
Tutorial exercise 1:

Pipeline architecture and

instruction set are coupled

Advanced Computer Architecture

Paul H J Kelly

Let’s fiddle with it....

• Suppose we rearrange the pipeline

• Eg so the MEM stage comes before the ALU:

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

• Here is the 5-stage DLX/MIPS pipeline from

the textbook:

• Your job:

• Have an opinion about whether this is a

good idea

• Have a plan for finding out

The proposed instruction set redesign

• For example, suppose R1 is an index into an array
starting at address 100, and we need to multiply the
R1th element by 123. On MIPS you could write:

LD R2, 100(R1)

MULI R3, R2, 123

• Here we load R2 with the element of the array, using
displacement addressing. With the modified
architecture, you would have to write

ADDI R2, R1, 100

MULI R3, (R2), 123

• Here, the first instruction does the displacement
calculation explicitly, leaving a pointer to the array
element in R2. The second instruction then reads the
value from memory.

Where are the stalls?

• Question:

When will we suffer a pipeline stall?

• In the original pipeline we got a stall between a

load and a use:

LD R1, R2(100)

ADD R3, R1, 1

Where are the stalls?

• Question:

When will we suffer a pipeline stall?

• Consider:

ADD R1, R2, R3

ADD R4, (R1), R5

• Question:

When will we suffer a pipeline stall?

• Consider:

ADD R1, R2, R3

ADD R4, (R1), R5

• The change also has consequences for register

allocation?

• Consider:

ADD R1, R2, R3

some other instruction

ADD R4, (R1), R5

Is this design better than the original? Worse?
How would you find out?

• Impact on clock time?

• Percentage of loads & stores that use displacement
addressing
– since each of these would now involve an additional instruction

to compute the effective address.

• Percentage of loads which load a value which is only
used once by an ALU operation
– since it is in this case that the new addressing mode saves us

something.

• After the compilers have been changed, what percentage
of instructions that calculate an address are immediately
followed by a load instruction which uses it?
– since this is the case where a stall would occur).

• Compiler needs to know where stalls might occur
– to schedule instructions to avoid them

Conclusions?

• It depends

• On exactly how applications and the compiler use the
instruction set

• Influences:

– Number of instructions you need to execute

– Number of registers needed

– Number of stalls

• Influenced by:

– Compiler’s ability to schedule instructions

– Compiler’s effectiveness in selecting instructions

– Application behaviour

• Need to build compiler, and evaluate across wide,
diverse, representative suite of applications you (or
your customers) care about

