlining

Proc. count for

different buckets of

ratio of

CF edges in

CFG and optimized GPG

Proc. count for

different buckets of

ratio of

CF edges in GPG

after inlining

and optimized GPG

0-20 20-40 40-60 60-80 80-100 0-20 20-40 40-60 60-80 80-100 0-20 20-40 40-60 60-80 80-100

lbm 13 4 2 0 0 19 0 0 0 0 18 0 0 0 1

mcf 21 1 1 0 0 23 0 0 0 0 16 3 3 1 0

libquantum 61 8 2 0 9 80 0 0 0 0 64 11 4 0 1

bzip2 74 8 3 0 4 89 0 0 0 0 79 2 3 2 3

milc 183 6 4 0 3 195 0 1 0 0 188 2 1 0 5

sjeng 124 5 1 0 3 133 0 0 0 0 130 1 1 0 1

hmmer 246 24 3 0 2 274 1 0 0 0 254 3 4 3 11

h264ref 508 27 13 1 17 560 0 2 1 3 506 13 9 12 26

gobmk 2560 78 31 1 29 2695 1 2 1 0 1773 278 265 353 30

Table A.6:
Relative size of GPGs with respect to the size of corresponding procedures

in terms of control flow edges.
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